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Abstract

Matroid theory is often thought of as a generalization of graph theory. In this
paper we propose an analogous correspondence between embedded graphs and
delta-matroids. We show that delta-matroids arise as the natural extension of
graphic matroids to the setting of embedded graphs. We show that various basic
ribbon graph operations and concepts have delta-matroid analogues, and illus-
trate how the connections between embedded graphs and delta-matroids can be
exploited. Also, in direct analogy with the fact that the Tutte polynomial is
matroidal, we show that several polynomials of embedded graphs from the liter-
ature, including the Las Vergnas, Bollabás-Riordan and Krushkal polynomials,
are in fact delta-matroidal.
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1. Overview1

Matroid theory is often thought of as a generalization of graph theory. Many2

results in graph theory turn out to be special cases of results in matroid theory.3

This is beneficial in two ways.4

First, graph theory can serve as an excellent guide for studying matroids.5

As reported by Oxley, in [55], Tutte famously observed that, “If a theorem6

about graphs can be expressed in terms of edges and circuits alone it proba-7

bly exemplifies a more general theorem about matroids.” Perhaps one of the8

most spectacular illustrations of the effect of graph theory on matroid theory9
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can be found in Geelen, Gerards and Whittle’s recent and at the time of writ-10

ing unpublished result that, for any finite field, the class of matroids that are11

representable over that field is well-quasi-ordered by the minor relation. This12

profound result is the matroid analogue of an equally profound result that came13

out of Robertson and Seymour’s Graph Minors Project, in which, they proved14

that graphs are well-quasi-ordered by the minor relation [57]. Rather than the15

result itself, here we want to focus on the fact that, to quote a recent statement16

of Whittle [36] about his work with Geelen and Gerards, “It would be incon-17

ceivable to prove a structure theorem for matroids without the Graph Minors18

Structure Theorem as a guide”.19

Second, insights from matroid theory can lead to new results about graphs.20

For example, Wu [68] established an upper bound for the number of edges of21

a loopless 2-connected graph, which was an improvement on existing results22

suggested by matroid duality. Graph theory and matroid theory are mutually23

enriching, and this is the subject of [55] by Oxley.24

The key purpose of this paper is to propose and study a similar correspon-25

dence between embedded graphs and delta-matroids.26

Delta-matroids, introduced by Bouchet [5], can be seen as a generalization of27

matroids. Where a matroid has bases, a delta-matroid has feasible sets. These28

satisfy a symmetric exchange axiom, but do not all have to be of the same size.29

We give a formal definition in the next section. The greater generality of delta-30

matroids allows us to capture not only information about a graph, but also31

about its embedding in a surface. Bouchet was the first to observe a connection32

between embedded graphs and delta-matroids in [6]. Our approach is more33

direct than his and has the advantage that it enables us to exploit the theory34

of ribbon graphs, much of which has developed since Bouchet did his work.35

We will describe embedded graphs as ribbon graphs. The cycle matroid36

of a connected graph is constructed by taking the collection of spanning trees37

of the graph as its bases. In a connected ribbon graph, the spanning-trees38

are precisely the genus-zero spanning ribbon subgraphs that have exactly one39

boundary component. In the context of ribbon graphs, the genus-zero restriction40

is artificial, and it is subgraphs with exactly one boundary component, called41

quasi-trees that play the role of trees. It turns out that the edge set of a ribbon42

graph together with its spanning quasi-trees form a delta-matroid.43

Moreover, we will see that this delta-matroid arises as the natural extension44

of a cycle matroid to the setting of embedded graphs, and that the delta-matroid45

structure follows from basic properties of surfaces. We show that various con-46

cepts related to cellularly embedded graphs are special cases of concepts for47

delta-matroids. Because of this compatibility between the two structures, we48

extend Bouchet’s initial ideas and propose that there is a correspondence be-49

tween embedded graphs and delta-matroids that is analogous to the one between50

graphs and matroids. We justify this proposition by illustrating how results51

from topological graph theory can be used to guide the development of delta-52

matroid theory, just as graph theory often guides matroid theory. We also see53

that several polynomials of embedded graphs, including the Tutte, Las Vergnas,54

Bollobás-Riordan and Krushkal polynomials, are in fact delta-matroidal objects,55
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just as many graph polynomials are matroidal.56

The paper is structured as follows. In Section 2, we give an overview of57

some relevant properties of matroids and delta-matroids. Section 3 contains58

some background on cellularly embedded graphs. Most of the time, we will use59

the language of ribbon graphs instead of cellularly embedded graphs. These60

are equivalent concepts (see Figure 1), but ribbon graphs have the advantage of61

being closed under the natural minor operations.62

In Section 4, we describe how delta-matroids arise from ribbon graphs, em-63

phasising that they arise as the natural extensions of various classes of matroids64

associated with graphs. We show that some of these delta-matroids, albeit in a65

different language, appeared in Bouchet’s foundational work in delta-matroids.66

In Section 5 we discuss their connections with graphic matroids and describe67

how basic properties of a ribbon graph are encoded in its delta-matroid. We68

provide evidence of the basic compatibility between delta-matroids and ribbon69

graphs. In particular, we prove that one of the most fundamental operations of70

delta-matroids, the twist, is the delta-matroid analogue of a partial dual of a71

ribbon graph, which turns out to be a key result in connecting the two areas.72

We describe how to see edge structure and connectivity in a ribbon graph in73

terms of its delta-matroid, and show how results on delta-matroid connectivity74

inform ribbon graph theory. We also demonstrate that excluded minor char-75

acterisations that have appeared in both the delta-matroid and ribbon graph76

literature are translations of one another.77

In Section 6, we discuss various polynomials. Some well-known graph poly-78

nomials, and in particular the Tutte polynomial, are properly understood as79

matroid polynomials, rather than graph polynomials. There has been consider-80

able recent interest in extensions of the Tutte polynomial to graphs embedded81

in surfaces. Three generalizations of the Tutte polynomial to embedded graphs82

in the literature are the Las Vergnas polynomial, the Bollobás-Riordan polyno-83

mial, and the Kruskal polynomial. We show that each of these generalizations is84

determined by the delta-matroids of ribbon graphs, and that the ribbon graph85

polynomials are special cases of more general delta-matroid polynomials. That86

is, while the Tutte polynomial is properly a matroid polynomial, its topological87

extensions are properly delta-matroid polynomials.88

Our results here offer new perspectives on delta-matroids. We illustrate89

here a fundamental interplay between ribbon graphs and delta-matroids, that is90

analogous to the interplay between graphs and matroids. By doing so we offer91

a new approach to delta-matroid theory.92

2. Matroids and delta-matroids93

Our terminology follows [5] and [56], except where explicitly stated.94

2.1. Set systems and delta-matroids95

A set system is a pair D = (E,F) where E is a set, which we call the ground96

set, and F is a collection of subsets of E. The members of F are called feasible97
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sets. A set system is proper if F is not empty; it is trivial if E is empty. For98

a set system D we will often use E(D) to denote its ground set and F(D) its99

collection of feasible sets. In this paper we will always assume that E is a finite100

set and will do so without further comment.101

The symmetric difference of sets X and Y , denoted by X4Y , is (X ∪Y )−102

(X ∩ Y ).103

A delta-matroid is a proper set system D = (E,F) that satisfies the Sym-104

metric Exchange Axiom:105

Axiom 2.1 (Symmetric Exchange Axiom). For all (X,Y, u) with X,Y ∈ F and106

u ∈ X 4 Y , there is an element v ∈ X 4 Y such that X 4 {u, v} is in F .107

Note that we allow v = u in the Symmetric Exchange Axiom.108

If the feasible sets of a delta-matroid are equicardinal, then the delta-matroid109

is a matroid and we refer to its feasible sets as its bases. If a set system forms110

a matroid M , then we usually denote M by (E,B), and often use B(M) to111

denote its collection of bases B. It is not hard to see that the definition of a112

matroid given here is equivalent to the ‘usual’ definition of a matroid through113

bases given in, for example, [56, 67].114

Throughout this paper, we will often omit the set brackets in the case of a115

single element set. For example, we write E − e instead of E − {e}, or F ∪ e116

instead of F ∪ {e}.117

2.2. Graphic matroids118

For a graph G = (V,E) with k connected components, let B be the edge119

sets of the maximal spanning forests of G. B is obviously non-empty, and its120

elements are equicardinal since each spanning forest of G has |V | − k edges. It121

is not too hard to see that the Symmetric Exchange Axiom holds, and so the122

set system M(G) = (E,B) is a matroid, which is called the cycle matroid of G.123

Any matroid that is the cycle matroid of a graph is a graphic matroid.124

Example 2.2. If G is the graph shown in Figure 1(a), then M(G) = (E,B) where125

E = {1, 2, 3, 4} and B = {{1}, {2}}.126

2.3. Matroid rank127

Let M be a matroid with ground set E. A subset I of E is an independent128

set of M if and only if it is a subset of a basis of M . A rank function is defined129

for all subsets of the ground set of a matroid. Its value on a subset A of E is130

the cardinality of the largest independent set contained in A. The rank of a set131

A is written rM (A), or just r(A) if the matroid is clear from the context. Thus,132

rM (A) = max{|A∩B| | B ∈ B(M)}. We say that the rank of M , written r(M),133

is equal to r(E), which is equal to |B|, for any B ∈ B(M).134

Example 2.3. For a graph G = (V,E), the rank function of its cycle matroid135

M = M(G) is given by r(A) = |V | − k(A), where k(A) is the number of136

connected components of the spanning subgraph (V,A) of G, and A ⊆ E.137
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2.4. Width and evenness138

For a delta-matroid D = (E,F), let Fmax(D) and Fmin(D) be the set of139

feasible sets with maximum and minimum cardinality, respectively. We will140

usually omit D when the context is clear. Let Dmax := (E,Fmax) and let141

Dmin := (E,Fmin). Then Dmax is the upper matroid and Dmin is the lower ma-142

troid of D. These matroids were defined by Bouchet in [6]. It is straightforward143

to show that the upper matroid and the lower matroid are indeed matroids.144

The width of D, denoted by w(D), is defined by145

w(D) := r(Dmax)− r(Dmin).

Thus the width of D is the difference between the sizes of its largest and smallest146

feasible sets.147

If the sizes of the feasible sets of a delta-matroid all have the same parity,148

then we say that the delta-matroid is even. Otherwise, we say that the delta-149

matroid is odd. In particular, every matroid is an even delta-matroid. It is150

perhaps worth emphasising that an even delta-matroid need not have feasible151

sets of even cardinality.152

It is convenient to record the following useful result here.153

Lemma 2.4. Let D = (E,F) be a delta-matroid, let A be a subset of E and let154

s0 = min{|B ∩A| | B ∈ B(Dmin)}. Then for any F ∈ F we have |F ∩A| ≥ s0.155

Proof. We proceed by contradiction. If s0 = 0, then there is nothing to prove,156

so we can assume that s0 > 0. Suppose that F ∈ F and |F ∩ A| < s0. Choose157

F ′ ∈ Fmin with |F ′ ∩ A| = s0 and |F ′ ∩ F ∩ A| as large as possible. Now there158

exists x ∈ A ∩ (F ′ − F ) and so x ∈ F ′ 4 F . Hence there exists y belonging to159

F ′4F such that F ′′ = F ′4{x, y} ∈ F . Because F ′ ∈ Fmin, we have y ∈ F−F ′.160

And because |F ′ ∩ A| = s0, we must have y ∈ F ∩ A. But then F ′′ ∈ Fmin,161

|F ′′ ∩ A| = s0 and |F ′′ ∩ F ∩ A| > |F ′ ∩ F ∩ A|, contradicting the choice of162

F ′.163

2.5. Twists, duals, loops, coloops, and minors164

Twists, introduced by Bouchet in [5], are one of the fundamental operations165

of delta-matroid theory.166

Definition 2.5. Let D = (E,F) be a set system. For A ⊆ E, the twist of D167

with respect to A, denoted by D ∗ A, is given by (E, {A4X | X ∈ F}). The168

dual of D, written D∗, is equal to D ∗ E.169

It follows easily from the identity (F ′1 4 A) 4 (F ′2 4 A) = F ′1 4 F ′2 that170

the twist of a delta-matroid is also a delta-matroid. We restate this fact in the171

following lemma.172

Lemma 2.6 (Bouchet [5]). Let D be a delta-matroid and let A be a subset of173

E(D). Then D ∗A is a delta-matroid.174
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Although it is always a delta-matroid, a twist of a matroid M = (E,B) need175

not be a matroid. (For example, if M = ({1, 2}, {{1}, {2}})) then M ∗ {1} has176

feasible sets {∅, {1, 2}} and so is not a matroid.) However, its dual M∗ = M ∗E177

is always a matroid. The rank function of M∗ is given by178

rM∗(A) = rM (E −A) + |A| − rM (E). (2.1)

For a delta-matroid D = (E,F), and e ∈ E, if e is in every feasible set of179

D, then we say that e is a coloop of D. If e is in no feasible set of D, then we180

say that e is a loop of D. Note that a coloop or loop of D is a loop or coloop,181

respectively, of D ∗A for any subset A of E containing e.182

If e is not a coloop, then, following Bouchet and Duchamp [11], we define D183

delete e, written D \ e, to be184

D \ e := (E − e, {F | F ∈ F and F ⊆ E − e}).

If e is not a loop, then we define D contract e, written D/e, to be185

D/e := (E − e, {F − e | F ∈ F and e ∈ F}).

If e is a loop or a coloop, then one of D \ e and D/e has already been defined,186

so we can set D/e = D \ e.187

Both D \ e and D/e are delta-matroids (see [11]). Let D′ be a delta-matroid188

obtained from D by a sequence of deletions and contractions. Then D′ is inde-189

pendent of the order of the deletions and contractions used in its construction190

(see [11]) and D′ is called a minor of D. If D′ is formed from D by deleting the191

elements of X and contracting the elements of Y then we write D′ = D \X/Y .192

The restriction of D to a subset A of E, written D|A, is equal to D \ (E −A).193

Note that D∗ \e = (D/e)∗. The next result shows that deletion, contraction194

and twists are also related. It is a reformulation of Property 2.1 of [11].195

Lemma 2.7. For a delta-matroid D and distinct elements e and f of E(D),196

we have197

1. D \ e = ((D ∗ f) \ e) ∗ f and D/e = ((D ∗ f)/e) ∗ f ;198

2. D \ e = (D ∗ e)/e and D/e = (D ∗ e) \ e.199

Using Lemma 2.7 and induction we obtain the following.200

Proposition 2.8. Let D be a delta-matroid and let A,X, and Y be subsets of201

E(D) with X ∩ Y = ∅. Then202

(D ∗A) \X/Y = (D \ ((X −A)∪ (Y ∩A))/((Y −A)∪ (X ∩A))) ∗ (A−X −Y ).

In particular, D \ X = (D∗/X)∗ and, when A is the disjoint union of X and203

Y , we have204

(D ∗A) \X/Y = D \ Y/X.
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2.6. Delta-matroid rank205

Bouchet defined an analogue of the rank function for delta-matroids in [4].206

For a delta-matroid D = (E,F), it is denoted by ρD or simply ρ when D is207

clear from the context. Its value on a subset A of E is given by208

ρ(A) := |E| −min{|A4 F | | F ∈ F}.

Note that the feasible sets of a delta-matroid can be recovered from its rank209

function.210

An easy consequence of basic properties of the symmetric difference opera-211

tion is the following.212

Lemma 2.9. Let D be a delta-matroid and let A be a subset of E(D). Then213

ρD∗(A) = ρD(E −A).214

The next two results show how the rank function changes when an element215

is deleted or contracted.216

Lemma 2.10. Let D = (E,F) be a delta-matroid and let e be an element in217

E, and X a subset of E − e. Then either e is a coloop or there exists F ∈ F218

such that ρ(X) = |E| − |X 4 F | and e /∈ F .219

Proof. Suppose e is not a coloop. Then there is a feasible set F avoiding e.220

Take F ′ ∈ F such that ρ(X) = |E| − |X 4 F ′|. If F ′ avoids e then the lemma221

holds, so we assume this is not the case. Then e ∈ F ′ 4 F , so the Symmetric222

Exchange Axiom (Axiom 2.1) implies that there exists f ∈ F ′ 4 F such that223

F ′′ = F ′ 4 {e, f} ∈ F . If f = e, then |X 4 F ′′| = |X 4 (F ′ − e)| < |X 4 F ′|224

which is not possible, because ρ(X) = |E| − |X 4 F ′|. So f 6= e and X 4 F ′′ =225

X 4 (F ′ 4 {e, f}) = X 4 ((F ′ − e)4 f) = (X 4 (F ′ − e))4 f , so we deduce226

that |X 4 F ′′| ≤ |X 4 F ′|. As F ′ was chosen from F to minimize |X 4 F ′|, we227

deduce that |X 4 F ′′| = |X 4 F ′|. Since e /∈ F ′′, the lemma holds.228

Lemma 2.11. Let D = (E,F) be a delta-matroid and let e be an element in229

E, and X a subset of E − e. Then230

ρD\e(X) =

{
ρD(X), if e is a coloop of D

ρD(X)− 1, otherwise
(2.2)

and

ρD/e(X) =

{
ρD(X ∪ e), if e is a loop of D

ρD(X ∪ e)− 1, otherwise.
(2.3)

Proof. We first establish (2.2). Suppose that e is not a coloop. Lemma 2.10231

implies that there exists F ∈ F(D) such that e /∈ F and ρD(X) = |E|−|X4F |.232

Thus ρD\e(X) ≤ |E− e| − |X4F | = |E| − |X4F | − 1 = ρD(X)− 1. Moreover233
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every feasible set of D \ e is a feasible set of D. Hence ρD(X) ≤ ρD\e(X) + 1.234

Combining these two inequalities gives the result.235

Suppose that e is a coloop of D. Let A be a subset of E − e. Then A is236

a feasible set of D \ e if and only if A ∪ e is a feasible set of D. Furthermore,237

|X4A| = |X4(A∪e)|−1. Take F ∈ F(D\e) such that ρD\e(X) = |E|−|X4F |.238

Then F ∪ e is in F and has smallest symmetric difference with X of all feasible239

sets in F . Thus ρD(X) = |E| − |X 4 (F ∪ e)| = |E| − |X 4 F | − 1 = |E − e| −240

|X 4 F | = ρD\e(X).241

Now Equation (2.3) is obtained by using duality. Lemma 2.9 implies that242

ρD/e(X) = ρ(D/e)∗(E − e−X) = ρD∗\e(E − e−X). Using Equation (2.2), we243

obtain244

ρD∗\e(E − e−X) =

{
ρD∗(E − e−X), if e is a coloop of D∗

ρD∗(E − e−X)− 1, otherwise.

The result follows by applying duality again and noting that e is a coloop of D∗245

if and only if it is a loop of D.246

3. Ribbon graphs247

We are concerned here with connections between cellularly embedded graphs248

and delta-matroids. As it is much more convenient for our purposes, we real-249

ize cellularly embedded graphs as ribbon graphs. This section provides a brief250

overview of ribbon graphs, as well as standard ribbon graph notation and con-251

structions. A more thorough treatment of the topics covered in this section can252

be found in, for example, [32].253

3.1. Cellularly embedded graphs and ribbon graphs254

3.1.1. Ribbon graphs255

A cellularly embedded graph G ⊂ Σ is a graph drawn on a closed compact256

surface Σ in such a way that edges only intersect at their ends, and such that257

each connected component of Σ−G is homeomorphic to a disc. Note that each258

connected component of G must be embedded in a different component of the259

surface.260

Two cellularly embedded graphs G ⊂ Σ and G′ ⊂ Σ′ are equivalent if there is261

a homeomorphism, ϕ : Σ→ Σ′, which is orientation-preserving if Σ is orientable,262

and has the property that ϕ|G : G → G′ is a graph isomorphism. We consider263

cellularly embedded graphs up to equivalence.264

Ribbon graphs provide an alternative, and more natural for the present265

setting, description of cellularly embedded graphs.266

Definition 3.1. A ribbon graph G = (V (G), E(G)) is a surface with boundary,267

represented as the union of two sets of discs: a set V (G) of vertices and a set268

of edges E(G) with the following properties.269

1. The vertices and edges intersect in disjoint line segments.270
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1 2
3 4

(a) A cellularly embedded graph G.

1

2

3 4

(b) G as a ribbon graph.

1

2

3

4

(c) The partial dual G{1,3}.

Figure 1: Embedded graphs and ribbon graphs.

2. Each such line segment lies on the boundary of precisely one vertex and271

precisely one edge. In particular, no two vertices intersect, and no two272

edges intersect.273

3. Every edge contains exactly two such line segments.274

It is well-known that ribbon graphs are just descriptions of cellularly em-275

bedded graphs (see for example [39]). If G is a cellularly embedded graph,276

then a ribbon graph representation results from taking a small neighbourhood277

of the cellularly embedded graph G, and deleting its complement. On the other278

hand, if G is a ribbon graph, then, topologically, it is a surface with boundary.279

Capping off the holes, that is, ‘filling in’ each hole by identifying its boundary280

component with the boundary of a disc, results in a ribbon graph embedded in a281

closed surface from which a graph embedded in the surface is readily obtained.282

Figure 1 shows an embedded graph described as both a cellularly embedded283

graph and a ribbon graph. We say that two ribbon graphs are equivalent if they284

define equivalent cellularly embedded graphs, and we consider ribbon graphs285

up to equivalence. This means that ribbon graphs are considered up to homeo-286

morphisms that preserve the graph structure of the ribbon graph and the cyclic287

order of half-edges at each of its vertices.288

3.1.2. Ribbon subgraphs and edge deletion289

Let G = (V,E) be a ribbon graph. Then a ribbon graph H is a ribbon290

subgraph of G if it can be obtained by removing vertices and edges of G. If291

V (H) = V (G) then H is a spanning ribbon subgraph of G. Note that every292

subset A of E uniquely determines a spanning ribbon subgraph (V,A) of G.293

If e is an edge of G, then G delete e, written G \ e, is defined to be the294

ribbon subgraph (V,E − e) of G. Similarly, for A ⊆ E, G \ A is defined to be295
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(V,E−A). Table 1 shows the local effect of deleting an edge of a ribbon graph.296

An important observation about ribbon subgraphs is that if a ribbon graph297

G is realised as a graph cellularly embedded in a surface Σ, and G \ e, or a298

ribbon subgraph H of G, is realised as a graph cellularly embedded in a surface299

Σ′, then Σ and Σ′ need not be homeomorphic.300

3.1.3. Standard parameters301

A ribbon graph is a graph with additional structure and so standard graph302

terminology carries over to ribbon graphs. If G is a ribbon graph, then v(G)303

and e(G) denote |V (G)| and |E(G)|, respectively. Furthermore, k(G) denotes304

the number of connected components in G, and f(G) is the number of boundary305

components of the surface defining the ribbon graph. For example, the ribbon306

graph G of Figure 1(b) has f(G) = 2. Note that, if G is realised as a cellularly307

embedded graph, then f(G) is the number of its faces. The rank of G, denoted308

by r(G), is defined to be v(G) − k(G), and the nullity of G, denoted by n(G),309

is defined to be e(G)− r(G).310

A ribbon graph G is orientable if it is orientable when regarded as a surface.311

We define a ribbon graph parameter t by setting t(G) = 1 if G is non-orientable,312

and t(G) = 0 otherwise.313

The genus of a ribbon graph G is its genus when regarded as a surface. If314

G is realized as a graph cellularly embedded in Σ, then its genus is exactly the315

genus of Σ, and G is orientable if and only if Σ is. The Euler genus, γ(G), of G316

is the genus of G if G is non-orientable, and is twice its genus if G is orientable.317

Euler’s formula gives γ(G) = 2k(G)−v(G)+e(G)−f(G). We say that a ribbon318

graph G is plane if γ(G) = 0. Note that we allow plane graphs to have more319

than one connected component. Plane ribbon graphs correspond to graphs that320

can be cellularly embedded in some disjoint union of spheres.321

For each subset A of E, we let r(A), k(A), n(A), f(A), t(A), and γ(A) each322

refer to the spanning ribbon subgraph (V,A) of G, where G is given by context.323

When the choice of G is not clear from the context, we write rG(A), kG(A), etc..324

Observe that the function r on E defined here coincides with the rank function325

of the cycle matroid M(G) of G.326

The following result is an obvious, but useful, consequence of the fact that327

each edge of a ribbon graph meets one or two boundary components.328

Proposition 3.2. If G is ribbon graph, A ⊆ E(G) and e ∈ E(G), then f(A)329

and f(A4 e) differ by at most one.330

3.1.4. Loops and bridges331

An edge e of a ribbon graph G is a bridge if k(G \ e) > k(G). The edge e332

is a loop if it is incident with exactly one vertex. We will abuse notation and333

also use the term loop to describe the ribbon subgraph of G consisting of e and334

its incident vertex. In ribbon graphs, loops can have various properties. A loop335

or cycle is said to be non-orientable if it is homeomorphic to a Möbius band.336

Otherwise it is orientable. Two cycles C1 and C2 in G are said to be interlaced337

if there is a vertex v such that V (C1)∩V (C2) = {v}, and C1 and C2 are met in338
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the cyclic order C1 C2 C1 C2 when travelling around the boundary of the vertex339

v. A loop is non-trivial if it is interlaced with some cycle in G, otherwise it is340

trivial.341

3.1.5. Ribbon graph minors342

For a ribbon graph G with an edge e recall that G\e is obtained by removing343

e from G. Similarly, if v is a vertex of G, then the vertex deletion G\v is defined344

to be the ribbon graph obtained from G by removing the vertex v together with345

all its incident edges.346

The definition of edge contraction, introduced in [3, 22], is a little more347

involved than that of edge deletion.348

Definition 3.3. Let G be a ribbon graph. Let e ∈ E(G) and u and v be349

its incident vertices, which are not necessarily distinct. Then G/e denotes the350

ribbon graph obtained as follows. Consider the boundary component(s) of e ∪351

u ∪ v as curves on G. For each resulting curve, attach a disc, which will form352

a vertex of G/e, by identifying its boundary component with the curve. Delete353

e, u and v from the resulting complex. We say that G/e is obtained from G by354

contracting e.355

A ribbon graph H is a minor of a ribbon graph G if H is obtained from G356

by a sequence of edge deletions, vertex deletions, and edge contractions.357

The local effect of contracting an edge of a ribbon graph is shown in Ta-358

ble 1. Observe that contracting an edge may change the number of vertices359

or orientability of a ribbon graph. Since deletion and contraction are local360

operations, if some edges in a ribbon graph are deleted and some others are361

contracted, then the same ribbon graph will be produced regardless of the order362

of operations.363

The definition of edge contraction might be a little surprising at first. How-364

ever, the reader should see that it is natural upon observing that Definition 3.3365

is just an expression of the obvious idea of contraction as the ‘identification of366

e and its incident vertices into a single vertex’ in a way that allows it to be ap-367

plied to loops. (See also the discussion in [32] on this topic.) Unlike for graphs,368

when working with ribbon graph minors it is necessary to be able to contract369

loops as otherwise the set of ribbon graphs will contain infinite anti-chains when370

quasi-ordered using the minor relation (see [53]).371

3.1.6. Separability372

For a ribbon graph G and non-trivial ribbon subgraphs P and Q of G, we373

write G = P t Q when G is the disjoint union of P and Q, that is, when374

G = P ∪ Q and P ∩ Q = ∅. A vertex v of G is a separating vertex if there375

are non-trivial ribbon subgraphs P and Q of G such that G = P ∪ Q and376

P ∩Q = {v}. In this case we write G = P ⊕Q.377

We write G = P g Q, if G = P ⊕ Q and no cycle in P is interlaced with378

a cycle in Q. Observe it is possible that G = P g Q and G′ = P g Q, for379

non-equivalent ribbon graphs G and G′.380
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non-loop non-orientable loop orientable loop

G

G \ e

G/e
= Ge \ e

Ge

Table 1: Operations on an edge e (highlighted in bold) of a ribbon graph. The ribbon graphs
are identical outside of the region shown.

(We remark that here there is a close relationship with the join operation, ∨,381

on ribbon graphs: G = PgQ if and only if P = G1∨· · ·∨Gi, Q = Gi+1∨· · ·∨Gn,382

and, for some permutation σ, G = Gσ(1) ∨ · · · ∨ Gσ(n), where each join occurs383

at the same vertex. We refer the reader to [51, 52] for a fuller discussion of384

separability for ribbon graphs.)385

3.2. Geometric duals and partial duals386

The construction of the geometric dual, G∗, of a cellularly embedded graph387

G is well known: V (G∗) is obtained by placing one vertex in each face of G, and388

E(G∗) is obtained by embedding an edge of G∗ between two vertices whenever389

the faces of G in which they lie are adjacent. Geometric duality has a partic-390

ularly neat description when translated to the language of ribbon graphs. Let391

G = (V (G), E(G)) be a ribbon graph. Recalling that, topologically, a ribbon392

graph is a surface with boundary, we cap off the holes using a set of discs, de-393

noted by V (G∗), to obtain a surface without boundary. The geometric dual of394

G is the ribbon graph G∗ = (V (G∗), E(G)). Observe that, for ribbon graphs,395

the edges of G and G∗ are identical. The only change is which arcs on their396

boundaries do and do not intersect vertices. This allows us to consider a subset397

A of edges of G as also being a subset of edges of G∗ and vice versa. We adopt398

this convention. Although it is common to distinguish the two sets by writing399

A and A∗, doing so proves to be notationally difficult in the current setting.400

Chmutov, in [22], introduced a far-reaching generalization of geometric dual-401

ity, called partial duality. Roughly speaking, a partial dual of a ribbon graph is402

obtained by forming the geometric dual with respect to only a subset of its edges.403

Partial duality arises as a natural operation in knot theory, topological graph404
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theory, graph polynomials, and quantum field theory. We will see later that it is405

also an analogue of a fundamental operation on delta-matroids. Here we define406

partial duals directly on ribbon graphs. We refer the reader to [22, 31, 50] or407

the exposition [32] for alternative constructions and other perspectives of partial408

duals.409

Let G = (V,E) be a ribbon graph and A ⊆ E. The partial dual GA of G410

is obtained by forming the geometric dual of G as described above but ignoring411

the edges not in A as follows. Regard the boundary components of the spanning412

ribbon subgraph (V,A) of G as curves on the surface of G. Glue a disc to G413

along each connected component of this curve and remove the interior of all414

vertices of G. The resulting ribbon graph is the partial dual GA.415

We identify the edges of G with those of GA using the natural correspon-416

dence. Table 1 shows the local effect of partial duality on an edge e (highlighted417

in bold) of a ribbon graph G. The ribbon graphs are identical outside of the418

regions shown. In fact Table 1 serves as a perfectly adequate definition of partial419

duality for this paper.420

Observe from Table 1 that e is a bridge of G if and only if e is a trivial421

orientable loop in Ge; e is a non-loop non-bridge edge of G if and only if e is a422

non-trivial orientable loop in Ge; and e is a (non-)trivial non-orientable loop in423

G if and only if e is a (non-)trivial non-orientable loop in Ge. We also record424

the following basic properties of partial duality for use later.425

Proposition 3.4 (Chmutov [22]). Let G be a ribbon graph and A,B ⊆ E(G).426

Then427

1. GE(G) = G∗ and G∅ = G;428

2. (GA)B = GA4B;429

3. G/e = Ge \ e;430

4. G is orientable if and only if GA is orientable.431

Note that it follows from the proposition that partial duals may be formed432

one edge at a time. Also note that the form of Item 3 of the proposition is very433

similar to that of the second part of Lemma 2.7. We will return to this later.434

3.3. Quasi-trees435

Quasi-trees are one of our fundamental objects of study. They are the ana-436

logue of trees for ribbon graphs, and our terminology reflects this. A quasi-tree437

Q is a connected ribbon graph with exactly one boundary component. If G is438

a connected ribbon graph, a spanning quasi-tree Q of G is a spanning ribbon439

subgraph with exactly one boundary component. For disconnected graphs, we440

abuse notation by saying that Q is a spanning quasi-tree of G if k(Q) = k(G)441

and the connected components of Q are spanning quasi-trees of the connected442

components of G.443

We record the following basic facts about quasi-trees for reference later.444

For (3), recall that, for ribbon graphs, E(G) = E(G∗).445

Lemma 3.5. Let G be a ribbon graph, and Q be a spanning quasi-tree of G.446

Then the following hold.447
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1. 0 ≤ γ(Q) ≤ γ(G).448

2. γ(Q) = 0 if and only if Q is a maximal spanning forest of G.449

3. (V (G), A) is a spanning quasi-tree of G of Euler genus γ if and only if450

(V (G∗), Ac) is a spanning quasi-tree of G∗ of Euler genus γ(G)− γ.451

4. If Q = (V (G), A) then γ(Q) = γ(G) if and only if (V (G∗), Ac) is a maxi-452

mal spanning forest of G∗.453

Proof. Items (1) and (2) follow easily from Euler’s formula. Item 4 is an immedi-454

ate consequence of (2) and (3). It remains to prove (3). For this first assume that455

G is connected. Consider the intermediate step of the formation of G∗ from G,456

as described in Section 3.2, in which the holes of G have been capped off with ele-457

ments of V (G∗) giving a surface Σ := V (G)∪V (G∗)∪E(G). For each A ⊆ E(G),458

observe that V (G)∪A = (Σ\V (G∗))\Ac and V (G∗)∪Ac = (Σ\V (G))\A have459

the same boundary components. Thus Q := (V (G), A) is a spanning quasi-tree460

of G if and only if Q′ := (V (G∗), Ac) is a spanning quasi-tree of G∗. Sup-461

pose that Q and Q′ are both spanning quasi-trees. Then each of Q and Q′ has462

one boundary component and is connected. Moreover v(Q′) = v(G∗) = f(G).463

Euler’s formula gives γ(Q) = 2k(Q) − v(Q) + e(Q) − f(Q) = 1 − v(G) + |A|464

and γ(Q′) = 2k(Q′) − v(Q′) + e(Q′) − f(Q′) = 1 − f(G) + e(G) − |A|. Thus465

γ(Q) + γ(Q′) = 2 − v(G) + e(G) − f(G) = γ(G). Extending the result to dis-466

connected graphs is straightforward because each of the parameters v, e, f and467

k is additive over connected components, and the geometric dual of a discon-468

nected ribbon graph is the disjoint union of the geometric duals of its connected469

components.470

4. Delta-matroids from ribbon graphs471

4.1. Defining the delta-matroids472

Consider a connected ribbon graph G = (V,E). We start by considering473

some standard ways that G gives rise to a matroid. The most fundamental474

matroid associated with G is its cycle matroid M(G) = (E,B), where B consists475

of the edge sets of the spanning trees of G. The matroid M(G) contains no476

information about the topological structure of G, only its graphical structure.477

This is because trees always have genus zero and therefore cannot depend upon478

the embedding of G. Our aim here is to find the matroidal analogue of an479

embedded graph, and to do this we clearly need to adapt the definitions of480

M(G). By thinking of the the construction of M(G) in terms of ribbon graphs481

it becomes obvious how this should be done: spanning trees are genus-zero482

spanning ribbon subgraphs with exactly one boundary component, so to retain483

topological information, we drop the genus zero condition, consider quasi-trees484

instead of trees, and obtain the set system (E,F), where F consists of the edge485

sets of the spanning quasi-trees of G.486

There is a natural variation of the construction of a cycle matroid obtained487

by choosing n ∈ N0, taking E as the ground set and B to be either the edge sets488

formed by deleting n edges from each spanning tree, or the edge sets formed489
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by adding n edges to each spanning tree. In the former case, B consists of the490

edge sets of spanning forests of G having exactly n + 1 connected components491

and (E,B) is shown to be a matroid by noting that it is the nth truncation492

of M(G), see [56]. In the latter case, (E,B) is the dual of the nth truncation493

of M(G)∗. Consider this construction in terms of quasi-trees of ribbon graphs:494

the number of boundary components is not determined by the number of edges495

added or removed and can be anywhere between 1 and n + 1, if n edges are496

added or removed. In the quasi-tree setting it no longer makes sense to make the497

distinction between adding and removing edges, as we did in the case of matroids498

and spanning trees. These ribbon graph extensions of matroids naturally lead499

us to the make the following definition.500

Definition 4.1. Let G = (V,E) be a ribbon graph with k(G) connected com-501

ponents, and let n ∈ N0. Then we define502

1. F≤n(G) := {A ⊆ E | f(A) ≤ k(G) + n}, and503

2. Fn(G) := {A ⊆ E | f(A) = k(G) + n}.504

For a connected ribbon graph, Fn(G) is the collection of all edge sets that505

determine a spanning ribbon subgraph of G with exactly n+ 1 boundary com-506

ponents, and F≤n(G) is the collection of all edge sets that determine a span-507

ning ribbon graph of G with at most n + 1 boundary components. Note that508

F≤0(G) = F0(G). This set will be particularly important to us here, and later509

we will denote it by just F(G). Note that Fn(G) may be empty.510

Example 4.2. For the ribbon graph G of Figure 1(b),

F0(G) =F≤0(G) = {{1}, {2}, {1, 2, 3}, {1, 2, 4}},
F1(G) ={∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3, 4}},
F2(G) ={{3}, {4}, {1, 3, 4}, {2, 3, 4}},
F3(G) ={{3, 4}}, and

Fn(G) =∅, for n > 3.

Then F≤n(G) can be found easily from these.511

Definition 4.3. For a ribbon graph G = (V,E) and a non-negative integer512

n, let D≤n(G) denote the set system (E,F≤n(G)), and Dn(G) denote the set513

system (E,Fn(G)).514

Theorem 4.4. Let G = (V,E) be a ribbon graph, and n ∈ N0. Then515

1. D≤n(G) = (E,F≤n(G)) is a delta-matroid, and516

2. D1(G) = (E,F1(G)) is a delta-matroid, if G is non-empty and orientable.517

The proof of Theorem 4.4 follows from the next lemma. For the next two518

proofs we use GA to denote the spanning ribbon subgraph (V,A) of G. Note519

that GA does not denote the induced ribbon subgraph G|A.520

Lemma 4.5. Suppose A ∈ Fn(G), B ∈ F≤n(G), e ∈ A 4 B, and A 4 e 6∈521

F≤n(G). Then there exists f ∈ A4B such that A4 {e, f} ∈ Fn(G).522
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Proof. The ribbon graph GA has n + k(G) boundary components and GB has523

at most n+k(G) boundary components. By Proposition 3.2, f(A4e) and f(A)524

differ by at most one. Thus GA4e has n+ k(G) + 1 boundary components (as525

A4 e 6∈ F≤n(G)). We think of GA4e as a ribbon subgraph of GA∪B . We can526

then consider how the edges in (A4 B) \ e meet the boundary components of527

GA4e.528

If there is an edge f ∈ (B \ A) \ e that intersects two distinct boundary529

components of GA4e, then adding this edge to GA4e will give a ribbon subgraph530

with one fewer boundary component, and so A 4 {e, f} ∈ Fn. If there is an531

edge f ∈ (A \ B) \ e that meets two distinct boundary components of GA4e,532

then removing this edge from GA4e results in a ribbon subgraph with one fewer533

boundary component, and so A4 {e, f} ∈ Fn(G).534

All that remains is the case in which each edge in (A 4 B) \ e intersects535

exactly one boundary component of GA4e. We shall show that this case cannot536

happen.537

To see why, observe that GB can be obtained from GA4e by first deleting538

the edges in (A \ B) \ e and then adding the edges in (B \ A) \ e, one by one.539

Colour the boundary components of GA4e so that each one receives a different540

colour. Whenever an edge is added or deleted, the only boundary components541

that change are those intersecting an edge that is deleted or those intersecting542

the two line segments forming the ends of an edge that is added. At each step543

the number of boundary components may stay the same, or increase or decrease544

by one. After a step where the number of boundary components increases545

by one, the two new boundary components are given the same colour as the546

one they replace. We claim that when the number of boundary components547

decreases by one, the two boundary components being replaced have the same548

colour. The single boundary component replacing them may then be given this549

common colour. Suppose that the claim is not true and consider the first time550

that an edge f is added or deleted in such a way that the number of boundary551

components decreases and the two boundary components C1 and C2 that are552

changed by the edge addition or deletion have different colours. Let G′ denote553

the ribbon graph obtained just before f is added or deleted. Both C1 and554

C2 contain a line segment that is removed from the boundary of G′ after the555

addition or deletion of f . Let L1 and L2 denote these line segments. Then556

L1 and L2 are part of the boundary of each ribbon graph in the process up to557

the current step, including GA4e. Although the boundary components to which558

these line segments belong may change, their colours do not. As f ∈ (A4B)\e,559

it intersects exactly one boundary component of GA4e. Therefore L1 and L2560

have the same colour in GA4e, and consequently in G′. Thus the claim follows561

and moreover all the original colours used to colour the boundary components of562

GA4e are used to colour the boundary components of GB . Therefore GB has at563

least as many boundary components as GA4e. This contradicts our hypotheses564

from the statement of the lemma that B ∈ F≤n(G) and A4 e 6∈ F≤n(G).565

Proof of Theorem 4.4. In each case it is enough to show that the given families566

of feasible sets satisfy the Symmetric Exchange Axiom.567
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For Item 1, let A,B ∈ F≤n(G) and e ∈ A 4 B. If A 4 e ∈ F≤n(G),568

then taking f = e gives A4 {e, f} ∈ F≤n(G), as desired. In the exceptional569

case, A 4 e /∈ F≤n(G), so it follows from Proposition 3.2 that A ∈ Fn(G).570

Then Lemma 4.5 guarantees that there is an element f ∈ A 4 B such that571

A4 {e, f} ∈ F≤n(G).572

For Item 2, we first observe that it follows easily from Euler’s formula that573

the parity of f(A)−f(B) is the same as the parity of e(A)−e(B). In particular,574

the sizes of all spanning quasi-trees of G have the same parity, and the sizes575

of all members of F1 have the opposite parity. By Proposition 3.2, we have576

|f(A4 e) − f(A)| ≤ 1. Thus, if A ∈ F0(G) and e ∈ E, then A4 e ∈ F1(G),577

so D1 is a proper set system. Let A, B be members of F1(G) and e ∈ A4 B.578

If A 4 e /∈ F≤1(G), then by Lemma 4.5, there exists f ∈ A 4 e such that579

A4{e, f} ∈ F1(G). It remains to consider what happens if A4 e ∈ F0(G). As580

|A| and |B| have the same parity, there exists f ∈ (A4 B) − e. Now, by our581

earlier observation, (A4 e)4 f ∈ F1(G). Hence D1(G) is a delta-matroid.582

In general, the set system Dn(G) is not a delta-matroid. For example, if G583

is the plane graph obtained by taking a triangle with edges 1, 2, 3 and adding584

an edge 4 in parallel with edge 3, then F2(G) = {∅, {3, 4}, {1, 2, 3, 4}} and it585

is readily seen that D2(G) is not a delta-matroid. Also, if G is non-orientable586

D1(G) may not be a delta-matroid. Consider, for example, the ribbon graph587

G of Euler genus 2 obtained by adding an interlaced non-orientable loop to a588

plane 2-cycle.589

4.2. Ribbon-graphic delta-matroids590

One of the main purposes of this article is to illustrate that the delta-matroid591

D0(G) = D≤0(G) plays a role in delta-matroid theory analogous to the role592

graphic matroids play in matroid theory. In this subsection we set up some ad-593

ditional terminology for these delta-matroids and show that they have appeared594

in the literature in other guises.595

Definition 4.6. Let G = (V,E) be a ribbon graph. We use F(G) to denote596

the set F0(G) = F≤0(G), so that597

F(G) := {F ⊆ E(G) | F is the edge set of a spanning quasi-tree of G},

and D(G) = (E,F) to denote the delta-matroid D0(G) = D≤0(G). We say that598

D(G) is a ribbon-graphic delta-matroid.599

Example 4.7. For the ribbon graph G of Figure 1(b),600

D(G) = ({1, 2, 3}, {{1}, {2}, {1, 2, 3}, {1, 2, 4}}).

To relate the delta-matroid D(G) to the literature, particularly to Bouchet’s601

foundational work on delta-matroids, we take what may appear to be a detour602

into transition systems. Let F = (V,E) be a 4-regular graph. Each vertex603

v of F is incident with exactly four half-edges. A transition τv at a vertex v604
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is a partition of the half-edges at v into two pairs, and a transition system,605

τ := {τv | v ∈ V } of F is a choice of transition at each of its vertices.606

For the purposes of this section, we allow graphs to include free loops, that607

is edges which are not incident with any vertex. We think of a free loop as a608

circular edge or as a cycle on zero vertices. Given a transition system τ of F ,609

we can obtain a set of free loops as follows. If (u, v) and (w, v) are two non-loop610

edges whose half edges are paired at the vertex v, then we replace these two611

edges with a single edge (u,w). In the case of a loop, we temporarily imagine612

an extra vertex of degree two on the loop, carry out the operation, and then613

suppress the temporary vertex. Doing this replacement for each pair of half614

edges paired together in the transition system τ results in a set of free loops,615

that we denote by F (τ) and call a graph state.616

Since F is 4-regular, at each vertex there are three transitions. Choose ex-617

actly two transitions τv and τ ′v at each vertex, and consider the set T consisting618

of all transition systems of F in which the transition at each vertex v is one of619

the distinguished transitions, τv or τ ′v. An element of T is called an allowable620

transversal. Fix some allowable transversal T ∈ T , and let621

D(F, T , T ) = (T, {τ ∩ T | τ ∈ T and |F (τ)| = k(F )}).

Kotzig’s Theorem [42] implies that D(F, T , T ) is a proper set system. Bouchet622

showed in [5] that D(F, T , T ) is a delta-matroid. A delta-matroid that can be623

obtained in this way is called an Eulerian delta-matroid. (Note that although624

Bouchet never uses the term “Eulerian delta-matroid” in [5], it is implied that625

this is the intended definition by his later work, such as [8].)626

Bouchet showed that D(G) is a delta-matroid, albeit using a different lan-627

guage. Following [6], let G be a connected graph cellularly embedded in a surface628

Σ, and let G∗ be its geometric dual. Consider the natural immersion of G∪G∗629

in Σ. For each B ⊆ E(G) let B∗ denote the corresponding set in E(G∗). A set630

B ⊆ E(G) is said to be a base if Σ−cl(B∪(Bc)∗) is connected, where cl denotes631

the topological closure operator. Let Fb(G) denote the collection of all bases of632

G. Bouchet showed that Fb(G) satisfies the Symmetric Exchange Axiom, and633

so the pair Dcell(G) = (E,Fb(G)) is a delta-matroid.634

By changing from the language of cellularly embedded graph to ribbon635

graphs we can see that D(G) and Dcell(G) are identical objects. To see this636

consider G ⊂ Σ and G∗ ⊂ Σ as ribbon graphs G′ and G′∗ respectively. Then637

Σ = V (G′) ∪ V (G′∗) ∪ E(G) as described in Section 3.2. It is not hard to see638

that the number of components of Σ − cl(B ∪ (Bc)∗) is exactly the number of639

boundary components of G′ \ Bc. It follows that B defines a base of G ⊂ Σ if640

and only (V (G′), B) is a spanning quasi-tree of G′. Thus D(G) and Dcell(G)641

coincide.642

Bouchet did not use the language of quasi-trees to show that Dcell(G) is a643

delta-matroid, but rather transition systems and Eulerian delta-matroids, iden-644

tifying it with a construction from [5]. For this, again let G be a connected645

graph cellularly embedded in a surface. Its medial graph, Gm, is the embedded646

graph constructed by placing a vertex on each edge of G, and then drawing the647
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edges of the medial graph by following the face boundaries of G (so each vertex648

of Gm is of degree 4). The medial graph of an isolated vertex is a free loop.649

The vertices of Gm are 4-valent and correspond to the edges of G. Every medial650

graph has a canonical face 2-colouring given by colouring faces corresponding651

to a vertex of G black, and the remaining faces white. We can use the canoni-652

cal face 2-colouring to distinguish among the three types of vertex transitions.653

We call a vertex transition white if it pairs half-edges that share a white face,654

black if it pairs half-edges that share a black face, and crossing otherwise. If Tm655

consists of all the transition systems that have only white or black transitions656

at each vertex, and W consists only of the white transitions, then it is not hard657

to see that D(G) = D(Gm, Tm,W ).658

This discussion shows that every ribbon-graphic delta-matroid is Eulerian.659

In fact, ribbon-graphic delta-matroids are exactly Eulerian delta-matroids.660

Theorem 4.8 (Bouchet [6]). A delta-matroid D is Eulerian if and only if D ∼=661

D(G), for some ribbon graph G.662

Sketch of proof. If D is Eulerian then, by definition, we can obtain it as some663

D(F, T , T ). We need to find a ribbon graph G such that D = D(Gm, Tm,W ).664

But such a ribbon graph can be obtained as a cycle family graph of F , from [31].665

(The cycle family graphs of F are precisely the embedded graphs that have a666

medial graph isomorphic to F .) The six choices at each vertex in the construc-667

tion of a cycle family graph correspond to the six choices of the white and black668

transitions of Gm (c.f. the proof of Theorem 4.12 of [31]).669

We have just seen that the delta-matroids of ribbon graphs considered here670

appeared in a rather different framework as Eulerian delta-matroids in Bouchet’s671

initial work on delta-matroids. Here, we are proposing that for many purposes,672

the class of Eulerian delta-matroids, and delta-matroid theory in general, is best673

thought of as extensions of ribbon graph theory. (Saying this, of course there are674

certainly situations where it is most helpful to think of Eulerian delta-matroids675

as generalisations of transition systems.) As we will demonstrate here, this is676

because there is a natural and fundamental compatibility between ribbon graph677

theory and delta-matroid theory, with many constructions, results, and proofs678

in the two areas being translations of one another.679

From the perspective of Eulerian delta-matroids, D(Gm, Tm,W ) is signifi-680

cant since the transition systems of Gm arise canonically. Another setting in681

which canonical transition systems arise is in digraphs. Suppose that ~F is a682

4-regular digraph with two incoming and two outgoing half-edges at each ver-683

tex. At each of its vertices there are two natural transitions that are consistent684

with the direction of the half-edges of the digraph. We take ~T to be the set685

of all transition systems that arise from these choices. Then for each ~T ∈ ~T ,686

D(~F , ~T , ~T ) is a delta-matroid. We call a delta-matroid arising in this way a687

directed Eulerian delta-matroid.688

Theorem 4.9 (Bouchet [6]). A delta-matroid D is directed Eulerian if and only689

if D = D(G), for some orientable ribbon graph G.690
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Sketch of proof. First suppose that D = D(G), for some orientable ribbon graph691

G. Arbitrarily orient (the surface) G and draw its canonically face 2-coloured692

medial graph Gm on it. Direct each edge of Gm so that it is consistent with the693

orientation of the black face it bounds.694

Conversely, suppose that D is directed Eulerian, arising from a digraph ~F .695

By the proof Theorem 4.8, we know D = D(Gm, Tm,W ) for some ribbon graph696

G, where the underlying graphs of Gm and ~F are isomorphic. The direction697

of ~F induces a direction of Gm. Furthermore, by forming the twisted duals698

(see [31]) Gτ(e) or Gτδ(e), if necessary, we may assume that the transitions699

that are consistent with the directions of ~F coincide with the black and white700

transitions of Gm. These directions induce an orientation on each black face of701

Gm, and hence of each vertex and half-edge of G. Since the black and white702

transitions of Gm are consistent with transitions coming from the directions of703

~F , these orientations of vertices must be consistent and so G is orientable.704

Combining Theorems 4.8 and 4.9, and using the fact from Proposition 5.3705

that D(G) is even if and only if G is orientable, immediately gives the following.706

Corollary 4.10 (Bouchet [6]). A delta-matroid D is directed Eulerian if and707

only if it is Eulerian and even.708

In recent papers, Traldi introduced the transition matroid of an abstract709

four-regular graph [62] and the isotropic matroid of a symmetric binary ma-710

trix [61]. These two matroids have almost identical definitions: both are binary711

matroids described by a representation, with the only difference being a per-712

mutation of some of the columns labels. Moreover, both are relevant to ribbon713

graphs. We have described the fundamental relationship between a ribbon graph714

and its medial graph, which is an embedded four-regular graph; in Section 5.7715

we describe how a ribbon graph with one vertex may be represented by a sym-716

metric binary matrix. In [16] Brijder and Traldi describe the construction of717

the transition matroid of a ribbon graph. We now describe the almost identical718

construction of the isotropic matroid of a ribbon graph, and discuss the extent719

to which it determines the ribbon graph.720

Let G = (V,E) be a connected ribbon graph and Gm be its canonically face721

2-coloured medial graph. Let T be a transition system in Tm with |Gm(T )| = 1.722

In other words, T defines an Eulerian circuit C(T ) in Gm with no crossing723

transitions. Apply an orientation to the edges of Gm, so that C(T ) is now a724

directed Eulerian cycle.725

We say that two vertices u and v of Gm are interlaced with respect to T if726

they are met in the cyclic order u v u v when travelling round C(T ). Let A(G,T )727

denote the binary |E| by |E| matrix whose rows and columns are indexed by the728

elements of E. The (e, e)-entry of A(G,T ) is zero if and only if in Gm, opposite729

edges at the vertex corresponding to e have inconsistent orientations in C(T ).730

For e 6= f , the (e, f)–entry is one if and only the vertices corresponding to e731

and f in Gm are interlaced with respect to T .732

We now let IAS(G,T ) be the |E| × 3|E| matrix733 (
I | A(G,T ) | I +A(G,T )

)
.
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The isotropic matroid of G is the binary matroid M [IAS(G,T )] with represen-734

tation IAS(G,T ). Each edge of G indexes three columns of IAS(G,T ), one in735

each of the three blocks, with the order of the indices consistent with the in-736

dices of A(G,T ). Following Traldi, we use eφ, eχ and eψ to denote the columns737

of IAS(G,T ) corresponding to e in I, A(G,T ) and I + A(G,T ) respectively.738

For ν ∈ {φ, χ, ψ}, let Eν = {eν | e ∈ E}. A basis of M [IAS(G,T )] is called739

transverse if for each e ∈ E, it contains precisely one of eφ, eχ and eψ.740

The isotropic matroid itself does not determine D(G), because knowledge of741

T is required. Let Tw denote the edges of G where, at the corresponding vertex742

of Gm, T takes the white transition. Then from the discussion above Tw is a743

feasible set of D(G). We claim that Tw 4 F is a feasible set of D(G) if and744

only if the principal submatrix of A(G,T ) corresponding to the edges of F is745

non-singular. This is easily verified when |F | ≤ 2, by considering the effect of746

switching the transitions of T from black to white or vice versa at the vertices of747

Gm corresponding to edges in F . Results of Bouchet presented as Lemmas 5.40748

and 5.42, and Theorem 5.44 in Section 5.7 show that this is enough to verify749

the claim. Thus there is a bijection between transverse bases of M [IAS(G,T )]750

which do not intersect Eψ and feasible sets of D(G) associating a basis B with751

the feasible set (B ∩ Eχ)4 Tw.752

In [61], Traldi introduces the isotropic matroid of a symmetric binary matrix753

A, which has a representation of the same form as above, that is754

(I | A | I +A).

In particular in [61, Theorem 7] he describes exactly when two binary symmetric755

matrices have isomorphic isotropic matroids. To translate this result to ribbon756

graphs, requires the notion of twisted duality from [31]. Two ribbon graphs are757

twisted duals of each other if and only if their medial graphs are isomorphic as758

abstract graphs. Given a connected ribbon graph G and a spanning quasi-tree Q759

of G, let T (Q) denote the transition system of Gm taking the white transition at760

vertices of Gm corresponding to edges of Q and the black transition otherwise.761

Theorem 4.11. Let G1 and G2 be connected ribbon graphs and let Q1 and Q2762

be spanning quasi-trees of G1 and G2 respectively. Then IAS(G1, T (Q1)) '763

IAS(G2, T (Q2)) if and only if D(G1) ' D(G3) for some twisted dual G3 of G2.764

In Section 5.7 we discuss binary delta-matroids, which arise from binary765

symmetric matrices. Further results from [61] describe how any binary delta-766

matroid can be viewed as an isotropic matroid.767

4.3. The spread of a delta-matroid768

In Section 4.1 we associated a family of delta-matroids to a ribbon graph.769

In this section we introduce an operation on delta-matroids that enables us to770

relate D≤n(G) to D(G).771

Definition 4.12. Let D = (E,F) be a delta-matroid and n be a non-negative772

integer. Then we define F≤n by773

F≤n := {F 4A | F ∈ F and A ⊆ E and |A| ≤ n}.
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We say that the set system D≤n := (E,F≤n) is the n-spread of D.774

Note that D≤0 = D. In order to show that D≤n is a delta-matroid, we will775

define delta-matroid sum. This sum is not the same concept as the direct sum,776

which we define later. We will only refer to the sum in this section, so confusion777

should not arise. If D = (E,F) and D′ = (E,F ′) are proper set-systems then778

their sum is the set system (E,F4F ′) where779

F4F ′ := {F 4 F ′ | F ∈ F and F ′ ∈ F ′}.

Bouchet and Schwärzler [12] attribute the following result to Duchamp. A proof780

of the corresponding result for jump systems may be found in [10] and it is easy781

to translate this proof to delta-matroids.782

Theorem 4.13. If D and D′ are delta-matroids, then their sum is also a delta-783

matroid.784

Proposition 4.14. If D = (E,F) is a delta-matroid and n a non-negative785

integer, then D≤n is a delta-matroid.786

Proof. Let On = (E, {∅}≤n). Then it is clear that On is a delta-matroid and787

that D≤n is the sum of D and On. The result follows from Theorem 4.13.788

Remark 4.15. Theorem 4.13 can be used to generate interesting families of delta-789

matroids. The uniform matroid, denoted by Ur,m, is a matroid with m elements790

in the ground set and rank r, such that every subset of the ground set with r791

elements is a basis. An interesting family of delta-matroids may be constructed792

by taking the sum of a delta-matroid D with the uniform matroid of rank r793

defined on the ground set of D. This gives a delta-matroid in which a set F is794

feasible if and only if there is a feasible set F ′ of D with |F 4 F ′| = r.795

The following is an easy observation concerning spreads.796

Proposition 4.16. If D = (E,F) is a delta-matroid, n is a non-negative integer797

and A is a subset of E then (D ∗A)≤n = D≤n ∗A.798

Proof. A set is feasible in the n-spread of D if and only if it is feasible in D ∗X799

for some X with |X| ≤ n. That is,800

F≤n =
⋃
X⊆E
|X|≤n

F(D ∗X).

Thus801

F(D≤n ∗A) =
⋃
X⊆E
|X|≤n

F((D ∗X) ∗A) =
⋃
X⊆E
|X|≤n

F((D ∗A) ∗X) = F((D ∗A)≤n).

802
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Definition 4.17. Let D = (E,F) be a delta-matroid and n a non-negative803

number. Then we define F4n as F≤n − F≤n−1. The n-toggle of D, which is804

denoted by D4n, is defined to be (E,F4n).805

Note that D40 = D.806

Proposition 4.18. Let D = (E,F) be an even delta-matroid with E 6= ∅. Then807

D41 is a delta-matroid.808

Proof. Take A and B in F41 and x in A4 B. Then A and B are in F≤1. By809

Proposition 4.14, there is an element y in A4 B such that A4 {x, y} ∈ F≤1.810

If y 6= x then A4 {x, y} ∈ F41, so we may assume that y = x. In this case we811

must have A4 x ∈ F . Now |A4B| ≥ 2, because D is even, so we may choose812

z ∈ (A4B)− x. Clearly A4 {x, z} = (A4 x)4 z is in F41.813

The following theorem shows that D≤n(G) and Dn(G) can be obtained from814

D(G) by n-spreads and n-toggles.815

Theorem 4.19. Let G = (V,E) be a ribbon graph and n a non-negative number.816

Then817

1. D≤n(G) is the n-spread of D(G), that is D≤n(G) = D(G)≤n; and818

2. Dn(G) = D(G)4n.819

Proof. Item (2) follows directly from (1), since Fn(G) = F≤n(G)− F≤n−1(G),820

and F(D(G)4n) = F(D(G)≤n)− F(D(G)≤n−1). Thus it suffices to show that821

(1) holds.822

We will show that823

4.19.1. F≤n(G) is contained in the feasible sets of the n-spread of D(G).824

We proceed using induction on n. Clearly the result is true when n = 0.825

Take F ∈ F≤n(G). Suppose there is an edge e ∈ F such that e is incident with826

two boundary components of (V, F ). Then e is not a bridge, so f(F4e)−k(G) =827

(f(F )−1)−k(G). Hence F 4 e is in F≤n−1. By induction, we know that F 4 e828

is a feasible set in the (n − 1)-spread of D(G). Hence F 4 e = F ′ 4 A, where829

F ′ ∈ F(G) and |A| ≤ n − 1. Then F = (F ′ 4 A)4 e = F ′ 4 (A4 e), so F is830

in the n-spread of D(G). So we may assume that each connected component831

of (V, F ) has exactly one boundary component. If k(F ) 6= k(G) then there is832

an edge e of G which is not in F , joining two connected components of (V, F ).833

Thus f(F 4 e) − k(G) = (f(F ) − 1) − k(G) and the result follows in a similar834

way. If k(F ) = k(G) then F is a spanning quasi-tree in G. Thus F is in F(G),835

which is itself contained in the n-spread of D(G) and 4.19.1 holds.836

We conclude this proof by showing that837

4.19.2. the feasible sets in the n-spread of D(G) are contained in F≤n(G).838

Again we proceed using induction on n. Clearly the result is true when n = 0.839

Take F in the n-spread of D(G). Then there is a spanning quasi-tree F ′ of G and840

a set A with |A| ≤ n such that F = F ′4A. If A is empty, then there is nothing841
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to prove, so let a ∈ A. Now F4a = F ′4(A−a) is in the (n−1)-spread of D(G)842

and, by induction, is contained in F≤n−1(G). Thus f(F 4 a) − k(G) ≤ n − 1.843

But, by Proposition 3.2, the number of boundary components of F and F 4 a844

differ by at most one. Hence f(F ) − k(G) ≤ f(F 4 a) − k(G) + 1 ≤ n, so845

F ∈ F≤n(G). Thus 4.19.2 holds.846

Two natural questions arise from the preceding results. Is Dn a delta-847

matroid for n ≥ 2? Can the evenness condition be dropped from Proposi-848

tion 4.18? Both questions have negative answers. We saw at the end of Sec-849

tion 4.1 an example that showed that in general D2(G), which equals D(G)42, is850

not a delta-matroid. Also the example given there showing that D1(G), which851

equals D(G)41, may not be a delta-matroid shows that evenness cannot be852

dropped. (We will shortly see (Proposition 5.3) that D(G) is even if and only if853

G is orientable.) The class of delta-matroids whose 1-toggle is a delta-matroid854

may be a nice class. It would be interesting to have a characterisation of it.855

5. Delta-matroids and ribbon graphs: geometric interplay856

5.1. Duals, partial duals and twists857

Recall from Section 2 that, if D = (E,F) is a delta-matroid and A ⊆ E,858

then the twist of D with respect to A, is the delta-matroid D∗A := (E, {A4X |859

X ∈ F}). In particular, the dual D∗ of D is equal to D∗E. Thus we may regard860

a twist D ∗ A as being a ‘partial dual’ of a delta-matroid in the sense that the861

dual is ‘formed with respect to only the elements in A’. The following theorem862

shows that this notion of partial duality corresponds exactly to partial duality863

of ribbon graphs (see Section 3.2). That is, on the delta-matroid level, twisting864

and partial duality are equivalent. Although this is a fairly simple result, it will865

prove to be extremely useful and important in what follows.866

Theorem 5.1. Let G = (V,E) be a ribbon graph, A ⊆ E and e ∈ E. Then867

D≤k(GA) = D≤k(G) ∗ A and, in particular, D(GA) = D(G) ∗ A. Furthermore,868

if G is orientable, then D1(GA) = D1(G) ∗A.869

Proof. We will first prove the statement for D(G). It is enough to prove it for870

A = {e}. We need to show for each Q ⊆ E that (V (G), Q) is a spanning quasi-871

tree of G if and only if (V (Ge), Q4e) is a spanning quasi-tree of Ge. But this872

follows immediately upon observing that in Table 1, in all cases, G and Ge \ e,873

as well as G \ e and Ge have the same number of boundary components.874

The general statement follows directly from the facts that D≤k(G) is the875

k-spread of D(G) and the k-spread and twisting commute. These facts are876

established by Theorem 4.19 and by Proposition 4.16, respectively.877

For matroids M(G∗) = M(G)∗ when G is a plane graph. However, this878

identity does not hold for non-plane graphs. The following corollary, which is879

obtained by taking A = E(G) in Theorem 5.1, explains why this is. It shows880

that geometric duality is a delta-matroidal property, rather than a matroidal881

property. The duality identity M(G∗) = M(G)∗ holds only for plane graphs882

because it is only in this case that M(G) and D(G) coincide.883
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Corollary 5.2. Let G be a ribbon graph. Then D≤k(G∗) = D≤k(G)∗ and, in884

particular, D(G∗) = D(G)∗. Furthermore, if G is orientable, then D1(G∗) =885

D1(G)∗.886

5.2. Seeing ribbon graph structures in a delta-matroid887

Next we show that basic topological information about G can be recovered888

from its delta-matroid. Because of the connection with Bouchet’s work that we889

have established, we could derive Item 4 in the following proposition from [6,890

Theorem 5.3], but we instead give a direct proof for completeness. We also give891

a short proof for Item 3, although it follows from [6, Theorem 4.1(iv)].892

Proposition 5.3. Let G be a ribbon graph and let D = D(G).893

1. The feasible sets of D with cardinality m are in 1-1 correspondence with894

the spanning quasi-trees of G with Euler genus m− v(G) + k(G).895

2. The rank of Dmin is equal to the size of a maximal spanning forest, that896

is, r(Dmin) = v(G)− k(G).897

3. The width of a ribbon-graphic delta-matroid is equal to the Euler genus of898

the underlying ribbon graph, that is, γ(G) = w(D).899

4. The delta-matroid D is even if and only if G is orientable.900

Proof. The one-to-one correspondence in (1) follows immediately from the defi-901

nition of D. Take F ∈ F(D) and let Q be the corresponding spanning quasi-tree.902

Let m = |F |. Then e(Q) = m. Furthermore, v(Q) = v(G) and f(Q) = k(G).903

Euler’s formula gives γ(Q) = m−v(G)+k(G). This completes the proof of (1).904

Now (1) implies that m is minimized (respectively maximized) whenever905

γ(Q) is minimized (respectively maximized). Thus, if m = r(Dmin), then by906

applying Lemma 3.5 we obtain γ(Q) = 0 and that Q is a maximal spanning907

forest of G. Moreover v(G)− k(G) = r(Dmin). Thus (2) holds.908

On the other hand, if m = r(Dmax) then γ(Q) is maximized, so by applying909

Lemma 3.5 again we deduce that γ(Q) = γ(G). Thus (3) holds.910

Finally, we show that (4) holds. Suppose that G is orientable. Then every911

ribbon subgraph is orientable and so γ(Q) is even for each spanning quasi-tree912

Q of G. It follows from (1) that |F | − r(Dmin) is even for each feasible set F ,913

and so the size of each feasible set has the same parity and D is even.914

If G is non-orientable then it contains an non-orientable cycle C. Let e be915

an edge of C. Then C− e may be extended to a maximal spanning forest F not916

containing e. But F ∪ e is also a spanning quasi-tree of G. Thus D has feasible917

sets with cardinalities of both parities, so it is odd.918

Recall that, if D is a delta-matroid, then Dmin and Dmax are matroids. The919

properties from Proposition 5.3 allow us to recognise D(G)min and D(G)max920

in terms of cycle matroids associated with G. The following corollary can be921

recovered from [6], but we give an independent proof here for completeness.922

Corollary 5.4. Let G be a ribbon graph. Then923

1. D(G)min = M(G);924
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2. D(G)max = (M(G∗))∗;925

3. D(G) = M(G) if and only if G is a plane ribbon graph, otherwise D(G)926

is not a matroid.927

Proof. By Proposition 5.3, the feasible sets of D(G)min are exactly the edge sets928

of the genus-zero spanning quasi-trees of G. By Lemma 3.5, these are the edge929

sets of the maximal spanning forests of G. Thus they are exactly the bases of930

M(G). Thus (1) holds.931

Next we prove (2). Proposition 5.3 implies that F is a feasible set in D(G)max932

if and only if (V (G), F ) is a spanning quasi-tree of G of genus γ(G), which by933

Lemma 3.5(3) occurs if and only if (V (G∗), F c) is a spanning tree of G∗. Then934

(1) implies that this holds exactly when F c is a feasible set in D(G∗)min =935

M(G∗). The result follows.936

Finally, we consider (3). The ribbon graph G is plane if and only if γ(G) =937

0. By Proposition 5.3(3), this occurs exactly when w(D(G)) = 0. But if938

w(D(G)) = 0, then D(G) = D(G)min = M(G). If w(D(G)) > 0, then D(G) has939

feasible sets of different sizes and cannot be a matroid.940

A consequence of Corollary 5.4 is that, for a ribbon graph G, the span-941

ning quasi-trees of minimal genus, and of maximal genus, both give rise to942

matroids. It is natural to ask if the edge sets of spanning quasi-trees of any943

fixed genus form the bases of a matroid. Although these sets are equicardi-944

nal, it is not hard to see that this is not the case in general. For example,945

while ({1, 2, 3, 4}, {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}) is a delta-matroid, the set sys-946

tem ({1, 2, 3, 4}, {{1, 2}, {3, 4}}) is not a matroid.947

We now consider when some other classes of delta-matroids that we have948

defined in terms of ribbon graphs are matroids.949

Proposition 5.5. Let G = (V,E) be a connected ribbon graph.950

1. If G is orientable, then D1(G) is a matroid if and only if one of the951

following occurs:952

(a) G is a tree, hence D1(G) ∼= U|E|−1,|E|; or953

(b) G is a collection of trivial orientable loops on one vertex, hence954

D1(G) ∼= U1,|E|; or955

(c) G is a pair of interlaced orientable loops on one vertex, so D1(G) ∼=956

U1,2.957

2. If D≤k(G) is a matroid for some integer k ≥ 1, then G comprises a single958

vertex and no edges.959

Proof. For (1), suppose there exists F in F(G) such that F 6= ∅ and F 6= E.960

Then, as G is orientable, Theorem 4.19(2) and Proposition 5.3(4) imply that961

D1(G) has feasible sets of size |F | − 1 and of size |F |+ 1. Hence D1(G) is not a962

matroid in the case that F(G) is not contained in {∅, E}. If F(G) = {∅}, then963

G is a collection of trivial orientable loops all connected to the same vertex,964

embedded in the sphere. In this case D1(G) is the uniform matroid of rank one,965

namely U1,|E|. If F(G) = {E}, then G is a tree and D1(G) = U|E|−1,|E| is the966

uniform matroid of rank |E| − 1. Finally, suppose that F(G) = {∅, E}. For967
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e ∈ E, Axiom 2.1 implies that there is an element f ∈ E such that ∅ 4 {e, f}968

is feasible. Hence E = {e, f}. As, G is orientable, we must have f 6= e, so G969

consists of a pair of interlaced orientable loops and D1(G) = {{e, f}, {{e}, {f}}}970

is a matroid isomorphic to U1,2. The reverse implication is easily checked. Hence971

(1) holds.972

Now we show that (2) holds. Suppose that (V, F ) is a spanning tree of G973

and e ∈ E. Then (V, F 4 e) has at most two boundary components, so both F974

and F 4 e are in F≤k(G). Therefore if E 6= ∅ then D≤k(G) is not a matroid.975

As we assumed that G is connected, it must comprise a single vertex and no976

edges.977

5.3. Loops, coloops, and ribbon loops978

For a graph G, it is well-known that an element e is a loop or coloop in979

M(G) if and only if e is loop or bridge, respectively, in G. One would expect980

such a relation to hold for ribbon graphs and their delta-matroids, and the981

following proposition shows that indeed it does. However, while coloops in982

D(G) correspond directly to bridges in a ribbon graph G, one has to be a little983

more careful in the case of loops. The difficulty is that, unlike graphs, ribbon984

graphs have different types of loops, orientable or non-orientable, and trivial985

or non-trivial. Loops in D(G) do not correspond to loops in G in general, but986

rather to trivial orientable loops in G.987

Lemma 5.6. Let G be a ribbon graph, D(G) = (E,F), and e ∈ E(G). Then988

1. e is a coloop in D(G) if and only if e is a bridge in G; and989

2. e is a loop in D(G) if and only if e is a trivial orientable loop in G.990

Proof. For the first item, if e is a bridge of G, then any ribbon subgraph of G991

not containing e has more connected components than G and therefore has more992

than k(G) boundary components and is not a spanning quasi-tree. Thus if e is993

a bridge it appears in every feasible set of D(G) and so is a coloop. Conversely,994

if e is a coloop in D(G) then it appears in every spanning quasi-tree of G. In995

particular, it appears in every spanning tree of G and is therefore a bridge.996

For the second item, e is a trivial orientable loop in G if and only if e is a997

bridge in G∗. Corollary 5.2 and item 1 imply that this occurs if and only if e is998

a coloop in D(G∗) = D(G)∗. This holds if and only if e is a loop in D(G).999

We have seen that loops in ribbon graphs can be classified into several types.1000

It turns out that that this classification may be usefully extended to elements1001

of delta-matroids in general.1002

Definition 5.7. Let D = (E,F) be a delta-matroid.1003

1. An element e of E is a ribbon loop if e is a loop in Dmin.1004

2. A ribbon loop e is non-orientable if e is a ribbon loop in D ∗ e and is1005

orientable otherwise.1006

3. An orientable ribbon loop e is trivial if e is in no feasible set of D and is1007

non-trivial otherwise.1008

27



4. A non-orientable ribbon loop e is trivial if F 4 e is in F for every feasible1009

set F ∈ F and is non-trivial otherwise.1010

If e is a loop in D then it is a ribbon loop of D, but the converse is not true1011

in general. In fact, e is a loop in D if and only if it is a trivial orientable ribbon1012

loop of D.1013

We now show that the various types of loops in a ribbon graph G correspond1014

to the various types of ribbon loops in the delta-matroid D(G).1015

Proposition 5.8. Let G be a ribbon graph, D = D(G) = (E,F), and e ∈ E(G).1016

Then1017

1. e is a loop in G if and only if e is a ribbon loop in D(G);1018

2. e is an orientable loop in G if and only if e is an orientable ribbon loop in1019

D(G);1020

3. e is a trivial loop in G if and only if e is a trivial ribbon loop in D(G).1021

Proof. We prove (1) first. An edge e is a loop of G if and only if e is an edge of1022

no spanning tree of G. This holds if and only if e appears in no feasible set of1023

Dmin.1024

Next we consider (2). From Table 1 we see that a loop e of G is orientable1025

if and only if it is not a loop of Ge. By (1), e is not a loop of Ge if and only1026

if it is not a ribbon loop of D(Ge). The result follows since D(Ge) = D ∗ e, by1027

Theorem 5.1. Thus (2) holds.1028

For (3), by Lemma 5.6, e is a trivial orientable loop of G if and only if e is1029

a loop of D if and only if e is a trivial orientable ribbon loop of D. It remains1030

to deal with trivial non-orientable loops.1031

Suppose first that e is a trivial non-orientable loop of G. Take F ∈ F . A1032

trivial ribbon loop is not interlaced with any cycle of G so F 4 e ∈ F . Hence e1033

is a trivial non-orientable ribbon loop in D.1034

Suppose finally that e is a trivial non-orientable ribbon loop in D. It is1035

enough to show that e is trivial in G. Suppose that this is not the case. Take1036

C to be a cycle interlaced with e and take f ∈ C. We may extend C − f to a1037

maximal spanning forest F ′ of G. As F ′ contains no cycle, we know that e /∈ F ′1038

and f /∈ F ′. Now exactly one of F ′ ∪ f and (F ′ ∪ f)4 e is a spanning quasi-tree1039

of G, depending on whether or not C is orientable, a contradiction. Thus e is a1040

non-trivial non-orientable loop of G and (3) holds.1041

Lemma 5.9. Let D be a delta-matroid and e an element of D. Then e is neither1042

a coloop nor a ribbon loop in D if and only if e is a non-trivial orientable ribbon1043

loop in D ∗ e.1044

Proof. Suppose that e is neither a coloop nor a ribbon loop of D. Then e belongs1045

to some basis of Dmin, so no basis of (D ∗ e)min contains e. Thus e is a ribbon1046

loop of D ∗ e. Moreover e is an orientable ribbon loop of D ∗ e because it is not1047

a ribbon loop of (D ∗ e) ∗ e = D and it is non-trivial because it is not a coloop1048

of (D ∗ e) ∗ e = D.1049
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On the other hand, if e is a non-trivial orientable ribbon loop of D ∗ e, then,1050

by Definition 5.7(2), e is not a ribbon loop of (D ∗ e) ∗ e = D. Furthermore, e1051

is not a loop of D ∗ e (as it is not a trivial orientable ribbon loop), so it is not1052

a coloop of D.1053

Another illustration of how ribbon graphs can inform delta-matroids is as1054

follows. Suppose that G is a ribbon graph with a non-orientable loop e. If Q1055

is a maximal spanning forest of G then Q ∪ e is a spanning quasi-tree. The1056

following lemma shows that this property holds for delta-matroids in general.1057

Lemma 5.10. Let D = (E,F) be a delta-matroid with r(Dmin) = r and suppose1058

that e is a non-orientable ribbon loop of D. Then a subset F of E− e is a basis1059

of Dmin if and only if F ∪ e is a feasible set of D with cardinality r + 1.1060

Proof. Let F ⊆ E−e with |F | = r and F∪e ∈ F . Suppose for contradiction that1061

F /∈ F . Let A = E−(F ∪e). Since e is a ribbon loop of D, every minimum sized1062

feasible set of D contains an element of A. By applying Lemma 2.4 we see that1063

every feasible set F ′ of D must satisfy |F ′ ∩A| ≥ 1. However, |(F ∪ e)∩A| = 0,1064

a contradiction. Thus F ∈ F .1065

By Definition 5.7(2), e is non-orientable ribbon loop of D ∗ e, and so r((D ∗1066

e)min) = r. Thus, by applying the previous argument to D ∗ e, we see that if1067

F ⊆ E−e with |F | = r and F ∪e ∈ F(D∗e) then F ∈ F(D∗e). So if F ⊆ E−e1068

with |F | = r and F ∈ F(D) then F ∪ e ∈ F(D).1069

5.4. Deletion, contraction, and minors1070

Deletion and contraction for ribbon graphs and for delta-matroids are com-1071

patible operations.1072

Proposition 5.11. Let G be a ribbon graph, and e ∈ E(G). Then1073

1. D(G \ e) = D(G) \ e;1074

2. D(G/e) = D(G)/e.1075

Proof. If e is a bridge of G then it belongs to every spanning quasi-tree of G.1076

Moreover, a subset F of E − e is a spanning quasi-tree of G \ e if and only if1077

F ∪ e is a spanning quasi-tree of G. By Lemma 5.6, e is a coloop of D(G) and1078

so the first part follows in this case.1079

On the other hand if e is not a bridge of G, then G and G \ e have the same1080

number of connected components. Thus the spanning quasi-trees of G \ e are1081

precisely the spanning quasi-trees of G that do not contain e. By Lemma 5.61082

again, e is not a coloop of D(G) and so the first part also follows in this case.1083

Using Proposition 3.4(3), we have D(G/e) = D(Ge \ e), which by Theo-1084

rem 5.1 and the first part of this proposition is the same as (D(G)∗e)\e. Using1085

Lemma 2.7, (D(G) ∗ e) \ e = D(G)/e.1086

Remark 5.12. D≤k(G \ e) 6= (D≤k(G)) \ e and D≤k(G/e) 6= (D≤k(G))/e, in1087

general. To construct an example illustrating the former, take a path with k+11088

edges, attach a non-orientable loop to one of the vertices and let e be one of the1089
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edges in the path. An example illustrating the latter can then be constructed1090

by taking the dual. The examples with k = 1 also illustrate that in general1091

D1(G \ e) 6= (D1(G)) \ e and D1(G/e) 6= (D1(G))/e.1092

The next corollary follows immediately from Proposition 5.11.1093

Corollary 5.13. Let G and H be ribbon graphs. If H is a minor of G then1094

D(H) is a minor of D(G).1095

The reverse inclusion is not true, because non-isomorphic ribbon graphs may1096

have isomorphic ribbon-graphic delta-matroids.1097

We will refer to a “D-minor” to mean a “minor isomorphic to D”. A class C1098

of delta-matroids or ribbon graphs is said to be minor-closed if, for each X ∈ C,1099

every minor of X is also in C. An excluded minor for a minor-closed class C of1100

delta-matroids or ribbon graphs is a delta-matroid or ribbon graph, respectively,1101

that is not in C but has each of its proper minors in C.1102

As a first illustration of the fact that ribbon graph intuition can lead to1103

results about delta-matroids, we consider even delta-matroids. Recall that an1104

even delta-matroid is one whose feasible sets all have the same parity. Being1105

even is preserved under taking minors, hence it may be characterised by a set of1106

excluded minors. Our aim is to find the set of excluded minors for even delta-1107

matroids. Consider the corresponding problem for ribbon graphs. A ribbon1108

graph is non-orientable if and only if it contains a non-orientable cycle. Edges1109

in a cycle can be contracted to give a loop, and it follows that a ribbon graph1110

is orientable if an only if it has no G0-minor, where G0 is the ribbon graph1111

consisting of a single non-orientable loop. Recalling from Proposition 5.3(4),1112

that a ribbon graph G is orientable if and only if D(G) is even, we deduce that1113

D(G) is even if and only if it contains no D(G0)-minor. This leads us to posit1114

that a delta-matroid D is even if and only if it contains no X0-minor, where1115

X0 = D(G0) = ({a}, {∅, {a}}). This turns out to be a slight reformulation of a1116

result of Bouchet.1117

Theorem 5.14 (Bouchet [6]). Let X0 = ({a}, {∅, {a}}). A delta-matroid D =1118

(E,F) is even if and only if it has no X0-minor.1119

Proof. If D is even, then it clearly does not have X0 as a minor, as any minor1120

of D is even. By Bouchet’s result, [6, Lemma 5.4], a delta-matroid is odd if and1121

only if it has a feasible set F and an element e /∈ F such that F ∪e is feasible. In1122

this case D/F \ (E − (F ∪ e)) is isomorphic to X0, hence the result follows.1123

Remark 5.15. As a further illustration of the interactions between ribbon graphs1124

and delta-matroids, it is interesting to note that Bouchet’s characterisation of1125

odd delta-matroids given in the proof of Theorem 5.14 is the direct analogue of1126

the ribbon graph result that G is non-orientable if and only if it has a spanning1127

quasi-tree Q and an edge e not in Q such that Q ∪ e is a spanning quasi-tree.1128

An excellent illustration of the compatibility between delta-matroid and rib-1129

bon graph theory is found by considering twists of matroids. As the class of1130
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matroids is not closed under twists but every matroid is a delta-matroid, twist-1131

ing provides a way to construct delta-matroids from matroids. Delta-matroids1132

arising from twists of matroids are of interest since they are an intermediate step1133

between delta-matroid theory in general and the much better developed field of1134

matroid theory. Suppose we are faced with the problem of characterising the1135

class of delta-matroids that arise as twists of matroids. How can we use the1136

insights of ribbon graphs to tackle this problem?1137

Suppose that G = (V,E) is a ribbon graph with ribbon-graphic delta-1138

matroid D = D(G). We wish to understand when D is the twist of a matroid,1139

that is, we want to determine if D = M ∗ A for some matroid M and for some1140

A ⊆ E. As twists are involutary, we can reformulate this problem as one of1141

determining if D ∗ B = M for some matroid M and some B ⊆ E. By Theo-1142

rem 5.1, D ∗ B = D(G) ∗ B = D(GB), but, by Corollary 5.4(3), D(GB) is a1143

matroid if and only if GB is a plane graph. Thus D is a twist of a matroid1144

if and only if G is the partial dual of a plane graph. Given our principle that1145

embedded graphs inform us about delta-matroids, to characterize the class of1146

delta-matroids that are twists of matroids, we should look for characterizations1147

of the class of ribbon graphs that arise as partial duals of plane graphs. For-1148

tunately, due to connections with knot theory (see [51]), this class of ribbon1149

graphs has been characterised. Let G0 be the ribbon graph consisting of a sin-1150

gle non-orientable loop; G1 be the orientable ribbon graph given by vertex set1151

{1, 2}, edge set {a, b, c} with the incident edges at each vertex having the cyclic1152

order abc, with respect to some orientation of G1; and let G2 be the orientable1153

ribbon graph given by vertex set {1}, edge set {a, b, c} with the cyclic order1154

abcabc at the vertex. Then the following holds.1155

Theorem 5.16 (Moffatt [53]). G is a partial dual of a plane graph if and only1156

if it has no minors equivalent to G0, G1, or G2.1157

The discussion above and our principle that ribbon graphs inform us about1158

delta-matroids lead us to the conjecture that a delta-matroid D is the twist of1159

a matroid if and only if it does not have a minor isomorphic to D(G0), D(G1),1160

or D(G2). Indeed this result is true and is readily derived from work of A.1161

Duchamp (see [25] for details of the derivation).1162

Theorem 5.17 (Duchamp [28]). A delta-matroid D is the twist of a matroid if1163

and only if it does not have a minor isomorphic to D(G0), D(G1), or D(G2).1164

In this example ribbon graph theory led to a result obtainable from the1165

literature, but below we will see examples where ribbon graph theory leads to1166

genuinely new structural delta-matroid theory.1167

5.5. Separability and connectivity for delta-matroids1168

If v is a separating vertex of a graph G, with P and Q being the subgraphs1169

that intersect in v, then knowledge of P , Q and v gives complete knowledge of1170

G. However, if G is a ribbon graph this is no longer the case. For example,1171

suppose that P and Q are orientable loops. Then G has genus zero or one,1172
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depending on whether or not P and Q are interlaced. Thus separability is1173

a much more subtle concept for ribbon graphs than for graphs. Given our1174

principle that graphs are matroidal, while ribbon graphs are delta-matroidal,1175

we should expect ‘connectivity’ for delta-matroids to be more subtle than for1176

matroids. In this section, we define notions of connectivity and separability of1177

delta-matroids that reflect the corresponding concepts for ribbon graphs defined1178

in Section 3.1.6.1179

For matroids M1 = (E1,B1) and M2 = (E2,B2), where E1 is disjoint from1180

E2, the direct sum of M1 and M2, written M1 ⊕M2, is constructed as follows.1181

M1 ⊕M2 := (E1 ∪ E2, {B1 ∪B2 | B1 ∈ B1 and B2 ∈ B2}).

If M = M1⊕M2, for non-trivial M1 and M2, then we say that M is disconnected1182

and that E1 and E2 are each separating. We say that M is connected if it1183

is not disconnected. The connectivity of cycle matroids is closely linked to1184

the connectivity of the underlying graph. A graph is 2-connected if it has a1185

single connected component and no separating vertex. The following is well-1186

known [56].1187

Proposition 5.18. Let G be a graph. Then M(G) is connected if and only1188

if G is 2-connected. Moreover if M(G) = M1 ⊕M2, for non-trivial M1 and1189

M2, then M1 = M(G1) and M2 = M(G2) for some graphs G1 = (V1, E1) and1190

G2 = (V2, E2) such that G = (V1 ∪ V2, E1 ∪ E2), and E1 and E2 are disjoint,1191

and V1 and V2 are either disjoint or intersect in a single vertex.1192

Motivated by separability for ribbon graphs, we generalize this concept to1193

delta-matroids in two slightly different ways. The second definition is from [37].1194

Definition 5.19. Let D = (E,F) be a delta-matroid. Then D is separable if1195

Dmin is disconnected.1196

Definition 5.20. For delta-matroids D = (E,F) and D̃ = (Ẽ, F̃) with E∩Ẽ =1197

∅, the direct sum of D and D̃ is written D⊕ D̃ and is the delta-matroid defined1198

as1199

D ⊕ D̃ := (E ∪ Ẽ, {F ∪ F̃ | F ∈ F and F̃ ∈ F̃}).
If a delta-matroid can be written as D ⊕ D̃ for some non-trivial delta-matroids1200

D and D̃, then we say it is disconnected. A delta-matroid is connected if it is1201

not disconnected.1202

We defined separability and connectivity for delta-matroids so that they are1203

compatible with the corresponding concepts for ribbon graphs, as in the follow-1204

ing propositions, the first of which follows immediately from Proposition 5.18.1205

Proposition 5.21. Let G be a ribbon graph. Then D(G) is separable if and1206

only if there exist non-trivial ribbon graphs G1 and G2 such that G = G1 tG21207

or G = G1 ⊕G2.1208

Moreover if D(G)min = M1 ⊕M2, for some non-trivial M1 and M2, then1209

there exist non-trivial ribbon graphs G1 and G2 such that D(G)min = M(G1)⊕1210

M(G2) and G = G1 tG2 or G = G1 ⊕G2.1211
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Proposition 5.22. Let G be a ribbon graph. Then D(G) is disconnected if1212

and only if there exist non-trivial ribbon graphs G1 and G2 such that either1213

G = G1 tG2 or G = G1 gG2.1214

Proof. If G = G1 t G2 or G = G1 g G2 then it is easy to see that D(G) is1215

disconnected.1216

Suppose now that D(G) is disconnected. Then D(G) is separable. The1217

previous proposition implies that this is only possible if G = G1 t G2 or G =1218

G1 ⊕ G2 for some non-trivial G1 and G2. Moreover if D(G) = D ⊕ D′ then1219

Dmin = D(G1)min and D′min = D(G2)min for non-trivial ribbon graphs G1 and1220

G2 such that G = G1 tG2 or G = G1 ⊕G2.1221

It remains to show that if G = G1 ⊕ G2, but G 6= G1 g G2 then D(G) 6=1222

D(G1)⊕D(G2). If G = G1⊕G2, but G 6= G1gG2 then there are two interlaced1223

cycles C1 and C2 of G1 and G2, respectively, intersecting in G at a vertex v. Let1224

e1 ∈ E(C1) and let F1 be a maximal forest of G1 with C1 − {e1} ⊆ F1. Define1225

F2 similarly. Now Fi ∪ {ei} ∈ F(D(Gi)) if and only if Ci is non-orientable.1226

However (F1 ∪ {e1})∪ (F2 ∪ {e2}) ∈ F(D(G)) except when both C1 and C2 are1227

non-orientable. Consequently D(G) 6= D(G1)⊕D(G2).1228

We emphasize the unfortunate clash between ribbon graph and delta-matroid1229

notation that while D(G1 gG2) = D(G1)⊕D(G2), in general, D(G1 ⊕G2) 6=1230

D(G1)⊕D(G2).1231

For another illustration of how ribbon graphs inform delta-matroids we re-1232

turn to the problem of characterising twists of matroids from the end of Sec-1233

tion 5.4. In that section we saw how ribbon graph theory led to an excluded1234

minor characterisation of twists of matroids. We will now see how they lead to1235

a rough structure theorem for twists of matroids.1236

As before the ribbon graph analogue of a twist of a matroid is a partial1237

dual of a plane graph. Motivated by knot theory, in [51] (see also [52]), Moffatt1238

gave a rough structure theorem for the class of partial duals of plane graphs.1239

This rough structure theorem ensures that every such ribbon graph admits a1240

particular decomposition into plane ribbon graphs.1241

Theorem 5.23 (Moffatt [51]). Let G be a ribbon graph and A ⊆ E(G). Then1242

the partial dual GA is a plane graph if and only if all of the connected components1243

of G|A and G|Ac are plane and every vertex of G that is in both G|A and G|Ac1244

is a separating vertex of G.1245

We now translate this into delta-matroids. If D = D(G) then “GA is a plane1246

graph” becomes “D ∗ A is a matroid”, and “G|A and G|Ac are plane” becomes1247

“D \Ac and D \A are both matroids”. By Proposition 5.21, D(G) is separable1248

if and only if there exist ribbon graphs G1 and G2 such that G = G1 t G2 or1249

G = G1 ⊕G2. Thus the condition that every vertex of G that is incident with1250

edges in A and edges in E(G) − A is a separating vertex of G becomes A is1251

separating in Dmin. Thus we have deduced the following theorem for ribbon-1252

graphic delta-matroids. Our principle that ribbon graphs inform us about delta-1253

matroids led us to conjecture that it holds for delta-matroids in general, and we1254

showed that this is indeed the case.1255
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Theorem 5.24 (Chun et al [25]). Let D be a delta-matroid and A be a non-1256

empty proper subset of E(D). Then D∗A is a matroid if and only if the following1257

two conditions hold:1258

1. A is separating in Dmin, and1259

2. D \A and D \Ac are both matroids.1260

We emphasise that the ribbon graph theory genuinely led us to the formu-1261

lation of Theorem 5.24. We probably would not have found the result without1262

the insights and guidance of ribbon graphs.1263

We have just given an example of how ribbon graphs inform delta-matroids.1264

We now give an example of delta-matroid theory giving a result about ribbon1265

graphs.1266

The following inductive tools have been fundamental in the development of1267

matroid theory.1268

Theorem 5.25 (Tutte [63]). Let M be a connected matroid. If e ∈ E(M), then1269

M\e or M/e is connected.1270

Theorem 5.26 (Brylawski [17], Seymour [58]). Let M be a connected matroid1271

with a connected minor N . If e ∈ E(M)−E(N), then M\e or M/e is connected1272

with N as a minor.1273

Bouchet generalized Theorem 5.25 to the context of delta-matroids in [9].1274

The actual result that he proved is for an even more general object, called a1275

multimatroid, but we state a special case of his result here in terms of delta-1276

matroids.1277

Theorem 5.27 (Bouchet [9]). Let D be a connected even delta-matroid. If1278

e ∈ E(D), then D \ e or D/e is connected.1279

By exploiting results of Brijder and Hoogeboom [15], Chun, Chun, and Noble1280

in [24] derived another consequence of Bouchet’s result, extending Theorem 5.271281

to the class of vf-safe delta-matroids. These were introduced by Brijder and1282

Hoogeboom in [14], and include ribbon-graphic delta-matroids and binary delta-1283

matroids, which are discussed in Section 5.7. Given a vf-safe delta-matroid D1284

and a subset A of its ground set, the delta-matroid D+A has ground set E(D)1285

and F is feasible if and only if D has an odd number of feasible sets F ′ satisfying1286

F − A ⊆ F ′ ⊆ F . For more details on the delta-matroid D + A, including how1287

the + operation interacts with other delta-matroid operations such as twisting,1288

see [13, 14].1289

Theorem 5.28 (Chun et al. [24]). Let D be a connected vf-safe delta-matroid.1290

If e ∈ E(D), then at least two of D \ e, D/e and (D + e)/e are connected.1291

For a ribbon graph G and subset A of its edges, informally we define G+A1292

to be the ribbon graph formed from G by adding a “half-twist” to the edges1293

in A (see [31] for a formal definition of the partial Petrial and Petrie dual). It1294

is shown in [25] that D(G + A) = D(G) + A. A ribbon graph is said to be1295
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2-connected if G 6= P tQ and G 6= P gQ, for any non-trivial ribbon graphs P1296

and Q. The next theorem, also proved by Chun, Chun, and Noble [24] follows1297

immediately from the two preceding theorems and Proposition 5.22.1298

Theorem 5.29 (Chun et al. [24]). Let G be a 2-connected ribbon graph. Then1299

at least two of G \ e, G/e and (G+ e)/e are 2-connected.1300

In [24], Chun, Chun, and Noble generalized Theorem 5.26 to multimatroids.1301

We state two special cases of the result here in terms of delta-matroids.1302

Theorem 5.30 (Chun et al. [24]). Let D be a connected even delta-matroid with1303

a connected minor D′. If e ∈ E(D) − E(D′), then D\e or D/e is connected1304

with D′ as a minor.1305

To state the second special case, we need to concept of a 3-minor in a vf-safe1306

delta-matroid. We say that D′ is a 3-minor of a vf-safe delta-matroid D, if1307

D′ = ((D \ X/Y ) + Z)/Z for disjoint subsets X, Y and Z of E(D). It is not1308

difficult to establish that the three operations used in forming a 3-minor have1309

the desirable property that they may be applied element by element in any order1310

without changing the result.1311

Theorem 5.31 (Chun et al. [24]). Let D be a connected vf-safe delta-matroid1312

with a connected 3-minor D′. If e ∈ E(D)−E(D′), then D\e, D/e or (D+e)/e1313

is connected with D′ as a 3-minor.1314

The next two results follow immediately from the previous two.1315

Theorem 5.32 (Chun et al. [24]). Let G be a 2-connected, orientable ribbon1316

graph. If H is a 2-connected minor of G and e ∈ E(G) − E(H), then G \ e or1317

G/e is 2-connected with H as a minor.1318

A 3-minor in a ribbon graph in an analogous way to which it is defined in a1319

vf-safe delta-matroid.1320

Theorem 5.33 (Chun et al. [24]). Let G be a 2-connected ribbon graph. If H is1321

a 2-connected 3-minor of G and e ∈ E(G)−E(H), then G\e, G/e or (G+e)/e1322

is 2-connected with H as a 3-minor.1323

As we mentioned above, this result is a nice example of delta-matroids pro-1324

viding insight into ribbon-graphs. It is extremely unlikely that we would have1325

established Theorem 5.33 without the intuition provided by delta-matroids.1326

5.6. Rank functions1327

In this section we examine delta-matroid rank and its connections to ribbon1328

graph structures. Let G = (V,E) be a graph, M = M(G) be its cycle matroid,1329

and A ⊆ E. It is well-known that the rank function of M can be expressed in1330

terms of graph parameters: rM (A) = v(G)− kG(A). In this section we express1331

the rank function of a ribbon-graphic delta-matroid in terms of ribbon graph1332

parameters.1333
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For our next proof, we need a new piece of terminology. Let H and K be1334

distinct spanning ribbon subgraphs of G. Then we say that K is obtained from1335

H by an edge-toggle if E(H) = E(K) 4 e for some edge e ∈ E(G). Recall1336

that, for ribbon graph G and A ⊆ E(G), functions such as ρD(G)(A), e(A), and1337

f(A) refer to ρD(G)((V (G), A)), e((V (G), A)), and f((V (G), A)), respectively,1338

as defined in Section 3.1.2.1339

Theorem 5.34. Let G = (V,E) be a ribbon graph and A ⊆ E. Then1340

ρD(G)(A) = e(G)− f(A) + k(G).

Proof. To prove the theorem it is enough to show that for a ribbon graph G =1341

(V,E) with D(G) = (E,F) we have min{|A4 F | | F ∈ F} = f(A)− k(G). To1342

do this, set1343

q(A) := min{|X|+|Y | | X,Y ⊆ E, and (V, (A−X)∪Y ) is a spanning quasi-tree}.

Then q(A) is the smallest number of edge-toggles needed to transform (V,A)1344

into a spanning quasi-tree. Clearly q(A) = min{|A4 F | | F ∈ F}, and so we1345

need to show that q(A) = f(A)− k(G).1346

First observe that q(A) ≥ f(A)−k(G) since an edge-toggle can decrease the1347

number of boundary components by at most one.1348

To show that q(A) ≤ f(A)−k(G) we argue by induction on f(A). If f(A) =1349

k(G), then (V,A) is a spanning quasi-tree and q(A) = 0 = f(A) − k(G). For1350

the inductive hypothesis, suppose that q(A) ≤ f(A) − k(G) for all A with1351

f(A) < r. Now suppose that f(A) = r > k(G). There are two cases to1352

consider: k(A) > k(G) and k(A) = k(G).1353

If k(A) > k(G), then G has an edge e /∈ A such that k(A ∪ e) = k(A) − 1.1354

Then we must also have f(A ∪ e) = f(A) − 1. The inductive hypothesis then1355

gives q(A ∪ e) ≤ f(A ∪ e)− k(G) = f(A)− k(G)− 1. So a sequence of at most1356

f(A) − k(G) − 1 edge-toggles transforms (V,A ∪ e) to a spanning quasi-tree.1357

Placing ‘add e’ at the start of this sequence of edge-toggles gives a sequence of1358

at most f(A) − k(G) edge-toggles that transforms (V,A) to a spanning quasi-1359

tree. Thus q(A) ≤ f(A)− k(G).1360

If k(A) = k(G), then, since (V,A) has more than k(G) boundary compo-1361

nents, A 6= ∅. Each edge of (V,A) intersects either one or two boundary compo-1362

nents of (V,A). There must be some edge e ∈ A that intersects two boundary1363

components since f(A) > k(G) and k(A) = k(G). Then f(A − e) = f(A) − 1.1364

The inductive hypothesis then gives q(A−e) ≤ f(A−e)−k(G) = f(A)−k(G)−1.1365

So, proceeding as in the case where k(A) > k(G), a sequence of at most1366

f(A) − k(G) − 1 edge-toggles transforms (V,A − e) to a spanning quasi-tree.1367

Placing ‘subtract e’ at the start of this sequence of edge-toggles gives a sequence1368

of at most f(A)−k(G) edge-toggles that transforms (V,A) to a spanning quasi-1369

tree. Thus q(A) ≤ f(A)− k(G). This completes the proof of the theorem.1370

Remark 5.35. This theorem can be seen as a corollary of the extended Cohn-1371

Lempel equality from [60]. One associates to the ribbon graph its medial graph,1372
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which is 4-regular. Next, one translates the ribbon graph parameters e(G), f(A)1373

and k(G) into parameters depending on the medial graph. One can also con-1374

struct the delta-matroid of the ribbon graph from the medial graph, see [6] and1375

the proof of Theorem 4.8. Once the definition of the rank of the delta-matroid is1376

translated to the medial graph, Theorem 5.34 follows from the extended Cohn-1377

Lempel equality.1378

The theorem above immediately provides us with the following interpretation1379

of ρ for ribbon-graphic delta-matroids.1380

Corollary 5.36. Let G = (V,E) be a ribbon graph, A ⊆ E(G), and D = D(G).1381

Then |E| − ρD(A) is equal to the minimum number of edge-toggles required to1382

transform (V,A) into a spanning quasi-tree of G.1383

The ribbon graph interpretation of ρD(G) can be used to discover results1384

about ρD for a general delta-matroid D. For example, recall from the proof of1385

Lemma 3.5 that the boundary components of G \ Ac and G∗ \ A coincide and1386

so fG(A) = fG∗(Ac). Thus, for ribbon-graphic delta-matroids, it follows that1387

ρD∗(A) = ρD(E − A). This identity holds for delta-matroids in general, as we1388

saw earlier in Lemma 2.9.1389

For reference later, we record the following basic facts about rank functions.1390

Corollary 5.37. Let G = (V,E) be a ribbon graph. Then1391

1. rM(G)(A) = rD(G)min
(A);1392

2. rM(G∗)(A) = r(D(G)max)∗(A) = r(D(G)max)(A
c) + |A| − r(D(G)max)(E);1393

3. ρD(G)(A) = ρD(G∗)(E −A).1394

Proof. The first part follows immediately from the fact that M(G) = D(G)min.1395

For the second part, first note that Corollary 5.4(2) implies that M(G∗) =1396

(D(G)max)∗. Thus rM(G∗)(A) = r(D(G)max)∗(A). Equation (2.1) implies that1397

this is equal to r(D(G)max)(A
c) + |A| − r(D(G)max)(E). Thus (2) holds. As1398

(D(G))∗ = D(G∗) by Corollary 5.2, the third part follows from Lemma 2.9.1399

To motivate some delta-matroid results, consider a ribbon graph G and a
set A ⊆ E(G). Then r(A) = v(G) − k(A) and ρ(A) = e(G) − f(A) + k(G).
Euler’s formula and Proposition 5.3(3) give

ρ(A)− r(A)− n(G) + n(A) = (e(G)− f(A) + k(G))− (v(G)− k(A))

− (e(G)− v(G) + k(G)) + n(A))

= k(A)− f(A) + n(A) = γ(A)

= w(D(G \Ac)) = w(D(G) \Ac) = w(D(G)|A).

This identity holds more generally for delta-matroids, which we will show1400

after we state the following lemma, the simple proof of which we omit.1401

Lemma 5.38. Let D = (E,F) be a delta-matroid. Then r(Dmax) = ρD(E)1402

and r(Dmin) = |E| − ρD(∅).1403
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Proposition 5.39. Let D = (E,F) be a delta-matroid and let A ⊆ E. Then1404

1. r((D|A)min) = rDmin
(A);1405

2. r((D|A)max) = ρD(A)− nDmin
(E) + nDmin

(A);1406

3. w(D|A) = ρD(A)− rDmin
(A)− nDmin

(E) + nDmin
(A).1407

Proof. Let F0 be a feasible set of D having smallest possible intersection with1408

Ac. By Lemma 2.4, we may assume that F0 ∈ F(Dmin). Let Y = F0 ∩ Ac and1409

Z = Ac−Y . If the elements of Z are deleted one by one from D, then no coloop1410

is deleted because there is a feasible set F0 missing Z. However every element1411

of Y is a coloop of D \ Z. Thus D|A = D \ Z/Y . We have1412

F(D|A) = {F − Y | F ∈ F(D), F ∩Ac = Y }.

Therefore1413

r((D|A)min) = |F0| − |Y | = max
F∈F(Dmin)

{|F ∩A|} = rDmin
(A), (5.1)

establishing the first part.1414

Applying Lemma 2.11 |Ac| times to delete first the elements of Z and then1415

those of Y implies that1416

ρD|A(A) = ρD(A)− |E|+ |A|+ |Y |. (5.2)

By applying Lemma 5.38 to D|A and Equation (5.2), we obtain1417

r((D|A)max) = ρD|A(A) = ρD(A) + |A|+ |Y | − |E|. (5.3)

Now nDmin(E) = |E|−|F0| and, by Equation (5.1), nDmin(A) = |A|−(|F0|−|Y |).1418

Substituting into Equation (5.3) yields the second part.1419

The final part follows immediately by subtracting the equation in the first1420

part from that in the second part.1421

5.7. Representability1422

Let K be a finite field. For a finite set E, let C be a skew-symmetric |E| by1423

|E| matrix over K, with rows and columns indexed, in the same order, by the1424

elements of E. Note that we only allow the diagonal of C to be non-zero when1425

K has characteristic two. Let C [A] be the principal submatrix of C induced by1426

the set A ⊆ E.1427

We define the delta-matroid D(C) = (E,F), where A ∈ F if and only1428

if C[A] is non-singular over K. By convention C[∅] is non-singular. Bouchet1429

showed in [4] that D(C) is indeed a delta-matroid. Observe that ∅ ∈ F(D(C)),1430

for every C.1431

A delta-matroid is called representable over K if it has a twist that is iso-1432

morphic to D(C) for some matrix C.1433

Lemma 5.40 (Bouchet [4]). Suppose that a delta-matroid D is representable1434

over a field K. Let F be any feasible set of D. Then D ∗ F = D(C) for some1435

skew-symmetric matrix C over K.1436
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Suppose that M is a matroid representable over K and that B is a basis of1437

M . Then M has a representation of the form (I|A) where I is a |B| by |B|1438

identity matrix and the columns of I correspond to the elements of B. It is not1439

difficult to see that if1440

C =

(
0 A
−AT 0

)
,

then M ∗B = D(C). Thus we have the following result.1441

Proposition 5.41 (Bouchet [4]). A matroid representable over a field K is also1442

representable over K as a delta-matroid.1443

A delta-matroid representable over the field with two elements is called bi-1444

nary. If D = D(C) is a binary delta-matroid, then its feasible sets of all sizes1445

are determined by its feasible sets of size at most two. By combining this ob-1446

servation with Lemma 5.40, we obtain the following.1447

Lemma 5.42 (Bouchet and Duchamp [11]). Let F be a feasible set of a binary1448

delta-matroid D. Then the feasible sets of D are determined by {X | |F 4X| ≤1449

2 and X ∈ F(D)}.1450

Bouchet and Duchamp gave an excluded-minor characterisation of binary1451

delta-matroids.1452

Theorem 5.43 (Bouchet and Duchamp [11]). A delta-matroid is a binary delta-1453

matroid if and only if it has no minor isomorphic to a twist of S1, S2, S3, S4, or1454

S5, where1455

1. S1 = ({1, 2, 3}, {∅, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}),1456

2. S2 = ({1, 2, 3}, {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}),1457

3. S3 = ({1, 2, 3}, {∅, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}),1458

4. S4 = ({1, 2, 3, 4}, {∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}),1459

5. S5 = ({1, 2, 3, 4}, {∅, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3, 4}}).1460

It is easy to check that no twist of S1, S2, S3 or S4 is a matroid and that1461

the uniform matroid U2,4 is the only twist of S5 that is a matroid. Note that1462

this result implies Tutte’s characterization of binary matroids [65] because U2,41463

is the unique excluded minor for the class of binary matroids.1464

It is well known that graphic matroids are representable over every field. An1465

analogous result holds for ribbon graphic delta-matroids. Let D be a ribbon-1466

graphic delta-matroid. It is readily verified that S1, . . . , S5 do not arise as the1467

delta-matroids of any ribbon graph. Consequently D has no twist of any delta-1468

matroid in {S1, . . . , S5} as a minor. So Theorem 5.43 implies that D is binary.1469

Theorem 5.44 (Bouchet [4]). Every ribbon-graphic delta-matroid is a binary1470

delta-matroid.1471

Knowing that D(G) is binary, it is straightforward to write down a binary1472

representation for the delta-matroid of a ribbon graph G = (V,E) that has a1473
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single vertex. Let C = (ce,f | e, f ∈ E) be the binary matrix representing D(G).1474

Let ce,e be one if e is non-orientable and let ce,e be zero otherwise. Let both1475

ce,f and cf,e be one if e and f are interlaced; otherwise they are both zero.1476

If G is connected and has more than one vertex, then a binary representation1477

for D(G) can be found by forming the partial dual GQ, where Q is the edge set1478

of a spanning quasi-tree, then forming a matrix C as above using GQ.1479

Bouchet’s proof of Theorem 5.44 predates Theorem 5.43, and is more in-1480

volved. The difficulty is showing thatD(G) = D(C). He extended Theorem 5.441481

to other fields as follows.1482

Theorem 5.45 (Bouchet [4]). An even ribbon-graphic delta-matroid is repre-1483

sentable over any field.1484

As even ribbon-graphic delta-matroids correspond precisely to the delta-1485

matroids formed from orientable ribbon graphs, the following is obvious.1486

Corollary 5.46 (Bouchet [4]). The delta-matroids of orientable ribbon graphs1487

are representable over any field.1488

Remark 5.47. If K is a field with a characteristic different from two, any non-1489

singular skew-symmetric matrix is of even size. Hence any delta-matroid that1490

is representable over a field of charactistic different from two has to be even.1491

Thus the delta-matroid of any non-orientable ribbon graph is not representable1492

over any field with characteristic different from two.1493

Remark 5.48. Not all binary delta-matroids are ribbon-graphic. The matroid1494

M(K5) is a binary matroid and hence by Proposition 5.41 it is a binary delta-1495

matroid. However, it is not ribbon-graphic. If M(K5) is isomorphic to D(G)1496

for some graph G, then by Corollary 5.4(3), G must be planar, and then D(G)1497

and M(G) are isomorphic. This is impossible because M(K5) is not isomorphic1498

to the cycle matroid of any other graph, and G is planar but K5 is not.1499

5.8. Characterising ribbon-graphic delta-matroids1500

Just as not all matroids are graphic, not all delta-matroids are ribbon-1501

graphic. It is natural to ask for a characterisation of ribbon-graphic delta-1502

matroids, and such a characterisation can be recovered from work of Geelen1503

and Oum. In [38] Geelen and Oum built on the work of Bouchet [7] in the1504

area of circle graphs and found pivot-minor-minimal non-circle-graphs. As an1505

application of this they obtained the excluded minors for ribbon-graphic delta-1506

matroids.1507

Theorem 5.49 (Geelen and Oum [38]). A delta-matroid is ribbon-graphic if1508

and only if it does not contain a minor isomorphic to a twist of a delta-matroid1509

in {S1, S2, . . . , S5}, where S1, S2, . . . , S5 are as in Theorem 5.43, or in the set1510

of 166 binary delta-matroids found by the authors of [38].1511
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6. Topological analogues of the Tutte polynomial1512

The Tutte polynomial, T (G;x, y), of a graph or ribbon graph G = (V,E) can
be defined as the state sum

T (G;x, y) =
∑

A⊆E(G)

(x− 1)r(G)−r(A)(y − 1)n(A).

The Tutte polynomial is perhaps the most studied of all graph polynomials be-1513

cause of the vast range of its specializations, including graph invariants from1514

statistical physics and knot theory, and because of its interplay with other key1515

graph polynomials such as the interlace polynomial, Penrose polynomial, chro-1516

matic polynomial and flow polynomial. Tutte introduced his eponymous poly-1517

nomial in [64]. A good recent survey is [29]. More details on specializations can1518

be found in [67] and [18], and historical background can be found in [35].1519

We think of the Tutte polynomial as a polynomial over the ring of integers,1520

T (G;x, y) ∈ Z[x, y]. Both it and all the other polynomials in this section can1521

also be defined over an arbitrary commutative unitary ring, but, for simplicity1522

of exposition, we will work over Z.1523

It is well-known that the Tutte polynomial is matroidal, in the sense that all
of its parameters depend only on the cycle matroid M(G) of G, rather than the
graph itself. It is defined for all matroids by replacing G with M in the definition
above. The Tutte polynomial can readily be extended to delta-matroids by
setting

T (D;x, y) := T (Dmin;x, y) =
∑

A⊆E(D)

(x− 1)rDmin
(D)−rDmin

(A)(y − 1)nDmin
(A).

Since D(G)min = M(G), we have T (D(G);x, y) = T (G;x, y).1524

There has been much recent interest in extensions of the Tutte polynomial1525

to embedded graphs and ribbon graphs. By the term ‘extension’ here we mean1526

that the polynomial should include the Tutte polynomial as a specialization,1527

and that it should encode topological information about the embedding of the1528

graph in some way. We refer to such polynomials loosely as ‘topological Tutte1529

polynomials’. The Tutte polynomial itself clearly does not depend upon the1530

embedding.1531

Here we are concerned with three such polynomials: the Las Vergnas poly-1532

nomial, the ribbon graph polynomial of Bollobás and Riordan, and the Krushkal1533

polynomial. We show that, while the Tutte polynomial is matroidal, the topo-1534

logical Tutte polynomials are delta-matroidal, that is, they depend only on the1535

delta-matroid of a ribbon graph, and they are well-defined for delta-matroids.1536

Why should we expect this to be the case? Above we defined the Tutte1537

polynomial in terms of a sum over spanning subgraphs of G. The Tutte polyno-1538

mial was originally defined (see [64]) as a sum over the set of maximal spanning1539

forests of G. It was recently shown that each of the three topological Tutte poly-1540

nomials mentioned above can be expressed as a sum over the set of spanning1541

quasi-trees of a ribbon graph. See [20, 27, 66] for the ribbon graph polynomial,1542
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and [19] for the Krushkal and Las Vergnas polynomials. Given that T (G) is1543

determined by M(G), which is in turn determined by the set of maximal span-1544

ning forests of G, and the topological Tutte polynomials are determined by their1545

spanning quasi-trees which also determine D(G), it seems reasonable to expect,1546

and it is indeed the case, that the topological Tutte polynomials are determined1547

by D(G).1548

We consider the three polynomials in their chronological order, and so start
with the Las Vergnas polynomial L(G;x, y, z) from [45, 46, 47]. The Las Vergnas
polynomial arose as a special case of Las Vergnas’ Tutte polynomial of a mor-
phism of matroids of [48], and can be defined in terms of the cycle matroid
M(G) of an embedded graph G and the bond matroid B(G∗) := (M(G∗))∗ of
its geometric dual G∗. The Las Vergnas polynomial, L(G;x, y, z) ∈ Z[x, y, z], of
an embedded graph or ribbon graph G is defined by

L(G;x, y, z) :=
∑

A⊆E(G)

(x− 1)rM(G)(E)−rM(G)(A)

· (y − 1)nB(G∗)(A)zrB(G∗)(E)−rM(G)(E)−(rB(G∗)(A)−rM(G)(A)).

Observe that when G is a plane graph, then B(G∗) = (M(G∗))∗ = M(G) and1549

so L(G;x, y, z) = T (G;x, y). Las Vergnas [46] proved that for any embedded1550

graph G,1551

(y − 1)γ(G)L(G;x, y, 1/(y − 1)) = T (G;x, y).

Recalling from Corollary 5.4(2) that D(G)min = M(G) and D(G)max =1552

(M(G∗))∗ = B(G∗), it is clear how to extend L(G;x, y, z) to delta-matroids.1553

Definition 6.1. Let D = (E,F) be a delta-matroid. Then the Las Vergnas
polynomial L(D;x, y, z) is given by

L(D;x, y, z) :=
∑
A⊆E

(x− 1)rDmin
(E)−rDmin

(A)

· (y − 1)nDmax (A)zrDmax (E)−rDmin
(E)−(rDmax (A)−rDmin

(A)).

It is immediate from the definition that the ribbon graph and delta-matroid1554

versions of L(G) coincide.1555

Theorem 6.2. Let G be a connected ribbon graph. Then1556

L(G;x, y, z) = L(D(G);x, y, z).

Just as with the ribbon graph version, L(D;x, y, z) = T (D;x, y) when D is1557

a matroid, and for any delta-matroid D we have1558

(y − 1)w(D)L(D;x, y, 1/(y − 1)) = T (D;x, y).

To see why this identity holds, expand and simplify the exponents of (y −1559

1)w(D)L(D;x, y, 1/(y − 1)), noting that w(D) = rDmax
(E)− rDmin

(E).1560
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The chronologically second and most studied of the three topological graph1561

polynomials in this section is Bollobás and Riordan’s ribbon graph polynomial1562

of [2, 3]. Let G = (V,E) be a ribbon graph. Then the ribbon graph polyno-1563

mial or the Bollobás-Riordan polynomial of G, denoted by R(G;x, y, z, w) ∈1564

Z[x, y, z, w]/〈w2 − w〉, is defined by1565

R(G;x, y, z, w) =
∑
A⊆E

(x− 1)r(E)−r(A)yn(A)zγ(A)wt(A). (6.1)

To extend this polynomial to delta-matroids D = (E,F), first, for A ⊆ E, define1566

t(A) by setting t(A) = 0 if D|A is even, and t(A) = 1 otherwise. Next observe1567

that, by Lemma 5.3(3) and Proposition 5.11, we have γ(A) = γ(G \ Ac) =1568

w(D(G \ Ac)) = w(D(G)|A). To simplify notation a little, we let wD(A) :=1569

w(D|A).1570

Definition 6.3. Let D = (E,F) be a delta-matroid. Then the Bollobás-1571

Riordan polynomial R(D;x, y, z, w) ∈ Z[x, y, z, w]/〈w2 − w〉, of D is1572

R(D;x, y, z, w) :=
∑
A⊆E

(x− 1)rDmin
(E)−rDmin

(A)ynDmin
(A)zwD(A)wt(A).

By construction, the ribbon graph and delta-matroid versions of R(G) coin-1573

cide, that is, Bollobás and Riordan’s ribbon graph polynomial is delta-matroidal.1574

Theorem 6.4. Let G be a ribbon graph. Then1575

R(G;x, y, z, w) = R(D(G);x, y, z, w).

Recall from Section 4.2 that the isotropic matroid of a ribbon graph G1576

is defined in terms of G and a quasi-tree Q of G. In [62], Traldi, working1577

in the language of transition matroids, showed that R(G) can be determined1578

from k(G), the isotropic matroid of G and the quasi-tree Q. By the discussion1579

following Corollary 4.10, the isotropic matroid and a quasi-tree determine D(G),1580

and so it can be deduced from Theorem 6.4 that knowledge of k(G) is not1581

needed: R(G) is determined entirely by information in the isotropic matroid1582

and the quasi-tree Q.1583

Remark 6.5. The observation that the Bollobás–Riordan polynomial is delta-1584

matroidal helps to explain the form of the deletion–contraction identity for the1585

Bollobás–Riordan polynomial. More precisely it helps to explain why there is1586

generally no known deletion–contraction identity when the edge being removed1587

is a loop. The exponents of x and y depend on the rank function of the lower1588

matroid. An orientable non-trivial loop e of a ribbon graph G is not a loop of1589

D(G) but is a loop of D(G)min. This means that (D(G)/e)min is not generally1590

the same as (D(G)min)/e and moreover (D(G)min)/e cannot always be recovered1591

from (D(G)/e)min.1592

Most of the results on the Bollobás-Riordan polynomial in the literature (for1593

example, [3, 21, 26, 31, 33, 30, 41]) hold not for the full four-variable polynomial1594
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but for the normalised two-variable version xγ(G)/2RG(x+ 1, y, 1/
√
xy, 1). This1595

two-variable version of the polynomial has a particularly natural form when1596

expressed in terms of delta-matroids. Define a function σ on delta-matroids1597

by σ(D) := 1
2 (r(Dmax) + r(Dmin)), and for A ⊆ E(D), σD(A) := σ(D|A),1598

omitting the subscript D whenever the context is clear. We define the two-1599

variable Bollobás-Riordan polynomial of a delta-matroid to be1600

R̃(D;x, y) :=
∑
A⊆E

(x− 1)σ(E)−σ(A)(y − 1)|A|−σ(A). (6.2)

One immediately notices from (6.2) that if D is a matroid with rank function1601

r, then σ(A) = r(A), so R̃(D;x, y) is exactly the Tutte polynomial T (D;x, y).1602

It is also readily verified, using Proposition 5.39(1), that R̃(D;x + 1, y + 1) =1603

xw(D)/2R(D;x+ 1, y, 1/
√
xy, 1).1604

It is well-known that the Tutte polynomial of a graph or matroid has a re-1605

cursive deletion-contraction definition that expresses T (M) as a Z[x, y]-linear1606

combination of Tutte polynomials. Analogously, the two-variable Bollobás-1607

Riordan polynomial was shown to have a recursive deletion-contraction defi-1608

nition in [25], given in terms of R(D;x + 1, y, 1/
√
xy, 1), and in [43], given in1609

terms of R̃(D;x, y). The difference in the two forms is due to the factor xw(E)/2.1610

Moreover, Krajewski, Moffatt, and Tanasa showed in [43] that R̃(D;x, y) is the1611

graph polynomial canonically associated with a natural Hopf algebra generated1612

by delta-matroid deletion and contraction, just as the Tutte polynomial is the1613

polynomial canonically associated with a Hopf algebra generated by matroid1614

deletion and contraction. Furthermore, R̃(D) encodes fundamental combinato-1615

rial information about D.1616

Theorem 6.6. For any delta-matroid D, the following hold.1617

1. R̃(D;u/v + 1, uv + 1) gives the bivariate generating function of D with1618

respect to number of feasible sets of each size and rank:1619

vσ(D)u−w(D)/2R̃(D;u/v + 1, uv + 1) =
∑

A⊆E(D)

v|A|u|E(D)|−ρD(A);

2. R̃(D∗;x, y) = R̃(D; y, x);1620

3. R̃(D; 1, 1) = 0 unless D is a matroid, in which case it equals the number1621

of bases of D;1622

4. R̃(D; 1, 2) is the number of independent sets in Dmin;1623

5. R̃(D; 2, 1) is the number of spanning sets in Dmax;1624

6. R̃(D; 2, 2) = 2|E(D)|.1625

Proof. Part (1) follows easily from the definition of R̃(D) and Proposition 5.39.1626

Let E = E(D). Then (2) follows by applying Proposition 5.39 to show that1627

for any subset A of E, the difference σD∗(E)− σD∗(A) = |E−A| − σD(E−A).1628

For (3), R̃(D; 1, 1) =
∑
A⊆E 0σ(E)−σ(A)0|A|−σ(A). A term in the sum is non-1629

zero if and only if σ(E)− σ(A) = |A| − σ(A) = 0. We have σ(E) = σ(A) if and1630
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only if r(Dmax) − r((D|A)max) + r(Dmin) − r((D|A)min) = 0, which occurs if1631

and only if r(Dmax) = r((D|A)max) and r(Dmin) = r((D|A)min). On the other1632

hand, |A| − σ(A) = 0 if and only if r((D|A)max) = r((D|A)min) = |A|.1633

Therefore σ(E)− σ(A) = |A| − σ(A) = 0 if and only if1634

r(Dmax) = r((D|A)max) = r(Dmin) = r((D|A)min) = |A|,

which occurs if and only if D is a matroid and A is a basis of D.1635

For (4), R̃(D; 2, 1) =
∑
A⊆E 0|A|−σ(A). It follows from above that a term1636

in the sum is non-zero if and only if r((D|A)max) = r((D|A)min) = |A|. If1637

r((D|A)min) = |A| then, by Proposition 5.39, rDmin
(A) = |A|. Consequently1638

A is independent in Dmin. On the other hand, if A is independent in Dmin,1639

then r((D|A)min) = |A|, the only feasible set of D|A is A, so r((D|A)max) =1640

r((D|A)min) = |A|.1641

Recall that a spanning set A of a matroid M , is a subset of E(M) such that1642

r(A) = r(M). Part (5) follows from Parts (2) and (4), because the complement1643

of an independent set of a matroid is a spanning set of its dual.1644

Part (6) is obvious.1645

The final polynomial we consider in this section is the Krushkal polynomial1646

of [44]. This polynomial generalizes the Bollobás-Riordan polynomial by adding1647

a parameter that records some information about the geometric dual. Although1648

the Krushkal polynomial is also defined for non-cellularly embedded graphs, here1649

we restrict to cellularly embedded graphs, or, equivalently, ribbon graphs. The1650

Krushkal polynomial of G, denoted by K(G;x, y, a, b) ∈ Z[x, y, a, b], is defined1651

by1652

K(G;x, y, a, b) :=
∑

A⊆E(G)

(x− 1)rG(E)−rG(A)yrG∗ (E)−rG∗ (Ac)aγG(A)bγG∗ (Ac).

(6.3)
We note that the exponent of a is usually written as k(A) − f(A) + n(A),1653

which is equal to γ(A) by Euler’s formula, and similarly for the b exponent. (An1654

analogous comment holds for the z exponent of the Bollobás-Riordan polyno-1655

mial.) Also note, for comparison with the literature, that the exponents of a1656

and b here are given by the Euler genus, rather than one-half of the Euler genus1657

as in [44].1658

We showed that γ(A) = wD(A) in Proposition 5.3(3). Using Corollary 5.2,1659

we have γG∗(Ac) = γ(G∗\A) = w(D(G∗\A)) = w(D(G∗)\A) = w(D(G)∗\A) =1660

wD(G)∗(Ac).1661

Definition 6.7. Let D = (E,F) be a delta-matroid. Then the Krushkal poly-
nomial K(D;x, y, a, b) ∈ Z[x, y, a, b], of D is

K(D;x, y, a, b)

:=
∑
A⊆E

(x− 1)rDmin
(E)−rDmin

(A)yr(D∗)min
(E)−r(D∗)min

(Ac)awD(A)bwD∗ (Ac).
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We immediately have that the Krushkal polynomial of a ribbon graph is1662

delta-matroidal.1663

Theorem 6.8. Let G be a ribbon graph. Then1664

K(G;x, y, a, b) = K(D(G);x, y, a, b).

Krushkal observed in [44] that, when G is a plane graph, T (G;x, y) =1665

K(G;x, y− 1, a, b). The analogous result holds for delta-matroids. Using Equa-1666

tion (2.1), for any matroid M = (E,B) and subset A of E, we have1667

|A| − rM (A) = r(M∗)− rM∗(E −A). (6.4)

When D is a matroid, this equation together with the fact that wD(A) =1668

wD∗(Ac) = 0 implies that T (D;x, y) = K(D;x, y − 1, a, b).1669

For non-plane graphs, the Tutte polynomial can still be recovered from the1670

Krushkal polynomial using the identity1671

T (G;x, y + 1) = yγ(G)/2K(G;x, y, y1/2, y−1/2)

(see [19, 44]). The Krushkal polynomial, however, contains not only the Tutte1672

polynomial as a specialization, but also the Bollobás-Riordan polynomial at1673

w = 1 (see [44]), and the Las Vergnas polynomial (see [1, 19]). Each of these1674

results holds in the delta-matroid setting.1675

Theorem 6.9. Let D be a delta-matroid. Then1676

1. T (D;x, y + 1) = yw(D)/2K(D;x, y, y1/2, y−1/2);1677

2. L(D;x, y, z) = zw(D)/2K(D;x, y − 1, z−1/2, z1/2);1678

3. R(D;x, y, z, 1) = yw(D)/2K(D;x, y, zy1/2, y−1/2).1679

Proof. The first item follows from the third item upon noting that T (D;x, y +1680

1) = R(D;x, y, 1, 1).1681

For the second item, the exponents of x in each summand on the left-hand
and right-hand side agree. Using Equation (6.4) and (Dmax)∗ = (D∗)min, we
see that the exponents of y− 1 in each summand on both sides agree. For the z
term, the z exponent of each summand of zw(D)/2K(D;x, y − 1, z−1/2, z1/2) is
1
2 (w(D)− wD(A) + wD∗(Ac)). By Proposition 5.39,

w(D)− wD(A) + wD∗(Ac)

= rDmax
(E)− rDmin

(E)− ρD(A) + rDmin
(A) + |E| − rDmin

(E)− |A|
(6.5)

+ rDmin
(A) + ρD∗(Ac)− rD∗

min
(Ac)− |E|+ rD∗

min
(E) + |Ac| − rD∗

min
(Ac).

By Lemma 2.9, ρD(A) = ρD∗(Ac). Additionally using Equation (2.1) and1682

(Dmax)∗ = (D∗)min we obtain1683

rD∗
min

(A) = r(Dmax)∗(A) = |A|+ rDmax
(Ac)− rDmax

(E).
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Substituting these into Equation (6.5) allows us to rewrite it as

w(D)− wD(A) + wD∗(Ac)

= rDmax
(E)− 2rDmin

(E) + 2rDmin
(A)− |A|

− 2|Ac| − 2rDmax
(A) + 2rDmax

(E) + |E| − rDmax
(E) + |Ac|

= 2(rDmax
(E)− rDmin

(E)− rDmax
(A) + rDmin

(A)).

But this is just twice the z exponent of the summands of L(D;x, y, z).1684

For the third item, it is easy to see that the exponents of x and z on the1685

left-hand and right-hand sides agree. The exponent of y on the right-hand side1686

is1687

1

2
(w(D) + 2r(D∗)min

(E)− 2r(D∗)min
(Ac) + wD(A)− wD∗(Ac)).

Using Proposition 5.39 and (Dmax)∗ = (D∗)min, it is straightforward to show1688

that this is equal to nDmin(A), as required.1689

The ribbon graph versions of Theorem 6.9 from [1, 19, 44] can be recovered1690

by taking D to be D(G).1691

Since the Tutte polynomial can be defined in terms of matroid rank functions,1692

it is interesting to observe that, by Proposition 5.39, we can express K(D), and1693

therefore R(D), entirely in terms of rank functions associated with D. Let1694

E = E(D). For A ⊆ E(D), let1695

• Kx(D,A) = rDmin(E)− rDmin(A);1696

• Ky(D,A) = r(D∗)min
(E)− r(D∗)min

(Ac);1697

• Ka(D,A) = ρD(A)− rDmin
(A)− nDmin

(E) + nDmin
(A);1698

• Kb(D,A) = ρD∗(Ac)− r(D∗)min
(Ac)− n(D∗)min

(E) + n(D∗)min
(Ac).1699

Then1700

K(D;x, y, a, b) =
∑
A⊆E

(x− 1)Kx(D,A)yKy(D,A)aKa(D,A)bKb(D,A). (6.6)

The Tutte polynomial of a plane graph satisfies the duality relation:1701

T (G;x, y) = T (G∗; y, x).

This identity is actually matroidal as T (M ;x, y) = T (M∗; y, x), and the result1702

for graphs follows since M(G∗) = M(G)∗ when G is a plane graph. Similar1703

duality identities were shown for the Bollobás-Riordan polynomial in [34, 49],1704

the Krushkal polynomial in [44], and the Las Vergnas polynomial in [45]. The1705

following theorem shows that each of these duality relations holds on the level1706

of delta-matroids.1707

Theorem 6.10. Let D be a delta-matroid. Then1708

1. K(D;x, y − 1, a, b) = K(D∗; y, x− 1, b, a);1709
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2. xw(D)/2R(D;x+ 1, y, 1/
√
xy, 1) = yw(D∗)/2R(D∗; y + 1, x, 1/

√
xy, 1);1710

3. L(D;x, y, z) = zw(D)L(D∗; y, x, z−1).1711

Proof. The first part can be proven by writing down the sums for the two sides of1712

the equation and observing that summing over all A ⊆ E is the same as summing1713

over all Ac ⊆ E. The second and third parts then follow by Theorem 6.9.1714

The corresponding duality relations for the ribbon graph versions of the1715

polynomials from [34, 44, 45, 49] follow from the theorem as D(G∗) = D(G)∗.1716

We conclude with an application to knot theory. There is a well-known1717

way to associate a plane graph GL to an alternating link diagram L such that1718

the Kauffman bracket 〈L〉, or Jones polynomial (if the writhe of the link is1719

known), of L can be recovered from the Tutte polynomial of GL together with1720

knowledge of k(GL) (see [59]). Recently, Dasbach, Futer, Kalfagianni, Lin and1721

Stoltzfus, in [26], extended this result to all link diagrams (including those that1722

are not alternating) by describing how a ribbon graph AL can be associated with1723

any link diagram L. It was also shown in [26] that the Kauffman bracket and1724

Jones polynomial (again provided the writhe of the link is known) of L can be1725

recovered from the Bollobás-Riordan polynomial of AL together with knowledge1726

of k(AL).1727

If a link diagram is split, then we can use a sequence of Reidemeister II1728

moves to obtain an equivalent non-split diagram. If we construct AL from this1729

diagram then we know it is a connected ribbon graph, so we no longer need1730

knowledge of k(AL).1731

Recalling that the Tutte polynomial of GL can be recovered from its cycle1732

matroid M(GL), this means that the Kauffman bracket of an alternating link is1733

matroidal in the sense that it can be recovered from a matroid associated with1734

any of its non-split diagrams. Since the Bollobás-Riordan polynomial of AK is1735

determined by D(AK), this means that in general, the Kauffman bracket can1736

be regarded as a delta-matroidal object.1737

Theorem 6.11. The Kauffman bracket of a link is delta-matroidal, in the sense1738

that it is determined by delta-matroids associated with non-split link diagrams.1739

This result also holds for virtual link diagrams by [23] and for links in real1740

projective space by [54], and, if we know the writhe of the link diagram we can1741

extend both results to the Jones polynomial. Finally, using [49], we can show1742

the homfly-pt polynomial of a class of links is delta-matroidal.1743
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