
A Concurrent Bilateral Negotiation

Model for Open E-Markets

by

Bedour Alrayes

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Department of Computer Science,

Royal Holloway, University of London

December 2015

Declaration of Authorship

I, Bedour Alrayes, hereby declare that this thesis and the work presented in it is

entirely my own. Where I have consulted the work of others, this is always clearly

stated.

Signed:

Date:

Supervisor and Examiners

Supervisor: Professor Kostas Stathis

Internal Examiner: Dr. Antonis Bikakis

External Examiner: Professor Jeremy Pitt

i

Abstract

Negotiation has been widely applied in computational systems, particularly in e-

marketplaces (e-markets), to facilitate transactions between buyers and sellers. In

existing e-markets, participants must repeatedly be online to follow the progress

of a transaction, especially where negotiation is required. Also, some market

mechanisms (e.g. auctions) can be of long duration, and pursuing the best deals

can require participants to engage in multiple negotiations simultaneously. In this

context, the issue is how to build models that support agents to engage in open

and dynamic environments concurrently.

We develop a model that allows software agents to negotiate concurrently with

other agents. The main goal is to deploy agents that achieve the best outcome in

agreements that allocate resources such as goods and services. We build upon pre-

vious work to develop a complete concurrent negotiation architecture, describing

all the necessary components to allow an agent to take decisions in a concurrent

negotiation. We also revise the known alternating protocol to support concurrent

negotiations in open e-markets. This allows participants to request-to-reserve,

cancel or exit a negotiation.

We also develop a novel strategy, Conan, which relaxes assumptions previously

made regarding deadlines and knowledge about the market and the opponents.

Consequently, our strategy is more realistic for open e-markets in deciding what

action to take and, if the action is to offer, what offer to make next. We represent

Conan using a logic-based knowledge representation. We then build a negotia-

tion simulator Recon to simulate and evaluate our strategy. Recon supports

the development of software agents negotiating concurrently with other agents;

ii

previous work only supported single bilateral negotiation. We then create a set

of realistic experimental negotiation scenarios using opponents from the existing

literature. We show empirically that Conan outperforms the state-of-the-art and

other agents in terms of average utility gained from negotiations.

iii

Acknowledgements

Undertaking this PhD has been a truly life-changing experience for me and it would

not have been possible without the support and guidance that I have received from

many people.

I would like to express my special appreciation and thanks to my supervisor

Professor Kostas Stathis, for his positive and encouraging approach. His knowl-

edge, wisdom, patience, support, valuable guidance and advice on both the re-

search and my career have been invaluable. I have been very privileged to have

him as my supervisor.

A very special thank you to Dr.Özgur Kafalı for his invaluable advice and

feedback on my research and for always being very supportive of my work.

I am extremely grateful to my parents. Firstly, my mum, for her unconditional

love and support. She is the most important person in my world and I dedicate

my PhD to her; without her I would not be here today. Also, a big thank you to

my dad for his support and for always believing in me.

Profound gratitude goes to my beloved husband Saad, for his continuous sup-

port and for all of the sacrifices that he has made on my behalf. I would like also

to thank my daughters Alia and Yara, who have shared with me all the good and

the hard times during my PhD.

My deep appreciation goes to my siblings Nora, Hadeel, Nasser, Haifa, Reema

and Faisal, for their moral support and precious love throughout my entire life.

To my dearest friend and confidante, Latifa Alabdlkrim, for sharing every

moment in my life and being the best friend who inspires me; I always look forward

iv

to spending time with her.

My sincere thanks also go to my family-in-law. Words cannot express how

grateful I am to my mother-in-law and father-in-law, whose prayers for me have

sustained me thus far.

I also thank the DICE Lab for all the lovely times and for sharing so many

experiences. In particular, I am grateful to Paulo Ricca for helping me to fix the

code bugs and Ulli Schaechtle for useful discussions about statistical tests.

Finally, I would like to thank King Saud University for funding my PhD.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Scenario 1 . 5

1.1.2 Scenario 2 . 6

1.2 Research Issues and Challenges in Agent Negotiation 12

1.2.1 Complete Concurrent Negotiation Model and Knowledge Rep-

resentation . 12

1.2.2 Open and Dynamic Environment 13

1.2.3 Concurrent Negotiation . 14

1.2.4 Concurrent Negotiation Simulation 15

1.3 Aims and Objectives . 15

1.4 Contributions . 19

1.5 Thesis Organization . 21

1.6 Publications and Awards . 21

2 Literature Review 23

2.1 Negotiation Preliminaries . 23

2.1.1 Software Agent . 24

2.1.2 Negotiation Model . 24

2.2 Negotiation Resources . 26

2.2.1 Single-Issue Negotiation . 26

2.2.2 Multi-Issue Negotiation . 27

vi

2.3 Negotiation Architecture . 28

2.4 Negotiation Protocol . 29

2.4.1 Contract Net Protocol . 30

2.4.2 Auction Protocol . 31

2.4.3 Alternating Offers Protocol 33

2.4.4 Concurrent Alternating Offers Protocol 33

2.5 Negotiation Strategies . 36

2.5.1 Negotiation Strategy Types 36

2.5.2 A Classification of Heuristic Strategies 39

2.6 Heuristic Strategies . 42

2.6.1 Concurrent Bilateral Negotiation Strategies 43

2.6.2 Asynchronous Negotiation 53

2.6.3 Cancellation Penalties . 54

2.7 Negotiation Simulation . 56

2.7.1 GENIUS . 57

2.7.2 The GOLEM Agent Platform 58

2.7.3 GOLEMLite . 60

2.8 Limitations of Existing Work . 60

2.9 Summary . 63

3 Adaptive Negotiation Model 64

3.1 Concurrent Negotiating Agent Architecture 65

3.1.1 Domain Knowledge . 66

3.1.2 Current State . 67

3.1.3 Physical Capabilities . 67

3.1.4 Cognitive Capabilities . 68

3.1.5 Control . 68

3.2 Concurrent Negotiation Setting . 69

3.3 Concurrent Negotiation Protocol 71

3.3.1 Our Negotiation Protocol 71

vii

3.3.2 Overall Negotiation Protocol 74

3.4 CONAN: a heuristic-based Agent Strategy 75

3.4.1 Heuristics to Calculate the Concession Rate 76

3.4.2 Cancellation Penalty . 86

3.4.3 Heuristics to Decide Actions 87

3.5 Analysis of Properties . 88

3.6 Summary . 90

4 Strategy Implementation 92

4.1 Agent Development in GOLEM . 92

4.2 Event Calculus (EC) . 95

4.2.1 EC Predicates . 97

4.2.2 The Axioms . 97

4.3 Knowledge Representation in CONAN 99

4.3.1 Fluents in CONAN . 100

4.3.2 Actions . 100

4.3.3 Initial State of the Fluents 102

4.3.4 Evolution of the Agent’s State 103

4.4 The Representation of the CONAN Strategy 104

4.4.1 Deciding Actions . 105

4.4.2 Offer Generation . 106

4.4.3 Action Execution . 108

4.5 Example Run . 109

4.6 Summary . 111

5 Experimentation Simulator: RECON 112

5.1 Background . 113

5.2 RECON Development . 114

5.2.1 Configuration Step . 116

5.2.2 Simulation Step . 118

viii

5.2.3 Analysis Step . 120

5.3 RECON Evaluation . 121

5.3.1 Experimental Methodology 122

5.3.2 Results . 122

5.4 RECON Graphical User Interface 124

5.5 Summary . 126

6 Empirical Evaluation 128

6.1 Experiment 1 . 128

6.1.1 E-Market Setting . 129

6.1.2 Experimental Setup . 132

6.1.3 Results . 133

6.2 Experiment 2 . 142

6.2.1 E-Market Setting . 142

6.2.2 Experimental Setup . 144

6.2.3 Results . 144

6.3 Summary . 149

7 Conclusions and Future Work 150

7.1 Review and Discussion of the Achievements 150

7.2 Future Research . 153

7.2.1 Malicious Negotiation Actions 153

7.2.2 Weights for Self and Environment Factors 154

7.2.3 Opponent Model . 154

7.2.4 Declarative Strategy . 155

7.2.5 Computational Time . 156

7.2.6 Negotiation Over Multiple Issues 157

7.2.7 Performance Metrics . 157

7.2.8 Negotiation With Humans 158

A Agents in RECON 159

ix

B CONAN Implementation in Prolog 164

B.1 Initial Setting . 164

B.2 Effect Of The Actions . 165

B.3 Offer Generation . 168

B.4 Action Selection . 176

Bibliography 186

x

List of Figures

1.1 Thesis motivations. 4

1.2 Buyer Bob negotiates concurrently and bilaterally with sellers Alice,

Tom and John. 6

1.3 Buyer b negotiates concurrently with sellers s1, s2 and s3. 7

1.4 Buyer b negotiates concurrently with sellers s1, s2 and s3 with an

existing competitor c1 in the e-market. 10

1.5 Buyer b negotiates concurrently with sellers s1, s2 and s3. 11

2.1 Contract Net Protocol State Diagram. 31

2.2 English Auction. 32

2.3 Alternating Offers State Diagram involving a buyer b and a seller s. 33

2.4 Williams’ Concurrent Alternating Offers State Diagram. 35

2.5 Faratin’s et al. [29] concession-making strategies. 41

2.6 GOLEM environment. 59

3.1 Architecture of negotiating agent I that is interacting concurrently

in different sub-environments E1, E2, . . . , Ek with opponentsO1, O2, . . . On. 67

3.2 Concurrent Alternating Offers State Diagram. 72

3.3 Overall Negotiation State Diagram. 75

4.1 Negotiating Agent in GOLEM, where the agent mind is built with

the architecture of Conan. 93

4.2 How the Event Calculus functions [98]. 96

xi

5.1 The RECON architecture. 115

5.2 Average cycle time for increasing number of runs. 123

5.3 Average cycle time for increasing number of agents. 124

5.4 RECON supports buyer agents. 124

5.5 RECON supports adding competitors and seller agents. 125

5.6 RECON simulation parameters. 125

5.7 RECON results. 126

6.1 Average utility for Faratin’s Sellers. 134

6.2 Average utility for ANAC Sellers. 136

6.3 Average utility for All Sellers. 138

6.4 Percentage of successful negotiations for All Sellers. 139

6.5 Number of negotiation rounds for All Sellers. 140

6.6 Average utility for All Sellers with 10% agreement zone. 145

6.7 Average utility for All Sellers with 60% agreement zone. 146

6.8 Average utility for All Sellers with 100% agreement zone. 147

xii

List of Tables

2.1 Functionality comparison of the existing work in concurrent nego-

tiation. 51

3.1 Mapping procedure using the Borda method. 82

4.1 Main Predicates of the Event Calculus. 98

4.2 Observations, deliberations and decisions of b during a negotiation. 109

5.1 Comparison of functionalities in Recon and GENIUS. 114

5.2 Simulation parameters. 116

6.1 Simulation parameter values. 132

xiii

Nomenclature

α time to complete one negotiation round

δtagi→agj is a negotiation action from agi communicated to agj at time t,

δ global negotiation situation for buyer b

δi sum of the scores Criteria1 and Criteria2

λ is a real constants

µ is a real constants

φ window of consecutive opponent offers

A set of protocol actions

AUj average utility per parameter combination

AUSj average utility over successful runs

B set of buyers

b buyer agent

c1 competitor agent

Ctb set of competitor agents for b at time t

Ct number of active competitor agents factor

CRt,si concession rate at time t for seller si

xiv

Criteria1 first criteria to evaluate negotiation situation for all threads

Criteria2 second criteria to evaluate negotiation situation for all threads

D percentage of the canceled reserved offer

DM impact of the negotiation price range

DOSellertb
number of canceled offers that occur from sellers Sellertb

Et effect of the environment factors

EGb eagerness of buyer b

IPb and RPb represent the initial and reservation prices of buyer b

IPsi and RPsi represent the initial and reservation prices of seller si

MAN maximum number of active threads

MC number of seconds at which the e-market has to change

MCO maximum number of reserved offers

MD number of market agents in the e-market at any given time point

MDL deadline for all market agents

MR ratio of buyer agents to seller agents in the e-market

NoSimulations number of simulation runs

NS negotiation situation for all threads factor

Penaltyb total cancellation penalty for b

Penaltyb,si cancellation penalty to/from seller si

r a resource

Rds demand/supply ratio factor

xv

RC number of repeated runs in each parameter combination

S set of sellers

s seller agent

si sellers agents

St effect of self factors

Set number of sellers that are actively negotiating with b factor

Sellertb set of seller agents negotiating with b at time t

SRj number of successful runs

t time

Tb maximum duration of time that b can negotiate for

Te deadline of negotiation for b

Ts negotiation start time

TE is the effect of the passage of time on the concession rate for buyer b factor

Ub(x) utility function of agent b

wEnvt environment factor weights

wSelft self factor weight

y is the number of sellers

xvi

Chapter 1

Introduction

Negotiation is back and forth communication to reach an agreement when two

or more parties have some shared and conflicting interests [35]. Negotiation oc-

curs in many real-life situations: between husband and wife, between siblings,

between friends, between employees and employers, between firms and between

countries [88]. Negotiation between humans may consume a lot of time and the

negotiators need to have relevant negotiation skills. Consequently, to make ne-

gotiation effective, the field has been studied in such diverse areas as Economics

and Computer Science. In Computer Science, automated negotiation is studied in

the field of Artificial Intelligence to develop improved technology and to overcome

the limitations of human negotiations. Negotiators in this setting are normally

represented in automated negotiation as software agents. An agent is a software

component that encapsulates its own state and can interact autonomously with

other agents in multi-agent systems to achieve their goals [49, 117]. A multi-agent

system is a system that contains a number of agents, which interact with each

other by exchanging messages [116].

Automated negotiation is the process of agents communicating with one an-

other in order to reach agreements or solve conflicts on matters of common in-

terest [48, 63, 116]. Automated negotiation between multiple agents has recently

gained substantial attention [54] because agents isolate emotions and feelings when

1

they negotiate [35], and the use of agents saves time, especially in open and dy-

namic environments that are hard for humans to handle [97, 99]. An environment

is open and dynamic if the number and the behaviour of the participant agents is

unknown and changing over time. There are many applications of automated nego-

tiation, including e-commerce [30, 82, 107], service selection and composition [20],

virtual organisations [71], supply chains [44], service-oriented industries [72] and

cloud computing [3].

In this thesis the focus is on electronic marketplaces (e-markets) as dynamic

environments for automated negotiation. E-markets are normally understood as

inter-organizational information systems that allow participating buyers and sellers

(i.e. opponents) to exchange information about prices and items (i.e. products

or services). E-markets of this type provide an electronic, or online, method to

facilitate transactions between buyers and sellers, and typically support all of the

steps in the entire order fulfilment process [13]. E-Bay and Amazon are examples

of e-markets that have become popular due to their supporting mechanisms such as

advertising, buying/selling, and paying for items online, thus providing an efficient

and convenient way to carry out online commercial activities.

In the remainder of this chapter we will first outline the reasons for under-

taking an investigation in this field in Section 1.1. Then we will demonstrate our

negotiation problem via scenarios in Sections 1.1.1 and 1.1.2. Our negotiation

challenges and the limitations that need to be addressed are then presented in

Section 1.2. The aim and objectives of our work are discussed in Section 1.3. Our

contributions to the state-of-the-art are listed in Section 1.4. The organization

of the thesis is summarized in Section 1.5. Finally, the publications and awards

resulting from some of the thesis work are outlined in Section 1.6.

1.1 Motivation

One problem with existing e-markets is that a market participant must repeatedly

be online in order to follow the progress of an activity such as buying an item,

2

especially if the activity involves bidding. In addition, the duration of some market

mechanisms (e.g. auctions) can be long, so e-market activities can often become

tedious for a participant. What is worse, buyers and sellers come and go, and they

have different goals and preferences. Thus pursuing the best deals in an e-market

requires participants to engage in multiple, possibly conflicting activities at the

same time, sometimes in different e-markets.

To deal with the open and dynamic environment that e-markets give rise to, we

follow a multi-agent systems approach [112] whereby agents negotiate with other

agents on behalf of their users to allocate a resource (item). A challenging task

in this context is the ability of agents to negotiate with one another because e-

markets are dynamic in nature. New buyers and sellers with different behaviours

may enter or leave an e-market, prices of items may go up or down and the needs

of the user may change over time. In addition, when a buyer agent enters an e-

market to purchase an item, the buyer might need to negotiate with several sellers

to get the best deal. As a result, the buyer has to keep track of each individual

negotiation while deciding which ones to pursue further and perhaps compete with

other buyers wishing to acquire the same item.

For all the above reasons, we are interested in many-to-many negotiations,

that occur in pairs (bilaterally) and at the same time (concurrently) as illustrated

in Figure 1.1. The reason behind our choice is that when a buyer agent enters

any practical e-market to acquire a resource, there will be many seller agents

who sell the same required resource [100] and competitors who want to buy the

same resource. Thus, we will imitate a real-life buying process conducted via the

Internet. Next we will explain the reason for negotiating concurrently instead of

sequentially.

One of the most powerful features in Computing is the ability to support mul-

tiple tasks simultaneously (often referred to as the multi-threaded execution of a

task). Thus, negotiating agents prefer to negotiate concurrently to observe the en-

vironment and to overcome one of the shortcomings of human negotiations, which

is slowness. Furthermore, concurrent negotiation provides the opportunity to make

3

Figure 1.1: Thesis motivations.

a decision at the same time for all offers, so the buyer explores the best offer from

multiple sellers and this gives more chances to reach an agreement, which maxi-

mize the agent’s outcome [5, 79, 115]. The agent’s outcome from the negotiation

is either an agreement deal or no agreement deal and is determined by the agent’s

utility, specifying how much the agent gains from the negotiation. Utility can be

seen as a function that is designed by the agent user to measure the performance

of the agent during negotiation [55]. Moreover, concurrent negotiation provides

the agent with negotiating power, which means the agent can negotiate with many

opponents at the same time, to acquire a stronger negotiation stance relative to

another opponent [87, 108]. In contrast, sequential negotiation consumes time in

exploring and negotiating with all the relevant opponents in the e-market.

4

1.1.1 Scenario 1

The focus of this thesis is to develop a novel model that can handle practical,

real-life time settings in negotiations where a buyer agent wants to negotiate with

multiple seller agents at the same time to acquire a resource on behalf of its user.

To explain the motivation for our research, this section presents a scenario from

a real-life situation where our contribution will help to solve some of the main

problems.

Bob wishes to purchase a second-hand laptop, so he joins an e-market

to negotiate a deal. Bob has a price range of [700-900] and a 3-day dead-

line to conclude the deal. When he enters the e-market, he finds two

laptop sellers: Alice and Tom. Figure 1.2 illustrates the example. On

Monday:morning and Monday:afternoon, Bob starts a negotiation with

both Alice and Tom by making them an offer. On Monday:evening,

Alice sends a counter-offer to Bob and on Tuesday:morning, Tom also

sends a counter-offer. On Tuesday:afternoonBob considers buying from

Tom but on Tuesday:evening a new seller, John, appears in the e-

market. Bob has a hard decision to make. Should he (a) buy from

Tom? (b) negotiate with John risking losing Tom′s offer? or (c) ne-

gotiate with Alice, Tom and John, in which case what offer should

he make to them? Bob has no information about the strategy of the

sellers (i.e. Alice, Tom and John) or the other buyers (i.e. competi-

tors) who are negotiating with the sellers. In addition, the e-market

environment is dynamic, in that existing sellers and competitors could

leave the e-market and/or new sellers and competitors could join the

e-market. Competitors are buyers trying to obtain the same resource,

which implies that the agent should take the negotiation situation into

account. Also, each buyer and seller has different deadlines for negoti-

ation compared to other buyers and sellers.

The main problems that occur in this scenario are: (1) Bob is taking

5

a long time to negotiate and (2) Bob cannot conduct a concurrent

negotiation where he can communicate with multiple buyers at the

same time.

Figure 1.2: Buyer Bob negotiates concurrently and bilaterally with sellers Alice,

Tom and John.

In order to overcome human limitations, in the next section, we will adapt the

scenario to allow negotiation between agents in an open and dynamic environment.

1.1.2 Scenario 2

In negotiation between agents, Bob in Section 1.1.1 is represented by agent b,

Alice by s1, Tom by s2 and John by s3. In this scenario, Figure 1.3, the buyer

agent b wants to purchase a laptop on Bob′s behalf with a price range [700-900]

and a 5-minute deadline. Buyer agent b starts to negotiate with two laptop seller

agents s1 and s2 simultaneously in a trading e-market environment. This scenario

6

is presented from the buyer’s perspective.

Since automated negotiation involves many tasks and functions to complete

the whole negotiation, we will distinguish between three phases of negotiation:

initial, middle and final. The reason for this distinction is to eliminate the phases

that are not the focus of this thesis.

Figure 1.3: Buyer b negotiates concurrently with sellers s1, s2 and s3.

Initial Phase

In the initial phase, planning and preparing for negotiation is taking place. This

phase includes:

• defining the resource issues under negotiation: The item (laptop) under ne-

gotiation in our scenario involves one issue, which is the price of the laptop

in GBP. This is not the focus of this thesis.

• determining the protocol of the concurrent negotiation. The protocol needs

7

to be flexible in order to support situations where the participants are self-

interested and sometimes irrational in their actions. This is one of the im-

portant steps in the negotiation. We will focus on the negotiation protocol

in this thesis.

• establishing the basic negotiation parameters predefined by the user, which

we will focus on this thesis. This process includes:

– defining the minimum value (i.e. initial price) and maximum value (i.e.

reservation price) for the item. In our scenario this is defined by the

user to be [700-900].

– setting the negotiation deadline, which is the duration of the negotia-

tion. In our scenario this is defined by the user to be 5 minutes.

Middle phase

In the middle phase, actual negotiation takes place, which includes deciding the

agent’s negotiation actions, exchanging offers, predicting the environment and/or

opponents’ behaviour changes, and measuring the status of the negotiation. Specif-

ically, our negotiation problems (which will be listed later in Section 1.2) occur in

this phase.

Furthermore, environmental or self situation changes may affect the negotia-

tion decision-making process by increasing or decreasing the negotiation utility.

The questions that arise here are: What changes should the buyer take into con-

sideration in order to maximise the negotiation utility? How will the buyer behave

in the light of these changes? What is the effect of these changes on proposing

offers? The answers to these questions are determined by the negotiation strategy.

The scenario we have been exploring so far raises the following sub-scenarios for

each environmental or self situation change that the buyer faces during negotiation

when selecting an action for negotiating with different sellers. In the sub-scenarios,

t represents a real period of time (i.e. in seconds), not a round.

8

(1) At time t1, before b starts negotiating concurrently with s1 and s2, as in Fig-

ure 1.3, b needs the answers to certain questions: (a) what kind of components

does the agent need to model the negotiation and how do these components

interact with each other? (b) what are the actions that can be used by the

agent in the negotiation, and what are the rules governing these actions? (c)

how will the agent represent its knowledge and decisions during negotiation?

(2) At time t1, b is negotiating concurrently with s1 and s2, as in Figure 1.3.

At time t2, s1 sends a counter-offer to b while at time t3, s2 sends back an

offer to b. At t4, a new seller s3 enters the e-market and b needs to make

a decision on how to proceed in the negotiation, either by: (a) buying from

s2; (b) negotiating with s3 risking losing s2’s offer; or (c) negotiating with

s1, s2 and s3, in which case what offer should be made to them? In all these

situations above, b has no information about:

(i) the strategy of the sellers (i.e. s1, s2 and s3);

(ii) how many buyers and sellers will enter and leave the e-market; and

(iii) the deadline of the sellers.

(3) Adding and/or removing a seller to/from the negotiation: while agent b is

negotiating with agent s1 and agent s2, as in Figure 1.4, a new seller agent s3

enters the e-market and starts a new negotiation thread with b. This creates a

new option for b. As a result, b may concede by a smaller amount to see how

the negotiation proceeds with agent s3. On the other hand, when s1 exits the

negotiation, it means b has lost an option, thus, it has to concede by a larger

amount.

(4) Adding and/or removing negotiation competitors: consider agent b negotiating

with agents s1 and s2 as before, but now b perceives that a competitor c1 is

negotiating with agent s1, as in Figure 1.4. Hence, b may concede by a larger

amount to attract s1 to sell the resource. In contrast, if c1 leaves the e-market,

9

Figure 1.4: Buyer b negotiates concurrently with sellers s1, s2 and s3 with an

existing competitor c1 in the e-market.

b may concede by a smaller amount since it has no other competitors while

negotiating with s1.

(5) At time t1, b is negotiating concurrently with s1 and s2, as in Figure 1.5. At

time t2, s1 sends a counter-offer to b while at time t3, s2 sends back an offer

to b. At t4, b sends back a counter-offer to s1 and Accept to s2. Also at t4, b

receives an accept from s3. Since b needs to buy one item, the problem now

arises at t5, of how b will deal with the two accepts and whether b will continue

the negotiation or not.

(6) Change in the negotiation situation: if b is in a bad negotiation situation,

where the sellers: (a) take a long time to reply; and/or (b) concede in small

amounts or do not concede (a notion to be defined by a function which will

be explained in Chapter 3), then b has to concede more in order to secure

the resource before the deadline. In contrast, when b is in a good negotiation

situation, b has a higher chance of winning the negotiation, which in turn leads

b to reduce its concession rate.

(7) if b’s strategy is designed and implemented, the question becomes how to

10

Figure 1.5: Buyer b negotiates concurrently with sellers s1, s2 and s3.

measure the negotiation performance of b’s strategy. Is there a method to

compare b’s performance with other agents?

Final Phase

In this phase, the buyer implements the agreement deal and payment is transferred

to the seller to purchase the resource. This is not the focus of this thesis.

So, based on our scenario, the open question about negotiation in multi-agent

systems is: what is the negotiation model that maximizes the agent’s utility? After

developing the negotiation model, we have to evaluate the new model to make sure

it is maximizing the agent’s utility. In this thesis, we will study our negotiation

11

model in open and dynamic negotiation environments. The complexity of such

negotiations is discussed in the next section.

1.2 Research Issues and Challenges in Agent Negotia-

tion

This thesis investigates the following four challenges in the concurrent negotiation

field for resource allocation.

1.2.1 Complete Concurrent Negotiation Model and Knowledge

Representation

From sub-scenario (1) in Section 1.1.2, we can conclude that the negotiation model

includes architecture, protocol and strategy. The notion of strategy will be dis-

cussed in detail in the next section (Sections 1.2.2 - 1.2.3). There is always a

challenge if the agent develops one part of the negotiation model and neglects

others. This incompleteness makes the negotiation harder to model.

As we will see in Section 2.3, most of the agent architectures are either too

general or are concerned only with the negotiation environment, without explic-

itly representing the main components of the concurrent negotiation and how these

components interact with each other. It is thus a challenge to develop an architec-

ture that contains all the necessary components for concurrent negotiation. Pro-

tocols define the rules of the negotiation. Since we are negotiating concurrently,

the existing protocols are not sufficient to handle the complexity of concurrent

negotiations due to their limited actions.

To the best of our knowledge, most of the agent negotiation strategies in the

literature use imperative strategies as a knowledge representation method, which

are usually implemented in Java. However, this type of implementation hides many

details of the agent decision-making process during negotiation and it becomes

hard to re-implement the original strategy without having access to the code. This

12

led us to look for a transparent representation for decision-making for the agent’s

user. Knowledge representation of the negotiation strategy should be unambiguous

and well understood, and it has to provide a level of abstraction close to the key

concepts of the software agent to be developed [34].

1.2.2 Open and Dynamic Environment

In real-life situations, e-markets (which represent our class of applications in ne-

gotiation) are open, dynamic environments. Openness implies that each agent

enters the e-market with its own goals, preferences, interests and policies, pursu-

ing different resources. In other words, these goals and preferences are personal

and private for each agent, and so represent unknown information for other agents

in the e-market [39]. In particular, there will be agents entering and exiting the

environment, with each one using different strategies and demanding or offering

different goods or services.

As agents are likely to be designed by different people, it is likely they will

have competing agendas and goals. The issue then becomes how agents can reach

agreement(s), resolve conflicts and achieve compromise without disadvantaging

themselves at the end of the process. In addition, agents may behave in an irra-

tional way. For example, an opponent may offer a lower price in one negotiation

round and then offer a higher price in the next round. Also each agent has a

private deadline, which may not be known by other agents in the e-market. All

these challenges affect the agent’s decision-making during negotiation, which is

motivated in sub-scenario (2.i-2.ii) in Section 1.1.2.

The dynamism of the negotiation environment presents the agent with the

following issues:

• Rapid changes in the number of opponents in the e-market, which make it

difficult for the agent to construct a model of opponent behaviour or make

assumptions about the number of agents that will be in the e-market. For

instance, in Scenario 2, the e-market can change every two to five seconds.

13

This issue is motivated by sub-scenario (3) in Section 1.1.2.

• Changes in the number of competitors, which are other agents that are trying

to buy the same item as our own agent. The more competitors the agent

has, the more difficult it is to secure an agreement for a resource. The

change in the number of competitors is elaborated upon in sub-scenario (4)

in Section 1.1.2.

• Changes in the demand/supply ratio, which is the ratio of the number of

buyers to the number of sellers in the e-market. The higher the ratio, the

higher the price for the resource and the more difficult it is to reach an

agreement.

1.2.3 Concurrent Negotiation

When a negotiating agent enters the e-market, it will usually be surrounded by

multiple opponents offering its preferred resource, which reflects what happens in

real-life situations. When the agent starts to negotiate with multiple opponents

at the same time, the issue becomes to how to maximize the agent’s outcome

by selecting the negotiation with the opponent that will offer the best agreement

within a certain time limit. In addition, there is the effect of large numbers of

multiple opponents and other agents operating in the e-market at the same time

(as in sub-scenario (1) in Section 1.1.2). A problem also arises when an agent

has a large number of opponents but limited communication capabilities (e.g.

time and computational resources), since concurrent negotiation requires more

communication capabilities as the number of agents increases.

Furthermore, in concurrent negotiation, there is a need for highly coordinated

processes to manage the ongoing negotiation threads (as in sub-scenario (5) in

Section 1.1.2). Also, one must consider how progress in negotiation with one

opponent will affect the progress of negotiations with other opponents (as in sub-

scenario (6) in Section 1.1.2).

Another challenge is that agents can quit any negotiation process that is taking

14

place, which is an issue for the agent who may lose a good seller at any time. An

opponent may leave the e-market either because it reaches an agreement with

another agent or it reaches its deadline (as in sub-scenario (2.iii) in Section 1.1.2).

Moreover, a concurrent negotiation protocol has many actions. It is up to an agent

to decide when to take each action, and if an offer is received, to decide on the

response.

1.2.4 Concurrent Negotiation Simulation

As raised in sub-scenario (7) in Section 1.1.2, one major issue in the design of

a negotiation agent that participates in e-markets is how to evaluate the perfor-

mance of its strategy. While some researchers test their agents theoretically [33],

most agent developers use simulation platforms [29, 46, 59, 80, 115], especially for

evaluating heuristic-based strategies. This gives rise to the need for a standard-

ised simulation environment to provide fair and objective comparisons between

negotiating agents.

A successful negotiation platform should be: (i) able to provide an open and

dynamic environment for its concurrent negotiating participants; (ii) robust to the

changes that occur in the e-market, (iii) reliable in its communication with other

agents; and (iv) scalable in terms of the number of agents it can support. Also,

the simulation should support the deployment of state-of-the-art agents that use

concurrent negotiation strategies and state-of-the-art opponents.

1.3 Aims and Objectives

The main aim of the thesis is to develop a concurrent negotiation model that

supports software agents to make decisions on how to negotiate with other agents

on behalf of their users for resource allocation (buying and selling goods or services)

in open and dynamic electronic marketplaces (e-markets) to reach an agreement

with the maximum utility for the agent.

Achieving this aim is important because it will allow agent technology to have

15

an impact in widely popular e-markets such as E-Bay and Gumtree. However,

existing negotiation strategies, although they offer a number of sophisticated fea-

tures, such as modelling an opponent and negotiating with many opponents at the

same time, abstract away from the dynamicity of the e-market and the progress

of ongoing negotiations, thus ignoring information that increases an agent’s utility

during negotiation. In addition, they often make major assumptions about the

domain (e.g. that deadlines are public), thus concentrating their applicability to

a narrow range of practical negotiation settings.

Objectives

According to the concurrent negotiation challenges in Section 1.2 the objectives of

this thesis are to:

1. Develop a concurrent negotiation architecture. If we are to build a prac-

tical negotiation agent, we need to have an architecture that can support

the concurrent negotiation processes. The architecture has to combine both

the agent’s components and its behaviour. The agent’s components should

provide the basis that is needed to formulate the agent’s strategy, including

which component is involved in each phase of the negotiation, as represented

in Section 1.1.2. The architecture will be part of the agent’s complete nego-

tiation model.

2. Develop a concurrent negotiation protocol. Negotiation between parties should

be governed by a flexible interaction protocol that: (a) is suitable for self-

interested agents seeking to maximize their utility without any kind of coop-

eration with other agents; (b) allows actions to handle different situations in

concurrent negotiations, where the agent has to deal with different actions at

the same time; (c) ensures fairness of actions for all the agents involved in the

negotiation; and (d) is appropriate for an open and dynamic environment.

The protocol will be part of the complete negotiation model.

16

3. Develop an agent that is able to:

• Negotiate in an open and dynamic environment. The agent has to deal

with open and dynamic environments. This is important because most

real-life e-markets are open and dynamic in nature.

• Negotiate with unknown opponents. The agent has to deal with op-

ponents where it has no information about their behaviour in negotia-

tions. Unknown opponents will ensure imitation of real-life situations.

Unknown opponents means that there is undisclosed information about

their: (a) negotiation strategy; (b) rational or irrational nature; (c) ne-

gotiation deadline; (d) maximum and minimum negotiation price; and

(e) previous negotiation history.

Also, opponents should be developed by different researchers to confirm

comparative negotiation and to make sure there will be unpredictable

and complex negotiation behaviour. As a result, our opponents should

be drawn from the state-of-the-art [29, 37].

• Support continuous real-time negotiation. The agent will negotiate in

real time, reflecting real-life situations such as existing e-markets, where

the decision on what action to take is based on how much time is left

in the negotiation and not on the number of rounds that have been

determined for the negotiation.

• Handle continuous negotiation outcomes. The agent will negotiate the

price of a resource, which is the only attribute of the resource. The price

has a continuous value, for instance, price ∈ [300− 500]. Consequently,

the agent needs to deal with a large number of possible outcomes.

• Negotiate concurrently. In this case the agent takes advantage of nego-

tiating with multiple opponents at the same time. This should include

adaptive strategy that incorporates a method to take into consideration

the agent having to receive and generate many negotiation actions si-

17

multaneously. In addition it needs to take advantage of the concurrent

negotiation protocol (Objective 2).

• Has explicit decisions for negotiation actions. The agent has a decision

strategy that determines clearly when to take each of the appropriate

negotiation actions; for instance, when to accept or when to exit.

• Maximize the agent utility. Since there are other agents described in the

literature that can negotiate concurrently with multiple opponents, the

agent has to maximize the utility gained during negotiation compared

to existing state-of-the-art agents.

• Decide in a computationally tractable manner. The agent has to nego-

tiate in an open and dynamic environment, so the agent’s decisions in

negotiations should be completed in a reasonable finite amount of time,

which is measured in seconds. It is therefore important that the agent

uses a computationally tractable strategy.

• Support asynchronous negotiation. In asynchronous negotiation, the

agent does not have to wait to receive all the sellers’ counter-offers

before replying, which saves the agent negotiation time and ensures

that the agent replies on time.

4. Develop a declarative agent. The agent should have a logical reasoning pro-

cess for taking actions. This is important for the agent’s user, who will be

able to better understand the reason behind the agent’s actions in an ab-

stract way. This will help the agent in the future to justify each action taken

in negotiation.

5. Build a concurrent negotiation simulator. We need to develop an environ-

ment that supports the simulation of concurrent negotiations. The simulator

needs to: (a) support concurrent negotiation; (b) provide an open and dy-

namic environment; (c) allow agents to enter and leave the environment

dynamically at run-time; (d) integrate different agent strategy implementa-

18

tions and technologies; (e) be robust to simulation parameter changes; (f)

allow reliable communication among agents; and (g) be scalable.

6. Conduct extensive empirical evaluations. Our agent has to perform as well

as or better than the state-of-the-art agents in e-market settings. We will

therefore need to conduct empirical evaluations via simulations to provide an

experimental approach for assessing the performance of agents. In addition,

with empirical evaluation we can imitate real-life dynamic e-markets, where

the setting of the e-market can be changed to test different conditions.

1.4 Contributions

The work described in this thesis makes a number of important contributions, as

follows:

• We propose a concurrent negotiation architecture designed as a specialized

extension of previous work with the KGP model [36, 107] to satisfy the

requirements of concurrent bilateral negotiation. KGP is a model of agency

consisting of (a) the knowledge K that the agent uses to reason and act in

the environment in which it is situated; (b) the goals G that represent what

states of the environment the agent wishes to achieve; and (c) the plans

P that represent how the goals of the agent can be achieved as a series of

actions or further sub-goals. The architecture (Objective 1) describes all

the necessary components for taking decisions in the concurrent negotiation

environment.

• We introduce a concurrent negotiation protocol. The protocol (Objective 2)

is a revised version of the well-known alternating protocol that can support

concurrent negotiations for open e-markets. In this revised protocol, buy-

ers and sellers can decide to offer, accept, request-to-reserve, cancel or exit

a negotiation, thus providing the necessary flexibility that was not always

possible in previous work.

19

• We develop a novel strategy, Conan, as part of an adaptive agent model for

concurrent bilateral negotiations by considering a weighted combination of

modelling the e-market environment and the progress of concurrent negoti-

ations in which the agent is involved. We show how to increase the agent’s

utility during negotiations. We also relax strong assumptions previously

made at the multi-agent level. Conan satisfies Objective 3 in Section 1.3.

• We represent the logic-based knowledge representation of Conan, which in-

cludes how negotiation action and its effects are represented for a declarative

agent using Event Calculus. To the best of our knowledge, we believe there is

a lack of using Event Calculus to formalize negotiation strategies. This for-

malization has, amongst other things, the concomitant advantage that it can

help the agent in the future to justify each action taken in the negotiation.

Knowledge representation in Conan satisfies Objective 4 in Section 1.3.

• We present the design, implementation, and experimental evaluation of Re-

con: a Robust multi-agent Environment for simulating COncurrent Negoti-

ations (Objective 5). Recon supports the development of software agents

(both buyers and sellers) negotiating concurrently with other agents, while

all the existing work only supports bilateral negotiation. In addition, most

negotiation agent development platforms, such as GENIUS, only support

imperative (e.g. Java) agents, while Recon supports both imperative (e.g.

Java) and declarative (e.g. Prolog) concurrent strategies. Declarative strate-

gies allow developers to specify strategies that can be transparent to a human

user, in that the agent can explain why it has taken certain actions during a

negotiation.

• We show empirically that Conan outperforms the state-of-the-art [115],

Random and Faratin’s [29] strategies in terms of average utility gained from

negotiations (Objective 6). Via experiments, we show that our results are

statistically significant. We designed experiments by creating various real-

20

istic negotiation scenarios using opponents from the existing literature. We

did so because available agent negotiation simulators did not allow open

e-markets or concurrent negotiations. We then implemented a wide range

of opponents from the agent strategies used in the Automated Negotiating

Agents Competition (ANAC).

1.5 Thesis Organization

The rest of this thesis is structured as follows: Chapter 2 provides a structure

for classifying the wide domain of negotiation and then offers a review of archi-

tectures, protocols and strategies; in particular, those that are most relevant to

our concurrent negotiation setting. Chapter 3 presents our negotiation strategy

Conan by formalising our concurrent negotiation environment in terms of the

negotiation architecture and protocol, and describing the technical details of our

Conan strategy, with emphasis on the factors that the strategy considers, and

conditions under which the agent takes action. In Chapter 4, we introduce the

knowledge representation of Conan using Event Calculus and Prolog. In Chap-

ter 5, we discuss the development and evaluation of our concurrent negotiation

simulation Recon. Chapter 6 explains our experimental setting and evaluates

the experimental results for Conan. We benchmark the current state-of-the-art

concurrent negotiation strategy and other strategies; also we implement a wide

range of opponents’ strategies. Finally, in Chapter 7, we conclude this thesis and

outline areas of future work.

1.6 Publications and Awards

The work in this thesis has generated the following publications:

(i) Alrayes, B., Stathis, K.: An agent architecture for concurrent bilateral ne-

gotiations. In: F. Dargam, J.E. Hernndez, P. Zarat, S. Liu, R. Ribeiro, B.

Delibai, J. Papathanasiou (eds.) Decision Support Systems III - Impact of

21

Decision Support Systems for Global Environments, Lecture Notes in Busi-

ness Information Processing, vol. 184, pp. 79–89. Springer International

Publishing (2014).

This publication presents our concurrent negotiation architecture and proto-

col. Section 3.1, Section 3.3 and Chapter 4 are based on this publication.

(ii) Alrayes, B., Kafalı, Ö., Stathis, K.: CONAN: A heuristic strategy for con-

current negotiating agents. In Proceedings of the 2014 International Con-

ference on Autonomous Agents and Multi-agent Systems, AAMAS14, pp.

1585–1586. International Foundation for Autonomous Agents and Multia-

gent Systems, Richland, SC (2014).

These papers present the Conan strategy. Chapter 3 and Chapter 6 are

based on this publication.

(iii) Alrayes, B., Kafalı, Ö., Stathis, K.: RECON: a robust multi-agent envi-

ronment for simulating concurrent negotiations. In Seventh International

Workshop on Agent-based Complex Automated Negotiations(ACAN), AA-

MAS (2014).

This publication presents the Recon simulator. Chapter 5 is based on this

publication.

In addition, awards have been granted as follows:

• (iii) won best student presentation award in ACAN2014.

• The overall system won second place in the Innovation and Entrepreneurship

Prize for Saudi Students in the UK in 2015.

22

Chapter 2

Literature Review

In this chapter we present the background work that provides the foundations of

the existing work on the automated negotiation. We will first briefly introduce the

concepts relating to negotiation preliminaries (Section 2.1). The characteristics

of the resource (item) under negotiation will be illustrated in Section 2.2. We

will then discuss the literature that is relevant to our negotiation architecture

(Section 2.3) and protocol (Section 2.4). Next, we will review negotiation strategies

proposed in the current literature (Section 2.5). A literature review of heuristic

negotiation strategies will then be presented in Section 2.6. Then we will assess

the simulation platforms for negotiation that are currently available (Section 2.7).

Section 2.8 presents the limitations of the existing work. Finally, we summarize

our findings in Section 2.9.

2.1 Negotiation Preliminaries

The ability to negotiate (bargain) is valuable and it can significantly affect our lives

in positive ways. In this section, we will introduce: software agent and negotiation

model. The negotiating agent is a software agent that uses a negotiation model to

allocate a resource on behalf of the user.

23

2.1.1 Software Agent

Agents are the key players in negotiation. There are three key concepts for agents:

flexibility, autonomy, and situatedness. Jennings et al. [49] state that flexibility

means that the agent has three properties. The first property is reactivity : agents

are capable of responding to changes in their environment in a timely manner

to achieve their goals. The second property is proactiveness: agents are able to

satisfy their objective by behaving in a goal-directed manner. The last property

is sociality : agents can interact with other agents or humans to satisfy their ob-

jectives [116]. Autonomy means that the agent is self-controlled and able to act

without being directed by a human or other agents [49]. On the other hand, situ-

atedness means that the agent can perceive its environment via its sensory inputs,

and according to these it generates actions which change the environment.

In this thesis, we will deal with buyer and seller (we will use the terms oppo-

nents and sellers interchangeably) software agents.

2.1.2 Negotiation Model

Negotiation is a complex process which can be seen from many perspectives. For

this reason, there are multiple ways to classify negotiation models. Negotiation

models have three main elements:

• Architectures define the general structure and components of the negotiating

agents.

• Protocols define the legal actions that negotiating agents can make (i.e. the

rules of negotiation). The protocols are public, so every agent knows the

rules of negotiation in advance.

• Strategies determine an agent’s behaviour in negotiation by specifying when

and how to act. The strategies are private, which implies that each agent

does not know the other agents’ strategies.

24

An agent makes proposals defined by its protocol, using an agent strategy.

The negotiation procedure contains a series of rounds, and each round can involve

one or more proposals. Negotiation terminates when the strategy of one of the

negotiating agents determines it.

Lopes et al. [66] presented a generic model for automated negotiation. The

model consists of four phases: preliminaries; pre-negotiation; actual negotiation;

and renegotiation. The negotiation starts with the preliminaries, which describe

the process of detecting social conflict and determining the negotiating parties.

In the pre-negotiation step, the agents prepare and plan for negotiation by struc-

turing personal information, analysing their opponents’ agents, and selecting their

protocols and initial strategies. Next is the actual negotiation, where the following

take place: exchange of offers and feedback; argumentation; learning from negoti-

ation to improve future performance; choosing a strategy dynamically; and finding

resolution for impasses. The final step is renegotiation, which involves the process

of analysing and improving the final agreement. The strength of the presented

framework is that it outlines all the phases of negotiation, avoiding considering

the middle phase only, which can be a limitation. In addition, the authors focus

on the lack of structure in the negotiation field.

A well-defined classification scheme for negotiation models was proposed by

Lomuscio et al. [63]. This classification model is based on six groups of param-

eters. The first parameter, the cardinality of negotiation, specifies the number

of parties and the number of issues. The second, the characteristics of agents,

involves role, rationality, knowledge, commitment, social behaviour and bidding

strategy. The third parameter, environment description, specifies whether it is a

static or dynamic environment, and whether the items are public or private. The

fourth consists of the event parameters, which discuss bid validity and visibility,

clearing and quote schedules. Information parameters constitute the fifth group,

and they involve the quote’s price, transaction history and arguments. The fi-

nal set of parameters is the allocation parameters, which determine the winner.

Also, Kraus [54] reviewed the automated negotiation process and described the

25

literature in the following areas: negotiation models, protocol and strategies.

2.2 Negotiation Resources

Negotiation involves dealing with the issues (attributes) of the resource under

negotiation. These attributes represent the features of the resource. The agents

may negotiate on one issue only (e.g. price). In Section 2.2.1 we describe single-

issue negotiation, as involved in our scenarios in Chapter 1, while in Section 2.2.2

we deal with more than one issue, which is known as multi-issue negotiation (e.g.

price, colour, and warranty). In addition, a negotiation issue may hold a continuous

or a discrete value. A continuous issue value belongs to a range of values, for

instance, price ∈ [300− 400]. A discrete issue has a value that belongs to a finite

set; for instance, price ∈ {300, 310, 350}. The negotiation issues set the solution

space [48]. The solution space represents all proposals that may be offered by the

agents in the negotiation and is determined by the number of issues.

2.2.1 Single-Issue Negotiation

Many real-world commercial negotiations deal with one issue only. For instance,

a landlord and a tenant negotiate about the rent price for a property; and an

employer and an employee negotiate the salary of the employee [31]. In our model,

we will use continuous single-issue negotiation over price, for multiple reasons:

(a) automated negotiation fields, and specially concurrent negotiation, need many

improvements and concentrating on single-issue negotiation will accelerate the de-

velopment of the automated negotiation area; (b) strategy that has been developed

for a single issue can be easily adapted to multiple issues [23]; (c) many real-life ap-

plications need to negotiate a single-issue only, such as price, when buying/selling

an item; and (d) single-issue negotiation will ensure our computationally tractable

objective (Section 1.3), since a single-issue requires less computation than multiple

issues.

26

2.2.2 Multi-Issue Negotiation

Many resources have multi-issue characteristics. For instance, when a buyer wants

to purchase a car, he/she negotiates with the seller about many issues related to

the car (e.g. price, colour, and warranty). In multi-issue negotiation, agents may

have different preferences on the issues, hence, agents prioritise issues that are

most important for them by making concessions on less important issues.

However, multi-issue negotiation requires more complex protocols and strate-

gies than single-issue negotiation. This is because modelling the preferences of

an agent on multiple issues is a complex process. The complexity increases when

the number of issues increase and when the issues’ values depend on other is-

sues’ values. Thus, the solution space in multi-issue negotiation is n-dimensional

(n > 1) rather than a one-dimensional line, as in a single-issue negotiation. There-

fore, the negotiation strategy in multi-issue negotiations has to be more sophisti-

cated [42, 57] to handle the complexity of the multiple issues. In addition, many

problems arise when the agent wants to concede. It is challenging to specify which

issues the agent should concede on during negotiation, what represents the best

combination of issues, and whether it is possible to concede on issues that are

more strongly preferred by the opponent in order to make the offer more accept-

able. Also, the amount of concession on each issue must be determined, along with

whether the value of a single-issue is dependent on other issues [93]. As a result,

reasoning in a multi-issue negotiation strategy is more complicated and consumes

more time and computational resources than a single-issue negotiation.

We refer to negotiation procedures [33] as the way to conduct multi-issue ne-

gotiations over resources, for example:

• separate: agents negotiate each issue separately (independently and simul-

taneously)

• package deal (simultaneous): agents negotiate a complete package on all

issues simultaneously.

27

• sequential : agents negotiate issue by issue sequentially, which requires de-

ciding the order of the issues to be negotiated (agenda). The issues may be

independent, or partially dependent on each other.

2.3 Negotiation Architecture

An agent’s architecture shows how an agent is structured and how it functions [113].

The review below discusses previous research on agent architectures for negotia-

tion and especially how these architectures fail to support the objectives of this

thesis, in particular:

1. support for concurrent bilateral negotiation;

2. explicit representation of the agent’s state in relation to the components

described in the architecture and how these components interact with each

other;

3. independence from the negotiation strategy or protocol;

4. interaction between negotiating software agents and not humans.

We start with the work of Fasli [30], who introduced the agent’s structure in

an architecture which includes a self-model representing the agent’s beliefs, inten-

tions, preferences and mental attitudes during negotiation. However, the model

does not include the environment. Also, the model is very abstract and not de-

signed for concurrent negotiation. Ashri et al. [10] proposed a bilateral agent

architecture that includes the environment, the opponent and the self-model, but

which includes only the goal of the negotiation, not the current state of the negoti-

ation. Resinas et al. [92] defined the negotiation architecture as consisting of four

phases: (1) a logical phase that identifies the key components and their interac-

tions; (2) a process phase that identifies how the architectural components can be

grouped together into processes; (3) a development phase that includes a reference

implementation that developers can use to build their own negotiation agents; and

28

(4) a scenarios phase which is used to test the negotiation. However, the proposed

architecture is protocol-dependent and strategy-dependent. Fabregues et al. [27]

proposed an agent architecture for concurrent negotiation. However, it is tailored

to build agents capable of interacting with humans in competitive environments,

which does not satisfy our objectives.

It is important to address the limitations identified with the architectures above

to: (a) assist the agent’s developers in implementing agent strategies based on the

capabilities defined in the architecture [10]; (b) provide adaptable designs to be

used by the agent developer to implement any negotiator concurrent strategies,

thus saving the cost of developing the architecture from scratch [10, 56, 67, 92];

and (c) provide a basic terminology that facilitates communication between agent

developers [92].

In the next chapter, we will develop an agent architecture that overcomes the

architecture limitations mentioned above.

2.4 Negotiation Protocol

In order to allow agents to communicate with each other they need an interaction

protocol. A protocol defines the rules of the interaction and guides the agents in

how to move as they perform actions from the initial state of the interaction to the

final state. The interaction actions in a protocol have precise and unambiguous

meanings [7]. Negotiation is a particular kind of interaction, so, for agents to

interact they need a negotiation protocol. A negotiation protocol defines the rules

of negotiation and therefore in automated negotiation we need to decide on the

protocol that governs the negotiation process. Protocols are dependent on the

number of agents participating in the negotiation; either one-to-one or many-to-

many, as follows:

• one-to-one negotiation (bilateral): the simplest case where two agents

negotiate with each other, e.g. a car salesman and a buyer;

29

• many-to-many negotiation (multilateral): the general case where many

agents negotiate with different groups of agents concurrently, so multiple

negotiations from the same agent occur at the same time. Examples include

a continuous double auction and concurrent negotiations. A special case

from many-to-many is one-to-many negotiation where one agent negotiates

with several other agents, e.g. an auction.

As mentioned in Chapter 1, we are interested in many-to-many negotiation

models, sometimes referred to as concurrent bilateral negotiation models. The

reason behind our choice is that typically the negotiation model for many practical

settings, like e-markets, is many-to-many, but the negotiation between parties is

bilateral, to respect the privacy of individual negotiations. So, when a buyer enters

any practical e-market to allocate a resource, there will be many opponents and

other agents who sell/buy the same required resource [100].

In this section, we will review the available protocols for many-to-many nego-

tiation. Then we will justify which protocol is most suitable for our concurrent

bilateral negotiation model. In Sections 2.4.1– 2.4.3, we will present the Contract

Net Protocol, Auction Protocol and Alternating Offers Protocol. We chose these

three protocols because they are the only many-to-many protocols needed to illus-

trate the existing limitations with respect to the concurrent bilateral negotiation

model. Then we will discuss previous attempts to extend the Alternating Offers

Protocol in Section 2.4.4.

2.4.1 Contract Net Protocol

The Contract net protocol (CNP) is a multilateral protocol used in task allocation.

It was developed by Smith [106] to specify communication and control of nodes

in a distributed problem. The nodes are the agents and the task allocation is an

example of a distributed problem. There are a manager and a set of contractors.

A manager is responsible for monitoring the execution of a task and the contractor

is responsible for executing the task.

30

Figure 2.1: Contract Net Protocol State Diagram.

Figure 2.1 illustrates the CNP state diagram, where the manager starts the

negotiation by announcing a task to all agents, then those contractors who are

able to accomplish the task will send a bid message to the manager. The manager

will award the task to the contractor with the most favourable bid. When the

contractor finishes the task, it will send back the results to the manager.

However, the CNP is not suitable for our protocol design objectives, which are

mentioned in Section 1.3, since we have self-interested agents and the market is

open and dynamic.

2.4.2 Auction Protocol

Auctions are one of the oldest forms of markets [30] and are widely used in real life

for resource allocation for different contexts, including buying and selling in person

or via the Internet and between governments or traders [99]. In fact, the popularity

of the current online automated auction system (e.g. eBay, the Google Adwords

framework, trading agent competition [111]) reflects the success of auctions. An

auction is a protocol for many types of one-to-many negotiations [116]. The most

popular type is the English auction (e.g., eBay), which includes one resource, one

seller and multiple buyers, as in Figure 2.2. The buyers offer bids to the seller and

the seller replies with yes or no. The auction ends when an agreement is reached

31

Figure 2.2: English Auction.

or the deadline for the auction is reached.

An auction is not suitable for our concurrent protocol for many reasons. Auc-

tions consume time to allocate a resource. For example, a customer participating

in an English auction can spend several days purchasing an item. The buyers must

continually bid for the resource until the auction closes after several days. Accord-

ingly, auctions will not be useful for impatient or time-constrained buyers [41].

Communication between agents in an auction is unidirectional, while it is bidi-

rectional in a bargaining model; thus, the buyer in the bargaining model can send

proposals and counter-proposals, and can use different types of strategies for dif-

ferent types of sellers [78, 84].

Due to their limitations in e-markets as mentioned above, which are contrary

to our objectives of developing a concurrent negotiation protocol (Objective 2,

Section 1.3), auction protocols are not suitable for adoption as our negotiation

protocol.

32

2.4.3 Alternating Offers Protocol

An alternating offers protocol [95] is a simple and widely used protocol [2]. As

shown in Figure 2.3, in this protocol a buyer b and a seller s take turns to negotiate,

with possible actions: offer, accept and reject. offer represents the value of the

resource under negotiation; for instance, in a single-issue negotiation, the offer

will be on the price of the resource. Accept indicates that agreement has been

reached between b and s and the negotiation terminates. Reject means that agent

b did not agree with the offer from opponent s and it will propose a counter-offer.

The negotiation terminates either because an agreement is reached (buyer/seller

accept) or when the time limit is reached (buyer/seller reach their deadlines).

The alternating offers protocol is suitable for self-interested agents and ensures

fairness between agents. However, it is not sufficient to handle the complexity of

concurrent negotiation due to its limited actions.

Figure 2.3: Alternating Offers State Diagram involving a buyer b and a seller s.

2.4.4 Concurrent Alternating Offers Protocol

The original alternating offers protocol [95] is simple and commonly used [2] in

many real life situations, for instance, buying and selling in the context of a sec-

33

ond hand market. However, in realistic applications, and especially in concurrent

negotiation settings where a buyer agent engages in multiple bilateral negotiations

in order to acquire a resource, agents need more complex negotiation actions to

handle the following situations: (a) agents have different negotiation deadlines, so

the agent needs to terminate the negotiation even before agreement is reached;

(b) the agent could reach an agreement with one opponent, so it needs to quit

the negotiation with other opponents; (c) agents have limited computational re-

sources, so an agent may need to exit from some negotiations to accommodate

new negotiations with new opponents; (d) an agent could receive multiple accept

actions from multiple opponents at the same time, so the agent needs to have an

action that allows it to choose the most preferred offer; (e) an agent could choose

one offer and want to secure it until it explores all the other options available

in the e-market; and (f) agents and opponents need to withdraw from previous

agreements if they find new preferred agreements.

For these reasons, the original alternating offers protocol is an appropriate base

protocol for dealing with concurrent negotiations. Therefore we need to extend the

original alternating offers protocol to handle the complex concurrent negotiation

situations mentioned above.

There have been two previous attempts to extend the alternating offers protocol

for use in concurrent negotiations. In [1], the available protocol actions are A =

{offer[x], accept, exit, confirm}; a confirm action is presented, which comes after

an accept, and the buyer or seller cannot cancel confirmed offers. The limitations

in this method are: (a) it does not ensure fairness in negotiations where the seller

has to wait a long time before receiving confirmation; and (b) there is no cancel

action, so the buyer will lose the opportunity to find another best offer from another

seller.

In [115], Figure 2.4, a concurrent protocol is proposed and the possible actions

are:

A = {offer[x], accept, exit, confirm, de-commit}

The limitations in this method are that: (a) when the buyer makes a deal

34

Figure 2.4: Williams’ Concurrent Alternating Offers State Diagram.

via a confirm action, the deal will be completed and the buyer will obtain the

item under negotiation and the seller will receive the money for that item, so if

the buyer cancels the deal (via a de-commit action), it results in a more complex

situation where the buyer has to return the item back to the seller and the seller

has to return the money back to the buyer, which can be inefficient in real-time

applications; and (b) only the buyer can cancel the deal (via a de-commit action),

which is not fair for the seller if the seller receives a better offer from another

buyer. Moreover, the de-commit action is not explicitly shown in the state diagram

of [114]. Furthermore, it implies that the protocol goes with a de-commit action

from a final state (an agreement) to another final state (a conflict deal), which is

logically problematic.

Because of the shortcomings in [1, 115], which do not allow all parties to cancel

a reserved offer, we chose to extend the alternating offers protocol to create the

35

concurrent alternating offers protocol by (a) adding a cancel action for both buyer

and seller to ensure fairness; and (b) allowing the buyer to take more opportunities

to find the best offer by introducing a new action, ’request-to-reserve’ that can

provide a hold situation for a deal.

2.5 Negotiation Strategies

In this section, we will firstly classify agent strategies based on the type of artificial

intelligence (AI) techniques used to design the strategy and our choice of the

negotiation strategy type (Section 2.5.1). Next, we will present a classification of

heuristic strategies with a discussion of related existing work (Section 2.5.2).

2.5.1 Negotiation Strategy Types

A negotiation strategy determines an agent’s behaviour in negotiation and it is

an important element in the negotiation model. Each agent uses a strategy to

describe how it will behave during the negotiation. For example, the strategy

defines the content of the first proposal and also when and how much agents

can concede [116]. The negotiation process is analysed based on three types of

strategies [48, 85, 86]: Game Theoretic Strategies, Argumentation-Based Strategies

and Heuristics Strategies.

Game Theoretic Strategies

These strategies are highly abstract and use mathematics to express their strategies

formally [81]. A game theory strategy concentrates on the negotiation outcome

rather than the negotiation process itself. A game theoretic strategy calculates

the best negotiation action from all possible actions by taking into account the

decisions that other agents may make [48]. For example, the buyer will formulate

a mathematically abstracted strategy that assumes that the number of sellers in

the market and their strategy is known in advance.

36

However, game theoretic strategies contain many unrealistic assumptions in-

cluding: (a) the negotiation environment is closed and static; (b) agents have

unbounded computational resources; (c) possible negotiation outcomes are small

and completely known; (d) agents are fully rational; (e) negotiation time is dis-

crete; and (f) the opponent’s strategy is known.

As a result, game theory is often not adopted in multi-agent systems in general

and in practical negotiation models in particular [48, 87]. Since it is unrealistic

to assume common known information about the negotiation environment and

opponents, it is also difficult to compute optimal negotiation strategies [5, 87].

Therefore we do not consider game theory strategies in this thesis because they

do not satisfy our objectives (Objective 3) outlined in Section 1.3.

Argumentation-Based Strategies

The agents in the argumentation model attach reasons to their proposals, as well as

reasons for accepting or rejecting them, to try to change the opponent’s negotiation

stance [86]. Negotiation proceeds by exchanging proposals and counter-proposals.

Moreover, the exchange includes promises, threats, or preferences [70]. Preference

is about the features of the item under negotiation. For instance, if agent b wants

to buy a laptop from si, the following dialogue represents the argumentation model

using preferences:

si: I will sell the laptop with price 900.

b: I will buy the laptop with price 700 if the laptop color is red.

Since our focus is on single-issue negotiation (Section 2.2) and one of our ob-

jectives is to develop an agent that behaves in a computationally tractable manner

(Section 1.3), presenting an argument will increase the complexity of the model

(i.e. the argument needs a different evaluation mechanism than the price). For

this reason, argumentation-based models are beyond the scope of this thesis.

37

Heuristic Strategies

Heuristic strategies are functions that determine how the agent behaves both at

the beginning and during the negotiation to reach the best course of action that

leads to an agreement. Heuristic strategies contain rules that produce good but

not optimal outcomes [87]. Hence, these strategies are based on empirical testing

and evaluation. Heuristics offer decisions that approximate the ones made in

game-theoretic studies, and are therefore more suitable for practical applications.

Heuristic strategies have many features. They: (a) are suitable for open and

dynamic environments, where it is a very complex process to optimize the ne-

gotiation strategy [3]; (b) deal with uncertain and unknown knowledge about the

negotiation environment and opponents [43]; (c) do not assume that agents exhibit

perfect rationality, since in the practical application agents may be irrational, ma-

licious or badly coded [87]; (d) support continuous real-time negotiation; (e) can

handle very large amounts of solution space (Section 2.2); (f) are computationally

tractable; (g) concentrate on both the negotiation process and the outcome; and

(h) involve direct modelling of agent behaviour. Accordingly, heuristic strategies

have been adopted successfully in a wide range of automated negotiation litera-

ture [3, 5, 6, 23, 28, 79, 83, 91, 115].

There are, however, some disadvantages: (a) they produce sub-optimal negoti-

ation outcomes because they approximate the decision process of negotiation; and

(b) it is difficult to accurately predict the models’ behaviour, thus, this type of

strategy needs intense empirical evaluation and simulation. Since heuristic strat-

egy features satisfy our objectives (Objective 3) outlined in Section 1.3, we chose

to develop a concurrent heuristic negotiation strategy to be used by an agent.

On reviewing the existing work on heuristic strategies, we found that there was

no complete list of all negotiation strategies in the multi-agent literature [85, 87].

Next, we will classify the basic heuristic strategies proposed so far in the multi-

agent negotiation literature.

38

2.5.2 A Classification of Heuristic Strategies

Lopes et al. [66] list three fundamental groups of strategies:

• Contending : agents maintain their stance and try to persuade opponent

agents to concede.

• Concession making : agents reduce their offer until it is acceptable to their

opponent. Concession strategies [64, 65] are functions that define how the

agent behaves at the start of the negotiation and the concession behaviour

of the agent. The following are three sub-classes of concession strategies:

– Starting high and conceding slowly: agents adopt an optimistic opening

position and make only low concessions during negotiation.

– Starting high and conceding moderately: agents adopt an optimistic

opening position and make moderate concessions throughout negotia-

tion.

– Starting reasonable and conceding slowly: agents adopt a realistic open-

ing position and make low concessions during negotiation.

• Problem-solving : agents maintain their offers and try to adjust the offer

to match the opponents. It only applies when the agent negotiates a re-

course with multiple issues. Problem-solving strategies [64, 65], like conces-

sion strategies, are functions that determine the behaviour of the agent at

the start and during the negotiation. The following are three sub-classes of

problem-solving strategies:

– expanding the pie: agents increase the available resources under nego-

tiation (i.e. the pie) so that each agent achieves its goals.

– logrolling (trade-offs): each agent concedes on issues that are of low

preference to itself and of high preference to the other agents.

39

– nonspecific compensation: one agent achieves his goals by paying off an

opponent for accommodating his interests.

Our strategy focuses on concession strategies because they are the simplest and

most widely used. In addition, our negotiation objective concentrates on single-

issue negotiation only (Section 2.2.1). The essential work that defines concession-

making strategies is that of Faratin et al. [29], who developed a model that

defines a range of strategies for proposing an offer and a counter-offer and making

a decision about a proposal. Faratin et al. developed the following families of

strategies:

• Time-dependent [29]: an agent that adopts this strategy will concede more

rapidly as the deadline approaches. Therefore, the value of the counter-offer

and the acceptance value for the issue depend on the remaining negotiation

time. There are three variations within this family of strategies:

– Boulware: the agent concedes less at the beginning of the negotiation,

but when the available negotiation time nears its end, it will concede

more; thus the concessions will take place at the end.

– Linear : the agent concedes constantly during negotiation.

– Conceder : the agent concedes more at the beginning of the negotiation,

but it will concede less at the end of the negotiation.

Figure 2.5 illustrates the Boulware, Linear and Conceder strategies. The y

axis represents the concession amount where 0 is the lowest value and 1 is the

highest value. The x axis represents the negotiation time where 0 indicates

the start of the negotiation and 1 indicates the end of negotiation.

• Resource-dependent [29]: this family of strategies is similar to the time-

dependent family of strategies except that the agent will concede more rapidly

as the quantity of resources becomes limited. Resources could be the money

transferred between agents, the number of agents participating in a partic-

ular negotiation, or negotiation time. Thus, time-dependent strategies can

40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Boulware

co
n

ce
ss

io
n

am
ou

n
t

0 0.2 0.4 0.6 0.8 1

Linear

0 0.2 0.4 0.6 0.8 1

Conceder

Figure 2.5: Faratin’s et al. [29] concession-making strategies.

be considered a type of resource-dependent strategy. There are two types of

strategies in this family:

– Dynamic-deadline strategy : this strategy is used to determine the dead-

line value. The quantity of negotiation time is proportional to the num-

ber of participating agents and inversely proportional to the average

length of the negotiation thread.

– Resource-estimation strategy : a counter-offer is calculated depending on

the way a particular resource is consumed. In general, if there are many

resources, then the agent will use a Boulware strategy. For example, if

the number of negotiating agents is the resource, then the more agents,

the smaller the concession.

• Imitative [29]: The strategies in this family are used when the agent is not

under pressure to reach an agreement, which is different from the previous

families, in which there is a reason for the pressure (approaching deadline and

limited resources). The agent will imitate the behaviour of the opponent, and

will compute the next offer based on the previous attitude of the opponent.

These strategies vary in type depending on the behaviour of the opponent

they imitate and the degree to which they imitate the opponent’s behaviour.

41

There are three strategies in this family:

– Relative Tit-For-Tat : the agent reproduces the behaviour of the oppo-

nent in a percentage manner.

– Random Absolute Tit-For-Tat : the agent adopts the opponent’s be-

haviour in absolute terms. This strategy is randomised by the use of

a function to generate a random integer that modifies the value of the

offer by an increasing or decreasing amount. For instance, if the oppo-

nent increased the offer by 3, then the agent’s counter offer should be

decreased by 3 plus or minus the random number.

– Averaged Tit-For-Tat : the agent uses a period of the opponent’s his-

tory to compute the average percentage of change in the opponent’s

behaviour in order to produce an offer.

Since Faratin’s et al. [29] strategies are simple and widely used in the negoti-

ation field [5, 31, 116], we will use Faratin’s et al. strategies to develop buyers (as

benchmark agents) and sellers (as opponent agents) in our experimental evaluation

in Chapter 6.

2.6 Heuristic Strategies

We will classify examples in the literature depending on the number of agents

negotiating at the same time: bilateral negotiations and multiple concurrent bilat-

eral negotiations. Then, we will illustrate asynchronous negotiation. At the end

of this section, we will review the cancellation management models used to cancel

an negotiation agreement.

In bilateral negotiation strategies [29, 58, 69, 75] a buyer negotiates one-to-one

with a seller to obtain a resource. We will not compare our strategy with the

bilateral negotiation strategies since our strategy lies in the category of concurrent

bilateral negotiations.

42

Our review will focus on addressing the following questions: (a) how can

an agent behave in a dynamic environment where there are both environmen-

tal changes (i.e. changes that are out of the agent’s control, namely changes in

the environment) and/or self changes (i.e. changes in the agent’s model that the

agent holds for itself in terms of ongoing negotiations); and (b) what information is

available for an agent during the negotiation to support the decision-making pro-

cess. In addition, we will focus on the functionalities of the concurrent negotiation

strategies listed in Table 2.1.

2.6.1 Concurrent Bilateral Negotiation Strategies

In this section, we will discuss in detail the existing strategies that are related to

our model: multiple concurrent bilateral models.

• Nguyen and Jennings [78] developed and evaluated a heuristic concurrent

bilateral negotiation strategy for e-commerce purchasing. In this strategy,

an agent wanting to purchase a service (the buyer) engages in multiple con-

current bilateral negotiations with a group of service-providing agents (the

sellers), where the agents have no prior information about their opponents.

The service here involves multiple issues (including price, quality, and other

aspects).

The strategy consists of a coordinator component and a number of negotia-

tion threads. The coordinator is responsible for coordinating all the threads,

deciding and changing the negotiation strategy for each thread, and chang-

ing the reservation value (i.e. the lowest utility value of an offer that is

considered acceptable by the agent). Each thread represents the interaction

with a particular seller using the alternating offers protocol. Also, it is re-

sponsible for deciding what offer to accept and what counter-offers to send

to the seller, and it reports their status back to the coordinator. In addition,

threads obtain their preferences from the buyer agent, including the range of

acceptable values for negotiation, the reservation value, and the deadline of

43

the negotiation. The strategy classifies seller agents into two types: conceder

(an agent that is willing to concede during negotiation), and non-conceder

(an agent that adopts a tough stance).

In [79], the authors extended the original strategy [78] by improving both

the initial strategy selection using the buyer’s belief about the sellers. In the

extended strategy, the coordinator determines the negotiation strategy using

three elements: (a) the probability distribution of the seller, determining

whether the seller is a conceder or a non-conceder; the (b) percentage of

success matrix, describing the chance of reaching an agreement when the

buyer agent applies a specific strategy to negotiate with a particular type

of seller; and (c) the payoff matrix, measuring the average utility value of

an agreement reached in similar situations. The success and payoff matrices

are initially set to a common value (i.e. domain information) and updated

after the negotiation finishes. For example, in a percentage of success matrix,

when the agent negotiates with a non-conceder seller using a tough strategy,

the average chance of reaching an agreement is 15%. An example of a payoff

matrix is an average utility of agreement of 0.7 when the buyer agent uses a

tough strategy to negotiate with the conceder seller.

The negotiation process begins with the coordinator, who calculates the

probability of the first seller (randomly picked) being of a specific type. In the

next step, the coordinator calculates the expected utility of applying different

strategies (conceder, linear and tough) to negotiate with a particular seller

(driven by the probability distribution function); it selects the strategy for

the first thread that maximises the expected utility. Next, the coordinator

uses a Bayesian update function [118] to update the probability distribution

of the seller type and uses it for the second seller. The process terminates

when the coordinator allocates a strategy for each thread. The threads then

begin to exchange proposals with the sellers.

After each negotiation round (exchanging one proposal and one counter-

44

proposal), the threads report their negotiation status to the coordinator.

The coordinator changes the strategies based on its beliefs regarding the

opponent type. During the analysis time (the time after the first proposal

and before the end of the deadline), the coordinator reclassifies the sellers’

types (conceder or non-conceder) based on the previous utility value of their

proposals. Thus, if the previous proposal offered a value over a threshold

value (where the threshold value is set to concessionary behaviour), then the

seller is considered a conceder. In the next step, the coordinator will update

the strategies of the threads that changed their seller’s type. The coordinator

selects a new strategy that provides the maximum expected utility using

the percentage of success matrix, the pay-off matrix, and the seller’s new

probability of being a conceder or non-conceder. In the empirical evaluation,

the authors found that changing the threads’ strategies during run-time led

to 30-40% successful negotiations, a better result than having the threads

retain their initial strategies.

While this strategy is very relevant to our study since it models concurrent

negotiations, it is not directly applicable to our negotiation setting. This is

due to its strict assumptions about the knowledge of the opponent types, ne-

gotiation success and payoff matrices before the negotiation and negotiating

in discrete time. In addition, the strategy is based on a Bayesian learning

approach requiring prior knowledge about the environment as well as the

opponents. Moreover, it takes into consideration only two types of sellers

(i.e. conceder or non-conceder) and three types of buyer strategies. There

are no indications of how frequently the coordinator should reclassify the

sellers.

In the strategy described above, the coordinator deals with the threads’ sta-

tus separately. In other words, the coordinator should deal with the threads’

status cumulatively to decide whether to change the threads’ strategy or not.

Our strategy is more open than that of Nguyen and Jennings as it does not

45

deal only with two types of sellers, agents can come and go during nego-

tiation and it does not require prior information about the opponents and

the environment in the form of success and payoff matrices. In our experi-

ments (Chapter 6), we will not compare our strategy with the Nguyen and

Jennings since we will compare our work with Williams et al. [115], which

outperforms the Nguyen and Jennings strategy.

• An et al. [6] proposed a strategy for deciding what proposal to make and

when to make it, in multiple concurrent negotiations. They propose four

decision functions supporting agents’ proposal generations. These decision

functions are based on the available negotiation time, trading opponents’

strategies, the negotiation situations of the different negotiation threads,

and the other competitor buyers.

The limitation of this strategy is that compared with our strategy, the ne-

gotiation situations of different negotiation threads are calculated according

to the minimum offer received from all sellers, while in our case, we analyse

each negotiation thread based on how the negotiation with the opponent

progresses. Also, in the An et al. strategy, there are no rules to decide when

to accept an offer, but in our strategy there are. Moreover, their strategy

does not employ a concurrent protocol, as we do. Furthermore, An et al. did

not benchmark their strategy against other state-of-the-art strategies, while

in our strategy we do.

• Li et al. [59] presented a strategy for bilateral negotiations about one is-

sue (i.e. price). Their strategy is composed of sub-strategies about single-

threaded negotiations where one buyer and one seller are assumed; syn-

chronised multi-threaded negotiations where there are multiple threads in

the buyer account for negotiating with different sellers; and dynamic multi-

threaded negotiations where the uncertainty of new sellers joining in the

future is factored in to the buyer’s strategy. The sub-strategy that is most

related to our setting is that of dynamic multi-threaded negotiations in the

46

presence of other opponents.

When an agent of the type described by Li et al. [59] negotiates in the

dynamic multi-threaded negotiations strategy, it makes adjustments to its

reservation price when a new opponent arrives. Moreover, in dynamic multi-

threaded negotiations, the agent has the ability to set the reservation utility

and thus change the negotiation strategy proactively by predicting the ar-

rival and impact of future outside opponents. The strategy is based on the

notion of expected utility. Expected utility is calculated based on the arrival

probability and the seller resource value distribution. The arrival probabil-

ity is the probability that the buyer finds an alternative and launches a new

negotiation thread.

One limitation of the strategy is that it adopts only the basic time-dependent

negotiation strategy, viz., the concession rate of the offer only depends on the

negotiation time. Furthermore, the work does not provide implementation

details on how the authors set up their empirical evaluation. In addition,

the strategy assumes the availability of prior information about opponents

(e.g. the estimated reservation price of an opponent), which is again not

appropriate for practical negotiation settings like ours.

• Ponka [83] proposed a concurrent strategy that consists of three layers. The

first is the negotiator layer, where each negotiator engages in a negotiation

with a single provider agent over a single service, and is independent from

other negotiators of the same agent. The second is the controller layer,

which manages a group of negotiators that negotiate about the same service

by determining the number of negotiations running at the same time and

selecting the opponents for each negotiator. It decides when to accept an

offer, when to start a new negotiation and with whom to negotiate. In

addition, each negotiator reports its status to the controller after each round.

The third is the coordinator layer, which manages all the agent controllers

and obtains a report of their progress in every turn.

47

The limitation of this strategy is that the buyer knows the reservation price

of the seller. Ponka’s model focuses on how cancellation policies affect the

behaviour of the agent. In addition, the coordinator waits until it receives the

round’s information from the entire group of negotiators and then advises an

overall strategy, taking into account the developments in all the negotiations.

In addition it benchmarks the strategy against a random strategy.

• Kolomvatsos et al. [52] adopted Particle Swarm Optimization (PSO) and

Kernel Density Estimation (KDE) for each thread in the concurrent negoti-

ation to find the proposed prices in every round of the negotiation. Similarly

to our strategy, they focused on the buyer side and they studied concurrent

negotiations between a buyer and a set of sellers. In this setting, the buyer

utilizes a number of threads, with each thread following a specific strategy

that adopts swarm intelligence techniques for achieving the optimal agree-

ment. PSO algorithm is adopted by each thread. What is interesting in

their approach is that their strategy requires no central coordination. Their

strategy does make some assumptions about the opponents. However, their

experimental results focused on the time interval where an agreement is pos-

sible. They abstracted away from comparing their results with the current

state-of-the-art, as we do.

• Ren et al. [91] presented a model for designing a strategy for agents to

make different levels of concession during negotiation depending on changes

in the environment, in any negotiation strategy (bilateral or multilateral)

with any number of issues. The contribution of the model is to extend

the market-driven agents (MDAs) [102, 103] to consider both current and

expected changes in open and dynamic negotiation environments.

The limitation of this strategy is that the solution to the environmental

change is to change the negotiation strategy. However, the strategy takes

into account only adding and/or removing opponents and competitors.

48

In addition, in the Ren et al. strategy, agents negotiate in rounds with a max-

imum number of agents involved (five). Furthermore, there is no indication

of who are the opponents. In the empirical evaluation, agent performance

was demonstrated by changing the environment factors; however, the agent

has to compare its performance with other agents to prove the accuracy of

the strategy.

• Williams et al. [115] proposed a negotiation strategy for concurrent nego-

tiations in which the agent negotiates with multiple opponents about one

item with multiple issues. This is the most similar existing research with

respect to our setting. As with Nguyen and Jennings, the Williams et al.

strategy has two components: a set of negotiation threads and a coordina-

tor. Each negotiation thread is responsible for two tasks: (a) performing

Gaussian process regression to predict the future utility of its opponent and

(b) calculating the concession rate for an offer by taking into account the

best time and best utility values from the coordinator. The coordinator is

responsible for determining the best time and utility for each thread to reach

an agreement.

Williams et al. [115] developed two versions of their strategy. The first

assumes that each thread has a different utility function from the others,

while the second presupposes that all threads should have the same utility

function.

However, there are weaknesses in the Williams et al. strategy: (a) both

the agent and its opponents have the same deadline (and are aware of each

other’s), which is not realistic for most practical problems; (b) they model

the openness of the market by having agents using the same break-off prob-

ability (likelihood of leaving the negotiation) which is a prior knowledge,

that is not applicable in real e-markets where buyers and sellers are concur-

rently negotiating with each other; and (c) their negotiation setting is not

completely open since they only allow agents to leave the environment, but

49

not to enter during run-time. We will use the Williams et al. strategy to

benchmark our strategy, as it represents the current state-of-the-art in mul-

tiple and concurrent bilateral negotiation. We will explain the reasons for

choosing this strategy to benchmark at the end of this section.

• An et al. [5] presented the design and implementation of agents that ne-

gotiate concurrently to allocate multiple resources. The agent specifies the

maximum number of reserved offers and what to offer during run time us-

ing a heuristic approach. The strategy is calculated based on the following

factors: deadline, number of sellers, market competition, multiple resources,

and cancellation.

As in our strategy, they assume that the agent has incomplete information

about the environment and the opponent. Also, there is no explanation of

how the agent selects actions. The authors’ negotiation problem is different

from ours since they negotiate multiple resources instead of one. In addition

they assume that negotiation is conducted in rounds rather than in real time

and the buyer knows the probability distribution of the seller’s reservation

price. By the same token, Sim [104] and Mansour et al. [68] proposed con-

current negotiation strategies to allocate multiple resources. Hence, the An

et al. , Sim and Mansour et al. strategies are not suitable for our negotiation

environment because their strategies negotiate to allocate multiple resources

while in our strategy we allocate one resource only.

Table 2.1 compares existing work in concurrent negotiation according to the

functionalities: (a) Model of Open Market – where the negotiating agent is capable

of modelling how sellers/competitors enter and leave the market at any time during

negotiation; (b) Self Model – models the progress of ongoing negotiations; (c)

Private Deadline – where the buyer’s and sellers’ deadlines are not known to each

other in advance; (d) Explicit Decisions – where clear conditions about when

to offer, accept, request-to-reserve, cancel and exit are specified; (e) Different

Price Ranges – where the agent is tested against different classes of intersections

50

Functionality Nguyen

and

Jen-

nings

[78, 79]

An

et al.

[6]

Li et

al.

[59]

Ponka

[83]

Kolomvatsos

et al. [52]

Ren

et al.

[91]

Williams

et al.

[115]

Conan

Model of Open Market 7 7 7 7 7 7 7 3

Self Model 7 7 7 7 7 7 7 3

Private Deadline 7 7 7 7 7 7 7 3

Explicit Decisions 7 7 7 7 7 7 7 3

Different Price Ranges 7 7 7 7 7 7 7 3

Concurrent Protocol 7 7 7 7 7 7 3 3

State-of-the-art Opponents 7 7 7 7 7 7 3 3

Performance Comparison 7 7 7 7 7 7 3 3

Asynchronous Negotiation 7 3 7 7 7 7 7 3

Environment Model 7 3 3 7 7 3 7 3

Incomplete Information 7 3 7 7 7 3 3 3

Continuous Time 7 3 7 7 3 7 3 3

Opponent Model 3 7 7 7 3 7 3 7

Multi-issue Negotiation 3 7 7 7 7 3 3 7

Table 2.1: Functionality comparison of the existing work in concurrent negotiation.

between the price ranges (i.e. agreement zones) between the buyers and sellers

(for more details see Section 3.2); (f) Concurrent Protocol – where the agent uses

a special protocol that has actions to deal with concurrent negotiations; (g) State-

of-the-art Opponents – where the agent negotiates with other opponent agents

(i.e. sellers) that exist in the literature; (h) Performance Comparison – where

the buyer agent benchmarks other strategies in the literature; (i) Asynchronous

Negotiation – where the agent does not have to wait for all the sellers’ counter-

offers to reply; (j) Environment Model – where the buyer has a model of the

market’s environment in terms of the number of sellers, its competitors and other

parameters that formulate the market’s dynamics; (k) Incomplete Information –

where there is no a priori knowledge about the negotiation environment and the

opponents; (l) Continuous Time – where real time is used as the negotiation time

instead of using the number of negotiation rounds or discrete time; (m) Opponent

51

Model – models the behaviour of the opponents; and (n) Multi-issue Negotiation

– where buyers and sellers negotiate multiple issues like price and warranty.

In order to evaluate the performance of our strategy against the strategies

proposed in the literature, we make sure that the benchmark strategy uses a con-

current protocol and a similar practical evaluation setting to ours (Chapter 6)

without considering the way the strategy is composed (the way that the agent

thinks). For instance, buyer b1 (adopts a Time-dependent strategy [29] with pro-

tocol actions = offer, accept) and b2 (adopts a Relative Tit-For-Tat strategy [29]

with protocol actions = offer, accept) are negotiating with two sellers, s1 and s2,

concurrently. At the end of the negotiation, b1 gains a higher utility than b2. So

it is fair to say that b1 outperforms b2 even though their strategies take different

factors into account which in this case are time and opponent model.

Another example is when the same buyers mentioned above (b1 and b2) have

different protocol actions where b1 adopts a Time-dependent strategy [29] with

protocol actions = offer, accept, cancel and b2 adopts a Relative Tit-For-Tat strat-

egy [29] with protocol actions = offer, accept. b1 and b2 concurrently negotiate

with two sellers s1 and s2. At the end of the negotiation, b1 gains a higher utility

than b2. Here the comparison between b1 and b2 is unfair since one based its

strategy on a certain protocol and the other did not. The rules of the negotiation

should be the same for all participants.

We compare our strategy with strategies that have the following settings:

• assume private deadline (this can be easily adaptive in the evaluation where

we make the deadline public by assigning the same deadline for both buyers

and sellers);

• use a concurrent negotiation protocol which includes the cancel action;

• have state-of-the-art opponents;

• have performance comparison;

• have incomplete information about opponents;

52

• use continuous time.

Since the negotiation settings of Nguyen and Jennings [78, 79], An et al. [6],

Li et al. [59], Ponka [83], Kolomvatsos et al. [52] and Ren et al. [91] negotiation

settings are totally different to our settings based on the functionalities listed in

Table 2.1, it is unfair to benchmark their strategies. However, Williams et al. [115]

is the state-of-the-art in concurrent negotiation and has all the required settings

except the deadline being public. For this reason, in our experimental evaluation

(Chapter 6) we set the deadline for Williams et al. [115] to public by assigning the

same deadline for both buyers and sellers, which implies that Williams et al. will

assume that the sellers will have the same deadline as theirs. Also, the multi-issue

feature in Williams et al. will be adapted to single issue negotiation by setting the

number of issues in Williams’s et al. strategy to 1.

The justification of any additional strategies used in our experimental evalu-

ation will be provided in Chapter 6, where we will discuss the rationale of our

experimental settings in more detail.

2.6.2 Asynchronous Negotiation

The problem that arises in concurrent negotiation is that the buyer has to wait to

receive all the offers from the sellers. However, there are many reasons why the

buyer should not wait to receive all the proposals from its opponents. First, the

buyer is bounded to a limited deadline, and waiting for all the offers will consume

the negotiation time and thus will result in fewer negotiation rounds with less

probability of reaching an agreement. Second, due to the increased waiting time

the buyer will not be preferred in negotiations with other sellers because the other

sellers will assume that buyer will always be late.

An et al. [6] propose two strategies to make the negotiation more flexible in

synchronization: a fixed waiting time-based strategy and a fixed waiting ratio-based

strategy. A fixed waiting time-based strategy determines the time to wait after an

agent receives the first counter-proposal. On the other hand, a fixed waiting ratio-

53

based strategy determines the number of counter-proposals to wait for after an

agent receives the first counter-proposal. However, their synchronization solution

depends only on the reaction times of the opponents.

Waiting time should not depend on the response time of opponents only and

should depend on the negotiation situation of the agent. So, in our negotiation

model, the agents negotiate in an asynchronous manner where the agent replies

to the sellers based on how many counter-proposals it receives at the same time.

For instance, if an agent receives three counter-proposals at time t and there are

seven more sellers still to reply, then the agent will reply to these three proposals

first. Thus, the agent does not have to wait for other sellers to produce an offer

and replies only to sellers whose offers have been received at the same time.

2.6.3 Cancellation Penalties

In this section we will discuss the penalty (i.e. the amount of money) that the agent

has to pay to the opponent if it cancels a previously reserved item. A protocol

state that describes the reservation of an item needs another action to form an

agreement. An agent can cancel a beneficial existing reservation with one seller

and move to a new, more preferred offer with another seller. The reason for our

interest in cancellation penalties is to justify the cancel action in our protocol in

Chapter 3.

The option to cancel a reservation increases the utility to both negotiation

parties and saves computation and time [97]. This is because an agent can offer

to reserve an item faster than agree to buy it, so that it can explore other options.

However, it has to balance the number of reservations that it makes, since if they

do not materialize, they can decrease its utility [83], due to cancellation penalties

it will have to pay.

There are many types of cancellation penalties:

• Fixed price penalty: the penalty is a fixed price whenever the agent wants

to cancel.

54

• Percentage of the deal: Nguyen and Jennings [80] extended their negotiation

model to deal with situations where the seller can renege on agreements by

developing a reservation manager. The main contribution of the model is

providing an agent with the ability to reason about reservation and cancel-

lation to intermediate agreements (i.e. agreements that have been reserved

between a buyer and many sellers, where the buyer must choose one of them

as the final agreement). The reservation manager is responsible for helping

the thread to decide whether or not to accept an offer or to renege on a

reserved deal (agreement). Thus, when a buyer or a seller decides to break

a reserved deal, it has to pay a de-commitment penalty to its opponent.

The de-commitment penalty is calculated dynamically as a percentage of

the deal utility and is also based on the time when the contract is broken,

as in Equation 2.1.

In order for the buyer to avoid the risk associated with reserving only one deal

at a time, in which the seller can renege near the deadline, leaving the buyer

with a short time to find another deal, the buyer can reserve more than one

deal simultaneously. Then, the buyer selects the deal that has the highest

utility value. The empirical result draws attention to many points. One of

the points illustrates that different penalty levels have different impacts on

the performance of the model. Also, the more patient the buyer, the better

the deal it will obtain. One of the model’s strengths is solving a realistic

problem occurring in a real-life environment, so it avoids the limitations of

other models [79].

Penaltyt = U(α, tα)(Penalty0 +
t− tα
1− tα

(Penaltymax − Penalty0)). (2.1)

where U(α, tα) is the agent utility of the agreement at time tα, Penalty0 is

the penalty at the agreement time, Penaltymax is the penalty at the deadline.

In addition, An et al. [4, 5] have developed an agent which negotiates in an

55

environment that contains concurrent negotiation and cancellation.

Penaltyt = 0.1 ∗ Prc(α)((1− t)/λ)1/2. (2.2)

Where Prc(Ag) is the price of the agreement α, λ = 6 and t is the negotiation

period normalized between [0, 1].

Also, Williams et al. [115] assumed a cancellation penalty Penaltyt based

on a percentage of the deal, where:

Penaltyt = D ∗ Pricereserved (2.3)

where D is a percentage of the agent’s reserved offer Pricereserved where

D ∈ [0, 1].

• Penalty that is decided with the negotiation deal. An et al. [3] presented a

model that negotiates the price and the cancellation penalty of a resource

in cloud computing and shows that using cancellation achieves higher social

welfare (i.e. both agents win in the negotiation).

• Penalty that is decided at the time of cancellation an agreement.

Ponka [83] investigated the effect of a cancellation penalty on agent behaviour

and utility and found that using different types of cancellation penalties can have

a significant positive impact on the agent’s utility.

We will adopt the model of a percentage of the deal penalty to enable a fair

comparison with the benchmark strategy of Williams et al. [115].

2.7 Negotiation Simulation

The multi-agent literature is rich in negotiation models and strategies. However,

there has not been much work in the area of simulation for negotiating agents. In

this context, we may classify the relevant literature according to:

56

• proprietary simulators – which perform specific, closed (i.e. not open source)

experiments that are developed by researchers to evaluate their own agent

strategies, e.g. in bilateral negotiations [29, 75], concurrent bilateral negoti-

ations [6, 59, 80, 91] and opponent models [22, 46]. These simulators cannot

be used in other negotiation settings since their parameters are fine-tuned

and the agent types are fixed. In addition, they are hard to re-implement

due to time constraints and limited availability of details about the simulator

design.

• public simulators – which are generic, usually open-source simulators used

to evaluate any agent strategy, as long as it is expressed in the system’s

specification language, e.g. the state-of-the-art GENIUS negotiation envi-

ronment [61]1.

We will discuss GENIUS because of its wide use and acceptability as a publicly

available simulation tool. Also, we will discuss GOLEM and GOLEMLite as base

platforms for our simulator.

2.7.1 GENIUS

GENIUS [61] is a negotiation environment that implements an open architecture

for heterogeneous negotiating agents. It provides a testbed for negotiating agents

that includes a set of negotiation problems for benchmarking agents, a library of

negotiation strategies, and analytical tools to evaluate an agent’s performance.

To verify the efficacy of GENIUS, the system was used by 65 students, who

were each required to design an automated agent for different negotiation tasks.

Their agents were evaluated and both quantitative and qualitative results were

gathered. These results suggested that GENIUS helps and supports the design

process involved in producing an automated negotiator (from the initial design,

through to the evaluation of the agent, and redesign and improvements) based on

its performance.

1http://ii.tudelft.nl/genius/

57

To the best of our knowledge, GENIUS was used only for evaluating bilateral

negotiation, especially of agents in the automated negotiating agents competition

(ANAC) [37]. In this context, Williams et al. extended GENIUS to provide

support for concurrent negotiations [115]. However, this extension addressed a

specific experimental setup and was not accessible publicly. Moreover, we are not

aware of any work that evaluates the robustness and scalability of GENIUS when

using a large number of agents.

2.7.2 The GOLEM Agent Platform

GOLEM2 is a logic-based agent platform developed to represent agent environ-

ments that evolve over time [18, 19]. It provides a middleware that agent de-

velopers can use to build multi-agent systems using both Java and Prolog. The

platform has been used to deploy agents in a number of practical applications,

from ambient intelligence [21, 25] and service negotiation in grid computing [20],

to diabetes monitoring and management [50]. As shown in Figure 2.6, a GOLEM

environment consists of three main components: containers, agents and objects.

• Containers – are logical entities representing a subset of the agent environ-

ment and mediating the interactions between agents and objects situated

in it. Such interactions are governed by the container’s physics, a compo-

nent that prescribes how the state of the container changes as a result of

agent actuators performing actions, including how actions and their effects

are perceived by agent sensors. Using containers, an agent environment

can be distributed over a network, allowing agents to perceive and interact

with entities that are logically near, but physically distributed somewhere

else. Containers may also contain sub-containers. A connector component

attached to the container allows agents to communicate with each other.

• Agents – are cognitive entities that can sense the environment, reason about

it and interact with other agents as well as objects. An agent is composed

2http://golem.cs.rhul.ac.uk/

58

Environment

effectors

sensor agent
mind

agent
body

connector

object

affordances

agent

Physics

Figure 2.6: GOLEM environment.

of an agent body and an agent mind. The body allows physical interaction

with the environment via sensors and effectors, while the mind processes

perceived knowledge to decide how the agent should act. An agent’s use of

body and mind was introduced in Section 4.1.

• Objects – are entities situated in the environment that react once agents act

upon them.

In GOLEM the way entities make themselves present in the environment is de-

scribed via the concept of affordances. Affordances are defined with ontologies and

enable agents to perceive these entities in a systematic manner, without the need

for a directory facilitator agent (see [18] for more details).

Agent communication Containers are connected to each other via components

called connectors. A connector is an abstract service that hides away the low-

level details of message transportation. Connectors are registered to containers in

order to enable agent communication, implemented by combining Prolog and Java.

When an agent needs to send a message to another agent, it simply produces a

59

specific action described by the keyword envelope. Once the agent produces such

an action, the connector that is registered with the agent’s container picks it up,

and transfers it to the recipient agent’s connector. A variation of the send message

is also used to send serialised objects between containers (e.g. to move an agent

to a different physical machine).

2.7.3 GOLEMLite

GOLEMLite [73] is a Java library that maintains the key GOLEM concepts such

as the container and agents with body, mind, sensors and effectors. However, in

GOLEMLite there is no support for objects and applications can be deployed in one

container with a stripped-down physics component that supports communicative

actions between agents only (i.e. the system does not support physical actions). In

addition, GOLEMLite introduces the notion of infrastructure agents that allow us

to develop agents that control the environment of the participant’s agents, which

will be discussed in detail in Section 5.2.2.

Our initial intention was to extend GENIUS with extra functionality for con-

current negotiations as well as realistic e-market parameters. However, the short-

comings of GENIUS as described above discouraged us from trying to extend the

system to serve our experimental purposes. We thus decided to develop Recon

(Chapter 5) on top of the GOLEM platform as it already supports agent de-

ployment in different settings, including support for specifying declarative and/or

imperative strategy negotiating agents. However, GOLEM does not have the spe-

cialised tools to support negotiation. In addition, we will use the GOLEMLite

library to support our infrastructure agents in Recon.

2.8 Limitations of Existing Work

In general, we consider the limitations that exist in concurrent negotiation agent

models. More specifically, we consider the shortcomings of these models in terms

of the architectures that they use, their associated protocols and strategies, how

60

these strategies are implemented, and how the simulations are performed to ob-

tain experimental results. In each of the above dimensions we discuss both the

limitations and why overcoming these limitations is important.

• Architectures: existing negotiation architectures are for bilateral negotiation

only, with protocol- and strategy-dependent features, without explicitly rep-

resenting the main components of the concurrent negotiation and how these

components interact with each other. In addition, such architectures fail to

describe the information exchange between the components of the architec-

ture. Developing architectures for concurrent negotiation that is protocol-

and strategy-independent is important because it provides adaptable designs

that can be used by the agent developer to implement any negotiator con-

current strategies, thus saving the cost of developing the architecture from

scratch.

• Protocols: since we are negotiating concurrently, the existing protocols are

not sufficient to handle the complexity of concurrent negotiations due to their

limited actions. Adding more negotiation actions will result in the agent

taking advantage of the concurrent negotiation situation and thus increase

its negotiation utility.

• Strategic context: existing negotiation strategies abstract away from the dy-

namicity of the market and the progress of ongoing negotiations, thus ignor-

ing information that may decrease the possibility of achieving an agreement

and losing opportunities to add value to the agent’s utility function. Also,

they often make strong assumptions about the domain, e.g. that deadlines

are public, thus constraining their applicability in a variety of practical ne-

gotiation settings. In addition, none of the concurrent negotiation literature

has tackled the problem of different agreement zones during negotiation (for

more details see Section 3.2). Moreover, current models lack explanations of

how to choose negotiation actions, so that the agent knows when to request-

61

to-reserve, cancel and exit the negotiation. Furthermore, some of the ex-

isting work neglects the process of modelling the negotiation environment,

constraining the negotiation information to be complete, and assumes the

negotiation time to be discrete, which places such negotiation models far

from real-time applications. By overcoming these limitations we can make

negotiation strategies more practical.

• Strategy implementation: most of the existing agent negotiation strategies, to

the best of our knowledge, are implemented procedurally using the constructs

of an imperative language, like Java, and are thus accessible only to the

developers of the system. Thus, the agent strategy becomes often difficult to

explain to a user who might need to understand why the agent has made the

specific offers for a particular negotiation. Developing a declarative strategy

can help a user understand the rules of the strategy better and the agent to

justify better each action taken in the negotiation.

• Simulations: existing negotiation simulations only support bilateral negoti-

ation. In addition, most negotiation agent development platforms, such as

GENIUS, only support imperative (e.g. Java) agents. It is useful to incor-

porate declarative strategies that allow developers to specify strategies that

can be transparent to a human user, in that the agent can explain why it

has taken certain actions during a negotiation.

• Experimentation: most existing approaches have not conducted performance

comparisons with any benchmark strategies. Benchmarking other strategies

will help to advance the state-of-the-art in the concurrent negotiation field.

Furthermore, most of the existing concurrent negotiation strategies do not

use any state-of-the-art agents as opponents. Using state-of-the-art oppo-

nents will make the negotiation between agents closer to real life situations

where the opponents’ strategies differ from each other.

62

In summary, to the best of our knowledge, there is no adaptive model for

concurrent bilateral negotiations in a dynamic environment overcoming all the

limitations listed in Table 2.1, which makes our solution relevant and useful in the

agent negotiation field.

2.9 Summary

In this chapter, we presented an overview of the current negotiation literature.

Since there are multiple ways to present automated negotiation models, we started

the chapter by presenting what we mean by a negotiation model. Then we intro-

duced the attributes of the resource under negotiation. Within our review, we pre-

sented our reasons for choosing the concurrent bilateral negotiation (single issue)

as our model. We illustrated the current state-of-the-art in negotiation architec-

tures and protocols and why we chose to extend the alternating offers protocol to

govern actions in our negotiation models.

We organized negotiation strategies based on game theory, argumentation and

heuristic methods. After justifying our choice of a heuristic mechanism to develop

our negotiation strategy, we discussed the literature of heuristic strategies. Then,

we discussed in detail a wide range of negotiation models based on concurrent

bilateral approaches with a focus on the limitations of the concurrent bilateral

negotiation area.

As our model is based on heuristic strategies, we presented the current state-

of-the-art negotiation simulation and its limitations. At the end of the chapter,

we provided a brief overview of all the limitations in the existing concurrent ne-

gotiation models. To address these limitations, we present next (Chapter 3) our

negotiation model, in terms of its associated agent architecture, protocol and strat-

egy.

63

Chapter 3

Adaptive Negotiation Model

In this chapter, we will present our concurrent negotiation model, which includes

an agent architecture, an agent strategy and the negotiation protocol that the

strategy assumes. Our concurrent negotiation model seeks to satisfy the thesis’ aim

in general and Objectives 1, 2 and 3 in particular, viz., to provide the agent that

uses the model with the ability to make decisions on how to negotiate concurrently

with other agents on behalf of its user in open and dynamic e-markets for a resource

allocation to reach a single agreement that maximises the agent’s utility.

In the remainder of this chapter, we will begin by introducing the concurrent

negotiation architecture and its components (Section 3.1). Next, we will provide

in Section 3.2 a detailed explanation of our negotiation settings, including the

number of participants and the recourse under negotiation. Then we illustrate the

concurrent negotiation protocol and its actions (Section 3.3). After that, Conan,

our negotiation strategy, will be discussed in Section 3.4. The discussion will

explain the heuristics developed to generate an offer, choose the negotiation actions

and calculate the cancellation penalties. Section 3.5 analyses the properties of

Conan. Finally, we summarise the chapter in Section 3.6.

64

3.1 Concurrent Negotiating Agent Architecture

Most descriptions of agent architecture in the literature focus on the general archi-

tecture of negotiation [10, 30], protocol or strategy-dependent factors [92], or are

related to agent-human negotiation architecture [27]. However, this study focuses

on developing an agent architecture that can be used to deploy any concurrent ne-

gotiation agent in general, and our negotiating agent in particular. Our approach

may be used by any agent developer to implement their concurrent negotiation

strategies.

We base our negotiating agents on the KGP model of agency [107]. In this

model an agent consists of (a) the knowledge K that the agent uses to reason and

act in the environment in which it is situated; (b) the goals G that represent what

states of the environment the agent wishes to achieve; and (c) the plans P that

represent how the goals of the agent can be achieved as a series of actions and/or

further sub-goals.

The reason for choosing the KGP model is the need for (a) declarative strategies

to aid the explanation of decisions taken by the agent, hence the choice of KGP as a

declarative agent model built using logic programming tools and technologies; (b)

the ability of our model to deal with real time, as required in practical negotiation,

hence KGP supports temporal reasoning using the Event Calculus (discussed in

Chapter 4); and (c) a systematic way to deal with reasoning complexities, hence

KGP is appropriate for negotiation.

The following is a brief summary of the KGP model components for agents

(formal details can be found in [36]):

• mental state, which holds the knowledge base, the goals and the plans for

the agent;

• reasoning capabilities, in particular supporting planning, temporal reasoning,

reactivity and goal decisions;

• sensing capability, which allows the agent to observe whether properties of

65

the agent’s environment hold; and to perceive the execution of actions by

other agents;

• transition rules, defining how the state of the agent changes;

• selection functions, which provide appropriate inputs to the transitions;

• a cycle theory, which decides the sequence for applying the transitions and

when they should be applied.

For negotiation we revisit KGP, in particular, previous work with the KGP as it

has been applied to decision-making [36] to equip it for decision-making in multiple

and concurrent negotiations. More specifically, we revisit KGP by: (a) allowing the

explicit representation of markets via the introduction of an environment model;

(b) profiling other participating agents by introducing an opponent model; (c)

maintaining a representation of self; (d) revising the structure of the current state

component; (e) integrating a strategy model; (f) deleting the planning capability;

and (g) restructuring the KGP components.

The revised version is shown in Figure 3.1 and consists of five components:

Domain Knowledge, Current State, Physical Capabilities, Cognitive Capabilities

and Control. The following is a brief description of each component in the revisited

model we construct.

3.1.1 Domain Knowledge

This represents generic and dynamically changing knowledge about the negoti-

ating application at hand. It consists of five sub-components: a Strategy Model

detailing how the agent selects actions in the application domain; a Goal Model

outlining which goals the agent can achieve and how they can be achieved using

the strategies; an Environment Model representing knowledge about classes of dif-

ferent types of environments and the protocols they require; an Opponent Model

detailing classes of different opponents; and a Self Model representing information

about the agent itself and its ongoing negotiations. For simplicity, in the rest of

66

Figure 3.1: Architecture of negotiating agent I that is interacting concurrently in

different sub-environments E1, E2, . . . , Ek with opponents O1, O2, . . . On.

the thesis we will assume that the agent will model only one environment E where

E = E1.

3.1.2 Current State

This contains instances of the ongoing negotiations in terms of the participants for

each negotiation, the protocol used for each negotiation, and the progress made in

these so far.

3.1.3 Physical Capabilities

These situate the agent in an environment by connecting the agent’s sensors and

effectors to its internal state. They consist of two sub-components: a Sensing

capability that captures environment information via the sensors; and an Action

67

Execution capability that performs the actions in the environment via the actu-

ators. Both capabilities operate on the History of the agent, another component

that holds the experience of the agent represented as a series of events that have

happened, either in the form of observations (events from the Sensing capability)

or actions (events from the Action Execution capability).

3.1.4 Cognitive Capabilities

These allow the agent to reason about the negotiation and take decisions. This

component consists of three sub-components: Decision Making is responsible for

evaluating the Current State, and uses Domain Knowledge to decide what to

do next; Knowledge Revision updates the Domain Knowledge component either

through simple revisions or through learning over time; and Temporal Reasoning

supports changes in the Domain Knowledge due to events happening in the History

of the agent.

3.1.5 Control

This component details how the capabilities are being invoked and under what

circumstances, represented by the outer container and the arrows in Figure 3.1.

The typical control cycle is an instance of the more general framework described

in [51]. It involves the agent sensing a set of events in the environment, updating its

history (which in turn causes a revision of the knowledge and the current state),

then making a decision to act. The action is executed in the environment and

recorded in the history.

However the protocol and the strategy need to know what information will be

known or unknown to the agent and there must be a clear formalization of the

negotiation environment and the participants, which will be described in the next

section.

68

3.2 Concurrent Negotiation Setting

We consider open, dynamic and complex environments for concurrent bilateral

negotiations. We assume that a market environment contains a set of buyers B

where |B| = n (n ≥ 1) and a set of sellers S = {s1, . . . , sm} (m ≥ 1) that wish

to negotiate over a set of resources R = {r1, . . . , rl} (l ≥ 1) using a protocol p.

We develop a strategy for a buyer agent b ∈ B, who negotiates concurrently with

multiple sellers over a resource r ∈ R using the protocol p. Negotiation advances

in real time t (t ∈ R+) where agents take decisions to make offers. At any time t

during a negotiation, we identify the following information.

• Sellertb is the set of seller agents negotiating with b at time t, where Sellertb ⊆

S.

• Ctb is the set of competitor agents for b at time t, where Ctb ⊆ B \ {b}.

• The negotiation starts at time Ts. Once started, the negotiation can poten-

tially last for time Tb, which is the maximum duration of time that b can

negotiate for. We also refer to Te as the deadline of negotiation for b, where

Te = Ts + Tb. In the worst case, at Te b must terminate the negotiation. We

assume that b does not know the sellers’ deadlines, and that the sellers do

not know Tb.

• b has
∣∣Sellertb∣∣ negotiation threads, one for each seller si ∈ Sellertb.

• δtagi→agj is a negotiation action from agi communicated to agj at time t,

where either (agi = b ∧ agj ∈ Sellertb) or (agi ∈ Sellertb ∧ agj = b), and

δ ∈ {offer(x), accept, request-to-reserve, cancel, exit} (will be explained next

in Section 3.3). Note that offer(x) is a term that contains the price x of the

resource under negotiation at time t. The buyer b and seller si will generate

new offers if their previous offers are not accepted. The value x of the next

offer is determined by their negotiation strategy.

69

• IPb and RPb represent the initial and reservation prices of buyer b, while

IPsi and RPsi represent the initial and reservation prices of seller si. In

the literature, the intersection between the price ranges (i.e. agreement

zones) [IPb, RPb] and [RPsi , IPsi] is always implicitly assumed to be 100%

of [IPb, RPb], a very difficult assumption to make when dealing with practi-

cal applications. So, in order to make our setting more realistic, we adopt

three classes of intersections for the aforementioned price ranges: 10%, 60%

and 100%. The reason for exploring different agreement zones is to show

how negotiation can move the positions of the agents closer to the areas of

the zones where there is agreement and thus improve their utility. We use

these three different classes of agreements zones for simplicity in order to

test whether this can be verified experimentally for situations where there is

roughly speaking little space for agreement (10%), plenty of space for agree-

ment (60%) and no space for disagreement (100%). We chose 100% as the

class previously used in the literature, 10% as the lowest level, and a class

between 100% and 10% which was 60%. However, we do make the assump-

tion that at any time t if ∀si ∈ Sellertb (IPb ≥ IPsi) holds, then there is no

need to negotiate. This is a much softer assumption to make.

• EGb ∈ [0, 1] represents the eagerness of buyer b, viz., specifying the willing-

ness of b to obtain a resource; this is specified by the user. For instance, if

the user needs to buy a laptop to use it in his project in the next week, then

the user has a high eagerness to buy a laptop. On the other hand, if the user

needs to move to a house in the next two years, then he has a low eagerness

to buy a house.

• Ub(x) : R+ → [0, 1] is the utility function that agent b uses to determine the

utility of an offer x made either by b or si as follows:

Ub(x) = (RPb − x)/(RPb − IPb) (3.1)

70

3.3 Concurrent Negotiation Protocol

Since our focus is on a concurrent negotiation setting where a buyer agent b en-

gages in multiple bilateral negotiations with multiple sellers si ∈ Sellertb in order

to acquire a single resource, we need a protocol that determines rules of negotia-

tion that are appropriate for concurrent negotiation. We contribute to the state of

the art by extending the well-known alternating protocol with additional actions

(request-to-reserve, reserve, cancel and exit), thus providing the necessary flexi-

bility that was not always possible in previous work with limited actions (offer(x)

and accept).

3.3.1 Our Negotiation Protocol

In order to decide which protocol would be followed in our negotiation market,

we experimented with the alternating offers protocol [95] because it is simple and

widely used. However, as discussed in Section 2.4.4, the alternating offers protocol

is not able to handle the complexity of concurrent negotiations due to its limited

actions (i.e. offer(x), accept and reject). We extended the protocol to allow for

the additional actions request-to-reserve, reserve, cancel and exit, as summarised

in Figure 3.2. Given that the negotiation time is t:

Where the different elements of the diagram are defined as follows: (1) b rep-

resents the buyer agent; (2) si represent the seller agent; (3) the arrow represents

the name of the agent and the action; (4) the semi-rectangle represents the state

of the negotiation; and (5) the circles represent the initial and final states of the

negotiation.

• offer(x): describes an offer made either by b or si, proposing price x for

resource r.

• request-to-reserve: provides b with the opportunity to hold a preferred offer

from a seller si until a better offer is made by another seller sj . b can send

a request-to-reserve to si at any time t if b receives an accept from si or b

71

Figure 3.2: Concurrent Alternating Offers State Diagram.

receives an offer from si.

• reserve: provides si with the opportunity to agree on holding a preferred

offer from a buyer b. si can send a reserve action to b if si receives a request-

to-reserve action from b.

• cancel : allows b or si or both to cancel their reserved offers, which means

that they retract or withdraw from existing reserved agreements. The agent

who cancel the reserved offer pays a penalty Penaltyb,si to the other agent

72

involved in the canceled agreement, to ensure fairness and avoid unneces-

sary cancellations. We will discuss later how to deal with penalties in Sec-

tion 3.4.2.

• accept : implies that b and si reach an agreement about the resource r under

negotiation being sold at the price of the most current offer with respect to

time t. b can send an accept to si at any time t if: (a) b reaches its deadline

Tb and has a reserved offer with si; (b) si accepts an offer from b; and (c)

b accepts an offer from si. In addition, si can send an accept for any offer

made by b. The negotiation terminates with an agreement only when b sends

an accept.

• exit : allows b or si to withdraw from the course of negotiation at any time,

even without notifying other agents. This implies that the negotiation be-

tween b and si has failed.

Our protocol will be used by our buyer to communicate with multiple sellers

concurrently by running the protocol bilaterally at the same time between the

buyer and each seller. The negotiation starts when the buyer sends an offer to a

seller and then waits for the seller’s response. As soon as it receives a response

from the seller, the buyer will evaluate the seller’s offer based on its strategy. If

the buyer does not agree on the offer, it will send a counter-offer. The buyer and

the seller will continue sending and receiving offers and counter-offers until either

the buyer or the seller quit the negotiation, the offer is reserved, or they reach an

agreement. If the seller likes the buyer’s offer it will send an accept action and

wait for the buyer to:

(a) accept the seller’s accept, in which case the negotiation terminates with an

agreement. The reason for this is to avoid the situation where b receives

accepts from two different sellers;

(b) request-to-reserve to the seller’s accept, which implies that the buyer and seller

73

move to the reservation request state and the buyer will continue to search for

other better offers; or

(c) exit from the negotiation with the seller and the negotiation will be considered

to have failed.

Likewise, if the buyer likes the seller’s offer, it can either:

(1) accept the seller’s offer and the negotiation terminates with an agreement; or

(2) request-to-reserve to the seller’s offer, so the buyer and seller move to the

reservation request state and the buyer will continue to search for other better

offers.

In the reservation request state, in cases (b) or (2), the following may happen:

(i) the seller exits from the reservation request state without paying any penalty.

This move would be allowed only when the seller does not want to agree to

the buyer’s request-to-reserve action, and sends an exit;

(ii) the seller sends a reserve action which means that the seller agrees to reserve

the item (i.e. accepts the request-to-reserve action);

(iii) the buyer or the seller cancel the reservation state, which results in a penalty

being paid by the participant who initiates the cancel action; or

(iv) the buyer can accept the reserved offer and the negotiation succeeds with an

agreement.

3.3.2 Overall Negotiation Protocol

This protocol regulates the communication between the agent and the e-market.

The overall negotiation, as described in Figure 3.3, starts when the agent b enters

the e-market and finishes either when:

74

Figure 3.3: Overall Negotiation State Diagram.

E1. b accepts an offer from a seller si, thus, agreement is reached and the negoti-

ation succeeds; or

E2. b exits from all bilateral negotiations with all sellers; thus, no agreement was

reached, b exits the e-market and the negotiation fails.

After defining this negotiation protocol, the agent needs a strategy to adopt in

order to make decisions about which action from the protocol to send to its oppo-

nents at each point in the negotiation. Hence, our strategy is protocol-dependent,

which means it needs to know what actions are allowed by the protocol to de-

sign the negotiation strategy. We make an assumption here that our agent will

be trustworthy, which implies that the agent will follow the protocol and will not

breach it any time during negotiation.

3.4 CONAN: a heuristic-based Agent Strategy

We study the development of heuristic negotiation strategies with an emphasis on

the buyer agent in a concurrent negotiation market setting. The existing literature

[79, 115] provides answers only about when to offer or accept and what to offer,

75

but does not explicitly represent reservation and cancellation offers in a concurrent

negotiation dialogue. In addition, offers are computed using an opponent’s model

and do not take into account the environmental and/or self models [79, 115].

Moreover, some existing work assumes complete and certain information about the

negotiation environment and the opponents [79]. In most approaches the agent

strategy is an isolated component without clear illustration of how the model

is designed and how different components interact with each other [79, 115]. To

develop an adaptive negotiation decision-making model in a dynamic environment,

we must support an agent to deal with an enormous number of environmental and

attitude changes at the same time. To address this issue, we develop the Conan

strategy. Since our buyer agent needs to acquire a resource when negotiating with

multiple sellers at the same time, the agent will use Conan to decide (1) what

actions to take during negotiation and when to take them; and (2) if the action is

an offer, then how to generate an offer. Algorithm 1 gives an overview of Conan.

Conan takes Tb, IPb and RPb as an input from the agent user and returns ei-

ther an agreement or no agreement to allocate a resource as output. Conan starts

by initializing its deadline, then calculates the concession rate CRt,si , generates

the next offer and decides which action to proceed with for each seller si. The

implementation of Algorithm 1 will be described in the next chapter. However,

the designs of each heuristic are discussed in the sub-sections below.

3.4.1 Heuristics to Calculate the Concession Rate

Conan generates offers Offert,si at time t for seller si based on the following

equation [29]:

Offert,si = IPb + (RPb − IPb) ∗ CRt,si (3.2)

where

• IPb: is the initial price;

• RPb: is the reservation price;

76

Algorithm 1: Conan

Input: Tb: negotiation duration,

IPb: buyer’s initial price,

RPb: buyer’s reservation price.

Output: offer (offer > 0 if agreement, offer = 0 if no agreement)

1 Te = Ts + Tb

2 Repeat

3 Get active sellers Sellertb

4 Calculate the CRt,si for each seller si ∈ Sellertb
5 Generate b’s next offer for each si

6 Evaluate if δtb→si = exit for each si (Section 3.4.3)

7 Evaluate if δtb→si = request-to-reserve for each si (Section 3.4.3)

8 Evaluate if δtb→si = cancel for each si (Section 3.4.3)

9 Evaluate if δtb→si = accept for each si (Section 3.4.3)

10 Evaluate if δtb→si = offer for each si (Section 3.4.3)

11 Send δtb→si for each si

12 Until t = Te || δtb→si = accept for one si

13 if δtb→si = accept then

14 Return offer (agreement)

15 else

16 Return 0 (no agreement)

• CRt,si : is the concession rate at time t for seller si. CRt,si ∈ [0, 1] and

Offert,si ∈ [IPb, RPb].

Our evaluation of the concession rate depends on the environment and self

factor:

77

CRt,si =



0, if t = Ts ;

λ, if t = Te − α where α= time to complete one negotiation round;

CRt′,si , if CRt,si − CRt′,si < 0;

CRt′,sj ∗ µ, if offer of CRt′,sj reserved and j 6= i;

wEnvtEt + wSelftSt, otherwise

(3.3)

where

• λ, µ: are real constants where λ ∈ [0.9, 1) and µ ∈ [0.8, 1);

• Et: is the effect of the environment factor where Et ∈ [0, 1];

• St: is the effect of self factor where St ∈ [0, 1];

• wEnvt , wSelft : are the environment and self weights, normalised in the fol-

lowing sense: wSelft , wEnvt ∈ [0, 1] and wSelft + wEnvt = 1.

Before explaining the environment and self factors Et and St, we demonstrate

how we calculate each case of the concession rate CRt,si in Equation 3.3 above.

Case 1: When b starts the negotiation, it will offer its initial price first.

Case 2: When time is α time units close to the deadline and the buyer b has no

reserved offer, then it needs to secure an offer even if it is near to its reservation

price. Therefore, b concedes near to its reservation price by setting the concession

rate CRt,si = λ. We set λ in Chapter 6 to λ = 0.99.

Case 3: When b generates an offer that is non-monotonic (i.e. CRt,si−CRt′,si <

0) at t, then, to ensure its own rationality, b will offer its previous offer CRt′,si .

This case needs a first generation of the value CRt,si with cases 1 or 5.

Case 4: If b has a reserved offer at t′, there is no need for b to concede more to

other sellers. Thus, b will generate an offer which is less than 20% (µ = 0.8) of its

reserved offer. This case needs a first generation of the value CRt,si with cases 1

78

or 5. We set µ in Chapter 6 to µ = 0.9.

Case 5: Otherwise, b will generate an offer that takes into consideration the

environment and self factors. To give a flavour of these, the following are some

special cases illustrating how environment and self factors affect the concession

rate.

a. Adding and/or removing a seller to/from the negotiation: while agent b is

negotiating with agent s1 and agent s2, a new seller agent s3 enters the market

and starts a new negotiation thread with b. This creates a new option for b. As

a result, b will decrease its concession rate to see how the negotiation process

proceeds with agent s3. On the other hand, when s1 exits the negotiation, it

means b lost an option, thus, it has to increase its concession.

b. Adding and/or removing negotiation competitors: consider agent b negotiating

with agents s1 and s2 as before, but now b perceives that a competitor c1 is

negotiating with agent s1. Hence, b may concede by a larger amount to attract

s1 to sell the resource. In contrast, if c1 leaves the market, b may concede by a

smaller amount since it has no other competitors while negotiating with s1.

c. Change in the negotiation situation: if b is in a bad negotiation situation (a

notion to be defined by a function when we explain the self factor St), then b

has to concede more in order to secure the resource before the deadline. On

the contrary, when in a good negotiation situation, b has a higher chance of

winning the negotiation, which in turn leads to b reducing its concession rate.

Now, we will explain the environment and self factors Et and St.

Self Factor

We compute the self factor using the following formula:

St = (
1

CO + 1
+NS + TE + EGb)/4 (3.4)

79

a) CO: is the number of reserved offers, obtained from |CO| and updated each

time the buyer reserves or cancels an offer. If the number of reserved offers

increases, then the agent decreases the concession rate for generated offers.

We normalise CO between [0, 1] by dividing the number 1 by the number of

reserved offers.

b) NS: is the negotiation situation for all threads. The evaluation of the negotia-

tion situation in each thread is used for deciding the next offer for each thread.

It is calculated using the following two criteria: Criteria1 and Criteria2.

• Criteria1 is the opponent’s response time. Given an offer from the buyer

b to seller si at time tl, denoted as δtlb→si , and a response to that offer

from si to b at time tm (tm > tl), denoted as δtmsi→b, then Criteria1 is as

described below:

Criteria1 = (tm − tl)/Tb (3.5)

Criteria1 ∈ (0, 1]. We map the range of possible Criteria1 values to one

of three groups: incompatible, moderately compatible and compatible. In

other words, we classify the opponent depending on how compatible/in-

compatible is the opponent’s behaviour in relation to our expectations:

– compatible ∈ (0, 0.33];

– moderately compatible ∈ (0.33, 0.66];

– incompatible ∈ (0.66, 1].

• Criteria2 is the opponent’s concession rate at the current time t = tk,

which is based on a window of consecutive opponent offers φ > 1, contain-

ing first the last offer made to b by si, denoted as Offer
tk−1

si→b, and ending

with Offer
tk−φ
si→b. We can then compute the opponent’s concession rate as

follows:

Criteria2(φ) = 1−

(
Offer

tk−φ
si→b −Offer

tk−1

si→b
RPb − IPb

)
(3.6)

80

For example, if φ = 3 and the previous consecutive opponent offers of si

to b at time tk are 770, 790 and 800, then the value of the concession

will be (800 − 770)/3. This, however, is normalised so that Criteria2

is a real number such that Criteria2 ∈ [0, 1]. Similar to Criteria1, the

value of Criteria2 is mapped to incompatible, moderately compatible and

compatible.

From these two criteria, our goal is to derive a local situation δi for each ne-

gotiation thread i (where i represents the thread that the buyer b uses for

representing the negotiation with seller si), which also takes the values incom-

patible, moderately compatible and compatible. Since the agent has a real time

deadline (usually the duration of negotiation Tb in seconds) and limited com-

putational resources, the speed of the negotiation is a key element to obtain

an agreement. Thus, to minimise the computation time needed to calculate

the criteria, we choose three discretization levels (compatible, moderately com-

patible and incompatible). Although this choice seems arbitrary, we propose

this as an heuristic way to classify opponents according to our expectations.

The intuition is that this approach is sufficiently discriminating if compared

with a more coarse-grained classification of compatible/incompatible, while at

the same time it is equally simple to explain with the added advantages of

distinguishing behaviours that lie in the middle using ’moderately compatible’.

To compute this, we have chosen the multi-criteria decision-making process

known as the Borda method [17]. The Borda method gives a value to every

qualitative decision based on its position, as in Table 3.1. We select the Borda

method for the following reasons: Borda (1) supports proportional represen-

tation of the situation of each thread; (2) is neutral and monotonic [16]; (3)

produces a complete, transitive ranking for a set of alternatives [26]; (4) pre-

serves the decisiveness of the labels: incompatible, moderately compatible and

compatible [38]; (5) uses straightforward calculation; and (6) employs feasible

computation.

81

Range Qualitative Decision Score

(0, 0.33] compatible 1

(0.33, 0.66] moderately compatible 2

(0.66, 1] incompatible 3

Table 3.1: Mapping procedure using the Borda method.

Then, we calculate δi as the sum of the scores Criteria1 and Criteria2:

δi = Criteria1 + Criteria2. (3.7)

Given the score combinations of Criteria1 and Criteria2, the domain of δi

is [2, 6], with 2 implying that the opponent is compatible with our style of

negotiation and 6 implying that the opponent is incompatible. We then derive

the global negotiation situation δ for buyer b, which we calculate as the sum

of all the local negotiation situations δi, as shown in Equation (3.8). However,

δ needs to be normalised, so that we can use the normalised value to generate

the concession rate. So NS is the normalised global negotiation situation given

by Equation 3.9, where 2 and 6 are the minimum and maximum values that a

thread can score respectively, while y is the number of sellers y = |Sellertb|.

δ =

y∑
i=1

δi (3.8)

NS =
δ − (2 ∗ y)

(6 ∗ y)− (2 ∗ y)
(3.9)

c) TE: is the effect of the passage of time on the concession rate for buyer b. We

use Equation 3.10 to normalise TE between [0, 1].

TE =
t− Ts
Tb

(3.10)

82

d) EGb: is the eagerness of buyer b to obtain the resource and is specified by the

user. As discussed in Section 3.2, EGb is between [0, 1].

Since the value of St ∈ [0, 1], and the values of each St’s sub-factors (CO,NS, TE,

EGb) ∈ [0, 1], then we need a weighting method to ensure that the value of the

sub-factors summation will be = 1. Thus, because we have four sub-factors we

choose to divide the summation of all sub-factors by four to obtain a value for

St ∈ [0, 1].

Environment Factor

We compute the environment factor using the following formula:

Et = (
1

Set
+ Ct +Rds)/3 (3.11)

a) Set: is the number of sellers that are actively negotiating with b. Note that

the value is 1/Set ∈ (0, 1] (see case 5(a)).

b) Ct: is the number of active competitor agents. The competitors are other agents

who are trying to obtain an agreement from the sellers that are negotiating

with b for the same resource. We assume that this number is obtained from the

market. The lower the number of competitors during negotiations, the higher

the possibility of b reaching an agreement by conceding less (see case 5(b)). We

normalise the value of Ct between [0, 1] by using the following function:

Ct =
|No.Competitors|

MaxNo.Competitors
(3.12)

Where |No.Competitors| is the total number of buyers in the market and

MaxNo.Competitors is the maximum number of buyers that will be in the

e-market.

c) Rds: Demand/supply ratio is the ratio of the number of buyers to the number

of sellers. The higher the ratio, the higher the price for the resource and,

83

hence, the more difficult it is to reach an agreement. Since both numbers

are known by b, the ratio can be calculated. There are many e-markets in

the literature that provide demand/supply ratios [101], including Tete-a-Tete,

Kasbah, AuctionBot and the Fisher market. We normalise the value of Rds

between [0, 1] by using the following function:

Rds =
DemandSupplyRatio−MinDemandSupplyRatio

MaxDemandSupplyRatio−MinDemandSupplyRatio
(3.13)

Where DemandSupplyRatio is the e-market demand supply ratio and Max

DemandSupplyRatio and MinDemandSupplyRatio are the maximum and

minimum demand supply ratios in the e-market.

Since the value of Et ∈ [0, 1], and the values of each Et’s sub-factors (Set, Ct, Rds)

∈ [0, 1], then we need a weighting method to ensure that the value of the sub-

factors summation will be = 1. Thus, because we have three sub-factors we choose

to divide the summation of all sub-factors by three to obtain a value for Et ∈ [0, 1].

Assigning Weights to Factors

We develop a method to assign weights to the environment and self factors pre-

sented earlier. First, in Equation 3.14, we assign a weight to the self factor St

depending on the value of the factor itself. Then, in Equation 3.15, we calculate

the impact of the price range DM . The functions below present this method. We

classify the value of St as low, medium or high, where:

• low ∈ (0, 0.33];

• medium ∈ (0.33, 0.66];

• high ∈ (0.66, 1].

The reason for the classification as low, medium or high is the same as that

for choosing to classify as incompatible, moderately compatible or compatible in

84

Section 3.4.1. The buyer always looks for its self factor St first, to see how satisfied

it is with the current progress of the negotiation. If the value of St is low, it means

that the buyer is in a good negotiation position because if it focuses on St only, then

b will concede only by a small amount. Because of this, b must put more weight on

the self factor, as it is now more important because it reflects the fact that b wants

to concede very little, which in turn means that the environment factor should

be assigned a lower weight. As a result, a high weight will be assigned to wSelft .

This is captured by Equation 3.14, where if the value of St is low, we multiply by

0.75 to make it more important; if the value of St is medium, by 0.5 to make it

indifferent; and if the value of St is high, by 0.25 to make it less important. In this

way, wSelft is adjusted according to the negotiation progress.

wSelft =


DM ∗ 0.75, if St = low

DM ∗ 0.5, if St = medium

DM ∗ 0.25, if St = high

(3.14)

We also need to cater for the situation where the initial price of the seller is far

away from the reservation price of the buyer. In this case, even if St is low, b will

need to concede more, in order to close the price gap in fewer negotiation cycles.

We therefore introduce a price distance multiplier DM in Equation 3.14, which

measures the negotiation gap between b and si and is defined by Equation 3.15.

DM = (IPsi/RPb) ∗ TE (3.15)

The ratio estimated by the initial price of the seller IPsi and the reservation price

of the buyer RPb is multiplied by TE, which is the effect of time passage, to remove

a small percentage from the distance. The domain of TE is within the interval

[0, 1]. We are now in a position to evaluate the weight of the environment factor,

as shown in Equation 3.16.

wEnvt = 1− wSelft (3.16)

85

3.4.2 Cancellation Penalty

As discussed in Chapter 2, the cancellation penalty is important to ensure fairness

between negotiation participants, to save money and resources and to allow the

system to be stable in terms of avoiding unwanted canceled deals.

The penalty amount needs to be determined by the agent’s user before the start

of the negotiation in order to decide when to cancel an offer. Penaltyb represents

the total amount of penalties for all the reserved offers. Thus, if the agent, during

negotiation, finds a better offer, then the agent will cancel the least preferred offer

(i.e. one cancel only) and request-to-reserve to the better offer. At the end of the

deadline, the buyer accepts its most preferred reserved offer and cancels the rest

of the reserved offers. The buyer keeps an MCO (max number of reserved offers)

in case the opponents cancel the reserved offer.

As mentioned in Section 2.6.3, we opted for the percentage of the reserved offer

penalty. The penalty for Conan Penaltyb is calculated based on the difference

between the amount of money the agent has to pay to cancel a negotiation and

the amount of money the agent has already received from opponents that canceled

their negotiation from the buyer, i.e.:

Penaltyb,si = Penaltysi,b = D ∗ Pricereserved (3.17)

Penaltyb = (Penaltyb,si ∗ |CO|)− (Penaltysi,b ∗ |DOSellertb |) (3.18)

where Penaltyb,si is the penalty paid to the canceled offer to/from seller si, D

is a percentage of the canceled offer ∈ [0, 1], CO is the number of reserved offers

so far, DOSellertb
is the number of canceled offers that occur from sellers Sellertb

negotiation with b.

The reason for choosing a percentage of the reserved offer is for fair comparison

with the benchmark, being the strategy used by Williams et al. [115].

86

3.4.3 Heuristics to Decide Actions

In order for the buyer b to decide which action to choose at each point in time, we

developed a rule-based strategy. We start with the request-to-reserve and cancel

and then discuss the accept conditions. In these rules, we will use three parameters

determined by the user: (a) MCO - this is the maximum number of reserved offers;

(b) D - this is the percentage of the deal for canceling negotiation threads (more

details in Section 3.4.2); and (c) MAN - this is the maximum number of active

threads (ensures that the agent has limited computational resources).

Conditions to Request-to-reserve

b request-to-reserve to si when:

• offer δtsi→b + Penaltyb ≤ δt+1
b→si < any reserved offers and b is not near the

deadline.

• si accepts the last offer from b and b’s last proposed offer + Penaltyb ≤ any

reserved offers and b is not near the deadline.

Conditions to Cancel

b Cancels from:

• the least preferred offer when |CO| ≥MCO;

• all reserved offers immediately after b has accepted an offer.

Conditions to Accept

b accepts:

• δtsi→b when offer δtsi→b + Penaltyb ≤ δt+1
b→si < any reserved offers and b is

nearing the deadline.

• si’s acceptance when si accepted the last offer from b and b’s last proposed

offer + Penaltyb ≤ any reserved offers and b is nearing the deadline.

87

• the highest utility reserved offer when b is nearing the deadline t = Te.

Conditions to Exit

We study next the conditions that the buyer b needs to check before exiting from

an individual thread or from the negotiation as a whole.

Conditions to exit from a thread

b exits from:

• any thread if the deadline has been reached, i.e. t = Te;

• δi if seller si is incompatible (i.e. based on the evaluation NS mentioned

above) and there is a new seller sj and |Sellertb|=MAN (which means that

the current opponent is incompatible and the buyer has a new opponent to

negotiate with, but due to the limited number of active negotiations, the

agent has to terminate the negotiation with the incompatible opponent).

• δi if si has accepted an offer but a higher utility offer has been accepted at

the same time by sj (which means that the buyer receives two accept actions

from two different sellers at the same time, leading the buyer to choose the

highest utility offer from sj and exit from si).

Conditions to exit from the whole negotiation

b exits from the whole of the negotiation

• if the deadline has been reached, i.e. t = Te.

• if δtb→si = Accept.

3.5 Analysis of Properties

Following the presentation of the Conan strategy, we now discuss some obvious

properties of our strategy Conan. Such properties are typically studied in game

theoretic models of negotiation [31, 32] because of the assumptions these models

88

make about agents’ full rationality and the availability of complete information

about the environment and the opponents. The presentation of Conan’s proper-

ties here aims to complement the results from the experiments (Chapter 6) and

to show that it is possible for a strategy to have properties, even if the strategy is

heuristic.

We derive the strategy properties from the behaviour of the strategy in dif-

ferent market settings. For instance, if the market has many sellers and fewer

competitors, then the buyer will concede less since it has more opportunities to

maximize its utility. On the other hand, if the market has few sellers and many

competitors, then the buyer will concede more since it has less opportunities to

maximize its utility.

Property 1: Conan will concede less as the number of sellers increases.

When the number of opponents Set increases, then the environment factor Et

will decrease, assuming that the number of competitors Ct and the demand/supply

ratio Rds are stable (i.e. not changing during the change of Set). After that, Et will

be multiplied by the environment factor’s weight wEnvt which will also decrease

the value of Et. Thus, assuming that the value of the self factor St is stable, the

total amount of concession CRt,si will decrease.

Property 2: Conan will concede more as the number of competitors increases.

When the number of competitors Ct increases, then the environment factor

Et will increase, assuming that the number of sellers Set and the demand/supply

ratio Rds are stable. After that, Et will be multiplied by the environment factor’s

weight wEnvt which will take a percentage of the value of Et. Thus, assuming that

the value of the self factor St is stable, the total amount of concession CRt,si will

increase.

Property 3: Conan will make more reserved offers with opponents when the

penalty is very low.

Conan’s rules to decide whether to request-to-reserve (offer δtsi→b+Penaltyb ≤

δt+1
b→si < any reserved offers and b is not near the deadline) to an opponent check

if the opponent’s offer δtsi→b covers the amount of the penalty Penaltyb that has

89

to be paid for cancellation from another opponent. If the canceling penalty is low,

and assuming δtsi→b and δt+1
b→si are stable, then the agent can request-to-reserve to

another opponent and pay a penalty which will not have a notable effect on the

negotiation budget. Thus the agent can make more reserved offers with opponents.

Property 4: Conan behaves rationally

Conan produces monotonic offers in the sense that the agent will offer its

previous offer or increase its concession rate (rational behaviour) but it will never

decrease its concession rate, which it would consider irrational.

When Conan generates an offer that is non-monotonic (i.e. CRt,si−CRt′,si <

0) at t, then, to ensure its own rationality, Conan will offer its previous offer

CRt′,si .

3.6 Summary

In this Chapter, we proposed our concurrent negotiation model (architecture, pro-

tocol and strategy), which satisfies Objectives 1-3 listed in Section 1.3. Firstly,

we proposed a concurrent negotiation architecture (Objective 1), designed as a

specialized extension of previous work with the KGP model [107] to satisfy a

complete concurrent negotiation model. Secondly, we presented a concurrent ne-

gotiation protocol (Objective 2). The protocol is a revised version of a well-known

alternating protocol that can support concurrent negotiations for open e-markets.

Thirdly, we developed a novel strategy, Conan, to reach one agreement to allocate

resources by concurrently negotiating with multiple opponents in open, dynamic

e-markets (Objectives 3). Conan relaxes some of the strong assumptions made in

the existing negotiation literature. The strategy employs a weighted combination

of modelling the e-market environment and observing the progress of concurrent

negotiations in which the agent is involved. An offer is generated using heuristics,

allowing an agent to decide when to act and what action to consider. These ac-

tions are based on our version of the alternating offers protocol. Also, we discussed

some of the properties of Conan.

90

In the following chapter, we will specify Conan by using a logic-based knowl-

edge representation method.

91

Chapter 4

Strategy Implementation

In Chapter 3, we presented the theoretical design of the strategy Conan, without

discussing the implementation issues. This chapter addresses the modelling and

implementation of the negotiation strategy. We will present how we implemented

the negotiation strategy Conan by studying the implementation language and

knowledge representations that satisfy Objective 4.

In the remainder of this chapter, we will use the architecture presented in Sec-

tion 3.1 to illustrate how we implement our negotiating agent’s mind, which holds

the strategy Conan. We first describe the GOLEM agent platform which will

enable our experiments (Section 4.1). Then, we will introduce the implementation

language based on logic programs specified in Prolog and extended for temporal

reasoning with the Event Calculus (EC) in Section 4.2. After that, we will explore

the knowledge representation in Conan using the EC, with emphasis on how to

implement the offer generation and action selection parts (Sections 4.3, 4.4 and

4.5). Finally, the chapter is summarised in Section 4.6.

4.1 Agent Development in GOLEM

Implementing our strategy requires the embedding of the action selection it offers

into deployable software agents, so that we can test the strategy and experiment

92

Figure 4.1: Negotiating Agent in GOLEM, where the agent mind is built with the

architecture of Conan.

with its properties. This in turn requires the selection of an agent platform that

would allow us to deploy agents that communicate with each other and negotiate

for the purchase of items. The platform we selected for the implementation of

our strategy is GOLEM as discussed in Section 2.7.2. The reason for this is that

GOLEM supports the development of agent models that require a logic-based

implementation, like ours. The platform also supports agent interactions and

communications, as well as distribution of the agent environment [19], features

that are very important for negotiating agents in general and our experimental

plans in particular.

A GOLEM agent consists of two core components, as shown in Figure 4.1. An

93

agent body situates the agent in the environment and aggregates the sensors and

actuators that the agent needs to access and effect the environment. An agent

mind then allows percepts to be extracted from the body and takes decisions

about which actions need to be carried out using the body’s actuators. The agent

body is developed in Java, while the mind is implemented using logic-based tech-

niques in Prolog. As in Conan, the agent’s mind is represented by our developed

architecture in Section 3.1.

Listing 4.1 presents a simple cycle theory [51] implemented in Prolog as an

illustration of agent control. When a new percept is received via the body, the mind

revises the internal state of the agent; this revision in our work will be constructed

as the assimilation of an observation in EC style, which will be discussed later.

Then, the mind decides what action to perform based on its goal which is defined

implicitly in the action selection rule. The agent’s implicit goal is to maximize the

agent’s utility. For simplicity, the agent selects the first action whose conditions

succeed in the state of the agent; the call to once ensures this (using the Prolog

! cut operator). The ordering of the select rules describe which action must be

preferred over others. The mind executes the action internally to revise the agent’s

goals and returns it to the body. Again, action execution involves the addition of

an event indicating that an action has been attempted. This cycle will be adapted

later in Section 4.4 to represent Conan.

1 % cycle step

2 cycle_step(Percept , Action , T):-

3 revise(perceived(Percept), T),

4 decide(Action , T),

5 execute(Action , T).

7 decide(Action , T):-

8 once(select(Action , T)).

10 % domain -dependent strategy

94

11 select(Action , T):-

12 Conditions [T].

13 ...

14 execute(Action , T):-

15 revise(attempted(Action), T).

17 revise(Event , T):-

18 assert(happens(Event , T)).

Listing 4.1: Simple agent mind in GOLEM.

GOLEM allows agent developers to make their own design choices about the imple-

mentation of the cycle step, e.g. develop more complex agent decision-making [36]

by overwriting the definitions of decide/2 and execute/2. In addition, the mind

can be developed in another programming language (like Java), known as an im-

perative agent, for developers who do not require logic-based strategies.

We develop Conan in GOLEM using a logic-based approach, thus giving our

strategy a declarative flavour. Declarative strategies allow developers to specify

strategies that can be transparent to a human user, in that the agent can explain

why it has taken certain actions during a negotiation. The reason for choosing

to implement Conan declaratively is because declarative strategies: (1) can be

expressive and transparent to model negotiation decisions; (2) provide abstract

and executable representation; and (3) have been successful in modelling bilateral

negotiations [89, 105].

In the next section, we will describe the use of Prolog and EC in building the

Conan declarative implementation.

4.2 Event Calculus (EC)

We represent the state of an agent during negotiation as a temporal logic program.

We specify the rules of such a program in Prolog, which we assume the reader

is familiar with. Prolog as a computational logic language has been successful,

95

Figure 4.2: How the Event Calculus functions [98].

as described in the literature [34]. Informally, Prolog uses the convention that

a constant is an identifier starting with a lower-case letter, while a variable is

an identifier starting with an upper-case letter. A constant stands for a specific

entity, and different constants stand for different entities. In contrast, a variable

can stand for any entity, and different variables can stand for the same entity. The

predicate name must be a constant, while each argument can either be a constant

or a variable. As Prolog can be used to answer queries, or to achieve goals, the

prompt ”?-” denotes a query whose truth will be computed by the program.

As an agent negotiation strategy has to deal with time issues, such as deadlines,

our strategy has a temporal part which we represent using the Event Calculus

(EC) [53]. The EC is a logical language for reasoning about actions and their

effects. Figure 4.2 illustrates the reasoning in the EC. As explained in [98], the

logical mechanism of the calculus infers what is true when given what happens

when and what actions do. More specifically, the “what happens when” part of

Figure 4.2 is a narrative of events, and the “what actions effect” part describes

the effects of actions.

The reasons behind choosing the EC for formalizing the Conan strategy are:

96

• the EC formalization is based on a flexible, solid theoretical basis [98];

• the EC provides a practical means of implementing an executable system

specification [8];

• the EC reduces ambiguity and enables rigorous reasoning [109];

• the EC has been applied successfully to the formalisation of market interac-

tions in the financial sector [109];

• the EC has been successfully used to represent a contract net protocol (Sec-

tion 2.4.1) [9], which is very similar to our concurrent negotiation protocol,

argumentation based models [15] and multi-agent systems in general [53];

• the EC represents the negotiation environment as a structure evolving over

time [19];

• the EC has been successfully applied to represent negotiation protocols in

the literature [96];

• to the best of our knowledge, we believe there has been a lack of using EC

to formalize the temporal needs of negotiation strategies.

4.2.1 EC Predicates

We will use a dialect of the EC based on temporal variables known as multi-valued

fluents due to the fact that these variables can take different values at different

times [9]. Table 4.1 summarizes the basic predicates in EC [8, 98].

4.2.2 The Axioms

In this thesis we will use the following domain-independent axioms for describing

the Event Calculus in Prolog:

1. holds_at(F = V, Tn):-

Tn >= 0,

97

Predicate Meaning

initially(F =V) at time 0, the value of fluent F is V.

initiates(Act, F =V, T) at time T, the action Act occurs which initiates a

period of time for which the value of fluent F is V.

terminates(Act, F =V, T) at time T, the action Act occurs which terminates a

period of time for which the value of fluent F is V.

happens(Act, T) at time T, Action Act occurs.

holds at(F =V, T) at time T, the value of fluent F is V.

Table 4.1: Main Predicates of the Event Calculus.

initially(F = V),

\+ broken(F = V, 0, Tn).

This axiom states that the fluent F still holds at time Tn if a fluent F initially

holds and is not terminated (broken) between time 0 and time Tn.

2. holds_at(F = V, Tn):-

happens(Act, Ti),

Ti < Tn,

initiates(Act, F = V, Ti),

\+ broken(F, Ti, Tn).

This axiom states that the fluent F still holds at time Tn if the fluent F

is initiated at some earlier time Ti (i.e. Ti is less than Tn) and F is not

terminated (broken) between Ti and Tn.

3. broken(F = V, Ti, Tn):-

happens(Act, Tj),

Ti < Tj,

Tj < Tn,

terminates(Act, F = V, Tj).

This axiom states that fluent F is broken between time Ti and time Tn if

98

an action Act occurs at time Tj and terminates the fluent F and time Tj is

between time Ti and time Tn.

4. terminates(Act, F = V, T):-

initiates(Act, F = Vnew, T),

holds_at(F = V, T),

V \= Vnew.

This axiom states that fluent F = V is terminated at time T if an action Act

initiates a fluent F = Vnew and V is not equal to Vnew.

The first two axioms will be used to formalize Conan in order to find out

if a fluent holds at a certain time. The third and fourth axioms will be used to

further define the first two axioms (holds at). With the EC, through the use of

the predicates initiates/3, terminates/3 and happens/2, we imply that all the

negotiation actions and the effects of these actions will be known to the agent.

This allows the agent to spend more time deciding its actions using its knowledge

of the effect of these actions.

4.3 Knowledge Representation in CONAN

In this section, we will show how to use the EC to describe the internal state of

the agent in order to participate in negotiation with other agents using our version

of the concurrent alternating offers protocol (Section 3.3). We will describe how

fluents are represented, how events resulting from percepts or attempts of an action

will be specified and how the effect of these actions will be carried out.

We chose the EC based on the reasons outlined in Section 4.2. In Conan, the

fluents of the EC are used to describe the state of the negotiation with each seller

and the concurrent negotiations in general. happens/2 will be used to describe

the actions of Conan and the sellers (i.e. offer, request-to-reserve, cancel, accept

and exit). The effects of a negotiation action on the negation fluents are described

by the initiates/3 and terminates/3 predicates.

99

4.3.1 Fluents in CONAN

During a negotiation a software agent needs a number of fluents to represent what

changes during the negotiation. This information normally will contain details

about the item/resource to be negotiated, the price negotiated in different threads,

and thread specific information. For example, we write:

turn_of(thread1) = seller

to say that it is the turn of the seller in the negotiation thread thread1 and not

the buyer. The following is a list of some of the fluents that will be used in Conan.

F1. number competitors = CNumber.

This fluent states the number of competitors CNumber in the market. CNumber

∈ Integer.

F2. result(ThreadId) = TStatus.

This fluent reports the result of the negotiation in a thread id ThreadId in

terms of whether it has failed, is under negotiation, successful, reserved (hold)

or the seller has accepted Conan’s offers. TStatus ∈ {failed, onnegotiation,

success, hold, seller accept}.

F3. total status = Status.

This fluent reports the status of the overall negotiation in terms of whether it

has ended or not. Status ∈ {finished, negotiating}.

4.3.2 Actions

We have already seen in Section 3.3 that our version of the alternating offers

protocol requires the agent to be capable of interacting using a number of actions.

There are two types of actions: (a) market protocol actions due to the interaction

of the agent with agents that control the e-market (i.e. infrastructure agents in

100

Section 5.2.2); and (b) negotiation protocol actions due to the interaction of the

agent with other negotiating agents. We represent these actions as follows:

Market Protocol Actions

MC1. notify about new seller(ThreadId).

This action is an announcement from the market (Section 5.2.2) to notify

the agent about the arrival of a new seller with thread id ThreadId that is

selling the target resource that the agent wants to buy.

MC2. notify about change in number of competitors(NoCompetitors).

This action is an announcement from the market (Section 5.2.2) to notify

the agent about the total number of competitors NoCompetitors (i.e. other

buyers aiming to buy the same target resource that the agent wants to buy)

currently in the market.

MC3. notify about change in demand supply ratio(DemandSupplyRatio).

This action is an announcement from the market (Section 5.2.2) to notify

the agent about a change in the demand/supply ratio in the market. The

new ratio is DemandSupplyRatio.

Negotiation Protocol Actions

C1. offer(ThreadId, Item, Price).

This action is an offer from the opponent with thread id ThreadId to sell/buy

the resource Item for a price Price. This action can be used by both the

buyer and the seller. For instance, if Conan (the buyer) wants to offer to the

seller s1 with thread id 5 to buy an item laptop12 for a price 500, then the

action will be offer(5, laptop12, 500).

C2. request to reserve(ThreadId, Item).

This action is to request-to-reserve (i.e. hold) an offer from the opponent with

thread id ThreadId to buy the resource Item. As we discussed in our protocol

Section 3.3, this action can be done only from the buyer side.

101

C3. cancel(ThreadId, Item).

This action is to cancel (i.e. unhold) an offer from the opponent with thread

id ThreadId to sell/buy the resource Item. This action can be used by both

the buyer and the seller.

C4. accept(ThreadId, Item).

This action is to accept an offer from the opponent with thread id ThreadId

to sell/buy the resource Item. This action can be used by both the buyer and

the seller.

C5. exit(ThreadId, Item).

This action is to exit from negotiating with the opponent with thread id

ThreadId to sell/buy the resource Item. This action can be used by both the

buyer and the seller.

When such an action is perceived by a sensor within the agent it is implemented

by the revise/2 predicate in the cycle step (see Listing 4.1) as the happening of

an event. For example, if an offer of 500 from a seller with thread id 5 about

laptop12 is perceived at time 30 it is represented as:

happens(perceived(offer(5, laptop12, 500)), 30).

Similarly, if Conan has selected an action to a seller with thread id 5 to

request-to-reserve an offer, we write:

happens(attempted(request_to_reserve(5, laptop12)), 30).

4.3.3 Initial State of the Fluents

We initialize the fluents for a negotiation by using the initially/1 declaration.

For example, in Conan we write:

S1. initially(turn of(ThreadId) = buyer).

Initially the agent who makes the first move in a negotiation is the buyer.

102

S2. initially(number competitors = 0).

Initially the number of competitors in the market is 0.

S3. initially(total status = negotiating).

Initially the status of the overall negotiation is negotiating.

We also need to initialize the simulation parameters. In order for Conan to

start the negotiation, we need to set : (a) the name of the resource the user wants

to buy; (b) the resource’s initial price; (c) the resource’s reservation price; and

(d) the duration of the negotiation. So, (a)-(d) are set by the simulation platform

(Chapter 5). The list of the simulation parameters is as follows:

SP1. initially(item = Item).

Initially the resource under negotiation is Item.

SP2. initially(ip = Min).

Initially the resource’s initial price is Min.

SP3. initially(rp = Max).

Initially the resource’s reservation price is Max.

SP4. initially(deadline = Deadline).

Initially the negotiation duration is Deadline.

The above fluents change as a result of observations being perceived and at-

tempted actions being executed by the agent. We are now in a position to discuss

how the initial state of the agent evolves as a result of the agent engaging in

negotiations.

4.3.4 Evolution of the Agent’s State

When an action is performed by an agent, the action results in an event happening

in the state of the agent. Events change the values of fluents that describe the

103

agent’s state as described by initiates/3 and terminates/3 rules. In our model,

we distinguish between fluents that describe the overall negotiation and fluents that

describe what holds in specific negotiation threads with individual sellers. Next

we will classify the effect of the negotiation actions on (1) the overall negotiation;

and on (2) a specific negotiation thread.

E1. Effect on the overall negotiation:

EW1. initiates(attempted(exit_all(Item)),

total_status = finished,

T).

The exit all(Item) action at time T initiates that the overall negoti-

ation is finished by setting the value of the fluent to finished.

E2. Effect of actions offer and exit on specific thread:

EE1. initiates(perceived(offer(ThreadId, Item, New_price)),

turn_of(ThreadId) = buyer,

T).

The offer action initiates the buyer’s turn at time T when an opponent

with a thread id ThreadId offers a New price for the resource Item.

EE2. initiates(perceived(exit(ThreadId, Item)),

result(ThreadId) = failed,

T).

The action exit indicates a negotiation has failed on the thread ThreadId

at time T, which implies that the negotiation ends, from the buyer/seller

to/from the opponent for buying/selling the resource Item.

4.4 The Representation of the CONAN Strategy

Conan, introduced in Chapter 3, has two types of heuristics: heuristics to decide

actions and heuristics to generate offers. In the next sections, we will explain how

104

to present a rule-based knowledge representation of these heuristics.

4.4.1 Deciding Actions

To deal with the fact that we need to model decisions in many threads at the same

time, we propose a different decision-making process to the one in Listing 4.1, as

follows:

decide(Actions, T):-

findall(Action, select(Action, T), Actions).

findall/3 is a Prolog primitive that finds every action on each negotiation

thread at time T because of the fact that the agent is participating in many threads.

The thread id will be embedded with Action and the list of actions to be executed

will be collected in the variable Actions.

Recall that, from Listing 4.1, action selection rules take the form:

select(Action, T):- Conditions [T].

Such rules state that the Action is selected if the Conditions hold at time T.

The following is an example of when to decide to exit from a negotiation thread:

1 select(exit(ThreadId , Item), T):-

2 holds_at(self_deadline = Td, T),

3 T >= Td ,

4 holds_at(result(ThreadId) = onnegotiation , T),

5 holds_at(item = Item , T).

Listing 4.2: Exit Action.

The agent selects the action exit/2 for the negotiation thread ThreadId, if the

current time T is greater than or equal to the agent’s deadline Td, which indicates

that the deadline has been reached. Appendix B lists more rules for the selection

of any action.

105

4.4.2 Offer Generation

As in the previous section (Section 4.4.1), we explain next how the agent decides

what actions to perform. Here, the agent needs to calculate the next offer it plans

to propose, because the agent uses the intended offer to evaluate the opponents’

actions and decide on a new action. Our approach requires different conclusions

to be represented using holds at/2 to formulate the mathematical presentation

of the offer generation in Section 3.4.1, as follows:

1 intended_offer(ThreadId , Offer , T):-

2 concession(CA, ThreadId , T),

3 holds_at(ip = Min , T),

4 holds_at(rp = Max , T),

5 Offer is Min + (Max - Min) * CA.

Listing 4.3: Offer Generation.

The predicate intended offer returns an Offer for thread id ThreadId at

time T. The offer is calculated based on the initial price Min, the reservation price

Max and the concession rate CA. The Min and Max values retrieved using the pred-

icate holds at and the CA is calculated using the predicate specified below:

1 concession(CA, ThreadId , T):-

2 findall(Cycle_Times , neardeadline(Cycle_Times), List),

3 list_max(List , Near_Deadline),

4 holds_at(self_deadline = Td, T),

5 (

6 T >= (Td - (Near_Deadline)) ->

7 CA is 0.99

8 ;

9 selfFactors(ThreadId , Self , T),

10 w_Self(ThreadId , W_Self , Self , T),

11 envFactors(ThreadId , Env , T),

12 w_Env(ThreadId , W_Env , W_Self , T),

13 CA is (W_Env * Env + W_Self * Self)

106

14).

Listing 4.4: Concession Rate Calculation.

The predicate concession(CA, ThreadId, T) returns the concession rate CA

for each ThreadId at T. The value of CA will be 0.99 if the agent is near its

deadline. Near Deadline is the maximum time the agent takes to complete one

cycle (i.e. round) of negotiation. Otherwise, CA will be a summation of weighted

combinations of the environment factor Env and the self factor Self for each

thread. The predicates w Env and w Self retrieve the weights W Env and W Self,

respectively.

To determine the self factor we define the rule:

1 selfFactors(ThreadId , Self , T):-

2 holds_at(self_deadline = Td, T),

3 holds_at(startTime = Ts, T),

4 DeadlineF is float(T-Ts)/float(Td-Ts),

5 reserved_offer(N, T),

6 ReservedF is (float (1)/float(N+1)),

7 holds_at(eagerness = EagernessF , T),

8 generalNegotiationStatus(NegotiationStatusF , T),

9 Self is 0.25*(DeadlineF + ReservedF + EagernessF +

NegotiationStatusF).

Listing 4.5: Self Factor Calculation.

Self factor Self is calculated based on the sub-factors: deadline, reserved offers,

eagerness and negotiation status. In line 2-3, we access the deadline Td and the

starting time Ts in order to evaluate the sub-factor DeadlineF in line 4. In line

5-6, the sub-factor ReservedF is calculated based on the number of reserved offers.

EagernessF is returned in line 7 which was initialized by the user. In line 8, the

final sub factor NegotiationStatusF is returned.

After obtaining all the sub-factors, in line 9, Self is computed based on the

summation of the 0.25 of each sub factor. Using 0.25 is the same as dividing the

summation of the sub-factors by 4 (1/4 = 0.25) as explained in Section 3.4.1.

107

To compute the environment factor we use the rule:

1 envFactors(ThreadId , Env , T):-

2 number_sellers(NoSellers , T),

3 NoSellersF is float (1)/float(NoSellers),

4 holds_at(number_competitors = NoCompetitors , T),

5 holds_at(max_number_competitors = MaxNoCompetitors , T),

6 NoCompetitorsF is float(NoCompetitors)/float(MaxNoCompetitors),

7 holds_at(demandSupplyRatio = DemandSupplyRatio , T),

8 holds_at(min_demand_supply_ratio = MinDemandSupplyRatio , T),

9 holds_at(max_demand_supply_ratio = MaxDemandSupplyRatio , T),

10 DemandSupplyRatioF is float(DemandSupplyRatio -

MinDemandSupplyRatio)/float(MaxDemandSupplyRatio -

MinDemandSupplyRatio),

11 Env is 0.33 *(NoSellersF + NoCompetitorsF + DemandSupplyRatioF).

Listing 4.6: Environment Factor Calculation.

By the same token, the environment factor Env is calculated based on three

sub-factors: number of sellers, number of competitors and demand/supply ratio.

In line 2-3, NoSellersF is normalized based on the actual number of sellers that

negotiate with the agent. The predicates in line 4-6 retrieve and normalize the

sub-factor NoCompetitorsF. Similarly, in line 7-10, the predicates retrieve and

normalize the sub-factor DemandSupplyRatioF.

After obtaining all the sub-factors, the environment factor Env, in line 11, is

computed based on the summation of 0.33 of each sub-factor. The reason for using

0.33 is the same as dividing the summation of the sub-factors by 3 (1/3 = 0.33)

as explained in Section 3.4.1.

4.4.3 Action Execution

In the execute step, the agent will compile and update its knowledge based on all

the actions selected to be sent to the opponents. The negotiation platform Recon,

which is explained in Chapter 5, is responsible for sending actions between agents

after being executed. As the decide/2 predicate returns a list of actions, we need

to overwrite the definition of revise/2 to deal with lists of actions rather than a

108

single one as specified in Listing 4.1.

revise(attempted([]), T).

revise(attempted([Action|Actions]), T):-

assert(happens(attempted(Action), T)),

revise(attempted(Actions), T).

In this way the agent is cognizant of the actions it has carried out after the

execution step. Note that there is an extended version of the revision process,

where instead of asserting an event in the EC fashion we compile it. However, the

compiler is part of the implementation of the GOLEM platform and its technical

details are beyond the scope of this thesis.

4.5 Example Run

Time Observation Deliberation Decision

t1 s1 & s2 decide(Actions, t1) [offer(5, laptop12, 700),

offer(6, laptop12, 700)]

t2 offer(5, laptop12, 950)

t3 offer(6, laptop12, 920)

t4 decide(Actions, t4) [offer(5, laptop12, 730),

offer(6, laptop12, 720)]

Table 4.2: Observations, deliberations and decisions of b during a negotiation.

Table 4.2 illustrates how the b agent interacts with sellers in the market in

order to purchase a laptop. The scenario is presented from a buyer’s perspective

and assumes the user has specified that (a) the laptop’s price will be in the range

[700-900] and (b) the maximum negotiation duration will be 5 minutes. At time t1,

b is negotiating concurrently with s1 and s2. At time t2, s1 sends a counter-offer

to b while at time t3, s2 sends back an offer to b. In t4, b will follow the skeleton

strategy in Section 4.4.1 to select the best action.

109

Listing 4.7 describes the action selection rule that is triggered in decide(Actions,

t1). When the negotiation status is onnegotiation, not near the deadline T <

Td, the seller has not yet offered Opponent offer == 0 and it is the buyer’s turn

turn of(ThreadId) = buyer then the buyer will offer its initial price ip = Offer.

1 select(offer(ThreadId , Item , Offer), T):-

2 holds_at(result(ThreadId) = onnegotiation , T),

3 holds_at(self_deadline = Td, T),

4 T < Td,

5 holds_at(neg_price(ThreadId , Item) = Opponent_offer ,

T),

6 Opponent_offer == 0,

7 holds_at(turn_of(ThreadId) = buyer , T),

8 holds_at(item = Item , T),

9 holds_at(ip = Offer , T).

Listing 4.7: Action selection rule triggered in decide(Actions, t1).

Listing 4.8 describes the action selection rule triggered in decide(Actions,

t4). When the negotiation status is onnegotiation, not near the deadline T <

Td, the seller has already made offers Opponent offer =\= 0, it is the buyer’s turn

turn of(ThreadId) = buyer and there are no reserved offers then the buyer will

offer a price based on the predicate next offer(T, Offer, CounterIntendedOffers).

1 select(offer(ThreadId , Item , Offer), T):-

2 holds_at(result(ThreadId) = onnegotiation , T),

3 holds_at(self_deadline = Td, T),

4 T < Td,

5 holds_at(neg_price(ThreadId , Item) = Opponent_offer ,

T),

6 Opponent_offer =\= 0,

7 holds_at(turn_of(ThreadId) = buyer , T),

8 holds_at(item = Item , T),

9 next_offer(T, Offer , CounterIntendedOffers),

10 reserved_offer(NoReservedOffers , T),

110

11 NoReservedOffers == 0,

12 Offer < Opponent_offer.

Listing 4.8: Action selection rule triggered in decide(Actions, t4).

4.6 Summary

In this chapter, we started by introducing how we implemented Conan by studying

its implementation language, which is a logic program implemented with Prolog

and extended with the EC. We described the agent GOLEM’s architecture which

includes the mind and body of the agent, and how we adopted our agent’s architec-

ture presented in Chapter 3 as the agent’s mind. Then we explained in depth the

EC predicates and axioms which handle the actions and the effects of the actions

that occurs in the environment. We also showed the knowledge representation

of Conan, which includes how fluents, actions and the effects of the negotiation

actions are represented. After establishing the basics of the EC, we explored in

detail how to define and formalize each step in Conan.

In the following chapter, we will present the design, implementation and eval-

uation of the simulation platform Recon, which will be used to evaluate the

performance of Conan in an open and dynamic environment.

111

Chapter 5

Experimentation Simulator:

RECON

In the previous chapter, we presented the logic-based implementation of the strat-

egy Conan. However, Conan needs to be evaluated in an open and dynamic

environment in order to test whether the agent maximizes its utility and under

which circumstances. To address the evaluation requirements of Conan, in this

chapter we introduce our negotiation simulator Recon: a Robust multi-agent En-

vironment for simulating COncurrent Negotiations, which satisfies Objective 5.

We propose the design, implementation and evaluation of Recon.

In the remainder of this chapter, we start by providing the background of nego-

tiation platforms in Section 5.1. In Section 5.2, we explain the Recon components

in detail. Then, in Section 5.3 we empirically evaluate the performance of Recon

with increasing numbers of agents in a market, and present our experimental re-

sults. Sample screens from the Recon graphical user interface are displayed in

Section 5.4. Finally, the chapter is summarised in Section 5.5.

112

5.1 Background

One major issue in the design of a negotiation agent that participates in e-markets

is how to evaluate the performance of its strategy. There is a huge interest in

developing simulations to model and evaluate the performance of agents in an

open and dynamic environment [77]. In negotiation, some researchers test their

agents theoretically by setting theorems and proofs of these theorems [32, 33], but

most agent developers use simulation platforms [29, 46, 59, 80, 115] especially for

evaluating heuristic-based strategies. This gives rise to the need for a standardised

simulation environment to provide fair and objective comparisons between nego-

tiating agents. A successful negotiation platform should be (i) able to provide an

open and dynamic environment for its participants to negotiate concurrently; (ii)

robust to the changes that occur in the market; (iii) reliable for communication

among agents; and (iv) scalable in terms of the number of agents it can support.

Recent negotiation literature suggests that most simulators are designed for

specific domains with limited protocol and agent types [29, 46, 59, 80, 110, 115].

GENIUS [61] is a state-of-the-art negotiation platform that provides a competi-

tive framework to test and compare bilateral negotiation strategies. Developers

can implement their agent strategies using Java, following the provided negotiation

protocol. However, the periodic extension of the GENIUS platform (see Williams

et al. [115]) is not provided as open-source software. The system does not provide

an open and dynamic e-market setting where buyers and sellers can enter/leave

the system. The e-market options in GENIUS are very limited in their ability to

describe a realistic setting. For example the system imposes fixed deadlines for

the end of negotiation, which are publicly available to both buyers and sellers. In

addition, although GENIUS has been thoroughly tested using the ANAC compe-

tition series [37], it is unclear whether it can support markets with a large number

of negotiating agents.

Motivated by the current limitations in GENIUS we developed Recon: a Ro-

bust multi-agent Environment for simulating COncurrent Negotiations. Recon is

113

build on top of GOLEM (Section 2.7.2) with the use of the GOLEMLite library

(Section 2.7.3) and supports the development of software agents (both buyers and

sellers) negotiating concurrently with other agents over various issues. In con-

trast to most agent development platforms such as GENIUS, which only support

imperative agents, Recon supports also declarative agents. Declarative agents

allow developers to specify strategies that can be transparent to a human user, in

that the agent can explain in the future why it has taken certain actions during a

negotiation.

Functionality Recon GENIUS

Open & dynamic 3 7

Support concurrent proto-

cols

3 7

Large number of agents 3 7

Support logic program-

ming

3 7

Private deadlines 3 7

Continuous-valued issues 3 7

Human negotiators 7 3

Multiple issues 7 3

GUI 3 3

Table 5.1: Comparison of functionalities in Recon and GENIUS.

5.2 RECON Development

Recon supports the development of negotiating agents for testing both buyer and

seller strategies. These strategies can be developed either declaratively (imple-

mented in Prolog) or imperatively (implemented in Java). Also, the system sup-

ports concurrent negotiations and dynamic markets, where agents can enter/leave

114

Figure 5.1: The RECON architecture.

the e-market during negotiation. In addition, agents can have a private deadline

during a negotiation, instead of a common public one, to reflect what happens in

practice. Moreover, realistic applications require negotiations with both continu-

ous and discrete issues, rather than supporting discrete and integer-valued issues

only. Table 5.1 compares the functionalities of Recon and GENIUS.

A simulation in Recon assumes three steps (see Figure 5.1):

1. In the configuration step, the user describes the simulation setting using the

configuration tool.

2. In the simulation step, buyers and sellers negotiate with each other. The

MarketController agent controls the execution while the MarketBroker agent

acts as a yellow pages service for the buyers.

115

3. In the analysis step, simulation logs are inspected by the MetricBuilder agent

to calculate related evaluation metrics.

Next, we describe each step in detail.

5.2.1 Configuration Step

In this step, the user defines the simulation parameters, the number of repeated

runs in each parameter combination (RC), and the market agents. The simulation

parameters, which describe the e-market setting, are summarised in Table 5.2.

Variables Description

Buyer’s Initial Price Starting price IPb of buyer b.

Buyer’s Reservation Price Maximum price RPb buyer b will offer.

Seller’s Initial price Starting price IPsi of seller si.

Seller’s Reservation Price Maximum price RPsi seller si will offer.

Market update time The time that elapses for the market to change (its den-

sity and demand/supply ratio due to new agents entering

or existing agents leaving the market).

Change in market density The rate at which the number of agents increases or de-

creases.

Change in demand/supply The rate at which the ratio of buyers to sellers increases

or decreases.

Deadline Duration of the negotiation Tb for buyer b.

Table 5.2: Simulation parameters.

Each parameter has a set of default qualitative values drawn from the Value-

Buckets such as small, medium, or large. These correspond to a range of quantita-

tive values. The number of parameters and their corresponding value buckets are

adjustable depending on the user’s preferences. Let us now review each parameter:

• Selected Buyers: contains a list of buyer strategies where the MarketCon-

troller adds them to the e-market to measure their performances.

116

• Buyer/seller pool: contains a pool of strategies where the MarketController

selects randomly to add new buyers and sellers.

• Change in market density (MD): determines the number of market agents

in the e-market at any given time point. Note that this does not impose any

constraints on the composition of agent types.

• Change in demand/supply (MR): determines the ratio of buyer agents to

seller agents in the e-market (i.e. demand(X)/supply(Y) ratio). The values

of market ratio and market density are used jointly to determine the number

of the buyers and sellers in the e-market based on the following formula:

NoBuyers = (MD ∗X)/(X + Y) (5.1)

NoSellers = (MD ∗ Y)/(X + Y) (5.2)

For instance, if the value of Market Ratio is 2:1 and the market density is

30, then the number of buyers is (30 ∗ 2)/3 = 20, and the number of sellers

is (30 ∗ 1)/3 = 10.

• Market update time (MC): represents the number of seconds at which the

e-market has to change. The change involves adding/removing buyers and

sellers according to MD and MR. This parameter ensures an open environ-

ment, where participants are not necessarily known at design time.

• Deadline (MDL): represents the deadline for all market agents. All buyers

have the same deadline, which is different from the seller’s deadline. More-

over, the deadlines are kept private to the agents, so that buyers and sellers

do not know each other’s deadlines. The buyer’s negotiation timer starts

when it enters the e-market. On the other hand, the seller has many negoti-

ation timers: one per negotiation and another which starts when it receives

the first offer from a buyer. Both buyers and sellers leave the e-market when

they reach their deadlines.

117

• Initial price (IPb)(IPsi): represents the ideal price for an agent to buy/sell an

item. All buyers/sellers in each run will have the same initial price IPb/IPsi

to provide fairness when comparing performance.

• Reservation price (RPb)(RPsi): represents the maximum/(minimum) price

the agent is willing to pay for (get from) an item. Similarly, all buyers/sellers

have the same reservation price RPb/RPsi for fairness.

5.2.2 Simulation Step

The actual negotiation between the market agents takes place in this step. In

general, the number of negotiation simulations Recon will conduct in each ex-

periment depends on the parameters and RC from the configuration step. The

following equation calculates the number of simulations:

NoSimulations = (
n∏
i=1

NoV alueBucketsi) ∗RC (5.3)

where n is the number of parameters. For instance, to conduct a simulation for

four parameters MD, MR, MC and MDL where each parameter has three values,

and RC = 100, the simulator will conduct 8100 (3 * 3 * 3 * 3 * 100) simulations.

Thus, this step will terminate when all the 8100 simulations finish. Likewise, each

simulation ends when all of the selected buyers (i.e. the buyers that the user

wants to measure the performances of) leave the e-market, either because they

have reached their goal or because they have reached the deadline. This step is

managed by the infrastructure agents MarketController and MarketBroker, and

played by MarketAgents. Infrastructure agents were explained in Section 2.7.3.

Market Controller

The MarketController is an infrastructure agent that is responsible for managing

all the simulations that will be run as part of the overall experiment. The Market-

Controller runs the simulator for a fixed number of times defined by the user. At

118

the end of each simulation, it logs the negotiation messages between MarketAgents.

The MarketController has the following responsibilities:

• it creates the MarketBroker;

• it uses the configuration to initialise each simulation and creates all the

required MarketAgents;

• during each simulation, it controls the number of MarketAgents in the e-

market by adding and removing them according to the market density and

demand supply ratio;

• it asks all MarketAgents about their decisions at fixed time intervals;

• at the end of each simulation (i.e. when all Selected Buyers reach their goal

or deadline), it stops and removes all agents, saving the negotiation history

to a log file;

• when all simulations finish, the MarketController stops and removes the Mar-

ketAgents and the MarketBroker, and finally terminates itself.

Market Broker

The MarketBroker is an infrastructure agent created by the MarketController to

match buyers with sellers. It acts as a ‘yellow pages’ service for the buyers where

it notifies the existing buyers when a new seller enters the e-market, and maintains

a register of all MarketAgents in the e-market. The MarketBroker maintains two

registers internally: a list of buyers and a list of sellers. When a new seller enters

the e-market, the MarketBroker will send that seller’s thread id to every buyer

that has registered interest in purchasing the item that the new seller is willing to

sell.

Market Agents

The MarketAgents are agents constructed by the MarketController. Their goal is

to allocate/offer a resource (i.e. product or service) from other MarketAgents by

119

negotiating the resource issues (i.e. price). MarketAgents announce themselves

when they enter the e-market, specifying their class (buyer or seller) as well as the

item they are demanding/offering. We followed the architecture of MarketAgents

proposed in Section 3.1, as market agents are negotiating agents.

Buyers are MarketAgents with the goal of maximising their utility from pur-

chasing an item. They are liable for initiating negotiation with sellers notified by

the MarketBroker. A typical buyer will remain in the e-market until it reaches

a successful negotiation, is told to leave by the MarketController, or reaches its

deadline. Listings A.1 and A.2 in the Appendix A describe part of the reasoning

process of the buyer agent both in Java and Prolog.

Sellers are MarketAgents with the goal of maximising their utility from selling

an item. Each seller negotiates with buyers that send it offers. A seller will leave

the e-market when the MarketController requests it or if its strategy dictates

it must leave (e.g. because its inventory is empty). Sellers are responsible for

terminating negotiations when their deadline is reached. We can develop strategies

for a seller as we have with buyers.

5.2.3 Analysis Step

This step is controlled by the MetricBuilder agent, which is responsible for analysing

the log files generated from the simulation step1. The purpose of this step is to

observe how market agents reason during negotiation, and to determine why an

agent is winning/losing. The MetricBuilder calculates a number of performance

metrics defined by the user. The metrics are then plotted against various configu-

ration parameters that describe the e-market setting. To reduce complexity, only

the logs of selected buyer agents will be parsed to provide results.

Currently, the following metrics are supported by Recon:

• Number of successful runs (SRj): is the number of simulations per parameter

combination j where a negotiation ends in an accept action from the buyer.

1Listing A.3 in the Appendix A illustrates an example of a log file

120

• Average utility per parameter combination (AUj): is the sum of the utility

from each simulation divided by the number of runs (RC) in each parameter

combination j. AUj ∈ [0, 1], where 0 indicates an unsuccessful negotiation

and 1 denotes that the buyer was able to acquire the item at the initial price.

U ji = (RP ji −AP
j
i)/(RP ji − IP

j
i) (5.4)

AUj =
RC∑
i=1

U ji /RC (5.5)

where U ji is the buyer’s utility for the jth parameter combination and ith

repeated run, RP ji is the reservation price, IP ji is the initial price, AP ji is

the accepted price.

• Average utility over successful runs (AUSj): is the sum of the utility from

each simulation, divided by the number of successful runs (i.e. when the

buyer reaches an agreement). AUSj ∈ [0,1].

AUSj =
RC∑
i=1

U ji /SRj (5.6)

5.3 RECON Evaluation

To evaluate the performance of Recon and show that it provides a robust envi-

ronment for negotiating agents, we conducted experiments to evaluate the cycle

time of agents (e.g. the time it takes for the agent to generate an offer) in the

following settings:

• The first set of experiments report the average cycle time of agents through-

out a simulation. The aim of these experiments is to show that agents are

not affected by the execution of the simulation framework itself, i.e., they

do not take a longer time to decide on their actions towards the end of a

simulation.

• The second set of experiments report the average cycle time of agents for

increasing numbers of agents in the market. The aim of these experiments

121

is to show that there is no exponential growth in agents’ cycle times, i.e.,

having other agents in the environment has a linear effect on the time it

takes for an agent to decide on an action.

Recon has already been used as a simulator to evaluate the negotiating strategy

Conan (Chapter 3). In the planned experiments, we observed that the perfor-

mance of Recon is steady and it can handle different agent types and market

settings. Next, we provide the details of these experiments for the above settings

and report the results.

5.3.1 Experimental Methodology

We ran the simulation for five diverse market densities (MD) with up to 200

agents. For each density, 100 runs were performed. Therefore, a total of 500 runs

were executed, with each run having buyers and sellers negotiating concurrently.

We set the deadline to long (MDL ∈(151-210 seconds)), the change in demand/-

supply to high (MR ∈ (10:1, 1:1, 1:10)), and the market update time to high

(MC ∈ (10 seconds)). The computer used for the experiment had the follow-

ing specifications: Intel i5-3450S 2.80GHz processor with 8GB RAM running on

Windows 7 Enterprise Service Pack 1 (64-bit Operating System).

Agent selection: For our experiments, we developed an extended version of

Faratin’s strategies [29] that allows sellers to concurrently negotiate with different

buyers. For the buyers, we selected three declarative and three imperative agents.

We recorded the average cycle times for each agent type.

5.3.2 Results

The results for three of the five market densities are shown in Figure 5.2. Low

density implies that there are 8-12 agents in the e-market. For high, there are 30-50

agents and for very high there are 100-130 agents. In each plot, the average cycle

times for the three declarative and imperative buyers were consistent throughout

all runs. Changes in the market density did not affect the average cycle time. This

122

20 40 60 80 100
0

1

2

3

4

Runs (low density)

A
g
en

t
cy

cl
e

ti
m

e
(s

ec
on

d
s)

20 40 60 80 100

Runs (high density)

Java agents
Prolog agents

20 40 60 80 100

Runs (very high density)

Figure 5.2: Average cycle time for increasing number of runs.

conclusion was derived from the three plots where the average cycle time for the

Java buyer stayed within 0.03-0.7 seconds, and for the declarative buyer it stayed

within 0.3-2.4 seconds. We expected this difference as the Prolog agents required

an extra interface between Java and Prolog, plus the Prolog agent performed more

computation, in terms of searching for solution over the strategy rules, which

required more options to consider.

The fluctuations in the average cycle time were not caused by Recon, but were

rather an outcome of the buyers themselves. Since Recon supports asynchronous

negotiation (i.e. where the buyer can negotiate at any time without waiting for all

sellers to reply), the buyers replied to different numbers of sellers. For instance,

while the agent replies to one seller in one cycle, it might have to deal with three

sellers in the next cycle due to the sellers’ reply times. Moreover, our buyers have

heuristic strategies. Consequently, they may check all the negotiation threads in

one simulation, and not in another.

Finally, Figure 5.3 shows that the average cycle time for the three declarative

buyers in the 100 runs grew linearly with increasing numbers of agents. We plan

to further increase the number of agents in our experiments. This will be carried

out in future work.

123

8-12
30-50

60-80
100-130

180-2000

0.5

1

1.5

2

2.5

3

Number of Agents

A
ve

ra
g
e

cy
cl

e
ti

m
e

Figure 5.3: Average cycle time for increasing number of agents.

5.4 RECON Graphical User Interface

Figure 5.4: RECON supports buyer agents.

We developed Recon using a graphical user interface to allow a distribution

version of Recon on the Internet. Users from all around the world can upload

their concurrent negotiation agent and benchmark its performance against the lat-

est agents in state-of-the-art systems. The results of the performance will be sent

124

Figure 5.5: RECON supports adding competitors and seller agents.

Figure 5.6: RECON simulation parameters.

to the user by email. Figure 5.4 represents a screen-shot of the Recon interface

supporting a user to specify the e-market participants of buyer agents that the user

wants to measure their performance. Figure 5.5 supports determining all competi-

tors and sellers in the e-market. Figure 5.6 specifies the simulation parameters as

described in Table 5.2. In addition, Figure 5.7 shows the results obtained after

a specific experiment. The experiment compares the performance of the declar-

ative strategy Alrayes w and the imperative strategy WilliamsIAmHagglerBuyer

and shows that Alrayes w outperforms WilliamsIAmHagglerBuyer in terms of the

125

Figure 5.7: RECON results.

average utility in four different market settings, where the:

• market update time is quick (low);

• change in market density are quick (high), average (medium) and slow (low);

• change in demand/supply is average (medium);

• deadline is long (high).

5.5 Summary

Recon is an environment that supports the simulation of concurrent negotiations

amongst multiple agents in e-markets. We have shown that Recon was built using

a simplified version of the GOLEM agent platform and specialised with a set of

infrastructure agents that manage an e-market. We evaluate the performance and

robustness of Recon using agents developed imperatively and declaratively. Our

experiments with Recon reported on e-market simulations with up to 200 agents

negotiating with very reasonable offer-generation times. Moreover, we evaluated

126

the system under different market settings by testing different simulation scenarios

that experimenters might explore in practice and showed that its performance is

stable, reliable and scalable under different simulation settings.

In the following chapter, we will evaluate the performance of Conan com-

pared to the strategy of Williams [115], Random and the extended versions of

Faratin’s [29] as the benchmark buyers strategies in different e-market settings

using Recon, and show that we outperform Williams using statistical measures.

In addition, Conan outperforms Random strategy and the extended versions of

Faratin’s strategies.

127

Chapter 6

Empirical Evaluation

In the previous chapter, we proposed our negotiation simulator Recon, which has

been developed to evaluate the performance of our negotiation strategy Conan.

In this chapter, we present two large experiments to test Conan which satisfy

Objective 6. We report their results and evaluate their significance.

The first experiment is presented in Section 6.1, where we evaluate the perfor-

mance of Conan in different market settings against the performance of the state-

of-the-art concurrent negotiation strategy proposed by Williams et al. [115]. Then

we report the results and show that Conan outperforms significantly Williams et

al. Also, to make sure that Conan also outperforms other buyers, we conduct

a second experiment which is presented in Section 6.2, in which we use different

settings from the first experiment, with new benchmark strategies (Random and

Faratin’s et al. [29]). Similar to the first experiment, we show that Conan

outperforms significantly the benchmark strategies. Finally, we summarize our

findings in Section 6.3.

6.1 Experiment 1

The aim of this experiment is to determine whether Conan can outperform the

state-of-the-art and if so, under what settings. This section starts by explain-

128

ing the experimental setting in detail, which includes the choice of opponents,

the benchmark strategy that we are comparing our work with, the parameters of

the proposed experiments, and the performance measurements characterising our

results. After that, we report on the experimental results.

6.1.1 E-Market Setting

We followed Chapter 4 by implementing a Recon agent that adopts the Conan

strategy. Interaction between agents is handled using inter-agent communication.

As explained in Chapter 5, Recon supports both the imperative definition of

agent strategies in Java and the declarative specification of logic-based strategies

in Prolog, within the same environment. This feature is important, because we can

develop simulations with Conan developed declaratively and then compete with

imperative agents, such as those currently representing the state-of-the-art in the

negotiation literature, without difficulty. In addition, Recon supports concurrent

negotiation which, at the time of our research, existing negotiation platforms did

not support [61].

Choice of opponents: For our evaluation, we developed extended versions

of Faratin’s [29] and ANAC 2011 (International Automated Negotiating Agents

Competition) [37] strategies that allow opponents (sellers) to concurrently negoti-

ate with different buyers. In the simulation, we divide these strategies into three

groups:

• The first group, Faratin’s Sellers [29], contains three combinations of strate-

gies which we combine into one group as explained in Section 2.5.2. The

first combination is called time-dependent strategies, where the value of the

counter-offers and the acceptance value for the offers depend on the remain-

ing negotiation time. The second and third combinations are the resource-

dependent and behaviour-dependent strategies. In resource-dependent strate-

gies, sellers concede more rapidly as the quantity of resources becomes lim-

ited. As in Faratin et al. [29], resources are the number of buyers partici-

129

pating in the negotiation and the negotiation time. In behaviour-dependent

strategies, the seller imitates the behaviour of the buyers, so the seller will

compute the next offer based on the previous attitude of the buyer.

• The second group is the ANAC Sellers [37]. We chose this group for fair com-

parison with the benchmark strategy, which we will describe once we have

completed this discussion on opponents. In addition, the ANAC competition

provides the most recent and most competitive state-of-the-art practical ne-

gotiation agents. It is important to note that in our experiments we noticed,

in the 10% agreement zone (for more details see Section 3.2), that three

ANAC sellers were accepting offers with negative utility for them. This was

due to the fact that ANAC sellers always assume that there will be a 100%

agreement zone between them and the buyers. To make the comparison fair

with ANAC sellers in the 10% agreement zone, we adjusted their strategies

to offer or accept only when they obtained positive utility.

• The third group, All Sellers, is a combination of all Faratin’s Sellers and

ANAC Sellers.

Each seller has two fixed private deadlines. The first is the deadline for how

long it will be staying in the market. The second is the deadline related to the

negotiation with each buyer. When a seller starts to negotiate with each buyer, it

assigns a fixed duration for the negotiation, for instance, 180s. Hence, when the

seller starts a new negotiation with another buyer, it negotiates for a fixed time,

180s only. The seller will exit the market if (a) the seller sells all its resources,

or (b) the seller reaches the deadline for staying in the market, or (c) the market

forces the sellers to exit their negotiations to alter the demand/supply ratio of the

market.

Benchmark strategy: We will use the state-of-the-art strategy developed by

Williams et al. [115] as the benchmark strategy. Williams et al. also validated

their strategy empirically. The opponents’ strategy was obtained from ANAC

130

Sellers only. They compare their strategy with two other strategies: a random

strategy and Nguyen and Jennings’ strategy [79]. Their results show that their

strategy outperforms both. Here, we compare Conan with the second version

of their strategy, where all negotiation threads have the same utility (see Section

2.6.1) and this is due to our assumption that all the sellers provide the same

identical resource to be negotiated. We set the simulation parameters based on

Williams et al. settings in their empirical evaluation in terms of public deadline,

break-off probability and penalties.

Simulation parameters: The market allows the agents to enter and leave

the market at any time. The market simulates the entrance and the exit of the

opponents. For each buyer, the market announces the arrival of new sellers and the

total number of buyers. The time of the announcement is based on the parameter

Market update time as shown in Table 6.1. The number of new sellers and buyers

added will depend on the parameters Change in market density and Change in

demand/supply ratio. For instance, if the change rate in market density is 8 and

the demand/supply ratio is 1:1, and the market situation has 5 buyers and 7 sellers,

then the market terminates 1 buyer and 3 sellers to reach the correct desired change

in the market. These terminated buyers and sellers send an exit action to their

opponents.

Performance Measurements:

To evaluate the performance of Conan and the state-of-the-art strategy, we

use the following performance measurements:

• Average utility [29, 79, 115]: is the sum of all average utilities of that agent

Uag(x) (see Equation 3.1) over the number of negotiation runs N :

Average utility =

∑N
i=1 U

i
ag(x)

N
(6.1)

• Percentage of successful negotiations: is the total number of negotiation runs

where the agent reaches an agreement with one of the sellers over all runs.

131

Variables Values

Buyer’s Initial price [300-350]

Buyer’s Reservation price [500-550]

Seller’s Initial price 10%[750-800] - 60%[580-620] - 100%[500-550]

Seller’s Reservation price 10%[450-500] - 60%[380-420] - 100%[300-350]

Market update time [2s,5s,10s]

Change in market density high[30,40,50], average[18,23,28], low[8,10,12]

Change in demand/supply high[10:1, 1:1, 1:10], average [5:1, 1:1, 1:5], low [2:1, 1:1,

1:2]

Deadline short[30s-90s], average[91s-150s], long[151s-210s]

Eagerness [0.1,0.3] [0.4,0.7] [0.8,1]

Table 6.1: Simulation parameter values.

Percentage of successful negotiations =
number of successful runs

N
∗ 100

(6.2)

• Average number of rounds [47]: is the average number of negotiation rounds

until the accept agreement is reached.

Average number of rounds =
number of rounds per run

N
(6.3)

6.1.2 Experimental Setup

In our evaluation, we allow the demand/supply ratio and market density to change

during negotiation to create more realistic settings. In addition, as indicated

in Table 6.1, we set the eagerness for all threads to 0.5, the deadline to long

[151s − 210s] and the market update time to 10s. We set the same deadline for

all buyers and sellers in the e-market for fair comparison with the benchmark

strategy since it assumes public deadlines (both buyers and sellers have identical

deadlines). To test that Conan negotiates using private deadlines, Conan does

132

not know that buyers and sellers have the same deadline. Also, as we explained in

Section 3.4.3, we set the λ = 0.99, µ = 0.9, MCO = 1 and MAN = 100. We also

set the penalty D = 0.1 for fair comparison with Williams’s et al. [115] strategy.

Similarly, we choose three ranges for the sellers’ initial price and reservation

price to create three different agreement zones: 10%, 60% and 100%. The reason

for this choice is to simulate real-life situations, where the buyer does not know

the price range of the sellers. Conan and the benchmark agent run concurrently

within the same simulation as competitors, while in the literature the buyer agents

run separately in individual simulations. We run three agents for each strategy

(state-of-the-art and Conan) and run the simulation 100 times for 81 different

settings (3 different demand/supply ratio values * 3 different market density values

* 3 price ranges * 3 opponent groups)= 8100 runs. We report the average utilities,

percentage of successful negotiations and average number of negotiation rounds

for those simulations. We also conduct t-tests to report the statistical significance

between Conan and the state-of-the-art utilities for each setting and use ANOVA

test (Analysis of variance) to calculate the statistical significance of the resulting

utility between each price range for each group of sellers.

6.1.3 Results

The results for Faratin’s Sellers are shown in Figure 6.1. In the top plot, market

density is kept at average and we change the rate for the demand/supply ratio. In

the bottom plot, the rate for the demand/supply ratio is kept at average and we

change the market density. It can be seen from the plots and from the p value <

0.05 that our strategy outperforms the state-of-the-art according to experimental

evidence that is statistically significant. However, the utilities of Conan and the

state-of-the-art are stable during the changes in the demand/supply ratio among

the price ranges. On the other hand, the utility of Conan increases when the

market density increases, while the utility of the state-of-the-art decreases when

the market density increases. We can observe from Figure 6.1 that:

133

lo
w av

g
hi

gh
0

0.2

0.4

0.6

0.8

1

demand/supply ratio in

10% agreement zone

U
ti

li
ty

Change in demand/supply ratio

Williams et al.

Conan

lo
w av

g
hi

gh

demand/supply ratio in

60% agreement zone

lo
w av

g
hi

gh

demand/supply ratio in

100% agreement zone

lo
w av

g
hi

gh
0

0.2

0.4

0.6

0.8

1

market density in

10% agreement zone

U
ti

li
ty

Change in market density

lo
w av

g
hi

gh

market density in

60% agreement zone

lo
w av

g
hi

gh

market density in

100% agreement zone

Figure 6.1: Average utility for Faratin’s Sellers.

• observation 1: Conan outperforms the state-of-the-art in all price ranges,

134

demand/supply ratios and market densities when negotiating with Faratin’s

Sellers;

• observation 2: Conan obtains a significantly higher utility than Williams

et al. when negotiating in a high density market and a 60% agreement zone

with Faratin’s Sellers. The most likely explanation for this result is that

Conan takes into consideration that the price ranges between buyers and

sellers may differ.

• observation 3: Conan achieves the highest utility when the change in

demand/supply ratio is low as a result of the market being less competitive,

which increases Conan’s opportunity to negotiate with more sellers. Also, in

terms of market density, Conan obtains the highest utility when the market

density is high. As a result of the number of sellers increasing, the buyer’s

opportunity to get an agreement also increases.

The next result is about negotiating with ANAC Sellers and is shown in Figure

6.2. Our strategy still outperforms the state-of-the-art (p<0.05). The top plots

indicate that each strategy gains the same amount of utility when the rate of

demand/supply ratio changes, while in the bottom plots, when the market density

is average, Conan has the highest utility. We can observe from Figure 6.2 that:

• observation 4: Conan outperforms the state-of-the-art in all price ranges,

demand/supply ratios and market densities when negotiating with ANAC

Sellers;

• observation 5: Conan obtains significantly higher utility than Williams

et al. when negotiating in an average density market and 60% agreement

zone with ANAC Sellers. We observed in the experiments that ANAC Sellers

cannot cope with high numbers of agents in the market, so as the number

of agents rises they become slower in producing conceded offers. As a result

135

lo
w av

g
hi

gh
0

0.2

0.4

0.6

0.8

1

demand/supply ratio in

10% agreement zone

U
ti

li
ty

Change in demand/supply ratio

Williams et al.

Conan

lo
w av

g
hi

gh

demand/supply ratio in

60% agreement zone

lo
w av

g
hi

gh

demand/supply ratio in

100% agreement zone

lo
w av

g
hi

gh
0

0.2

0.4

0.6

0.8

1

market density in

10% agreement zone

U
ti

li
ty

Change in market density

lo
w av

g
hi

gh

market density in

60% agreement zone

lo
w av

g
hi

gh

market density in

100% agreement zone

Figure 6.2: Average utility for ANAC Sellers.

Conan accepts offers from the ANAC Sellers before the deadline since the

utility of the offers > 0;

136

• observation 6: Conan gets the highest utility when the change in de-

mand/supply ratio is low as in observation 3. Also, in terms of market den-

sity, Conan obtains the highest utility when the market density is average,

as explained in observation 5.

In the third group of sellers, All Sellers, the results are shown in Figure 6.3. As

before, Conan outperforms statistically significantly the state-of-the-art (p<0.05)

within each setting and for each group of settings. Conan obtains the highest

utility when the market density is high. We can observe from Figure 6.3 that:

• observation 7: Conan outperforms the state-of-the-art in all price ranges,

demand/supply ratios and market densities when negotiating with All Sell-

ers;

• observation 8: Conan obtains significantly higher utility than Williams

et al. when negotiating in an average density market and 60% agreement

zone with All Sellers, as explained in observation 5 ;

• observation 9: Conan obtains the highest utility when the change in

demand/supply ratio is low. Also, in terms of market density, Conan ob-

tains the highest utility when the market density is high, as explained in

observation 3.

We can see from Figure 6.4 that Conan gains more successful negotiations than

Williams et al. in all the simulation settings when negotiating with All Sellers.

The top plots indicate that each strategy gains the same percentage of successful

runs when the rate of demand/supply ratio changes, while in the bottom plots,

when the market density is high, Conan has the highest percentage of successful

runs. We can observe from Figure 6.4 that:

• observation 10: Conan outperforms the state-of-the-art in all price

ranges, demand/supply ratios and market densities when negotiating with

137

lo
w av

g
hi

gh
0

0.2

0.4

0.6

0.8

1

demand/supply ratio in

10% agreement zone

U
ti

li
ty

Change in demand/supply ratio

Williams et al.

Conan

lo
w av

g
hi

gh

demand/supply ratio in

60% agreement zone

lo
w av

g
hi

gh

demand/supply ratio in

100% agreement zone

lo
w av

g
hi

gh
0

0.2

0.4

0.6

0.8

1

market density in

10% agreement zone

U
ti

li
ty

Change in market density

lo
w av

g
hi

gh

market density in

60% agreement zone

lo
w av

g
hi

gh

market density in

100% agreement zone

Figure 6.3: Average utility for All Sellers.

All Sellers, especially in the 10% and 60% agreement zones. This is because

it is hard for any agent to get an agreement in the 10% and 60% zones,

138

lo
w av

g
hi

gh
50

60

70

80

90

100

demand/supply ratio in

10% agreement zone

P
er

ce
n
ta

g
e

of
su

cc
es

sf
u

l
n

eg
o
ti

at
io

n
s

Change in demand/supply ratio

Williams et al.

Conan

lo
w av

g
hi

gh

demand/supply ratio in

60% agreement zone

lo
w av

g
hi

gh

demand/supply ratio in

100% agreement zone

lo
w av

g
hi

gh
50

60

70

80

90

100

market density in

10% agreement zone

P
er

ce
n
ta

ge
of

su
cc

es
sf

u
l

n
eg

ot
ia

ti
on

s

Change in market density

lo
w av

g
hi

gh

market density in

60% agreement zone

lo
w av

g
hi

gh

market density in

100% agreement zone

Figure 6.4: Percentage of successful negotiations for All Sellers.

while it is easier to get an agreement in the 100% zone, since in the 100%

agreement zone, the buyer’s initial price ≥ the seller’s reservation price so

139

lo
w av

g
hi

gh

100

200

300

400

500

600

demand/supply ratio in

10% agreement zone

N
u

m
b

er
of

n
eg

o
ti

a
ti

o
n

ro
u

n
d

s
Change in demand/supply ratio

Williams et al.

Conan

lo
w av

g
hi

gh

demand/supply ratio in

60% agreement zone

lo
w av

g
hi

gh

demand/supply ratio in

100% agreement zone

lo
w av

g
hi

gh

100

200

300

400

500

600

market density in

10% agreement zone

N
u

m
b

er
of

n
eg

o
ti

a
ti

o
n

ro
u

n
d

s

Change in market density

lo
w av

g
hi

gh

market density in

60% agreement zone

lo
w av

g
hi

gh

market density in

100% agreement zone

Figure 6.5: Number of negotiation rounds for All Sellers.

the utility > 0.

140

• observation 11: Conan obtains more successful runs when the market

density is high in all agreement zones as in observation 3.

We can see from Figure 6.5, that Conan conducts less negotiation rounds

compared to Williams et al. when negotiating with All Sellers. This is because

Conan needs more time to think than Williams et al. Thus, Conan talks less

but has more time to think about the best agreement and the best opponent to

negotiate with, which minimises the agent’s use of communication resources.

The number of rounds are stable (around an average of 100 rounds at low

density) for every market density and every demand/supply ratio. On the other

hand, Williams et al. have a high number of rounds when the market density is

low and a low number of rounds when the e-market density is high.

• observation 12: Conan conducts less negotiation rounds than the state-

of-the-art in all price ranges, demand/supply ratios and market densities

when negotiating with All Sellers;

• observation 13: Conan has a stable number of negotiation rounds in all

price ranges, demand/supply ratios and market densities when negotiating

with All Sellers.

The following is a general observation about the results presented in Figures 6.1

to 6.5:

• General Observation 1: Conan is a robust and adaptive strategy that is

not affected by changes in the market density and/or in the demand/supply

ratio in any price ranges. Experimental evaluation of the strategy produces

statistically significant results in terms of average utility compared to the

state-of-the-art Williams et al. [115]. Conan also outperforms the state-

of-the-art in term of the percentage of successful negotiations, with fewer

number of rounds.

141

6.2 Experiment 2

Given the results of Experiment 1, the aim for this experiment is to determine

whether Conan can outperform other negotiation strategies. In this experiment,

we will benchmark more strategies and we will keep the simulation parameters as

in Experiment 1 (Section 6.1). The reason for the second experiment is to make

the experimentation more credible and convincing by checking the behaviour of

Conan compared to other, equally famous and competing strategies. We did not

combine Experiments 1 and 2 because:

• Experiment 1 considers many performance measurements comparing Conan

with Williams et al. as the key benchmark strategy. In Experiment 2, we

focus on a general overview of Conan’s performance, thus it has only one

performance measurement.

• Experiment 1 makes sure that Conan outperforms Williams et al. by run-

ning 3 agents for each. In Experiment 2, since we have many buyers to

assess, we cannot run more than one agent per strategy in order to keep the

low density setting of the e-market as low as possible.

• Experiment 1 tests the performance of Williams et al. and Conan with dif-

ferent groups of opponents (Faratin’s Sellers, ANAC Sellers and All Sellers)

since Williams et al. is the key benchmark strategy. In Experiment 2, we

need a general overview of Conan’s performance since All Sellers represents

both ANAC Sellers and Faratin’s Sellers.

6.2.1 E-Market Setting

As in Experiment 1, we use our negotiation stimulator Recon with the following

settings:

Choice of opponents: For our evaluation, we use All Sellers strategies. All

Sellers, as in Experiment 1, is a combination of all extended versions of Faratin’s

Sellers [29] and ANAC Sellers [37] strategies that allow opponents (sellers) to

142

concurrently negotiate with different buyers. The reason for choosing All Sellers

is that it combines all the opponents that we have, to give a general overview of

the performance of Conan.

Benchmark strategy: We use the Random strategy, and the extended versions

of Faratin’s strategieset al. [29] as the benchmark buyers strategies, since there

are no more concurrent strategies that fit to our benchmark selection criteria based

on the background review in Section 2.6.1.

• The Random strategy offer generation function is obtained from the GENIUS

platform 1. The offer is randomly generated and the utility of the offer should

be > 0.

• Faratin’s strategies: There are eight strategies proposed by Faratin et al.

[29]: Linear, Conceder, Boulware, Resource Dependent, Resource Time De-

pendent, Relative Tit-For-Tat, Random Absolute Tit-For-Tat and Average

Tit-For-Tat. Faratin’s bilateral strategies have already been explained in

detail in Section 2.5.2. We chose to benchmark them because they: (a) are

simple, popular and widely used [5, 31, 116]; (b) have a clear strategy which

is easy to reimplement; (c) have incomplete information about opponents;

and (d) use continuous time. However, they use an alternating offer protocol

(Section 2.4.3) which is different to our concurrent protocol.

To make a fair comparison with Conan, we extended both the Random and

Faratin’s strategies action selection methods to be able to use the concurrent

negotiation actions (Section 3.3), which are request-to-reserve and cancel.

Performance Measurements: We use the average utility as stated in Sec-

tion 6.1.1. The reason for this is to focus on a general overview of Conan’s

performance.

Simulation parameters: As in Experiment 1 (Section 6.1).

1http://ii.tudelft.nl/genius/

143

6.2.2 Experimental Setup

As in Experiment 1, we allow the demand/supply ratio and market density to

change during negotiation to create more realistic settings. We expand the low

density range in Table 6.1 to [12, 14, 16] in order to ensure that the market accom-

modates the ten benchmark strategies. Also, as in Experiment 1, (1) eagerness

=0.5; (2) deadline ∈ [151s− 210s]; (3) market update time =10s; (4) MCO = 1;

(5) D = 0.1; (6) MAN = 100; and (7) there are three different agreement zones:

10%, 60% and 100%. Conan and the benchmark agents run concurrently within

the same simulation as competitors. We run one agent for each strategy and run

the simulation 100 times for 27 different settings (3 different demand/supply ratio

values * 3 different market density values * 3 price ranges * 1 opponent groups)=

2700 runs. We report the average utilities for those simulations. We conduct

t-tests to report the statistical significance between Conan and the benchmark

strategies utilities for each market density (high, average and low) and use ANOVA

test (Analysis of variance) to calculate the statistical significance of the resulting

utility between each price range.

6.2.3 Results

Figure 6.6 depicts the result of negotiation with All Sellers in the 10% agreement

zone. As in Experiment 1, in the top plot, market density is kept average and we

change the rate for the demand/supply ratio. In the bottom plot, the rate for the

demand/supply ratio is kept average and we vary the market density.

It can be seen from the plots and from the p value < 0.05 that our strategy

Conan outperforms the Random and Faratin’s strategies according to experimen-

tal evidence that is statistically significant. From the results we can say that the

utility of Conan, Random and Faratin’s strategies is stable during changes in the

demand/supply ratio. On the other hand, the utility of Conan increases when

the market density increases, while the utility of Linear, Conceder, Boulware and

Resource Time Dependent decreases when market density increases.

144

low avg high

5 · 10−2

0.1

0.15

0.2

0.25

Change in demand/supply ratio

U
ti

li
ty

low avg high

5 · 10−2

0.1

0.15

0.2

0.25

Change in market density

U
ti

li
ty

Random Conan Linear

Conceder Boulware ResourceDependent

ResourceTimeDependent RelativeTitForTat RandomAbsoluteTitForTat

AverageTitForTat

Figure 6.6: Average utility for All Sellers with 10% agreement zone.

Figure 6.7 shows the result of negotiation with All Sellers in the 60% agree-

ment zone. As in Figure 6.6, Conan still outperforms the benchmark strategies

(p<0.05) and the utility of Conan, Random and Faratin’s strategies is stable

145

low avg high
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Change in demand/supply ratio

U
ti

li
ty

low avg high

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Change in market density

U
ti

li
ty

Random Conan Linear

Conceder Boulware ResourceDependent

ResourceTimeDependent RelativeTitForTat RandomAbsoluteTitForTat

AverageTitForTat

Figure 6.7: Average utility for All Sellers with 60% agreement zone.

during changes in the demand/supply ratio. The utility of Conan increases when

the market density increases, and the utility of Random and Faratin’s strategies

increases when the market density increases.

146

low avg high

0.4

0.6

0.8

1

Change in demand/supply ratio

U
ti

li
ty

low avg high

0.2

0.4

0.6

0.8

1

Change in market density

U
ti

li
ty

Random Conan Linear

Conceder Boulware ResourceDependent

ResourceTimeDependent RelativeTitForTat RandomAbsoluteTitForTat

AverageTitForTat

Figure 6.8: Average utility for All Sellers with 100% agreement zone.

Figure 6.8 shows the results for negotiation with All Sellers in the 100% agree-

ment zone. As before, Conan outperforms significantly the benchmark strategies

(p<0.05) and the utility of Conan, Random and Faratin’s strategies is stable

147

during changes in the demand/supply ratio. The utility of Conan increases when

the market density increases, and the utility of Random and Faratin’s strategies

increases when the market density increases.

For this section we combine all the observations from Figures 6.6 to 6.8:

• observation 14: Conan outperforms the Random and Faratin’s strategies

in the 10%, 60% and 100% price ranges, demand/supply ratios and market

densities when negotiating with All Sellers;

• observation 15: Conan obtains significantly higher utility than the Ran-

dom and Faratin’s strategies (except Relative Tit-For-Tat) when negotiating

in a high density market in the 10% agreement zone in Figure 6.6. As with

the Williams et al. strategy, this is because it is easy for any agent to ne-

gotiate in the 100% agreement zone and get a better agreement rather than

negotiating in the 10% agreement zone, which is more difficult. Also, Conan

obtains significantly higher utility than the Random and Faratin’s strategies

when negotiating in a low density market in the 100% agreement zone in Fig-

ure 6.8. This shows that Conan can perform well even in a simple market

setting where the number of agents is low in a 100% agreement zone;

• observation 16: In Figures 6.7 and 6.8, Conan obtains the highest utility

when the change in demand/supply ratio is low as a result of the market

being less competitive, which increases Conan’s opportunity to negotiate

with more sellers. Also, in terms of the market density, in Figures 6.6 to

6.8, Conan obtains the highest utility when the market density is high,

as a result of the number of sellers increasing, which increases the buyer’s

opportunity to reach an agreement.

The following is a general observation about the results presented in Figures 6.6

to 6.8:

• General Observation 2: We can see that modelling random behaviour,

148

time of negotiation or opponent behaviour is not enough to increase the nego-

tiation utility. Experimental evaluation of Conan shows that it outperforms

significantly the Random and Faratin’s strategies in terms of average utility.

6.3 Summary

We evaluated the performance of Conan in two experiments. In the first experi-

ment, with various settings, we showed that Conan performed significantly better

than the state-of-the-art [115] in terms of average utility. We also showed that

Conan’s utility is not affected by changes in the market density, the demand/-

supply ratio, and/or the price range. In addition, the performance of Conan was

tested in the 10%, 60% and 100% agreement zones. We also showed that Co-

nan outperforms the state-of-the-art [115] in terms of the percentage of successful

negotiations, with fewer negotiation rounds.

In the second experiment, we showed that Conan outperforms significantly

both Random and Faratin’s [29] strategies in terms of average utility when negoti-

ating with all sellers under the 10%, 60% and 100% agreement zones with different

market densities and demand/supply ratios.

The experimental results validate the properties of Conan mentioned in Chap-

ter 3. We can see from the results that Property 1 has been confirmed in Figures

6.6-6.8 where Conan concedes less (more utility) as the number of sellers (high

market density) increases. Property 2 has been confirmed in Figures 6.6-6.8 where

Conan concedes more (less utility) as the number of competitors increases. In

addition, from the results we can see that Conan behaves rationally by producing

monotonic offers.

149

Chapter 7

Conclusions and Future Work

This Chapter provides final remarks, along with an overview of the thesis work

and a summary of its contribution to the field of negotiation. It also presents a

discussion of future research directions.

7.1 Review and Discussion of the Achievements

We began this thesis by introducing the challenges involved in automated negotia-

tion in Chapter 1. Chapter 2 presented the background to our negotiation model.

We introduced our negotiation model in Chapter 3 where we proposed a con-

current negotiation architecture (Objective 1) designed as a specialized extension

of previous work with the KGP model [36, 107] to satisfy the requirements of

concurrent bilateral negotiation. We integrate models of the environment, the op-

ponents and self in a revised agent architecture to aid the symbolic representation

of decision-making in negotiations. Existing work has provided architectures for

bilateral negotiation only, with protocol- and strategy-dependent features. An-

other limitation is lack of description of the behaviour of the information through

the architecture components. Addressing these limitations is important to provide

adaptable designs to be used by the agent developer to implement any negotia-

tor concurrent strategies, thus saving the cost of developing the architecture from

150

scratch.

We presented a concurrent negotiation protocol (Objective 2) by producing a

revised version of the well-known alternating protocol that can support concurrent

negotiations for open e-markets. However, in realistic applications, and especially

in concurrent negotiation settings where a buyer agent engages in multiple bilateral

negotiations in order to acquire a resource, agents need more complex negotiation

actions to handle different negotiation situations. Thus, we contribute to the state

of the art by: (a) developing two protocols to rule the concurrent negotiation: the

individual bilateral negotiation protocol and the overall negotiation protocol; and

(b) adding more action to the well-known alternating protocol (request-to-reserve,

reserve, cancel and exit), thus providing the necessary flexibility that was not

always possible in previous work with limited actions (offer(x) and accept).

To test our negotiation protocol we studied the development of agent strate-

gies with an emphasis on the strategy of a buyer agent in an open and dynamic

environment. The existing literature (e.g. [79, 115]) provides answers only on

when to offer or accept and what to offer, and thus lacks explanations of how to

choose negotiation actions, so that the agent knows when to request-to-reserve,

cancel and exit the negotiation. Offers are computed using an opponent’s model

but ignoring both the environmental and self models [79, 115], while other work

assumes complete and certain information about the negotiation environment and

the opponents [79]. In addition, existing models often make strong assumptions

about the domain, e.g. that deadlines are public, negotiation time is discrete and

there is one agreement zone (Section 3.2), thus constraining their applicability in

a variety of practical negotiation settings.

To overcome these shortcomings, we developed a heuristic negotiation strategy,

Conan (Objective 3). Conan considers a weighted combination of modelling the

e-market environment and the progress of concurrent negotiations in which the

agent is involved. Also, it provides explicit decisions about when to offer, accept,

request-to-reserve, cancel or exit a negotiation. This development will increase the

possibility of achieving an agreement and minimise lost opportunities to add value

151

to the agent’s utility function and better imitate real life negotiations.

Furthermore, in order to provide a high level of abstract reasoning, we for-

malized our strategy Conan in a logic-based knowledge representation using the

Event Calculus (objective 4). To the best of our knowledge, we believe there is a

lack of using Event Calculus to formalize negotiation strategies. Our formalization

can help the agent in the future to justify each action taken in the negotiation.

We built a negotiation framework, Recon (Objective 5), an experimental sim-

ulation platform that supports the development of software agents interacting con-

currently with other agents in negotiation domains. Unlike existing negotiation

simulation toolkits that support only bilateral negotiation and imperative nego-

tiation strategies [61], Recon also supports concurrent declarative strategies, for

applications where logic-based agents need to explain their negotiation decisions

to a user. Recon is built on top of the GOLEM 1 [18] agent platform, special-

ized with a set of infrastructure agents that can manage an e-market and extract

statistics from the negotiations that take place. We evaluated the performance and

robustness of Recon using agents developed imperatively and declaratively. Our

experiments with Recon report on e-market simulations with up to 200 agents

negotiating with very reasonable offer-generation times. Moreover, we evaluated

the system under different market settings by testing different simulation scenarios

that experimenters might explore in practice and showed that its performance is

stable, reliable and scalable under different simulation settings. To the best of our

knowledge, Recon is the only platform that simulates any concurrent negotiation

agent that has imperative or declarative strategy.

Our experimental results confirm that it is not enough to model only the op-

ponent(s) in an open e-market; we need also to model the environment and the

status of the agent’s concurrent negotiations (both individually and as a whole).

By varying (a) the density of the market, (b) the demand/supply ratio and (c)

the zones of agreement between the negotiating agents, the results show that our

strategy outperforms the state-of-the-art strategy in terms of average utility and

1http://golem.cs.rhul.ac.uk/

152

successful negotiations gained from negotiations (Objective 6). In addition to the

most competitive strategy in the state-of-the-art, Conan gained a higher util-

ity compared to Random and Faratin’s strategies. We also demonstrated that

our experimental results for the average utility were statistically significant. Most

existing approaches have not conducted performance comparisons with any bench-

mark strategies. Benchmarking other strategies will help to advance the state of

the art in the concurrent negotiation field.

The implications of our work are that the proposed model opens up new

possibilities for developing more realistic and flexible models for ne-

gotiating agents in e-markets and contributes to the long tradition of the

multi-agent systems area by reporting results on the role of agent technology for

automated negotiation in practical settings.

7.2 Future Research

This thesis lays the ground for some future work, as discussed below.

7.2.1 Malicious Negotiation Actions

In our negotiation protocol we assume that the agents are trustworthy, in that they

follow the protocol without breaching it at any time during negotiation. However,

in an open and dynamic negotiation environment, an agent may behave maliciously

and untrustworthily. For instance, if the agent did not follow the negotiation

protocol by using a new action (i.e. wait) that would be considered a malicious

behaviour. One potential way to avoid inappropriate actions from these agents

is to develop a strategy to deal with malicious actions. It would be useful to

design a strategy as suggested by Neville et al. [76] to enable agents to cope

with malicious actions. Neville et al. [76] present a computational socio-cognitive

framework that formalises social theories of trust, reputation, recommendation

and learning from direct experience, which increases the system’s protection from

such undesirable behaviour. In addition, in Conan, penalties for canceling an offer

153

are based on a percentage of the deal. It would be interesting in further work to

study the impact of different cancellation penalties (as introduced in Section 2.6.3)

on the average utility gained from the negotiation. For instance, An et al. [3]

negotiated cancellation penalties in conjunction with the price of the resource

under negotiation.

7.2.2 Weights for Self and Environment Factors

In our strategy Conan, we used a heuristic method to assign weights to the

environment and self factors. Another direction that could be taken is the use of

machine learning techniques to improve the function that assigns weights to the

environment and self factors, thus making the negotiation more adaptive, without

compromising the increase in the agent’s average utility.

In addition, in Conan, we used equal weights for each sub-factor in the envi-

ronment and self factors. In the self factor St we used 0.25 and in the environment

factor Et we used 0.33 to weight the sub-factors. To maximize the agent’s utility,

it would be interesting to develop a strategy to assign different weights for each

e-market setting for each sub-factor.

Also, it would be of interest to measure the effect of the environment factors

on the opponent’s behaviour. For instance, if the number of sellers increases in an

e-market, will that affect the concession rate of the sellers?

7.2.3 Opponent Model

Opponent models have recently become an important part of any negotiation

model [12, 45, 62]. However, Baarslag et al. [11] note that opponent models

do not have a huge effect (low importance) on the agent’s utility compared to

the offer generation and action selection strategies, which are more important. A

future direction is therefore to study the effect of including the opponent model in

the concession rate (see Equation 3.3) on the amount of negotiation utility. How-

ever, it is important to keep the opponent model as simple as possible in terms of

154

computational complexity since the opponent model will not have a major effect

on the agent’s utility [11].

Adopting a suitable opponent model may improve the negotiation performance

of Conan. Machine learning can be used to predict the opponent model during

and across negotiation runs. Possible directions could be based on works like

the one of Hindriks et al. [46] who used Bayesian learning to predict the issue

preferences of an opponent and their values, or like the one of Ren et al. [90] who

predicted opponent strategy using regression analysis.

7.2.4 Declarative Strategy

One of the reasons why we implemented Conan as a declarative strategy is that it

offers a transparent model for decision making for the agent’s user. It also offers the

possibility to formally state and verify the properties of agents’ behaviour [51]. In

future research, it would be important to prove the properties of Conan, check the

consistency of Conan’s rules for selecting negotiation actions to achieve its goal

of maximizing the agent’s utility and verify that Conan is a compliant strategy.

Verification refers to checking the actions of an agent at design time to ensure that

the agent will behave as desired in all simulation runs. Compliance means checking

the behaviour of an agent at run time to determine if it behaves as desired [24, 40].

In addition, it would be interesting to prove the concurrent protocol properties.

For example, Guerin and Pitt [39] provided a procedure by which they could verify

the properties of the protocol. It is also important to make sure that Conan

handles conflicts arising from applying the negotiation rules. For instance, Bikakis

et al. [14] proposed a formal method to resolve potential inconsistencies that may

arise from the interaction of contexts. As result of proving the consistency of agent

behaviour, it may be possible for an agent to explain to its own user why it takes

a particular action.

155

7.2.5 Computational Time

Since the negotiation agents have limited computational resources, and we assume

that the e-market is open and dynamic, with different numbers of sellers and

competitors entering and exiting the e-market, an agent consumes time in replying

to all sellers simultaneously. It is therefore important to develop an algorithm to

minimise the agent’s computation time by:

• determining the most promising sellers (sellers with good behaviour based

on specific criteria) as negotiation progresses, and replying to them as shown

in Algorithm 2. Then, gradually decreasing the number of concurrent ne-

gotiation sellers by exiting from negotiations with sellers that fall into the

third and fourth groups in Algorithm 2.

Algorithm 2: Promising Conan

Input: TE, ThreadIds

Output: agreement or no agreement

1 No.promising threads = (1− TE) ∗ |ThreadIds|

2 if No. promising threads > 0 then

3 Reply using Equation 3.3 to following Promising Threads:

4 First respond to all compatible sellers with High eagerness

5 Second respond to all moderately compatible sellers with High

eagerness

6 Third respond to all incompatible sellers with High eagerness

7 Fourth respond to any seller with Medium eagerness

8 else

9 Use Conan

• improving the matching strategy between buyers and sellers, so the buyer

will be able to choose the best opponents before the start of the negotiation.

The agent will thus have to negotiate with some of the sellers available in the

156

e-market. For instance, Munroe et al. [74] proposed an opponent matching

mechanism based on trade-offs made between conflicts the seller expected

to bring to a negotiation and the expected cost when negotiating with the

seller.

7.2.6 Negotiation Over Multiple Issues

Our current agent only considers one issue (e.g. price) rather than multiple issues

(e.g. price, warranty or colour). By considering multiple issues an agent will be

better positioned to simulate real-life applications, such as negotiating with users.

Multiple issues relating to the resource under negotiation require agents to deal

with multiple challenges, the most important challenge being whether the value of

an issue is dependent on other issues. For instance, if the price of a laptop depends

on the length of the warranty, then the longer the warranty, the higher the price

of the laptop. This challenge is still an open problem in automated negotiation.

In addition, our negotiation simulator Recon only supports single-issue ne-

gotiation between agents. As the agent’s strategy will in the future deal with

negotiating multiple issues, there will be a need for Recon to be improved to

handle multi-issue negotiation. This will include (1) support of quantitative and

qualitative issues; and (2) handling different ways of negotiating issues either se-

quentially or as a package deal (Section 2.2.2).

7.2.7 Performance Metrics

For the negotiation platform Recon presented in Chapter 5, there are a number

of future research directions. First, in the current design, Recon provides some

performance measurements (e.g. the average utility). In future work, we will

include additional performance metrics in the analysis step (Section 5.2.3). Pro-

viding more performance measurement functions: (1) helps the agent designer to

improve their agent’s performance, which will develop the automated negotiation

field in general; and (2) gives a better insight into why agents behave in certain

157

ways during negotiation.

Performance metrics will include: (1) Time of Agreement - the normalized

time at which an agreement is established; (2) Best Acceptable Bid - the utility of

the best bid offered to the agent; (3) Number of concession moves - the number

of moves where the agent increases its opponent’s utility and decreases its own

utility; (4) Number of reserved and canceled offers - the total number of reserved

and canceled offers; and (5) Penalties paid - the value of penalties paid as a result

of the canceled offers.

In Recon, we ran the simulation for various market densities with up to 200

agents. Another direction is to conduct experiments with larger numbers of agents

(above 200). The reason for this is that the more agents Recon can handle, the

more the e-market becomes competitive and popular and can be used to simulate

real e-markets on the Internet.

7.2.8 Negotiation With Humans

In our model all the participants in negotiations are agents. In the future, agents

will have to negotiate with humans [60] since in real-life situations not all people

can afford to deploy an agent to negotiate on their behalf. However, humans

negotiating with agents will introduce many more challenges into the negotiation.

Emotion, culture and negotiation duration will be some of the factors that agents

must take into consideration when negotiating with humans. The main path for

future investigation is research into adapting human avatars to take the place of

negotiating buyers and sellers. Human avatars have already been developed in

GOLEM to provide human interaction with agents, which need to be improved

to take emotion and more complex negotiation language into consideration. One

interesting area of research proposed by Rosenfeld et al. [94] is to provide an

agent that is able to negotiate with agents and humans at the same time to model

a real application.

158

Appendix A

Agents in RECON

Appendix A: Agents in Recon

This appendix briefly describes the basic methods used by the market agents.

Listings A.1 and A.2 presents examples of a Java buyer agent and a Prolog buyer

agent, respectively. Note that the offer generation processes of the agents solely

depend on their strategies and not on Recon. Seller agents can be implemented

similarly.

1 public class SimpleBuyer extends AbstractBuyerAgent{

2 public SimpleBuyer(AgentBrain brain , AgentParameters params , String

product){

3 super(brain , params , product);

4 }

6 @Override

7 protected List <Action > decideActionBasedOnOffer(NegotiationAction

offer){

8 List <Action > actionsToPerform = new ArrayList <>();

9 double utilityOpponentOffer = getUtility(Double.parseDouble(offer.

getValue ()));

10 double counterOffer = generateNextOffer(offer.getDialogueId ());

11 double utilityMyCounterOffer = getUtility(counterOffer);

12 boolean isOfferAcceptable = isOfferAcceptable(

159

13 utilityOpponentOffer ,

14 utilityMyCounterOffer ,

15 getNormalisedTime(getStartTime ()));

16 if (isOfferAcceptable){

17 actionsToPerform.addAll(super.acceptOpponentOffer(offer));

18 }

19 else{

20 actionsToPerform.addAll(super.sendCounterOffer(offer ,

counterOffer));

21 }

22 return actionsToPerform;

23 }

25 @Override

26 protected List <Action > decideActionBasedOnAccept(NegotiationAction

accept){

27 switch (getRandom ().nextInt(NUM_RANDOM_ACTIONS)){

28 case ACCEPT:

29 return super.acceptOpponentOffer(accept);

30 case RequestToReserve:

31 return super.commitToMyLastBid(accept);

32 case EXIT:

33 return super.exitFromDialogue(accept.getDialogueId ());

34 }

35 return new ArrayList <>();

36 }

38 @Override

39 protected double generateNextOffer(String dialogueId){

40 return getInitialPrice () + getRandom ().nextInt(getReservationPrice

() - getInitialPrice ());

41 }

43 private boolean isOfferAcceptable(double utilityOpponentOffer ,

double utilityMyCounterOffer , double time){ }

Listing A.1: Java buyer agent.

160

In Listing A.1, the Java buyer inherits the basic methods from AbstractBuy-

erAgent (line 1). The method decideActionBasedOnOffer() (line 7) returns an

action based on the seller’s offer. The method getUtility() (line 9) returns the

utility of the seller offer. The method generateNextOffer() (line 10) calls the

method in line 39 to generate the buyer next offer. This is part of the buyer

strategy. The method isOfferAcceptable() (line 12) calls the method in line

43 to decide if the opponent’s offer is acceptable by comparing the buyer of-

fer with the opponent offer. This is part of the buyer strategy. The method

decideActionBasedOnAccept() (line 26) returns an action based on the oppo-

nent accept action.

In Listing A.2, is part of the agent strategy. The predicate concession(ThreadId,

CA, T) (line 1) calculates the concession rate. calc next offer(ThreadId, Offer,

T) (line 5) generates the counter-offer at time T for thread id (ThreadId) based

on: initial price (Min), reservation price (Max) and concession rate (CA). The

predicate select(exit(ThreadId, Item), T) (line 11) returns the action exit

for all sellers with thread id(ThreadId) that negotiate for item Item at time

T. This decision will be taken if the buyer reaches its deadline. The predicate

select(offer(ThreadId, Item, Offer), T) (line 17) returns an offer (repre-

sented by the variable Offer) for seller with thread id (ThreadId) and item under

negotiation (Item). This predicate calls a function to generate the counter-offer

at line 5 after checking the buyer’s deadline.

1 concession(ThreadId , CA , T):-

2 CA is 0.75.

4 % calculate an offer

5 calc_next_offer(ThreadId , Offer , T):-

6 concession(ThreadId , CA , T),

7 holds_at(ip(Id, Min)=true , T),

8 holds_at(rp(Id, Max)=true , T),

9 Offer is Min + (Max - Min) * CA.

161

11 select(exit(ThreadId , Item), T):-

12 deadline(Deadline),

13 ourdeadline(StartTime),

14 Td is (StartTime + Deadline),

15 T > Td.

17 select(offer(ThreadId , Item , Offer), T):-

18 deadline(Deadline),

19 ourdeadline(StartTime),

20 Td is (StartTime + Deadline),

21 T < Td ,

22 calc_next_offer(ThreadId , Offer , T).

Listing A.2: Prolog buyer agent.

162

TIMESTAMP ::: FROM :::TO::: EVENT

1389744273493::: s_1 ::: buyer_1 :::

offer(0, laptop12 , 768.3)

1389744273509::: buyer_2 ::: s_0 :::

offer (13, laptop12 , 333.0)

1389744273509::: buyer_2 ::: s_1 :::

offer(1, bananas , 332.0)

1389744273509::: buyer_2 ::: s_2 :::

offer(7, laptop12 , 333.0)

1389744273509::: buyer_2 ::: s_3 :::

offer(3, laptop12 , 335.0)

1389744273587::: s_3 ::: buyer_1 :::

offer(2, laptop12 , 640.5)

1389744273603::: s_3 ::: buyer_2 :::

offer(3, laptop12 , 640.5)

1389744273649::: s_0 ::: buyer_1 :::

offer (12, laptop12 , 495.0)

1389744273649::: s_0 ::: buyer_2 :::

offer (13, laptop12 , 776.5)

1389744273743::: buyer_1 ::: s_1 :::

offer(0, laptop12 , 462.0)

1389744273743::: buyer_1 ::: s_3 :::

offer(2, laptop12 , 430.0)

Listing A.3: Narrative from a simulation run.

163

Appendix B

CONAN Implementation in

Prolog

In this appendix we show some further details on how we implement the strategy

Conan. We first show all the fluents, actions, initial setting which we gave some

examples in Section 4.3. Then we show how the fluent will be effected by the

action, as in Section refrevise. Finally we explore the offer generation and action

selection implementation (Section 4.4.2 and Section 4.4.1) in detail.

B.1 Initial Setting

We will use the predicates Initially to initialize some of the fluents in Conan. The

following are the fluents:

1 initially(number_competitors = 0).

2 initially(total_status = negotiating).

3 initially(all_opp_offer(ThreadId , Item) = []).

4 initially(my_last_offer(ThreadId , Item , 0) = 0).

5 initially(opp_last_offer(ThreadId , Item , 0) = 0).

6 initially(eagerness = 0.5).

7 initially(reserved_threshold = 1).

8 initially(max_number_active_negotiations = 100).

9 initially(max_number_competitors = 40).

164

10 initially(demandSupplyRatio = 1).

11 initially(min_demand_supply_ratio = 0.1).

12 initially(max_demand_supply_ratio = 10).

13 initially(window_size = 3).

14 initially_t (1, self_deadline = Td):-

15 holds_at(deadline = Deadline), 1),

16 holds_at(startTime = StartTime , 1),

17 SDeadline is StartTime+Deadline.

18 initially(turn_of(ThreadId) = buyer)).

Listing B.1: Initialize some of the fluents in Conan

B.2 Effect Of The Actions

2 % Notification of a new seller from the market controller

3 initiates(perceived(notify_about_new_seller(ThreadId)), active =

ThreadId , T):-

4 number_sellers(NoActiveSellers , T),

5 holds_at(max_number_active_negotiations = MAN , T),

6 NoActiveSellers < MAN.

8 initiates(perceived(notify_about_new_seller(ThreadId)), result(

ThreadId) = onnegotiation , T):-

9 number_sellers(NoActiveSellers , T),

10 holds_at(max_number_active_negotiations = MAN , T),

11 NoActiveSellers < MAN.

13 initiates(perceived(notify_about_new_seller(ThreadId)), neg_price(

ThreadId , Item) = Price , T):-

14 holds_at(price(Item) = Price , T),

15 number_sellers(NoActiveSellers , T),

16 holds_at(max_number_active_negotiations = MAN , T),

17 NoActiveSellers < MAN.

165

19 % Notification of the number of competitors from the market

controller

20 initiates(perceived(notify_about_change_in_number_of_competitors(

NoCompetitors)), number_competitors = NoCompetitors , T).

22 % Notification of a demand/supply ratio from the market controller

23 initiates(perceived(notify_about_change_in_demand_supply_ratio(

DemandSupplyRatio)), demandSupplyRatio = DemandSupplyRatio , T).

25 % Negotiation acts are : offer , accept , exit , request -to -reserve ,

cancel

26 % accept(Item)

27 initiates(attempted(accept(ThreadId , Item)), result(ThreadId) =

success , T).

29 initiates(perceived(accept(ThreadId , Item)), result(ThreadId) =

seller_accept , T).

31 % exit

32 initiates(perceived(exit(ThreadId , Item)), result(ThreadId) = failed

, T).

34 initiates(attempted(exit(ThreadId , Item)), result(ThreadId) = failed

, T).

36 % Offer and counter offer

37 initiates(perceived(offer(ThreadId , Item , New_price)), turn_of(

ThreadId) = buyer , T).

39 initiates(perceived(offer(ThreadId , Item , New_price)), neg_price(

ThreadId , Item) = New_price , T).

41 initiates(perceived(offer(ThreadId , Item , New_price)),

opp_last_offer(ThreadId , Item , New_price) = T, T).

166

43 initiates(perceived(offer(ThreadId , Item , New_price)), all_opp_offer

(ThreadId , Item) = All_price , T):-

44 holds_at(all_opp_offer(ThreadId , Item) = Old_All_price , T),

45 append ([New_price], Old_All_price , All_price).

47 initiates(attempted(offer(ThreadId , Item , New_price)), turn_of(

ThreadId) = seller , T).

49 initiates(attempted(offer(ThreadId , Item , New_price)), neg_price(

ThreadId , Item) = New_price , T).

51 initiates(attempted(offer(ThreadId , Item , New_price)), my_last_offer

(ThreadId , Item , New_price) = T, T).

53 % Exit -all

54 initiates(attempted(exit_all(Item)), total_status = finished , T).

56 % request_to_reserve

57 initiates(attempte(cancel(ThreadId , Item)),result(ThreadId) = hold ,

T):-

58 holds_at(active = ThreadId , T).

60 % cancel

61 initiates(perceived(cancel(ThreadId , Item)), result(ThreadId) =

failed , T).

63 initiates(attempted(cancel(ThreadId , Item)), result(ThreadId) =

failed , T).

65 initiates(perceived(cancel(ThreadId , Item)), result(get_penalty(

ThreadId) = Penalty , T):-

66 holds_at(neg_price(ThreadId , Item) = Price , T),

67 Penalty is 20.

69 initiates(attempted(cancel(ThreadId Item)), result(pay_penalty(

ThreadId) = Penalty , T):-

167

70 holds_at(neg_price(ThreadId , Item) = Price , T),

71 Penalty is 20.

Listing B.2: Effect Of The Actions.

B.3 Offer Generation

2 % To find the number of sellers at any given time

3 number_sellers(NoSellers , T):-

4 findall(ThreadId , active = ThreadId , ThreadIds),

5 !,

6 length(ThreadIds , NoSellers).

7 number_sellers (0,_).

9 % To find the number of sellers that are currently negotiating at

any given time

10 number_onnegotiation_sellers(NoOnnegotiationSellers , T):-

11 findall(ThreadId , holds_at(result(ThreadId) = onnegotiation

, T, ThreadIds),

12 !,

13 length(ThreadIds , NoOnnegotiationSellers).

14 number_onnegotiation_sellers (0,_).

16 %To find the number of reserved offers

17 reserved_offer(N, T):-

18 findall(ThreadId , holds_at(result(ThreadId) = hold , T),

ThreadIds),

19 !,

20 length(ThreadIds , N).

21 reserved_offer (0,_).

23 %To find the number of accepted offers at a given time.

24 accepted_offer(N, T):-

25 findall(ThreadId , holds_at(result(ThreadId) = seller_accept ,

T), ThreadIds),

26 !,

168

27 length(ThreadIds , N).

28 accepted_offer (0,_).

30 %To find the id of minimum price of accepted offers

31 min_accepted(Min , T):-

32 findall(Accepted_price , (holds_at(neg_price(ThreadId , Item)

= Accepted_price , T), holds_at(result(ThreadId) =

seller_accept , T)), List),

33 list_min(List , Min).

35 % To find the total penalty for all reserved offers

36 total_penalty(T_penalty , T):-

37 findall(Penalty , (holds_at(result(ThreadId) = hold , T),

thread_penalty(T, Penalty)), List),

38 list_sum(List , T_penalty).

40 % To calculate each reserved offer penalty

41 thread_penalty(T, Penalty):-

42 holds_at(neg_price(ThreadId , Item) = P, T),

43 holds_at(result(ThreadId) = hold , T),

44 Penalty is P.

46 %To find the minimum price of reserved offers

47 min_reserved(Min , T):-

48 findall(Comited_price , (holds_at(neg_price(ThreadId , Item) =

Comited_price , T), holds_at(result(ThreadId) = hold , T))

, List),

49 list_min(List , Min).

51 min_reserved_id(Min_id , T):-

52 findall(Comited_price , (holds_at(neg_price(ThreadId , Item) =

Comited_price , T), holds_at(result(ThreadId) = hold , T))

, List),

53 list_min(List , Min),

54 holds_at(neg_price(ThreadId , Item) = Min , T),

55 holds_at(result(ThreadId) = hold , T).

169

57 % return the id of the dialogue with the maximum reserved offer

58 max_reserved_id(Max_id , T):-

59 findall(Comited_price , (holds_at(neg_price(ThreadId , Item) =

Comited_price , T), holds_at(result(ThreadId) = hold , T))

, List),

60 list_max(List , Max),

61 holds_at(neg_price(ThreadId , Item) = Max , T).

63 max_reserved(Max , T):-

64 findall(Comited_price , (holds_at(neg_price(ThreadId , Item) =

Comited_price , T), holds_at(result(ThreadId) = hold , T))

, List),

65 list_max(List , Max).

67 %To find the id of minimum price of accepted offers

68 min_accepted_id(Min_id , T):-

69 findall(Accepted_price , (holds_at(neg_price(ThreadId , Item)

= Accepted_price , T), holds_at(result(ThreadId) =

seller_accept , T)), List),

70 list_min(List , Min),

71 findall(Min_ids , holds_at(neg_price(Min_ids , Item) = Min , T)

, List1),

72 element(1, List1 , Min_id).

74 % if value in[N ,0.66] then incompatible opponent

75 map_value_range(Value ,Range , RangePosition):-

76 Value >= 0.66,

77 Range = 'incompatible ',

78 RangePosition is 3.

80 % if value in [0.66 ,0.33] then moderately compatible opponent

81 map_value_range(Value ,Range , RangePosition):-

82 Value < 0.66,

83 Value >= 0.33,

84 Range = 'moderate compatible ',

170

85 RangePosition is 2.

87 % if value in[0.33 ,0] then compatible opponent

88 map_value_range(Value ,Range , RangePosition):-

89 Value < 0.33,

90 Range = 'compatible ',

91 RangePosition is 1.

93 % negotiation situation in each thread

94 % C1 - is the opponent response time , the faster the response time

the better.

95 opponent_response_time(ThreadId , C1, RangePosition , T):-

96 holds_at(opp_last_offer(ThreadId , _,_) = OppLastT , T),

97 holds_at(deadline = Deadline , T),

98 holds_at(my_last_offer(ThreadId ,_,_) = MyLastT , T),

99 C1Value is float(OppLastT -MyLastT)/float(Deadline),

100 map_value_range(C1Value , C1 , RangePosition).

102 % C2 - is the opponent concession rate - if the opponent is

irrational it will return incompatible opponent

103 opponent_concession_rate(ThreadId , C2 , RangePosition , T):-

104 holds_at(window_size = WindowSize , T),

105 holds_at(all_opp_offer(ThreadId , Item) = All_price , T),

106 holds_at(ip = Min , T),

107 holds_at(rp = Max , T),

108 (

109 NoOppOffers >= WindowSize ->

110 element(1, All_price , First),

111 element(2, All_price , Second),

112 element(3, All_price , Third),

113 X is (Second -First)+(Third -Second),

114 C2Value is float(X)/float(Max -Min),

115 map_value_range (1-0.25- C2Value , C2, RangePosition)

116 ;

117 NoOppOffers == 2 ->

118 element(1, All_price , First),

171

119 element(2, All_price , Second),

120 X is (Second -First),

121 C2Value is float(X)/float(Max -Min),

122 map_value_range (1-0.25- C2Value , C2, RangePosition)

123 ;

124 NoOppOffers < 2 ->

125 C2Value is 1,

126 map_value_range (1-C2Value , C2, RangePosition),

127).

129 % compatible [2- 3]

130 map_threadValue_threadStatus(ThreadValue , ThreadStatus):-

131 ThreadValue =< 3,

132 ThreadValue >= 2,

133 ThreadStatus ='compatible '.

135 % moderately compatible [4- 5]

136 map_threadValue_threadStatus(ThreadValue , ThreadStatus):-

137 ThreadValue =< 5,

138 ThreadValue >= 4,

139 ThreadStatus ='moderate compatible '.

141 % incompatible [6- 6]

142 map_threadValue_threadStatus(ThreadValue , ThreadStatus):-

143 ThreadValue =< 6,

144 ThreadValue >= 6,

145 ThreadStatus ='incompatible '.

147 thread_situation(ThreadId , ThreadValue , ThreadStatus , ThreadId , T):-

148 opponent_response_time(ThreadId , C1 , C1RangePosition , T),

149 opponent_concession_rate(ThreadId , C2 , C2RangePosition , T),

150 ThreadValue is C1RangePosition + C2RangePosition ,

151 map_threadValue_threadStatus(ThreadValue , ThreadStatus).

153 % retrieve all the threads situation and calculate the concession

rat for the negotiation situation

172

154 negotiationStatus(AllThreadsSituation , T):-

155 findall(ThreadSituation , (holds_at(result(ThreadId) =

onnegotiation , T), thread_situation(ThreadId ,

ThreadSituation , ThreadStatus , T)), List),

156 list_sum(List , AllThreadsSituation).

158 negotiationStatusCR(NegotiationStatusCR , T):-

159 number_sellers(NoOnnegotiationSellers , T),

160 negotiationStatus(AllThreadsSituation , T),

161 NegotiationStatusCR is float(AllThreadsSituation - 2 *

NoOnnegotiationSellers)/float ((6 * NoOnnegotiationSellers

) - (2 * NoOnnegotiationSellers)).

163 selfFactors(ThreadId , Self , T):-

164 holds_at(self_deadline = Td, T),

165 holds_at(startTime = Ts, T),

166 DeadlineF is float(T-Ts)/float(Td -Ts),

167 reserved_offer(N, T),

168 ReservedF is (float (1)/float(N+1)),

169 holds_at(eagerness = EagernessF , T),

170 generalNegotiationStatus(NegotiationStatusF , T),

171 Self is 0.25*(DeadlineF + ReservedF + EagernessF +

NegotiationStatusF).

173 envFactors(ThreadId , Env , T):-

174 number_sellers(NoSellers , T),

175 NoSellersF is float (1)/float(NoSellers),

176 holds_at(number_competitors = NoCompetitors , T),

177 holds_at(max_number_competitors = MaxNoCompetitors , T),

178 NoCompetitorsF is float(NoCompetitors)/float(MaxNoCompetitors

),

179 holds_at(demandSupplyRatio = DemandSupplyRatio , T),

180 holds_at(min_demand_supply_ratio = MinDemandSupplyRatio , T),

181 holds_at(max_demand_supply_ratio = MaxDemandSupplyRatio , T),

182 DemandSupplyRatioF is float(DemandSupplyRatio -

MinDemandSupplyRatio)/

173

183 float(MaxDemandSupplyRatio -MinDemandSupplyRatio),

184 Env is 0.33 *(NoSellersF + NoCompetitorsF +

DemandSupplyRatioF).

186 dM(DM , Y, T):-

187 holds_at(rp = Max , T),

188 holds_at(all_opp_offer(ThreadId , Item) = All_price , T),

189 length(All_price , NoOppOffers),

190 element(NoOppOffers , All_price , First),

191 holds_at(self_deadline = Td, T),

192 holds_at(startTime = Ts, T),

193 DeadlineF is float(CurrentTime -Ts)/float(Td -Ts),

194 Y is float(First)/float(Max),

195 X is Y * DeadlineF ,

196 (

197 X > 1 ->

198 DM is 1

199 ;

200 DM is X

201).

203 % Self factor weight , if Self= Low (0.33 -0] then

204 w_Self(ThreadId , W_Self , Self , DM, T):-

205 Self < 0.33,

206 Self >= 0,

207 W_Self is DM * 0.75.

209 % Self factor weight , if Self= Medium (0.66 -0.33] then

210 w_Self(ThreadId , W_Self , Self , DM, T):-

211 Self < 0.66,

212 Self >= 0.33,

213 W_Self is DM * 0.5.

215 % Self factor weight , if Self= High [1 -0.66] then

216 w_Self(ThreadId , W_Self , Self , DM, T):-

217 Self =< 1,

174

218 Self >= 0.66,

219 W_Self is DM * 0.25.

221 % Environment factor weight , in any case then

222 w_Env(ThreadId , W_Env , W_Self , W_Opp , T):-

223 W_Env is 1-W_Self.

225 % concession rate

226 concession(CA , ThreadId , T):-

227 findall(Cycle_Times , neardeadline(Cycle_Times), List),

228 dM(DM, Dis , T),

229 list_max(List , Near_Deadline),

230 holds_at(self_deadline = Td, T),

231 (

232 T >= (Td - (Near_Deadline)) ->

233 CA is 0.99

234 ;

235 selfFactors(ThreadId , Self , T),

236 w_Self(ThreadId , W_Self , Self , T),

237 envFactors(ThreadId , Env , T),

238 w_Env(ThreadId , W_Env , W_Self , T),

239 CA is (W_Env * Env + W_Self * Self)

240).

242 select_offer(MyLastOffer , IntendedOffer , Offer):-

243 MyLastOffer >= IntendedOffer ,

244 Offer is MyLastOffer.

245 select_offer(MyLastOffer , IntendedOffer , Offer):-

246 MyLastOffer < IntendedOffer ,

247 Offer is IntendedOffer.

249 holds_at(intended_offer(ThreadId) = Offer , T):-

250 concession(CA, ThreadId , T),

251 holds_at(ip = Min , T),

252 holds_at(rp = Max , T),

253 Offer is Min + (Max - Min) * CA.

175

255 % calculate an offer

256 calc_next_offer(ThreadId , Offer , T):-

257 holds_at(intended_offer(ThreadId) = IntendedOffer , T),

258 holds_at(my_last_offer(ThreadId , _, MyLastOffer) = T1, T),

259 select_offer(MyLastOffer , IntendedOffer , Offer).

261 next_offer(ThreadId , Offer , T):-

262 computed_next_offer(ThreadId , Offer , T),

263 !.

264 next_offer(ThreadId , Offer , T):-

265 calc_next_offer(ThreadId , Offer , T),

266 assert(computed_next_offer(ThreadId , Offer , T)).

Listing B.3: Offer Generation.

B.4 Action Selection

1 select(exit(ThreadId , Item), T):-

2 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

3 holds_at(self_deadline = Td, T),

4 T >= Td ,

5 holds_at(result(ThreadId) = onnegotiation , T),

6 holds_at(item = Item , T).

8 select(exit(ThreadId , Item), T):-

9 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

10 Opponent_offer =\= 0,

11 holds_at(self_deadline = Td, T),

12 T < Td ,

13 holds_at(item = Item , T),

14 number_sellers(NoActiveSellers , T),

15 holds_at(max_number_active_negotiations = MAN , T),

16 NoActiveSellers >= MAN ,

17 thread_situation(ThreadValue , ThreadStatus , T),

18 ThreadStatus == 'incompatible '.

176

20 select(exit(ThreadId , Item), T):-

21 holds_at(result(ThreadId) = seller_accept , T),

22 holds_at(self_deadline = Td, T),

23 T < Td ,

24 holds_at(item = Item , T),

25 Opponent_offer =\= 0,

26 reserved_offer(NoReservedOffers , T),

27 NoReservedOffers =\= 0,

28 holds_at(reserved_threshold = ReservedThreshold , T),

29 NoReservedOffers =< ReservedThreshold ,

30 total_penalty(T_panalty , T),

31 min_reserved(Min , T),

32 (Opponent_offer + T_panalty) > Min.

34 select(exit(ThreadId , Item), T):-

35 holds_at(result(ThreadId) = onnegotiation , T),

36 findall(ThreadId , holds_at(result(ThreadId) = success , T),

ThreadIds),

37 length(ThreadIds , NoSuccess),

38 NoSuccess == 1,

39 holds_at(self_deadline = Td, T),

40 T < Td ,

41 holds_at(item = Item , T).

43 select(request_to_reserve(ThreadId , Item), T):-

44 holds_at(result(ThreadId) = onnegotiation , T),

45 holds_at(self_deadline = Td, T),

46 holds_at(near_deadline = NearDeadline , T),

47 T < Td ,

48 holds_at(turn_of(ThreadId) = buyer , T),

49 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

50 holds_at(item = Item , T),

51 Opponent_offer =\= 0,

52 next_offer(T, Offer , CounterIntendedOffers),

53 reserved_offer(NoReservedOffers , T),

54 NoReservedOffers == 0,

177

55 Opponent_offer =< Offer ,

56 findall(Offerd_price , (holds_at(opp_last_offer(ThreadIds , _,

Offerd_price) = _, T), holds_at(result(ThreadIds) =

onnegotiation , T)), List),

57 list_min(List , Min),

58 findall(Min_ids , holds_at(neg_price(Min_ids , Item) = Min , T)

, List1),

59 element(1, List1 , Min_id),

60 Min_id == ThreadId.

62 select(request_to_reserve(ThreadId , Item), T):-

63 holds_at(result(ThreadId) = onnegotiation , T),

64 holds_at(self_deadline = Td, T),

65 T < Td ,

66 holds_at(turn_of(ThreadId) = buyer , T),

67 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

68 holds_at(item = Item , T),

69 Opponent_offer =\= 0,

70 next_offer(T, Offer , CounterIntendedOffers),

71 reserved_offer(NoReservedOffers , T),

72 NoReservedOffers =\= 0,

73 holds_at(reserved_threshold = ReservedThreshold , T),

74 NoReservedOffers =< ReservedThreshold ,

75 total_penalty(T_panalty , T),

76 min_reserved(Min , T),

77 (Opponent_offer + T_panalty) =< Offer ,

78 (Opponent_offer + T_panalty) < Min ,

79 findall(Offerd_price , (holds_at(opp_last_offer(ThreadId , _,

Offerd_price) = _, T), holds_at(result(ThreadId) =

onnegotiation , T)), List),

80 list_min(List , Min),

81 findall(Min_ids , holds_at(neg_price(Min_ids , Item) = Min , T

), List1),

82 element(1, List1 , Min_id),

83 Min_id == ThreadId.

178

85 select(request_to_reserve(ThreadId , Item), T):-

86 holds_at(result(ThreadId) = seller_accept , T),

87 holds_at(self_deadline = Td, T),

88 T < Td ,

89 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

90 holds_at(item = Item , T),

91 Opponent_offer =\= 0,

92 reserved_offer(NoReservedOffers , T),

93 NoReservedOffers == 0,

94 accepted_offer(NoAcceptedOffers , T),

95 NoAcceptedOffers == 0,

96 findall(Offerd_price , (holds_at(neg_price(ThreadId , Item) =

Offerd_price , T), holds_at(result(ThreadId) =

onnegotiation , T)), List),

97 list_min(List , Min),

98 findall(Min_ids , holds_at(neg_price(Min_ids , Item) = Min , T

), List1),

99 element(1, List1 , Min_id),

100 Min_id == ThreadId.

102 select(request_to_reserve(ThreadId , Item), T):-

103 holds_at(result(ThreadId) = seller_accept , T),

104 holds_at(self_deadline = Td, T),

105 T < Td ,

106 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

107 holds_at(item = Item , T),

108 Opponent_offer =\= 0,

109 reserved_offer(NoReservedOffers , T),

110 NoReservedOffers == 0,

111 accepted_offer(NoAcceptedOffers , T),

112 NoAcceptedOffers =\= 0,

113 min_accepted_id(Min_id , T),

114 Min_id == ThreadId.

116 select(request_to_reserve(ThreadId , Item), T):-

117 holds_at(self_deadline = Td, T),

179

118 T < Td ,

119 holds_at(result(ThreadId) = seller_accept , T),

120 get_time(TimeStart2),

121 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

122 holds_at(item = Item , T),

123 Opponent_offer =\= 0,

124 reserved_offer(NoReservedOffers , T),

125 NoReservedOffers =\= 0,

126 holds_at(reserved_threshold = ReservedThreshold , T),

127 NoReservedOffers =< ReservedThreshold ,

128 total_penalty(T_panalty , T),

129 min_reserved(Min , T),

130 (Opponent_offer + T_panalty) < Min.

132 select(cancel(ThreadId , Item), T):-

133 holds_at(self_deadline = Td, T),

134 T < Td ,

135 holds_at(result(ThreadId) = hold , T),

136 holds_at(item = Item , T),

137 reserved_offer(NoReservedOffers , T),

138 NoReservedOffers =\= 0,

139 holds_at(reserved_threshold = ReservedThreshold , T),

140 NoReservedOffers > ReservedThreshold ,

141 max_reserved_id(Max_id , T),

142 Max_id == ThreadId.

144 select(accept(ThreadId , Item), T):-

145 holds_at(self_deadline = Td, T),

146 T > Td ,

147 holds_at(result(ThreadId) = hold , T),

148 holds_at(item = Item , T),

149 reserved_offer(NoReservedOffers , T),

150 NoReservedOffers =\= 0,

151 min_reserved_id(Min_id , T),

152 Min_id == ThreadId.

180

154 select(accept(ThreadId , Item), T):-

155 holds_at(self_deadline = Td, T),

156 T > Td ,

157 holds_at(item = Item , T),

158 reserved_offer(NoReservedOffers , T),

159 NoReservedOffers == 0,

160 findall(Offerd_price , (holds_at(opp_last_offer(ThreadId , _,

Offerd_price) = _, T), holds_at(result(ThreadId) =

onnegotiation , T)), List),

161 list_min(List , Min),

162 findall(Min_ids , holds_at(opp_last_offer(ThreadId , _, Min) =

_, T), List1),

163 element(1, List1 , Min_id),

164 Min_id == ThreadId ,

165 holds_at(rp = Max , T),

166 Min < Max.

168 select(accept(ThreadId , Item), T):-

169 holds_at(result(ThreadId) = seller_accept , T),

170 holds_at(self_deadline = Td, T),

171 T > Td ,

172 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

173 holds_at(item = Item , T),

174 Opponent_offer =\= 0,

175 reserved_offer(NoReservedOffers , T),

176 NoReservedOffers == 0,

177 accepted_offer(NoAcceptedOffers , T),

178 NoAcceptedOffers == 0,

179 findall(Offerd_price ,(holds_at(neg_price(ThreadIds , Item) =

Offerd_price , T), holds_at(result(ThreadIds) =

onnegotiation , T)), List),

180 list_min(List , Min),

181 findall(Min_ids , holds_at(neg_price(Min_ids , Item) = Min , T

), List1),

182 element(1, List1 , Min_id),

183 Min_id == ThreadId.

181

185 select(accept(ThreadId , Item), T):-

186 holds_at(result(ThreadId) = seller_accept , T),

187 holds_at(self_deadline = Td, T),

188 T > Td ,

189 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

190 holds_at(item = Item , T),

191 Opponent_offer =\= 0,

192 reserved_offer(NoReservedOffers , T),

193 NoReservedOffers == 0,

194 accepted_offer(NoAcceptedOffers , T),

195 NoAcceptedOffers =\= 0,

196 min_accepted_id(Min_id , T),

197 Min_id == ThreadId.

199 select(accept(ThreadId , Item), T):-

200 holds_at(self_deadline = Td, T),

201 T > Td ,

202 holds_at(result(ThreadId) = seller_accept , T),

203 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

204 holds_at(item = Item , T),

205 Opponent_offer =\= 0,

206 reserved_offer(NoReservedOffers , T),

207 NoReservedOffers =\= 0,

208 holds_at(reserved_threshold = ReservedThreshold , T),

209 NoReservedOffers =< ReservedThreshold ,

210 total_penalty(T_panalty , T),

211 min_reserved(Min , T),

212 (Opponent_offer + T_panalty) < Min.

214 select(cancel(ThreadId , Item), T):-

215 holds_at(self_deadline = Td, T),

216 T > Td ,

217 holds_at(result(ThreadId) = hold , T),

218 holds_at(item = Item , T),

219 reserved_offer(NoReservedOffers , T),

182

220 NoReservedOffers =\= 0,

221 min_reserved_id(Min_id , T),

222 Min_id \= ThreadId.

224 select(exit_all(Item), T):-

225 holds_at(total_status = negotiating , T),

226 holds_at(self_deadline = Td, T),

227 T > Td ,

228 holds_at(item = Item , T).

230 select(offer(ThreadId , Item , Offer),T):-

231 holds_at(result(ThreadId) = onnegotiation , T),

232 holds_at(self_deadline = Td, T),

233 T < Td ,

234 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

235 Opponent_offer == 0,

236 holds_at(turn_of(ThreadId) = buyer , T),

237 holds_at(item = Item , T),

238 holds_at(ip = Offer , T).

240 select(offer(ThreadId , Item , Offer),T):-

241 holds_at(result(ThreadId) = onnegotiation , T),

242 holds_at(self_deadline = Td, T),

243 T < Td ,

244 holds_at(turn_of(ThreadId) = buyer , T),

245 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

246 holds_at(item = Item , T),

247 Opponent_offer =\= 0,

248 next_offer(T, Offer , CounterIntendedOffers),

249 reserved_offer(NoReservedOffers , T),

250 NoReservedOffers =\= 0,

251 total_penalty(T_penalty , T),

252 min_reserved(Min , T),

253 Offer < Opponent_offer ,

254 (Offer + T_penalty) < Min ,

255 get_time(TimeEnd).

183

257 select(offer(ThreadId , Item , Offer),T):-

258 holds_at(result(ThreadId) = onnegotiation , T),

259 holds_at(self_deadline = Td, T),

260 T < Td ,

261 holds_at(turn_of(ThreadId) = buyer , T),

262 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

263 holds_at(item = Item , T),

264 Opponent_offer =\= 0,

265 next_offer(T, Offer , CounterIntendedOffers),

266 reserved_offer(NoReservedOffers , T),

267 NoReservedOffers =\= 0,

268 total_penalty(T_panalty , T),

269 min_reserved(Min , T),

270 Offer < Opponent_offer ,

271 (Offer + T_panalty) >= Min ,

272 holds_at(startTime = Ts, T),

273 DeadlineF is float(CurrentTime -Ts)/float(Td -Ts),

274 Less_Offer is Min -(T_panalty +(Min* 0.1*(1 - DeadlineF))).

276 select(offer(ThreadId , Item , Offer),T):-

277 holds_at(result(ThreadId) = onnegotiation , T),

278 holds_at(self_deadline = Td, T),

279 T < Td ,

280 holds_at(turn_of(ThreadId) = buyer , T),

281 holds_at(neg_price(ThreadId , Item) = Opponent_offer , T),

282 Opponent_offer =\= 0,

283 holds_at(item = Item , T),

284 next_offer(T, Offer , CounterIntendedOffers),

285 reserved_offer(NoReservedOffers , T),

286 NoReservedOffers == 0,

287 Offer < Opponent_offer.

289 calculate_negotiationStatusCR(T):-

290 holds_at(startTime = ST, T),

291 T =\= ST ,

184

292 negotiationStatusCR(NegotiationStatusF , T),

293 assert(generalNegotiationStatus(NegotiationStatusF , T)).

Listing B.4: Action Selection.

185

Bibliography

[1] B. An, N. Gatti, and V. Lesser. Extending alternating-offers bargaining

in one-to-many and many-to-many settings. In Proceedings of the 2009

IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology - Volume 02, WI-IAT ’09, pages 423–426, Wash-

ington, DC, USA, 2009. IEEE Computer Society.

[2] B. An, N. Gatti, and V. Lesser. Bilateral bargaining with one-sided uncertain

reserve prices. Autonomous Agents and Multi-Agent Systems, 26(3):420–455,

2013.

[3] B. An, V. Lesser, D. Irwin, and M. Zink. Automated negotiation with decom-

mitment for dynamic resource allocation in cloud computing. In Proceedings

of the 9th International Conference on Autonomous Agents and Multiagent

Systems - Volume 1, AAMAS ’10, pages 981–988, Richland, SC, 2010. In-

ternational Foundation for Autonomous Agents and Multiagent Systems.

[4] B. An, V. Lesser, and K. M. Sim. Decommitment in multi-resource negotia-

tion. In Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems - Volume 3, AAMAS ’08, pages 1553–1556,

Richland, SC, 2008. International Foundation for Autonomous Agents and

Multiagent Systems.

[5] B. An, V. Lesser, and K. M. Sim. Strategic agents for multi-resource nego-

tiation. Autonomous Agents and Multi-Agent Systems, 23(1):114–153, July

2011.

186

[6] B. An, K. M. Sim, L. G. Tang, S. Q. Li, and D. J. Cheng. Continuous-time

negotiation mechanism for software agents. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 36(6):1261 –1272, 2006.

[7] A. Artikis, F. Guerin, and J. Pitt. Integrating interaction protocols and inter-

net protocols for agent-mediated e-commerce. In F. Dignum and U. Cortes,

editors, Agent-Mediated Electronic Commerce III, volume 2003 of Lecture

Notes in Computer Science, pages 47–69. Springer Berlin Heidelberg, 2001.

[8] A. Artikis and M. Sergot. Executable specification of open multi-agent sys-

tems. Logic Journal of the IGPL, 18:31–65, 2010.

[9] A. Artikis, M. Sergot, and J. Pitt. Specifying norm-governed computational

societies. ACM Transactions on Computational Logic, 10(1):1–42, 2009.

[10] R. Ashri, I. Rahwan, and M. Luck. Architectures for negotiating agents.

In Proceedings of the 3rd Central and Eastern European conference on

Multi-agent systems, CEEMAS’03, pages 136–146, Berlin, Heidelberg, 2003.

Springer-Verlag.

[11] T. Baarslag, A. Dirkzwager, K. Hindriks, and C. M. Jonker. The significance

of bidding, accepting and opponent modeling in automated negotiation. In

21st European Conference on Artificial Intelligence, Frontiers in Artificial

Intelligence and Applications, pages 27–32. ECAI2014: 21st European Con-

ference on Artificial Intelligence, 2014.

[12] T. Baarslag, M. Hendrikx, K. V. Hindriks, and C. M. Jonker. Measuring the

performance of online opponent models in automated bilateral negotiation.

In M. Thielscher and D. Zhang, editors, AI 2012: Advances in Artificial

Intelligence, volume 7691 of Lecture Notes in Computer Science, page 1–14.

Springer, Springer, 2012.

[13] J. Y. Bakos. A strategic analysis of electronic marketplaces. MIS Quarterly,

15(3):pp. 295–310, 1991.

187

[14] A. Bikakis and G. Antoniou. Defeasible contextual reasoning with arguments

in ambient intelligence. Knowledge and Data Engineering, IEEE Transac-

tions on, 22(11):1492–1506, Nov 2010.

[15] L. Bodenstaff. Formalisation of argumentation protocols in event calculus.

Master’s thesis, Utrecht University, 2005.

[16] D. Bouyssou, T. Marchant, and P. Perny. Social Choice Theory and Multi-

criteria Decision Aiding, pages 779–810. ISTE, 2010.

[17] D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukiàs, and P. Vincke. Eval-

uation And Decision Models With Multiple Criteria. Stepping Stones For

The Analyst. International Series in Operations Research & Management

Science, Vol. 86. Springer, 2006.

[18] S. Bromuri and K. Stathis. Situating cognitive agents in GOLEM.

In D. Weyns, S. Brueckner, and Y. Demazeau, editors, Engineering

Environment-Mediated Multi-Agent Systems, volume 5049 of Lecture Notes

in Computer Science, pages 115–134. Springer Berlin Heidelberg, 2008.

[19] S. Bromuri and K. Stathis. Distributed agent environments in the ambient

event calculus. In Proceedings of the Third ACM International Conference on

Distributed Event-Based Systems, DEBS ’09, pages 12:1–12:12, New York,

NY, USA, 2009. ACM.

[20] S. Bromuri, V. Urovi, M. Morge, K. Stathis, and F. Toni. A multi-agent

system for service discovery, selection and negotiation. In AAMAS, pages

1395–1396, 2009.

[21] S. Bromuri, V. Urovi, and K. Stathis. iCampus: A Connected Campus in

the Ambient Event Calculus. International Journal of Ambient Computing

and Intelligence (IJACI), 2(1):59–65, 2010.

[22] J. Brzostowski and R. Kowalczyk. Predicting partner’s behaviour in agent

negotiation. In Proceedings of the fifth international joint conference on

188

Autonomous agents and multiagent systems, AAMAS ’06, pages 355–361,

New York, NY, USA, 2006. ACM.

[23] M. Cao, X. Luo, X. R. Luo, and X. Dai. Automated negotiation for e-

commerce decision making: A goal deliberated agent architecture for multi-

strategy selection. Decision Support Systems, 73(0):1–14, 2015.

[24] A. Chopra and M. Singh. Producing compliant interactions: Conformance,

coverage, and interoperability. In M. Baldoni and U. Endriss, editors, Declar-

ative Agent Languages and Technologies IV, volume 4327 of Lecture Notes

in Computer Science, pages 1–15. Springer Berlin Heidelberg, 2006.

[25] N. Dipsis and K. Stathis. Ubiquitous Agents for Ambient Ecologies. Perva-

sive and Mobile Computing, 8(4):562–574, 2012.

[26] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning

About a Highly Connected World. Cambridge University Press, New York,

NY, USA, 2010.

[27] A. Fabregues and C. Sierra. An agent architecture for simultaneous bilateral

negotiations. In Proceedings of the 13th International Conference of the

Catalan Association for Artificial Intelligence (CCIA 2010), pages 29–38,

Espluga de Francoĺı, Tarragona, 2010.

[28] P. Faratin. Automated service negotiation between autonomous computa-

tional agents. PhD thesis, Queen Mary & Westfield College, London, 2000.

[29] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions

for autonomous agents. International Journal of Robotics and Autonomous

Systems, 24(3 - 4):159–182, 1998.

[30] M. Fasli. Agent Technology For E-Commerce. John Wiley & Sons, 2007.

[31] S. Fatima, S. Kraus, and M. Wooldridge. Principles of Automated Negotia-

tion. Cambridge University Press, 2014.

189

[32] S. S. Fatima and M. Wooldridge. Multilateral bargaining for resource di-

vision. In 21st European Conference on Artificial Intelligence ECAI 2014,

volume 263 of Frontiers in Artificial Intelligence and Applications, pages

309–314. IOS Press, 2014.

[33] S. S. Fatima, M. Wooldridge, and N. R. Jennings. Multi-issue negotia-

tion with deadlines. Journal of Artificial Intelligence Research, 27:381–417,

November 2006.

[34] M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Computational logics

and agents: A road map of current technologies and future trends. Compu-

tational Intelligence, 23(1):61–91, 2007.

[35] R. Fisher and W. L. Ury. Getting to Yes: Negotiating Agreement Without

Giving In. Penguin (Non-Classics), 2nd edition, 1991.

[36] J. Forth, K. Stathis, and F. Toni. Decision making with a KGP agent

systems. Journal of Decision Systems, 15(2-3):241–266, 2006.

[37] K. Fujita, T. Ito, T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, and R. Lin.

The second automated negotiating agents competition (anac2011). In T. Ito,

M. Zhang, V. Robu, and T. Matsuo, editors, Complex Automated Negotia-

tions: Theories, Models, and Software Competitions, volume 435 of Studies

in Computational Intelligence, pages 183–197. Springer Berlin Heidelberg,

2013.

[38] J. Garćıa-Lapresta, M. Mart́ınez-Panero, and L. Meneses. Defining the

Borda count in a linguistic decision making context. Information Sciences,

179(14):2309–2316, 2009. Including Special Section Linguistic Decision Mak-

ing Tools and Applications.

[39] F. Guerin and J. Pitt. Guaranteeing properties for e-commerce systems.

In J. Padget, O. Shehory, D. Parkes, N. Sadeh, and W. Walsh, editors,

190

Agent-Mediated Electronic Commerce IV. Designing Mechanisms and Sys-

tems, volume 2531 of Lecture Notes in Computer Science, pages 253–272.

Springer Berlin Heidelberg, 2002.

[40] F. Guerin and J. Pitt. Verification and compliance testing. In M.-P. Huget,

editor, Communication in Multiagent Systems, volume 2650 of Lecture Notes

in Computer Science, pages 98–112. Springer Berlin Heidelberg, 2003.

[41] R. H. Guttman and P. Maes. Cooperative vs. competitive multi-agent nego-

tiations in retail electronic commerce. In Proceedings of the Second Interna-

tional Workshop on Cooperative Information Agents II, Learning, Mobility

and Electronic Commerce for Information Discovery on the Internet, pages

135–147, London, UK, 1998. Springer-Verlag.

[42] R. Hadfi and T. Ito. Addressing complexity in multi-issue negotiation via

utility hypergraphs. In Twenty-Eighth AAAI Conference on Artificial Intel-

ligence, 2014.

[43] M. He, H. Leung, and N. R. Jennings. A fuzzy logic based bidding strategy

for autonomous agents in continuous double auctions. IEEE Transactions

on Knowledge and Data Engineering, 15(6):1345–1363, 2003.

[44] J. Hernández, J. Mula, R. Poler, and A. Lyons. Collaborative planning in

multi-tier supply chains supported by a negotiation-based mechanism and

multi-agent system. Group Decision and Negotiation, 23(2):235–269, 2014.

[45] K. Hindriks, C. M. Jonker, and D. Tykhonov. The benefits of opponent

models in negotiation. In Proceedings of the 2009 IEEE/WIC/ACM Inter-

national Joint Conference on Web Intelligence and Intelligent Agent Tech-

nology - Volume 02, WI-IAT ’09, pages 439–444, Washington, DC, USA,

2009. IEEE Computer Society.

[46] K. Hindriks and D. Tykhonov. Opponent modelling in automated multi-issue

negotiation using bayesian learning. In Proceedings of the 7th international

191

joint conference on Autonomous agents and multiagent systems - Volume 1,

AAMAS ’08, pages 331–338, Richland, SC, 2008. International Foundation

for Autonomous Agents and Multiagent Systems.

[47] G. Jagabathuni. Analytical techniques for dynamic negotiation runs in recon.

Master’s thesis, Department of Computer Science, Royal Holloway, Univ. of

London, 2015.

[48] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and

M. Wooldridge. Automated negotiation: Prospects, methods and challenges.

International Journal of Group Decision and Negotiation, 10(2):199–215,

2001.

[49] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research

and development. Autonomous Agents and Multi-Agent Systems, 1:7–38,

1998.

[50] Ö. Kafalı, S. Bromuri, E. Aguilar-Pelaez, M. Sindlar, T. van der Weide,

M. Schumacher, E. Rodriguez-Villegas, and K. Stathis. A Smart e-Health

Environment for Diabetes Management. Journal of Ambient Intelligence and

Smart Environments, 5(5):479–502, 2013.

[51] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative

agent control. In J. Leite and P. Torroni, editors, Computational Logic in

Multi-Agent Systems, volume 3487 of Lecture Notes in Computer Science,

pages 96–110. Springer Berlin Heidelberg, 2005.

[52] K. Kolomvatsos and S. Hadjieftymiades. On the use of particle swarm opti-

mization and kernel density estimator in concurrent negotiations. Informa-

tion Sciences, 262(0):99–116, 2014.

[53] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation

Computing, 4:67–95, January 1986.

192

[54] S. Kraus. Automated negotiation and decision making in multiagent envi-

ronments. In In: MultiAgent Systems and Applications. ACAI-EASSS 2001

Proceedings, Luck M., Marik V., Stepankova O., Trappl R. (eds). Springer-

Verlag, pages 150–172. Springer-Verlag, 2001.

[55] S. Kraus. Strategic Negotiation in Multiagent Environments. MIT Press,

Cambridge, MA, USA, 2001.

[56] P. Kruchten. The 4+1 view model of architecture. Software, IEEE, 12(6):42–

50, Nov. 1995.

[57] G. Lai, C. Li, K. Sycara, and J. Giampapa. Literature review on multi-

attribute negotiations. Technical report, Robotics Institute, Carnegie Mellon

University, 2004.

[58] R. Y. K. Lau, M. Tang, O. Wong, S. W. Milliner, and Y.-P. P. Chen. An

evolutionary learning approach for adaptive negotiation agents: Research

articles. International Journal of Intelligent Systems, 21:41–72, January

2006.

[59] C. Li, J. A. Giampapa, and K. Sycara. Bilateral negotiation decisions

with uncertain dynamic outside options. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Special Issue on Game-theoretic Analysis and

Stochastic Simulation of Negotiation Agents, 36(1):31–44, January 2006.

[60] R. Lin and S. Kraus. Can automated agents proficiently negotiate with

humans? Communications of the ACM, 53(1):78–88, Jan. 2010.

[61] R. Lin, S. Kraus, T. Baarslag, D. Tykhonov, K. V. Hindriks, and C. M.

Jonker. GENIUS: An integrated environment for supporting the design

of generic automated negotiators. Computational Intelligence, 30(1):48–70,

2014.

193

[62] R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. Negotiating with bounded

rational agents in environments with incomplete information using an auto-

mated agent. Artificial Intelligence, 172:823–851, April 2008.

[63] A. Lomuscio, M. Wooldridge, and N. Jennings. A classification scheme

for negotiation in electronic commerce. Group Decision and Negotiation,

12(1):31–56, 2003.

[64] F. Lopes and H. Coelho. Strategic and tactical behaviour in automated

negotiation. International Journal of Artificial Intelligence, 4 (Spring):35–

63, 2010.

[65] F. Lopes, N. Mamede, A. Q. Novais, and H. Coelho. Negotiation strate-

gies for autonomous computational agents. In 16th European conference on

artificial intelligence (ECAI-04), pages 38–42. IOS Press, 2004.

[66] F. Lopes, M. Wooldridge, and A. Q. Novais. Negotiation among autonomous

computational agents: principles, analysis and challenges. Artificial Intelli-

gence Review, 29(1):1–44, 2008.

[67] X. Luo, C. Miao, N. R. Jennings, M. He, Z. Shen, and M. Zhang. KEMNAD:

A knowledge engineering methodology for negotiating agent development.

Computational Intelligence, 28(1):51–105, 2012.

[68] K. Mansour and R. Kowalczyk. An approach to one-to-many concurrent

negotiation. Group Decision and Negotiation, 24(1):45–66, 2015.

[69] N. Matos, C. Sierra, and N. Jennings. Determining successful negotiation

strategies: An evolutionary approach. In Proceedings of the 3rd International

Conference on Multi Agent Systems, ICMAS ’98, pages 182–189, Washing-

ton, DC, USA, 1998. IEEE Computer Society.

[70] P. McBurney, R. M. Van Eijk, S. Parsons, and L. Amgoud. A dialogue game

protocol for agent purchase negotiations. Autonomous Agents and Multi-

Agent Systems, 7:235–273, November 2003.

194

[71] J. McGinnis, K. Stathis, and F. Toni. A formal framework of virtual organi-

sations as agent societies. In Formal Aspects of Virtual Organisations, pages

1–14, 2009.

[72] M. Morge, J. McGinnis, S. Bromuri, F. Toni, P. Mancarella, and K. Stathis.

Toward a modular architecture of argumentative agents to compose services.

In Proceedings of EUMAS, 2007.

[73] A. Munim. GOLEMLite: a framework for the development of agent-based

applications. Master’s thesis, Department of Computer Science, Royal Hol-

loway, Univ. of London, September 2013.

[74] S. Munroe and M. Luck. Balancing conflict and cost in the selection of nego-

tiation opponents. In Rational, Robust, and Secure Negotiation Mechanisms

in Multi-Agent Systems, 2005, pages 39–53, 2005.

[75] V. Narayanan and N. R. Jennings. An adaptive bilateral negotiation model

for e-commerce settings. In Proceedings of the Seventh IEEE International

Conference on E-Commerce Technology, pages 34–41, Washington, DC,

USA, 2005. IEEE Computer Society.

[76] B. Neville and J. Pitt. A computational framework for social agents in

agent mediated e-commerce. In A. Omicini, P. Petta, and J. Pitt, editors,

Engineering Societies in the Agents World IV, volume 3071 of Lecture Notes

in Computer Science, pages 376–391. Springer Berlin Heidelberg, 2004.

[77] B. Neville and J. Pitt. Presage: A programming environment for the simu-

lation of agent societies. In K. Hindriks, A. Pokahr, and S. Sardina, editors,

Programming Multi-Agent Systems, volume 5442 of Lecture Notes in Com-

puter Science, pages 88–103. Springer Berlin Heidelberg, 2009.

[78] T. Nguyen and N. R. Jennings. A heuristic model of concurrent bi-lateral

negotiations in incomplete information settings. In International Joint Con-

ferences on Artificial Intelligence, pages 1467–1469, 2003.

195

[79] T. Nguyen and N. R. Jennings. Coordinating multiple concurrent negotia-

tions. In 3rd International Conference on Autonomous Agents and Multi-

Agent Systems, pages 1064–1071, 2004.

[80] T. Nguyen and N. R. Jennings. Managing commitments in multiple concur-

rent negotiations. International Journal Electronic Commerce Research and

Applications, 4:362–376, 2005.

[81] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,

1994.

[82] J. Pitt. Electronic Agents in Future E-Commerce Scenarios: Some Compu-

tational, Social & Legal Aspects, pages 23–49. Oslo University Press, 2003.

[83] I. Ponka. Commitment models and concurrent bilateral negotiation strategies

in dynamic service markets. PhD thesis, University of Southampton, School

of Electronics and Computer Science, 2009.

[84] I. Rahwan, R. Kowalczyk, and H. H. Pham. Intelligent agents for auto-

mated one-to-many e-commerce negotiation. In ACSC ’02: Proceedings of

the twenty-fifth Australasian conference on Computer science, pages 197–

204, Darlinghurst, Australia, Australia, 2002. Australian Computer Society,

Inc.

[85] I. Rahwan, P. McBurney, and L. Sonenberg. Towards a theory of negotiation

strategy (a preliminary report). In Proceedings of the 5th Workshop on

Game Theoretic and Decision Theoretic Agents (GTDT-2003), pages 73–80,

Melbourne, Australia, 2003.

[86] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and

L. Sonenberg. Argumentation-based negotiation. Knowledge Engineering

Review, 18(4):343–375, 2003.

196

[87] I. Rahwan, L. Sonenberg, N. R. Jennings, and P. McBurney. STRATUM:

A methodology for designing heuristic agent negotiation strategies. Applied

Artificial Intelligence, 21:489–527, June 2007.

[88] H. Raiffa. The Art and Science of Negotiation. Harvard University Press,

1982.

[89] D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated negotiation from

declarative contract descriptions. In Proceedings of the Fifth International

Conference on Autonomous Agents, AGENTS ’01, pages 51–58, New York,

NY, USA, 2001. ACM.

[90] F. Ren and M. Zhang. Prediction of partners’ behaviors in agent negoti-

ation under open and dynamic environments. In Proceedings of the 2007

IEEE/WIC/ACM International Conferences on Web Intelligence and Intel-

ligent Agent Technology - Workshops, WI-IATW ’07, pages 379–382. IEEE

Computer Society, Washington, DC, USA, 2007.

[91] F. Ren, M. Zhang, and K. M. Sim. Adaptive conceding strategies for auto-

mated trading agents in dynamic, open markets. Decision Support Systems,

46(3):704–716, 2009.

[92] M. Resinas, P. Fernández, and R. Corchuelo. A bargaining-specific archi-

tecture for supporting automated service agreement negotiation systems.

Science of Computer Programming, 77(1):4–28, Jan. 2012.

[93] V. Robu, D. J. A. Somefun, and J. A. L. Poutre. Modeling complex multi-

issue negotiations using utility graphs. In Proceedings of AAMAS’05, pages

280–287, 2005.

[94] A. Rosenfeld, I. Zuckerman, E. Segal-Halevi, O. Drein, and S. Kraus.

NegoChat-A: a chat-based negotiation agent with bounded rationality. Au-

tonomous Agents and Multi-Agent Systems, pages 1–22, 2015.

197

[95] A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica,

50(1):pp. 97–109, 1982.

[96] F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation:

an abductive approach. In Symposium on information agents for electronic

commerce, York, pages 71–78. The Society for the Study of Artificial Intel-

ligence and the Simulation of Behaviour, 2001.

[97] T. Sandholm and V. Lesser. Leveled Commitment Contracts and Strategic

Breach. Games and Economic Behavior, 35:212–270, January 2001.

[98] M. Shanahan. The event calculus explained. In M. J. Wooldridge and

M. Veloso, editors, Artificial intelligence today, pages 409–430. Springer-

Verlag, Berlin, Heidelberg, 1999.

[99] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, 2008.

[100] K. Sim and B. Shi. Adaptive commitment management strategy profiles

for concurrent negotiations. In T. Ito, M. Zhang, V. Robu, S. Fatima, and

T. Matsuo, editors, Advances in Agent-Based Complex Automated Negotia-

tions, volume 233 of Studies in Computational Intelligence, pages 177–195.

Springer Berlin / Heidelberg, 2009.

[101] K. M. Sim. A market-driven model for designing negotiation agents. Com-

putational Intelligence, 18(4):618–637, 2002.

[102] K. M. Sim and B. An. Evolving best-response strategies for market-driven

agents using aggregative fitness GA. IEEE Transactions on Systems, Man

and Cybernetics, 39(3):284–298, 2009.

[103] K. M. Sim and C. Y. Choi. Agents that react to changing market situations,.

IEEE Transaction on Systems, Man and Cybernetics, Part B: Cybernetics,

33:188–201, April 2003.

198

[104] K. M. Sim and B. Shi. Concurrent negotiation and coordination for grid

resource coallocation. IEEE transactions on systems, man and cybernetics.

Part B, 40:753–766, June 2010.

[105] T. Skylogiannis, G. Antoniou, N. Bassiliades, G. Governatori, and

A. Bikakis. DR-NEGOTIATE - a system for automated agent negotia-

tion with defeasible logic-based strategies. Data & Knowledge Engineering,

63:362–380, November 2007.

[106] R. G. Smith. The Contract Net Protocol: High-level communication and

control in a distributed problem solver. IEEE Transactions on Computers,

29(12):1104–1113, Dec. 1980.

[107] K. Stathis and F. Toni. The KGP model of agency for decision making in e-

negotiation. In Joint-Workshop on Decision Support Systems, Experimental

Economics E-Participation, June 2005.

[108] K. Sycara and T. Dai. Agent reasoning in negotiation. In D. M. Kilgour and

C. Eden, editors, Handbook of Group Decision and Negotiation, volume 4

of Advances in Group Decision and Negotiation, pages 437–451. Springer

Netherlands, 2010.

[109] E. Tsang, R. Olsen, and S. Masry. Event calculus on high frequency finance.

Technical report, Working Paper WP038-10, Centre for Computational Fi-

nance and Economic Agents (CCFEA), University of Essex, 2010.

[110] Y. Tsuruhashi and N. Fukuta. A framework for analyzing simultaneous

negotiations. In G. Boella, E. Elkind, B. Savarimuthu, F. Dignum, and

M. Purvis, editors, PRIMA 2013: Principles and Practice of Multi-Agent

Systems, volume 8291 of Lecture Notes in Computer Science, pages 526–533.

Springer Berlin Heidelberg, 2013.

199

[111] M. P. Wellman, A. Greenwald, and P. Stone. Autonomous Bidding Agents:

Strategies and Lessons from the Trading Agent Competition (Intelligent

Robotics and Autonomous Agents). The MIT Press, 2007.

[112] P. West, D. Ariely, S. Bellman, E. Bradlow, J. Huber, E. Johnson, B. Kahn,

J. Little, and D. Schkade. Agents to the rescue? Marketing Letters,

10(3):285–300, 1999.

[113] D. Weyns. Architecture-Based Design of Multi-Agent Systems. Springer

Publishing Company, Incorporated, 1st edition, 2010.

[114] C. R. Williams. Practical Strategies for Agent-Based Negotiation in Complex

Environments. PhD thesis, University of Southampton, December 2012.

[115] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings. Negotiating

concurrently with unknown opponents in complex, real-time domains. In

20th European Conference on Artificial Intelligence, volume 242, pages 834–

839, August 2012.

[116] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing,

2nd edition, 2009.

[117] M. Wooldridge and P. Ciancarini. Agent-oriented software engineering: The

state of the art. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented

Software Engineering, volume 1957 of Lecture Notes in Computer Science,

pages 1–28. Springer Berlin Heidelberg, 2001.

[118] D. Zeng and K. Sycara. Bayesian learning in negotiation. International

Journal of Human-Computer Studies, 48(1):125–141, 1998.

200

