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Abstract – The use of commercial bumblebees to aid crop pollination may result in 12 

overcrowding of agricultural landscapes by pollinators. Consequently, transmission of 13 

parasites between pollinators via shared flowers may be substantial. Here we assessed 14 

the initial infection status of commercial Bombus terrestris colonies, and then explored 15 

spatial and seasonal influences on changes in parasite prevalence across a landscape 16 

where bumblebee colonies are intensively used to pollinate berry crops in SW Spain. 17 

Colonies were placed inside strawberry greenhouse crops and in woodlands adjacent 18 

and distant to crops in winter and in spring, as representative periods of high and low 19 

use of colonies, respectively. Worker bumblebees were collected from colonies upon 20 

arrival from a producer and 30 days after being placed in the field. The abdomen of 21 

each bumblebee was morphologically inspected for a range of internal parasites. Upon 22 

arrival 71% of the colonies were infected by spores of Nosema. Three bumblebees from 23 

two colonies harbored A. bombi spores at the end of their placement in woodlands 24 

adjacent to crops. Nosema colony prevalence did not change significantly either among 25 

sites or between seasons. We found no evidence for the density of commercial B. 26 

terrestris impacting Nosema epidemiology in those commercial colonies, but our results 27 

highlight the potential risk for parasites to be transmitted from commercial bumblebees 28 

to native pollinators. 29 
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1. INTRODUCTION 31 

In the last half century there has been an increase in the expansion of pollinator-32 

dependent crops (Aizen et al., 2008) that has required a parallel demand for 33 

commercially produced bees (Potts et al., 2016). Bumblebees (Bombus sp.) started to be 34 

commercially produced in Europe in the late 1980s, to replace the costly mechanical-35 

pollination of tomatoes (Solanum lycopersicum) (Ravestijn and Sande, 1991; Velthuis 36 

and van Doorn, 2006). Quickly, bumblebee breeding techniques advanced and colonies 37 

were mass-produced and transported worldwide, where they currently pollinate over 20 38 

different pollinator-dependent crops. Over two million bumblebee colonies are 39 

produced annually (Graystock, Blane, et al., 2016). 40 

The use of commercial pollinators such as bumblebees to aid crop pollination is not free 41 

of environmental risks. For instance, queens of commercial bumblebees have become 42 

established in many parts of the world (Matsumura et al., 2004; Morales et al., 2013), 43 

and there is empirical evidence showing competition for nest sites with other native 44 

bumblebee queens in the lab (Ono, 1997) and in the field (Inoue et al., 2008). In 45 

addition, commercial bumblebees may compete for food with other native pollinators 46 

(Matsumura et al., 2004; Morales et al., 2013), as well as promote the spread of 47 

parasites via shared flowers (Colla et al., 2006; Meeus et al., 2011; Schmid-Hempel et 48 

al., 2014). 49 

Several bee parasite species have been found in commercial bumblebee colonies. In 50 

1999, Goka et al. (2000) found for the first time the presence of a parasite, Locustacarus 51 

buchneri, in commercially produced Bombus terrestris colonies upon arrival in Japan 52 

from an overseas supplier. The presence of this parasite has been linked to shorter 53 
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lifespan (Otterstatter and Whidden, 2004) and changes in behavior of bumblebees 54 

(Otterstatter et al., 2005). Further studies have reported that commercial bumblebee 55 

colonies frequently have a range of bumblebee parasites (Graystock et al., 2013a; 56 

Murray et al., 2013) and even honeybee parasites (Graystock et al., 2013a), with the 57 

latter probably via the consumption of honeybee pollen by reared bumblebees (Goulson 58 

and Hughes, 2015). Importantly, the use of commercial pollinators in crops produces 59 

high densities of pollinators not only in the agricultural fields or greenhouses, but in 60 

adjacent natural areas as well (Ishii et al., 2008; González-Varo and Vilà, 2017; Trillo et 61 

al., 2018). Presumably, in those areas, the rate of parasite transmission among 62 

pollinators will rise, because high densities of hosts provide ideal conditions for the 63 

spread of parasites (Arneberg et al., 1998). In fact, several studies have shown, through 64 

the collection of free-flying bumblebees, high prevalence of parasites in sites adjacent to 65 

greenhouses where commercial bumblebees are used compared with sites distant to 66 

those greenhouses (Colla et al., 2006; Murray et al., 2013) or in greenhouses absent of 67 

such commercial bumblebees (Graystock et al., 2014), although there is also evidence 68 

against this (Whitehorn et al., 2013). 69 

To partially reduce the impact of commercial bumblebees on native pollinator 70 

populations and because healthy bumblebees may perform better, as is seen with 71 

honeybees (Geslin et al., 2017), producers are under pressure to produce parasite-free 72 

bumblebee colonies. In this study, we first examined whether commercially produced B. 73 

terrestris colonies, used to pollinate berry crops in Huelva (SW Spain), carried parasites 74 

upon arrival from a producer. We morphologically searched for five common internal 75 

bee parasites: larvae of the family Conopidae and Braconidae, L. buchneri, Apicystis 76 

bombi and parasites of the genus Nosema, which all potentially affect bumblebee health. 77 
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For instance, larvae of parasitic flies lead to bee death (Schmid-Hempel and Schmid-78 

Hempel, 1996), L. buchneri likely reduces lifespan of individual infected host 79 

(Otterstatter and Whidden, 2004), A. bombi is linked to deterioration of the fat body 80 

(Graystock, Meeus, et al., 2016; Macfarlane et al., 1995) and most Nosema species 81 

reduce worker survival and colony size (Otti and Schmid-Hempel, 2007; Rutrecht and 82 

Brown, 2009; Graystock et al., 2013a). We then experimentally tested spatial and 83 

seasonal influences on changes in the prevalence of these parasites across a landscape 84 

where bumblebee colonies are intensively used. Importantly, L. buchneri, A. bombi and 85 

Nosema are likely to be transmitted among pollinators via shared flowers (Durrer and 86 

Schmid-Hempel, 1994; Goka et al., 2006; Graystock et al., 2015). Colonies were placed 87 

inside strawberry crops and in woodlands adjacent and distant to those crops in January 88 

(winter) and again in April (spring), as representative periods of high and low use of 89 

bumblebee colonies in berry crops, respectively. We expected parasite prevalence to be 90 

highest with high densities of commercial bumblebees in the landscape, that is, 1) 91 

higher levels of prevalence at sites inside and adjacent to greenhouse crops than distant, 92 

and 2) higher levels in winter than in spring because of the greater use of colonies in 93 

winter.94 
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2. MATERIALS AND METHODS 95 

2.1. Study system 96 

The study was conducted in the Guadalquivir Valley in the province of Huelva (SW 97 

Spain). In this region there are large intensively cultivated areas of berries (9,500 ha), 98 

especially strawberries (~70% of the total area devoted to berry crops) (Freshuelva, 99 

2015). Strawberries are cultivated in semi-open polytunnel greenhouses with open sides 100 

from November to May. In order to aid crop pollination, farmers use commercial 101 

bumblebees (Bombus terrestris). Notably, bumblebee colonies are especially used at the 102 

beginning of the flowering period (i.e. in winter; personal observations) due to major 103 

revenues and worse weather conditions than in spring. The most common remaining 104 

natural habitat patches across berry crops are woodlands composed of a rich flora of 105 

entomophilous Mediterranean shrubs and herbs, which provide flowers throughout the 106 

strawberry cultivation period (Herrera, 1988). 107 

2.2. Experimental design 108 

In 2015, we purchased 48 B. t. terrestris colonies from Koppert Biological Systems, one 109 

of the main producers in Europe and specifically in this region. Each colony consisted 110 

of a plastic box within a cardboard container, with syrup solution provided ad libitum. 111 

Each colony included a queen and ~100 workers. 112 

First, to quantify colony parasite prevalence, at the arrival of the colonies (period 113 

‘before’), we collected 10 workers from each colony. Each worker was frozen in an 114 

individual clean vial at -20 ºC for later analyses. 115 
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Second, to investigate changes in colony parasite prevalence across the landscape, we 116 

placed two colonies each in four strawberry crops (‘inside’) and in eight woodlands, 117 

four adjacent to the selected strawberry crops (~50 m; ‘adjacent’) and four without 118 

berry crops in the surrounding 2 km radius landscape (‘distant’) (Fig. 1). We chose a 2 119 

km buffer radius because most bumblebee foraging flights do not exceed this distance 120 

(Osborne et al., 2008). The surrounding landscape for inside and adjacent plots had a 121 

high berry crop cover (overall mean ± SE = 48 ± 5.6%; see Table S1). Inside/adjacent 122 

plots and distant plots are representative of contrasting landscapes in terms of 123 

commercial bumblebee colony density. The density is high and absent in those 124 

landscapes, respectively. In fact, commercial bumblebees are frequently observed in 125 

landscapes with berry crop cover, rather than when berry crop cover is absent in the 126 

landscapes (Trillo et al., 2019). The average (± SE) distance between adjacent and 127 

distant woodland plots was 5903 ± 1038 m (range = 3.1–11.4 km). This distance meets 128 

independence criteria to avoid spatial pseudoreplication between non-paired plots. 129 

Third, to investigate seasonal change effects, the experiment was conducted in January 130 

(‘winter’) and repeated in April (‘spring’), as representative periods of high and low use 131 

of bumblebee colonies in strawberry crops, respectively. Here, the climate is typically 132 

Mediterranean with mild winters and warm springs (AEMET, 2015). These two seasons 133 

also differ in wild floral resources. The flowering peak is in spring when the floral 134 

richness and density are almost triple that in winter (Trillo et al., 2019). Wild pollinator 135 

species occur as flowering plant species thrive (Herrera, 1988). 136 

In each season, we placed two colonies of bumblebees in the center of each plot. 137 

Bumblebees were allowed to forage for 30 days. In strawberry crops the two colonies 138 

were hung between four separate greenhouses. The distance between the two colonies 139 
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within a plot was ~20 m. In woodland plots the two colonies were hidden in wooden 140 

boxes to avoid predation. At the end of the experiment, we collected 10 bumblebee 141 

workers per colony returning to it (period ‘after’) over two days using aerial nets. 142 

Bumblebees were kept in individual clean vials with ice until arrival at the lab where 143 

they were stored at -20 ºC. 144 

2.3. Parasite screening 145 

The abdomen of each bumblebee was dissected and inspected under a magnifying lens 146 

for larvae of parasitic conopid flies (Conopidae, Diptera) and braconid wasps of the 147 

genus Syntretus (Braconidae, Hymenoptera), and the air sacs were specifically inspected 148 

for the tracheal mite Locustacarus buchneri (Podapolipidae) (Yoneda et al., 2008). 149 

Then, a piece (0.2 cm × 0.2 cm, approx.) of the fat body was dissected out from each 150 

bumblebee and mounted on a slide (note that the gut was not included for these 151 

analyses). By screening only the fat body, we were able to confirm that we were 152 

detecting true infections, not just passage through the gut by vectored spores. We 153 

completely screened each slide at ×400 magnification for the presence of spores of the 154 

neogregarine Apicystis bombi (Lipotrophidae) and microsporidians of the genus Nosema 155 

(Nosematidae). We estimated parasite prevalence (presence or absence) instead of 156 

individual infection levels (abundance) because the latter is influenced by many 157 

confounding factors that drive infection intensity (Rutrecht and Brown, 2009). 158 

2.4. Statistical analyses 159 

Only Nosema infections (Table S2) were statistically analysed, because the remaining 160 

parasites showed no or very low prevalence in the colonies (see results). Nosema 161 

prevalence was calculated estimating the percentage of bumblebees infected taking into 162 
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account the 10 individuals collected per colony. A linear mixed model (LMM; Gaussian 163 

error distribution based on homogeneity in the residuals) was used to analyse whether 164 

changes in Nosema prevalence were related to our experimental setting. The difference 165 

in Nosema prevalence in the colonies before and after being placed in the field was used 166 

as the response variable. Season (winter/spring), plot type (inside, adjacent and distant), 167 

and their interaction were included as fixed factors in the model, while study plot was 168 

included as a random factor to account for the paired design between inside and 169 

adjacent plots and the re-sampled plots in winter and in spring (see Table S3 for the R 170 

code). All statistical analyses were conducted in R (v.3.1.3, R Core Team, 2014). We 171 

used the package lmerTest (Kuznetsova et al., 2013) for the LMM and Satterthwaite’s 172 

approximations for F- and p- values. 173 

174 
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3. RESULTS 175 

In total, over the two seasons we screened 919 bumblebee workers. We missed one 176 

colony and several individuals from other colonies due to low colony activity. On 177 

average (± SE) we collected 19.55 ± 0.13 (range = 16–20) bumblebees per colony. 178 

None of the bumblebees were infected by larvae of parasitic conopid flies (Conopidae, 179 

Diptera), braconid wasps of the genus Syntretus (Braconidae, Hymenoptera), or the 180 

tracheal mite, Locustacarus buchneri. The prevalence of Apicystis bombi was extremely 181 

low; only three bumblebees harbored spores in their fat body, and these were collected 182 

from two colonies at the end of their placement in adjacent woodlands. 183 

In contrast, spores of Nosema were found in 58.3% (14 out of 24 colonies) of colonies 184 

in winter and in 83.3% (20 out of 24) in spring at the start of each experimental block, 185 

that is, upon arrival from the producer prior to their placement in the field. The average 186 

Nosema prevalence per colony in the before period was 14.0 ± 3.4% (mean ± SE, 187 

hereafter) in winter, and 19.7 ± 3.2% in spring. The average Nosema prevalence in the 188 

after period was 10.2 ± 2.3% in winter and 26.4 ± 6.6% in spring. Neither the season (F1, 189 

35 = 2.88, p < 0.10) nor the distance (F2, 19 = 0.25, p < 0.79) or their interaction (F2, 35 = 0.50, 190 

p < 0.61) had a significant effect on changes in Nosema colony prevalence between 191 

periods (Fig. 2A and 2B). 192 

193 



 

11 

4. DISCUSSION 194 

The use of commercial bumblebees has been linked to the decline of several native 195 

pollinator species (Cameron et al., 2011; Morales et al., 2013; Schmid-Hempel et al., 196 

2014). Among the mechanisms behind this decline, parasite spillover from commercial 197 

to native pollinator populations may play a substantial role (Meeus et al., 2011). Mass 198 

commercial breeding programs may facilitate the probability of parasite transmission 199 

among hosts, as companies usually handle high densities of bumblebees in their 200 

facilities. In parallel, the provision of ad libitum food may facilitate the reproduction of 201 

infected hosts (Brown et al., 2000). Furthermore, even in the case that commercial 202 

bumblebees are parasite-free, they may act as reservoirs for parasites in the field, 203 

through a spill-back mechanism, leading to an increase in parasite prevalence (Stout and 204 

Morales, 2009; Meeus et al., 2011). 205 

Upon arrival, we found no evidence for the presence of larvae of parasitic conopid flies 206 

(Conopidae, Diptera) and braconid wasps of the genus Syntretus (Braconidae, 207 

Hymenoptera), or the tracheal mite, Locustacarus buchneri, in the screened Bombus 208 

terrestris colonies. Although the presence of larvae of parasitic insects has never been 209 

reported in commercial bumblebees, the tracheal mite, L. buchneri, was highly 210 

prevalent at the end of the 20th century (Goka et al., 2000) spilling over to native 211 

bumblebees (Goka et al., 2006). However, it seems that producers have largely 212 

eliminated this parasite from commercial bumblebee colonies (Goka et al., 2006; 213 

Murray et al., 2013; although see Sachman-Ruiz et al., 2015). In addition, neither these 214 

parasitoids nor the tracheal mite, L. buchneri, were observed in bumblebees from the 215 

colonies after being placed in the field for a month. One explanation for this is that 216 

parasitoids of bumblebees might be at low abundance in our study sites, because native 217 
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bumblebees (B. terrestris lusitanicus) are rare (Magrach et al., 2017; Trillo et al., 2019), 218 

as they are at the limit of their distributional range (Goulson, 2010). In fact, in this 219 

region, the density of commercial bumblebees is around four times greater than that of 220 

native bumblebees (Trillo et al., 2019). Another possible and complementary 221 

explanation for this low prevalence might be that when bumblebees are parasitized, they 222 

desert their colony (Schmid-Hempel and Müller, 1991). In addition, even though L. 223 

buchneri may be present in native bumblebees (although we note that there is no 224 

information in Spain; Jabal-Uriel et al. 2017) it might be very difficult to detect parasite 225 

spillover from native to managed bumblebees because native bumblebees are at very 226 

low abundance, as described above. 227 

Similarly, there was no evidence for the presence of the neogregarine Apicystis bombi 228 

(Lipotrophidae) in the screened colonies upon arrival. However, three bumblebees were 229 

found to be infected after having been placed in the field. In other regions, the parasite 230 

A. bombi has been detected infecting commercial bumblebee colonies, although in a low 231 

number of colonies (Graystock et al., 2013b; Murray et al., 2013; although again see 232 

Sachman-Ruiz et al., 2015). Native bumblebees can host A. bombi (Jabal-Uriel et al., 233 

2017), but, as noted above, they are rare in our study region (Magrach et al., 2017; 234 

Trillo et al., 2019). In contrast, thousands of commercial colonies from at least three 235 

producers (Koppert, Biobest and Agrobio, personal observation) are used on an annual 236 

basis. Therefore, it is more likely that other commercial bumblebees infected by A. 237 

bombi transmitted the parasite to the bumblebee colonies we screened, rather than 238 

native bumblebees, or, more parsimoniously, our initial screen failed to detect it in 239 

arriving colonies. 240 
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In contrast, we found commercially produced bumblebee colonies to be heavily infected 241 

with parasites of the genus Nosema upon arrival from the producer. Other studies have 242 

also reported similar levels of prevalence with around three quarters of commercial 243 

colonies infected (Graystock et al., 2013a; Murray et al., 2013). Unfortunately, our 244 

methodology did not allow us to distinguish between the bumblebee parasite N. bombi 245 

and the honeybee parasite N. ceranae. Both can infect bumblebees (Graystock et al., 246 

2013a; Fürst et al., 2014). 247 

Unexpectedly, our results showed no significant variation in Nosema infection rate at a 248 

colony level over time, as in a previous study that monitored wild bumblebees (Goulson 249 

et al., 2018), even in landscapes where commercial bumblebees were intensively used to 250 

pollinate crops. Even in parasite-free landscapes, one would expect that if commercial 251 

colonies are infected by a parasite, it spreads within the colony across time due to the 252 

high density of hosts and low genetic variability (Schmid-Hempel, 1998). We propose 253 

two potential explanations. On the one hand, bumblebees, in line with other social 254 

insects, have evolved social immune systems that combine prophylactic and activated 255 

responses to avoid, control or eliminate parasite infections (reviewed by Cremer et al., 256 

2007). Both colony and individual (i.e. immunocompetence, reviewed by Schmid-257 

Hempel 2005) defense mechanisms might be involved in maintaining roughly constant 258 

Nosema prevalence over time. On the other hand, it has been experimentally 259 

demonstrated that Nosema, specifically N. bombi, relies more on transmission through 260 

the larval stage than through transmission among adults (Rutrecht et al., 2007). If we 261 

consider that colonies were placed in the field for a month period and that the total 262 

development of a bumblebee from larvae to adult is about 4-5 weeks (Alford, 1975), 263 

this could explain why we failed to detect an increase in prevalence. Imhoof and 264 
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Schmid-Hempel (1999) showed an average delay to Nosema infection in commercial 265 

colonies placed in the field of ~30 days. 266 

Our study showed, for the first time in Spain, that commercially produced bumblebee 267 

colonies can be infected by Nosema parasites prior to their deployment in the field. 268 

These parasites may reduce lifespan and have detrimental effects on bumblebee 269 

behavior (Otti and Schmid-Hempel, 2007; Rutrecht and Brown, 2009; Graystock et al., 270 

2013a). Because commercial bumblebees placed in semi-open greenhouses frequently 271 

forage in natural areas (Foulis and Goulson, 2014), they have the potential to spread the 272 

parasites into native pollinator populations (Colla et al., 2006; Murray et al., 2013). 273 

Despite the fact that there is some regulation about commercial bee colony health  (e.g. 274 

for Europe see 92/65/EEC in European Commission 1992), this regulation does not 275 

cover all parasites. This implies that commercial colonies can be highly infected by 276 

parasites such as Nosema, as our study show. Therefore, there is a need for the 277 

enforcement of more stringent protocols to preserve the health of commercial and native 278 

pollinators. 279 
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FIGURES CAPTIONS 464 

Fig. 1 Geographical distribution of plots inside, adjacent and distant to berry crops 465 

located in the province of Huelva (SW Spain). Names denote towns. 466 

Fig. 2 Mean (+SE) change in Nosema prevalence in commercially produced bumblebee 467 

colonies before and after being placed in plots inside, adjacent (~50 m) and distant (>2 468 

km) to berry crops in winter (A) and in spring (B). Differences were not significant 469 

470 
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Fig. 1 471 

 472 

Fig. 1 Geographical distribution of plots inside, adjacent and distant to berry crops 473 

located in the province of Huelva (SW Spain). In total, 12 plots were selected and two 474 

commercial bumblebee colonies were used per plot in winter and again in spring. 475 

Names and crosses denote towns. 476 

477 
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Fig. 2 478 

 479 

Fig. 2 Mean (+SE) change in Nosema prevalence in commercially produced bumblebee 480 

colonies before and after being placed in plots inside, adjacent (~50 m) and distant (>2 481 

km) to berry crops in winter (A) and in spring (B). Differences were not significant 482 


