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Abstract— In the study of network controllability, because
driver nodes are vulnerable to control hijack and removals,
and harmfulness of removing a driver node is still unknown.
Therefore, to defend against such attacks, we identify each
vertex of all minimum sets of driver nodes firstly. Also, to
know the harmfulness of removing a driver node, we classify
those identified nodes by impacts of removing a driver node
on the minimum set of driver nodes to control the residual
network. By the minimum input theorem, given a digraph,
these two issues are respectively solved by finding each vertex
that is an unmatched node related to a maximum matching,
and classifying it by the impact of its removal on the number
of unmatched nodes of the residual digraph. As a result, our
driver-node identification and classification are executed in
more efficient polynomial time than related works.

I. INTRODUCTION

According to the control theory [1], network controllability
[2] is one of network properties to ensure that the state of
each network vertex could be forced from any given state to a
proposed one by inputs in limited steps, where network ver-
tices directly forced by external inputs are called the driver
nodes [2]. To get control into directed networks with LTI
dynamics, based on the theory of strucutral controllability
[3], [4] and a maximum matching of the given digraph, Liu
et al. [2] can effectively identify a minimum set of driver
nodes in order to control the entire network.

Nevertheless, due to the importance of driver nodes in
terms of obtaining control into the network with LTI dy-
namics, driver nodes are easily targeted by vertex removals
[5], by which, attackers can disrupt current control and make
the residual network out of control [6]. Besides, since each
node of all minimum sets of driver nodes can be effectively
found by the method of [7] in polynomial time, driver nodes
might be also vulnerable to attackers, who can effect driver
nodes and thus hijack the control into network [8], which is
called the control hijack.

To defend against control hijack and vertex removal
through driver nodes, and defend such attacks in advance,
we firstly address the problem of more efficiently identifying
every vertex of all minimum sets of driver nodes than that
of [7]. Then, to further understand the harmfulness caused
by removing a single driver node, we also solve the problem
of classifying any driver node based on the impact of its
removal on the minimum set of driver nodes to control the
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residual network. Particularly, our classification is different
from the driver-node classification of [9], and other related
works [6].

In accordance of the minimum input theorem [2], initially,
we get one minimum set of driver nodes to control a
given LTI-dynamic digraph by finding an arbitrary maximum
matching of it. Then, the first problem is solved by finding
every vertex, which must be an unmatched node related
to a maximum matching of this given digraph. With these
identified nodes of the given digraph, the second problem
is solved by classifying each of them by the impact of its
removal on the unmatched nodes of the residual digraph. We
furhter conclude that removing a driver node either reduces
the original cardinality of the minimum set of driver nodes by
one, or not change, and those remaining driver nodes can still
be involved into controlling the residual network. Besides, all
operations are executed in a bipartite graph mapped by the
given digraph. As a result, the worst-case execution time of
our solution except for identifying a maximum matching of
the given digraph is linear.

For our contribution, given any LTI dynamic digraph,
to defend against control hijack and disruption in advance,
vertices of all minimum sets of driver nodes are identified
more efficient than the method of [7] in the worst case. And
they are efficiently classified by impacts of any single driver-
node removal on controlling residual network to enrich the
understanding of the harmfulness caused by a single driver-
node removal.

The remaining paper is arranged as follows: section II
acquires network controllability; section III shows related
work on driver nodes; section IV, V identifies and classifies
driver nodes; section VI concludes this paper.

II. ACQUIRE NETWORK CONTROLLABILITY

Controllability of networks strictly obeys the control the-
ory [10], [1], and it can be derived in different graph-
theoretical methods. This section mainly introduces the
maximum-matching based method.

First and the foremost, a linear time-invariant system is
expressed by an equation:

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) = (x1(t), x2(t), . . . , xN (t))T , x(t) ∈ RN is
the system vector, capturing the state of each system vertex at
time t. u(t) = (u1(t), u2(t), . . . , uM (t))T (M ≤ N), u(t) ∈
RM is the input vector, holding external inputs at time t.
Matrix A ∈ RN×N shows the interaction among N system
vertices, while input matrix B ∈ RN×M shows interactions



among system vertices and inputs. A system described by
equation 1 is completely controllable if and only if the matrix
C = [B,AB, A2B, . . ., AN−1B] and C ∈ RN×NM , has full
rank, noted by rank(C) = N and called the controllability
rank condition.

However, exact value of non-zero entries of A, B is
difficult to measure [3], and calculating the rank of C is
computationally massive [2]. To avoid these two problems
and still design completely controllable system, strucutral
controllability of LTI systems [3], [4] was raised later:

Definition 1 (Structural Controllability [3]). A system
described by equation 1 is structurally controllable if and
only if there is at least one completely controllable system
with the same structure as it.

Here, for a structural controllable system, and a completely
controllable system, the same structure between them means
that each position of non-zero entries of the input and state
matrices are same. Particularly, it turns out that almost
all combinations among values of non-zero entries of A
and B satisfy the controllability rank condition [11], so
that a structurally controllable system could be completely
controllable with high probability. In the most case, verifying
or constructing a structurally controllable system, it just
requires a set of disjoint cacti of definition 6 within the
digraph of definition 2.

More specifically, such condition of a structurally control-
lable system are generalized by theorem 1 with following
definitions:

Definition 2 (Digraph G(A, B)). Given matrix A, B of
equation 1, let G(A,B) = (V1 ∪ V2, E1 ∪ E2) be a non-
empty system network, and α : {A,B} → G(A,B) be a
bijection. For each non-zero aij ∈ A, bpq ∈ B, there are
α : aij →

−−−−→
〈vj , vi〉, α : bpq →

−−−−→
〈uq, vp〉, where

−−−−→
〈vj , vi〉 ∈ E1,−−−−→

〈uq, vp〉 ∈ E2, {vi, vj , vp} ∈ V1 and uq ∈ V2.

Definition 3 (Stem & Bud[3]). By definition 2, a stem in
G(A,B) is a directed path starting from a node of V2. A bud
is a directed cycle plus an arc, whose head is shared with
this cycle, and this arc is called the distinguished edge.

Definition 4 (Dilation[3]). In G(A,B) = (V1∪V2, E1∪E2)
of definition 2, S ⊆ V1 is a set of nodes, T (S) ⊆ V1 ∪ V2 is
set of vertices as tails of the arcs whose heads are in S. When
G(A,B) contains a dilation, if and only if |S| > |T (S)|.

Definition 5 (Inaccessibility [3]). In G(A,B) = (V1 ∪
V2, E1 ∪ E2) of definition 2, a node of V1 that can not be
visited through directed paths starting from any node of V2
is inaccessible.

Definition 6 (Cactus[3]). Let B1, B2, . . . , Bl be a set of
buds, and let S1 be a stem, S1 ∪ B1 ∪ B2, . . . ,∪Bl is a
cactus if and only if the tail of distinguished edge of Bi(1 ≤
i ≤ l) is not the top node of S1 but the only common node
of S1 ∪B1 ∪B2, . . . ∪Bi−1. Besides, a stem of definition 3
is also a cactus.

Theorem 1 (Structural Controllability Theorem [3], [12]
). Following statements are equivalent:

1) System described by equation 1 is structurally control-
lable.

2) G(A,B) of definition 2 contains neither inaccessible
nodes nor a dilation.

3) G(A,B) is spanned by a set of disjoint cacti.

In particular, according to [3], [12], when statement one
is satisfied, statement two implied by it can thus imply
statement three, while statement three can always imply both
statement one and two. It means that the second statement
can not be independently used to verify if a system is
structurally controllable or not.

To derive the structural control into G(A) = (V1, E1) of
definition 2 with a minimum set of driver nodes, Liu et
al. [2] raised a maximum-matching based method so that
complete control into this network with a minimum set of
driver nodes can be obtained as well, which is summarized
by theorem 3, and definition 7:

Definition 7 (Driver Node [2]). Given matrix A, B of
equation 1, network G(A,B) = (V1 ∪ V2, E1 ∪ E2) of
definition 2. Then, for

−−−−→
〈uq, vp〉 ∈ E2, where uq ∈ V2 and

vp ∈ V1, a single driver node is vp.

Theorem 2 (Minimal Input Theorem [2]). Given a network
G(A) = (V1, E1) of definition 2, the minimum number
of driver nodes to fully control G(A) is one, where any
vertex can be a driver node, if it has a perfect matching.
Otherwise, it equals the number of unmatched nodes related
to a maximum matching, which are directly adjacent to the
same number of inputs.

where, a maximum matching of a digraph is a maximum
set of arcs without common tails and heads [13], [14]. The
head of an arc involved into a maximum matching is a
matched node related to this maximum matching, otherwise,
it is unmathed. When all nodes of a digraph are matched, it
contains a perfect matching. In bipartite graphs, a maximum
matching is a maximum set of disjoint edges, and a node
incident to any edge of this maximum matching is matched,
otherwise, it is unmatched related to this maximum matching.
In general, there are multiple maximum matchings in a same
graph. By the algorithm of [15], a maximum matching of a
bipartite graph can be identified in O(

√
N · L) time, where

N and L represent the number of vertices and edges of a
given bipartite graph, which also ensures that the network
controllability via constructing a network with structural
controllability can be effectively acquired. And problems
about structural controllability can be solved by a graph-
theoretical problems related to the maximum matching.

A. Problem formulation

Based on the minimum input theorem above, we assume
that each minimum set of driver nodes to control a network
with LTI dynamics is derived by identifying a maximum
matching. Then, the research problem of this paper is:



Research Question: Given a digraph with LTI dynamics,
efficiently identify each single vertex that could be included
by a minimum set of driver nodes, and also classify those
nodes based on how any single driver node maintains the
current minimum set of driver nodes.

III. RELATED WORKS

Previous works on driver nodes are wide. Chronologically,
based on the minimum input theorem [2], Jia et al. [7] firstly
classified a vertex into critical, redundant or intermittent
categories, if it is always, never or sometimes, included by
a mininum set of driver nodes to control a given network.
Based on this network-vertex classification, all vertices able
to be involved into a minimum set of driver nodes are
identified with time complexity of O(N ·L) in the worst case,
where N , L are the number of nodes and arcs of a given
digraph. Obviously, critical nodes are the most vulnerable
vertices to control hijack and disruption, whereas they can
be found by finding vertices without indegrees in linear
time [7]. Even though, critical nodes might be protected
in advance, while intermittent nodes may thus become new
targets of attackers. Therefore, we propose to more efficiently
identify each node of all minimum sets of driver nodes than
the method of [7], and time complexity of our method is
O(
√
N · L).

Later, control capacity [16] and control backbone [6] were
raised to quantify the amount of each single node being the
driver node. Because of the huge number of various mimi-
mum sets of driver nodes, and the complex combinations to
generate different maximum matchings [17], [18], the exact
value for each vertex is almostly impossible to calculate.
Thus, they created sampling algorithms respectively. Mean-
while, Ruths et al. [9] concluded that any driver node set
must contain the nodes without either indegree or out degree.
And nodes having both indegree and outdegree can also
be a driver node. But there was not a method to identify
all nodes able to be a driver node. Recently, Peter, and
Cohen et al. [19] analysed driver nodes among randomized
networks. They find that some nodes are always the driver
nodes during the given network under randomization, which
does not change the initial graph degree distribution. In [20],
authors claimed that they can find all nodes able to be driver
nodes in linear time. Nonetheless, they did not prove that
the number of those found vertices are maximum. Similar
to the classification of Jia et al. [7], Commault et al. [21]
classified nodes for network structural controllability, while
each external input is stimulated to be dedicated, which
means that each input can be adjacent to only one node.
Additionally, since single-vertex removals can dramatically
increase the minimum set of driver nodes in cardianlity [5] to
control the residual network, and those related works above
are all unable to show possible impacts of removing any
single driver node on controlling the residual network with
a minimum set of driver nodes. Therefore, after finding each
node involved into all minimum sets of driver nodes, we are
also motivated to classify them by impacts of a single driver-
node removal on the minimum set of driver nodes to control

the residual network.

IV. IDENTIFICATION OF DRIVE NODES

By the minimum input theorem [2], the first issue of
finding each vertex contained by all minimum sets of drive
nodes can be solved via identifying the single nodes, each
of which is an unmatched node with respect to a maximum
matching of a digraph. Then, we execute this identification
process with following graphs:

Definition 8 (Input Network). Let D = (V,E) be a finite
digraph, excluding self loops, parallel arcs and isolated
nodes, where V 6= ∅, V = {vi|1 ≤ i ≤ N}(N > 2), and
E 6= ∅, |E| > 2, E = {

−−−−→
〈vi, vj〉|i 6= j, vi, vj ∈ V }.

Definition 9 (Bipartite graph B). Given D = (V,E), let
B = (VB , EB) be a bipartite graph, V +

B and V −
B be two

disjoint and independent sets of VB , where |EB | = |E|,
|VB | = 2|V |, |V −

B | = |V
+
B |, and VB = {{v−i , v

+
i }|v

−
i ∈

V −
B , v

+
i ∈ V +

B }. Besides, let β : V → VB , and γ : E →
EB be two different bijections. For any vi ∈ V , β : vi →
{v+i , v

−
i }, v

−
i ∈ V −

B , v
+
i ∈ V +

B ; for any
−−−−→
〈vi, vj〉 ∈ E, γ :−−−−→

〈vi, vj〉 → (v+i , v
−
j ), where (v+i , v

−
j ) ∈ EB , v−i ∈ V

−
B and

v+j ∈ V
+
B (See an example of figure 1).

v1

v2

v3 v4

v5

v6

D
′ v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v+5 v−3

v−6 v−6

B
′

Fig 1. A digraph D
′

is mapped into a bipartite graph B
′

by definition 9.

Then, lemma 1 uses B to identify unmatched nodes of D:

Lemma 1. Given D = (V,E) and B = (VB , EB), let
{v−, v+} ⊆ VB be mapped from v ∈ V . Also, let MD be a
maximum matching of D, MB be a maximum matching of
B, which is mapped from MD by definition 9. Then, v ∈ V
in D is an unmatched node with respect to MD, if and only
if v− is an unmatched node in V −

B with respect to MB .

Proof: Sufficiency: If v ∈ V in D is an unmatched
node with respect to MD, and MB is mapped by MD.
By definition 9, {v−, v+} ⊆ VB is mapped from v, and
v− ∈ V −

B can not be incident to any edge of MB . Thus, v−

is unmatched related to MB in V −
B .

Necessity: If v− is an unmatched node in V −
B related to

MB . By definition 9, v− can be only incident to edges out
of MB . Let (v+i , v

−) 6∈ MB be such an edge. Then, there
is γ−1 : (v+i , v

−) →
−−−→
〈vi, v〉, and

−−−→
〈vi, v〉 6∈ MD. Thus, v is

unmatched related to MD in D.
By lemma 1, finding every unmatched node related to a

maximum matching of D can be solved by finding each node



of V −
B , which is unmatched related to a maximum matching

of B.
In the following paper, we define ⊕ as a symmetric

difference between two sets. For instance, let S1, S2 be two
edge sets, then S1⊕S2 = {S1\{S1∩S2}}∪{S2\{S1∩S2}}.
Next, lemma 2 identifies a vertex of V −

B , which is a matched
node with respect to the given maximum matching but is
an unmatched node related to another different maximum
matching:

Lemma 2. In B = (VB , EB) of definition 9, let Mi be a
maximum matching of B. With respect to Mi, let v−i ∈ V

−
B

be a matched node, and v−j ∈ V
−
B be an unmatched node.

Then, with respect to a maximum matching different from
Mi, v−j is matched, while v−i is unmatched, if and only if
v−i and v−j are connected by an existing path of B, which
alternatively involves edges of Mi and EB \Mi.

Proof: Let Mj be a different maximum matching from
Mi and involving an edge incident to v−j .

Sufficiency: Related to Mj , if v−i is an unmatched node.
Because Mi ⊕Mj contains vertex-disjoint paths, or cycles
alternatively involving edges of Mi and Mj with even length,
v−i and v−j can be only involved into a path. Otherwise, either
v−j is matched related to Mi, or v−i is matched related to Mj ,
which is a contradiction. Hence, v−i and v−j are connected
by a path alternatively involving edges of Mi and Mj in B.

Necessity: If v−i and v−j are connected by a path alterna-
tively involving edges of Mi and EB \Mi. Let P be this
path, and let its two terminal nodes be v−i and v−j . Then, P
must contain the same number of edges of Mi and E \Mi.
Otherwise, v−i and v−j can not be connected. Thus, a different
maximum matching of B can be obtained by: Mi ⊕ P , and
with respect to Mi ⊕ P , v−i is an unmatched node and v−j
is matched.

According to lemma 2, let v+i ∈ V +
B be a matched

node related to a maximum matching, noted by Mi, we
can also know how v+i is an unmatched node related to
a different maximum matching. Besides, in the following
paper, we call matched vertices of V −

B (V +
B ) related to Mi

that are unmatched nodes related to other different maximum
matchings, the extra-unmatched nodes of V −

B (V +
B ) via Mi.

For example, v−i of lemma 2 is an extra-unmatched node of
V −
B via Mi.
However, when the number of all extra-unmatched nodes

of V −
B via Mi is less than |Mi|, for any node of V −

B that is not
an extra-unmatched node of V −

B via Mi, it is indispensable
to clarify whether it is an extra-unmatched node of V −

B via a
different maximum matching from Mi according to lemma
2. Otherwise, it is still unknown if all extra-unmatched nodes
of V −

B via Mi and all unmatched nodes of V −
B with respect

to Mi are all single vertices of V −
B , each of which is an

unmatched node related to a maximum matching of B.
Hence, we deduce theorem 3 to make a clarification:

Theorem 3. In B = (VB , EB), let Mi, Mj be two different
maximum matchings of B, and v−i be a matched node related
to both Mi and Mj . Also, assume that v−i is not an extra-

unmatched node of V −
B via Mi. Then, v−i is still not an

extra-unmatched node of V −
B via Mj .

Proof: We assume that v−i is an extra-unmatched node
of V −

B via Mj , and thus define Pj as an existing path, which
alternatively involves edges of Mj and EB\Mj and connects
v−i with an unmatched node of V −

B related to Mj . By proving
that Pj can not exist, v−i can thus not be an extra-unmatched
node of V −

B via Mj , and theorem 3 is correct.
Further, we let h(Pj) be a subset of Pj , where |Pj | =

2|h(Pj)| and h(Pj) ⊆ Mj . Then, an edge of h(Pj) is
therefore incident to v−i . Also, because any edge of Mj can
not be disjoint with edges of Mi, otherwise, maximality of
Mi is contradicted. Thus, some edges of Mj either construct
disjoint paths or cycles with the same number of edges of
Mi, while other edges of Mj can be also shared with Mi.
According to this fact, we investigate whether h(Pj) exists
or not in following five cases.

1) If h(Pj) ⊆ {Mi ∩ Mj}. Then, Pj that contains an
edge incident to v−i , can alternatively contain edges of
Mi and EB \Mi, and v−i is thus an extra-unmatched
node of V −

B via Mi by lemma 2, which contradicts to
that v−i is not an extra-unmatched node of V −

B via Mi.
Therefore, this case is invalid.

2) If h(Pj) ⊆ {Mj \ {Mj ∩ Mi}} and h(Pj) only
constructs a path with edges of Mi. Obviously, this
path can not connect v−i with any unmatched node of
V −
B related to Mj . Otherwise, v−i is thus an extra-

unmatched node of V −
B via Mi. Let ei = (v+k , v

−
i )

be an edge of Mj and ei 6∈ Mi. Then, this path must
alternatively involve edges of Mi and Mj , and connect
v+k with an unmatched node of V +

B related to Mj . We
denote this path as Pi. Also, since h(Pj) ⊆ Pj , vertices
of Pj are shared with Pi, Pj and Pi can construct an
augmenting path [15] with respect to Mj , so that the
cardinality of Mj is augmented, which contradicts the
maximality of Mj . Thus, Pi can not exist and this case
is invalid.

3) If h(Pj) ⊆ {Mj \ {Mj ∩ Mi}} and h(Pj) only
constructs a cycle with edges of Mi. Because all
vertices of this cycle are connected, nodes of this cycle
are shared by both Pj and Mi. Thus, there is a path
alternatively involving edges of EB \Mi and Mi, so
that v−i is an extra-unmatched node of V −

B via Mi,
which is a contradiction, and this case is invalid.

4) If h(Pj) ⊆ {Mj \ {Mj ∩Mi}} and h(Pj) constructs
both a path and a cycle with edges of Mi. Referring to
the contradiction occurring in cases two or three, this
case can not be valid.

5) If h(Pj) contains edges of both Mi ∩Mj and Mj \
{Mi ∩Mj}. For the same reason of impossibility of
case four above, or the contradiction of case three, or
both of them, this case is also impossible.

Above all, because h(Pj) can not exist, Pj can not exist,
and v−i is also not an extra-unmatched node of V −

B based
on lemma 2.

By theorem 3 and lemma 2, algorithm 1 finds all nodes



of V −
B , each of which is unmatched related to a maximum

matching of B. In this algorithm, let MB be a maximum
matching of B.

Algorithm 1: Find extra-unmatched nodes via MB

Input: B = (VB , EB) of definition 9
Output: Single vertices of V −

B

1 Identify MB of B by Hopctoft-Karp algorithm [15];
2 Set the direction of each edge of MB from V +

B to
V −
B ; Set the direction of each edge of EB \MB

from V −
B to V +

B ;
3 Identify unmatched nodes of V −

B related to MB ;
4 for each unmatched node of V −

B related to MB do
5 Run Breath-First search algorithm [22] from it to

visit matched nodes of V −
B related to MB ;

6 return unmatched nodes of V −
B related to MB ; each

visited node of V −
B ;

Proof: Initially, identifying MB of B costs O(
√
|VB ·

|EB |) steps at most by Hopctoft-Karp algorithm [15]. Then,
setting directions of edges of EB in O(|EB |) time ensures
that matched nodes related to MB can be visited by un-
matched nodes via paths alternatively involving edges of MB

and EB \MB . Obviously, the visited node of V −
B is an extra-

unmatched node of V −
B via MB by lemma 2. By running

breath-first search algorithm, those nodes can be visited in
O(|EB | + |VB |) time. Finally, time complexity of finding
each unmatched node of V −

B related to a maximum matching
of B is O(

√
|VB · |EB |) in the worst case.

By the minimum input theorem [2] and this algorithm,
because mapping D = (V,E) of definition 8 into B =
(VB , EB) costs O(|V |+ |E|) time, identifying nodes of all
minimum sets of driver nodes of D = (V,E) is therefore
more efficient than the method of by [7] in the worst-case
execution time.

V. SECURITY-AWARE ANALYSIS OF DRIVER NODES

For the second issue of the research question, given a
single node of a minimum set of driver nodes, when it is lost
due to attack or failure, we analyse how the minimum set
of driver nodes is harmed to control the residual network.
By the minimum input theorem [2], given an unmatched
node related to a maximum matching of D of definition 8,
the harmfulness is represented by all impacts of its removal
on unmatched nodes with respect to a maximum matching
of residual D. Given B = (VB , EB) of definition 9, in
the following paper, by lemma 1, let {v−, v+} ⊆ VB be
mapped by v of D, and v− be unmatched related to a
maximum matching of B. Then, all impacts of removing
v on unmatched nodes of D \ v depend on all impacts of
removing {v−, v+} on the unmatched nodes of V −

B with
respect to a maximum matching of B \ {v−, v+}, which is
concluded by lemma 3:

Lemma 3. In B, let Mi be a maximum matching of B,
and S be a set of unmatched nodes of V −

B related to Mi,

where v− ∈ S. Also, when v+ is matched related to Mi, let
e = (v+, v−i ) be an edge of Mi, and Pv+ be a path to make
v+ be unmatched related to Mi ⊕ Pv+ by lemma 2. Then,
in B \ {v−, v+}, one of following cases occurs:

1) if v+ is a matched node related to Mi and Pv+ = ∅.
Then, {S \ v−}∪ v−i is a set of unmatched nodes with
respect to the maximum matching Mi \ e;

2) if v+ is either an unmatched node related to Mi, or
v+ is matched and Pv+ 6= ∅. Then, S \ v− is a set of
unmatched nodes with respect to Mi or Mi ⊕ Pv+ .

Proof: Since v− is unmatched related to Mi, its removal
does not influence Mi. Besides, if v+ is not an extra
unmatched node related to Mi, v+ is also not an extra-
unmatched node related to all maximum matchings of B
by theorem 3, and its removal reduces the cardinality of the
maximum matching of B \ {v−, v+} by one, and case one
holds. Otherwise, if v+ is either unmatched related to Mi,
or an extra-unmatched node of V +

B via Mi. Its removal does
not influence either Mi or Mi⊕Pv+ by lemma 2, and S \v−
is a set of unmatched nodes related to them.

Based on lemma 3, we call v of D either ordinary node
by case one, or the spare node by case two. Then, with
the minimum input theorem [2], removing any vertex of a
minimum set of driver nodes has no need for more number
of driver nodes to control the residual network, and those
remaining nodes used to control the original network can
still be involved into current minimum set of driver nodes.
Accordingly, we classify each node unmatched related to a
maximum matching of D. Further, in B, once v− is known
as an unmatched node, or an extra-unmatched node of V −

B

via a maximum matching, category of v only depends on
v+ ∈ V +

B .
Nevertheless, for any pair vertices v+ and v− of bipartite

graph B that are mapped by v of D = (V,E) of definition
8, when they are two extra-unmatched nodes of V −

B and V +
B

via the same maximum matching, it is essential to know once
v− is an unmatched node related to a maximum matching,
if v+ is an extra-unmatched node of V +

B via this maximum
matching. Otherwise, there needs one more time to confirm
if v+ is an extra unmatched node of V +

B via this maximum
matching. For this purpose, lemma 4 is deduced:

Lemma 4. In B = (VB , EB), let Mi be a maximum
matching of B, Pv−i

, Pv+
j

be two paths, and v−i ∈ V −
B ,

v+j ∈ V +
B be two extra-unmatched nodes via Mi due to

existence of Pv−i
and Pv+

j
, respectively. Then, Pv+

j
still exists

in Mi ⊕ Pv−i
, and v+j is also an extra-unmatched node of

V +
B via Mi ⊕ Pv−i

.

Proof: Assume that Pv+
j

does not exist in Mi ⊕ Pv−i
.

Then, it might be that one or more edges of Pv−i
and Pv+

j

are shared, so that Mi ⊕Pv−i
⊕Pv+

j
can not be a maximum

matching of B. However, because (Pv+
j
⊕ Mi) ⊕ (Mi ⊕

Pv−i
) = Pv+

j
⊕Pv−i

, and (Pv+
j
⊕Mi)⊕(Mi⊕Pv−i

) results in
vertex-disjoint paths or cycles with even length, and shared
edges of them can be only contained by Mi. Thus, there can



not be common edges for Pv+
j

and Pv−i
. Otherwise, paths

with odd length would exist. Thus, edges of Mi ∩ Pv+
j

still
exist in Mi ⊕ Pv−i

, and Pv+
j

still exist in Mi ⊕ Pv−i
.

To execute classification of each unmatched node related
to a maximum matching of D = (V,E) of definition 8, by
lemma 4, we just need to identify all extra-unmatched nodes
of both V −

B and V +
B via a same maximum matching of B

once only. Obviously, algorithm 1 can also return all extra-
unmatched nodes of V +

B via MB . Then, algorithm 2 executes
nodal classification. Here, let S− ⊆ V −

B , S+ ⊆ V +
B be two

nodal sets, which involves unmatched nodes related to MB

and extra-unmatched nodes of V −
B and V +

B via MB returned
by algorithm 1, respectively. And let v− be a vertex of S−,
v ∈ V be a vertex of D that maps into {v+, v−} of VB .

Algorithm 2: Classify unmatched nodes of D
Input: D = (V,E) of definition 8, S− and S+

returned by algorithm 1
Output: Single vertices of D

1 Colour each node of S+ into red;
2 while S− 6= ∅ and each v− ∈ S− do
3 Remove v− from S−;
4 if v+ is red then
5 return v of D is a spare node;
6 else if then
7 return v of D is an ordinary node;

Proof: By lemma 1 and 2, each v− ∈ S− is mapped
by an unmatched node with respect to a maximum matching
of D. Then, any vertex of S+ is either unmatched related to
MB , or an extra-unmatched node of V +

B via MB , checking
if v+ is red or not can confirm the category of v ∈ V of D
by lemma 4. Thus, this algorithm is correct for each node
of S−. Also, because each chosen node of S− is removed
in line 3, this procedure terminates when S− = ∅. For the
running time, excluding running algorithm 1 twice to obtain
S− and S+, colouring nodes of S− costs O(|VB |) steps,
and each classification for a node of S− is O(1). The worst-
case time complexity of this algorithm is O(|VB |) for B =
(VB , EB).

In summary, given D = (V,E) of definition 8, due
to 2|V | = |VB | by definition 9, our second problem of
classifying each single vertex that is able to be a driver node
by various impacts of its removal on the minimum number
of driver nodes to control the residual network can be solved
with the time complexity O(|V |+ |E|)+O(

√
|V | · |E|), by

running algorithm 1 and 2.

VI. CONCLUSION

To protect control into networks with LTI dynamics
against control hijack and disruption through driver nodes,
and further understand the harmfulness of single driver-node
removals, we efficiently identify each vertex involved into
all minimum sets of driver nodes, and classify them by
impacts of its removal on the minimum set of driver nodes

to control the residual network. Based on the minimum
input theorem [2], by identifying each node that is an
unmatched node related to a maximum matching of the given
network, and classifying them by impacts of a single removal
on the unmatched nodes related to the residual digraph’s
maximum matching. These problems are solved with the
time complexity of finding a maximum matching of a digraph
totally. For our future work, we extend this work to classify
all network vertices by impacts of any single-node removal
on the control into the residual network efficiently.
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