Intertwined Superfluidity and Density Wave order in a p-Orbital Bose Condensate
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We study a continuum model of the weakly interacting Bose gas in the presence of an external field
with minima forming a triangular lattice. The second lowest band of the single-particle spectrum (p-
band) has three minima at non-zero momenta. We consider a metastable Bose condensate at these
momenta and find that, in the presence of interactions that vary slowly over the lattice spacing, the
order parameter space is isomorphic to S°. We show that the enlarged symmetry leads to the loss
of topologically stable vortices, as well as two extra gapless modes with quadratic dispersion. The
former feature implies that this non-Abelian condensate is a “failed superfluid” that does not undergo
a Berezinskii-Kosterlitz-Thouless (BKT) transition. Order-by-disorder splitting appears suppressed,
implying that signatures of the S° manifold ought to be observable at low temperatures.

The search for novel quantum states of matter contin-
ues to be a central theme in condensed matter physics.
The conventional Bose superfluid spontaneously breaks a
continuous U(1) symmetry in the global phase of the con-
densate wavefunction, giving rise to quantized vortices as
a signature of the system. Motivated by recent experi-
ments on two completely different platforms, we investi-
gate the possibility of intertwining superfluid order with
density wave order as a result of additional degeneracies
in the spatial structure of a Bose-Einstein condensate
(BEC). We present in this Letter a simple theory of an
intertwined state that has a superfluid stiffness, but has
a non-Abelian order parameter manifold that lacks the
topological protection to support superflow at non-zero
temperatures.

Our first experimental motivation comes from torsional
oscillator experiments on “He bilayers on graphite sug-
gesting that a 2D superfluid in a periodic potential may
exhibit an unconventional quantum phase [1], notably
characterized by the lack of a BKT transition [2] and
a linear temperature dependence of the normal fraction
(c.f. cubic behavior in the conventional superfluid). The
system is close to an incommensurate solid phase. An
order parameter was postulated [1] with intertwined su-
perfluidity and crystallinity such that the global phase
and translational degrees of freedom are no longer in-
dependent. This order parameter exists on an enlarged
symmetry manifold. The BKT transition would be elim-
inated since global phase vortices would not be topolog-
ically protected, while unconventional Goldstone modes
could be the source of an enhanced normal fraction.

Secondly, there has also been a series of remarkable ex-
periments [3] that succeeded in creating a spatially mod-
ulated atomic BEC in an optical lattice that arose from
the spontaneous occupation of photon cavity modes in
two intersecting cavities. A new U(1) Goldstone mode
was observed associated with a degenerate set of density
wave patterns. This again raises the tantalizing possibil-
ity of intertwined density wave order and superfluidity.

In this Letter, we study a simple bosonic Hamiltonian
to understand such an intertwined quantum state. We
will see that two ingredients are required. We need de-
generate single-particle states with different spatial struc-
tures to form an enlarged order parameter space. To pre-
serve this degeneracy, the interaction between particles
has to be smooth and long-ranged. We consider bosons
in 2D with mass m in an external potential: U(r) =
2U Z?Zl sin?(G; -r/2) where G; = G(cos 6, sin ;) with
0, =m(j —1)/3 (j = 1,...,6) are the reciprocal lattice
vectors. We take U > 0 which gives potential minima on
a triangular lattice with lattice constant a = 4w/ V3G.
The Hamiltonian is
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where e = h%k?/2m, u is the chemical potential, Va
is the Fourier transform of the interaction potential, L
is the linear size of the system and bk is the bosonic
annihilation operator.

For the degeneracy requirement, we exploit the p-band
of this system which has degenerate minima in the first
Brillouin zone (see below). We note that p-band BECs
can be realized experimentally with ultracold atoms [4, 5]
with novel features due to symmetries from “internal”
degrees of freedom, e.g. orbitals or spins [6, 7]. Our pro-
posal is different in that we make use of degeneracies in
spatial structure rather than internal symmetries.

We will now discuss the requirement on the form of the
interactions. Theoretical studies of ultracold atoms typ-
ically employ a zero-range contact interaction to model
s-wave scattering because the range of the interaction is
short compared to the wavelength of the condensate. In
this work, we are interested in a condensate with spatial
modulation commensurate with a wavevector of magni-
tude G/2. We will study interactions Vg that are smooth



over a length scale R that is long compared to 1/G, such
that there are momentum transfers of the order of G are
suppressed. For our calculations below, we use the simple
mathematical form: Vg = Vjexp(—¢?R?) with GR > 1.
We note that smooth interactions can be realized in dipo-
lar atoms/molecules [8] by tuning a Feshbach resonance
so that the contact repulsion is cancelled by the dipolar
attraction at short range. The cooling of dipolar atoms
is challenging but an Er BEC in an optical lattice has
been achieved recently [9].

Let us examine now the single-particle band structure
(Vq = 0) of this system. The lowest band has the lowest
energy at the I' point. We will focus on the next low-
est band which corresponds in the tight-binding limit to
Bloch states formed by p, and p, orbitals in each well
of the external potential. This p-band has three degen-
erate local minima (due to rotational symmetry) with
energy ep and crystal momenta Q; = G;/2 (1 = 1,2,3)
at the three M points (M 2 3) of the first Brillouin zone
of the triangular lattice (Fig. 1c). The annihilation oper-
ators for these Bloch states, B2 3, can be written as
a superposition of plane-wave states connected by re-
ciprocal lattice vectors G = p1 G + p2 Gy for integer
D12 By = ZG da,ibq,+c. From these three states, we
can construct a degenerate set of single-particle states
(c1 Bl 4 ¢3B] + ¢3BY) [vac) with |e|? + |ea|? + |es]? = 1,
each of which can be represented as a point on the S® sur-
face in R®. Depending on the magnitude and phases of
the ¢;’s, these degenerate states have quite different den-
sity profiles, generically breaking completely the point-
group symmetries of the external potential. We will
study the condensation of bosons into these states. Two
of the more symmetric cases are plotted in Fig. 1.

We now turn to the effect of interactions. One would
expect short-ranged interactions to select Bose conden-
sation into a unique member of this manifold [10]. In this
work, we aim to explore the novel properties of a Bose-
condensed system where the single-particle degeneracy is
preserved even in the presence of interactions, by using
an interaction that is smooth on the scale of the lattice
spacing a. To be more precise, we consider the system in
a coherent state [11] of the form [1, 12-14]:

|U) = e N/ Zexp ( ZCZBT> [vac) (2)

where N is the total number of particles in the system
set by the chemical potential y. The mean field energy
for this ansatz is of the form (V|H|¥) = Nupp:
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FIG. 1. (a) Density profile for (c1,c2,c3) = (1, 1,1)/\/§ has
point-group symmetry of honeycomb lattice. States with
equivalent densities (up to a translation) can be constructed
by changing the sign of one of the amplitudes, leading to a
Z4 symmetry; (b) Density profile of (c1,cz,c3) = (1,4,0)/v/2
has a Ca, point group. Black dots: potential minima. (c)
Brillouin zone of the external potential (red) with reciprocal
lattice vectors G;. The p-band minima occur at three in-
equivalent M points at Q; = G;/2. Upon condensation at
the M points, the spatial periodicity of the system doubles,
and excitations have a reduced Brillouin zone (blue).

where the addition in the i-index is modulo 3, i = N/L?
is the average boson number and f/o Vo, f/l ~ Vo +
V\/Q and V, ~ Vag for U < eg or QR > 1. V; controls
intervalley scattering of particles from one M point to
another (Fig. 2 left) and is the only term allowed by the
conservation of crystal momentum. The key issue arising
from interactions is this: generically the interactions, 171,2
will fix the relative weights and phases for the amplitudes
¢; in the coherent state (2), leading to a reduction of the
degenerate manifold from S° to the conventional U(1)
manifold. Indeed, for V; > V5 > 0, Liu and Wu [7, 10]
showed that the system favors ¢; = +ice, ¢c3 = 0 (and
permutations) which has a U(1) symmetry in the global
phase as well as discrete symmetries: Zo for time reversal
and Zs for the choice of the empty state (Fig. 1b).

In the spirit of preserving the degeneracy of the S°
manifold (2), we specialize to a spatially smooth interac-
tion such that V,>o = 0, i.e. V; =0 and Vo = 0. Then
intervalley processes are absent and the degeneracy on
the S° manifold is not lifted by interactions at the mean
field level. The mean field energy does not depend on
the relative phases of the amplitudes ¢; due to separate
number conservation at each M point at this level. We
will from now on focus on this degenerate scenario. (A
similar situation applies to the spontaneous optical lat-
tice experiments [3] where the additional U(1) symmetry
is only approximate in the presence of s-wave scattering.)

We discuss now the emergent SU(3) symmetry arising
from the degeneracy of the S5 manifold (2). The state

FIG. 2. Direct exchange (left) and superexchange (right) be-
tween condensed particles at momenta M; and M;. Direct
exchange is absent if Vg = 0.



(clBir + CQB; + 033;:) |vac) is a Schwinger boson formu-
lation of the fundamental representation of SU(3). The
unitary transformation that connects any two states in
the manifold can be written as an SU(3) transformation
with the generators given by A® =37, ., 5 5 BJ)\;{]-BJ- /2,
where A® are the eight Gell-Mann matrices as defined in
[15]. Any state in (2) can be generated by an SU(3) ro-
tation on the highest-weight state (c1,ca,c¢3) = (0,0,1).
The manifold is isomorphic to SU(3)/SU(2) ~ S5 [16].

A non-Abelian symmetry manifold is interesting in the
context of superfluid BECs. Conventional 2D superfluids
exhibit a topological (BKT) phase transition due to the
unbinding of U(1) phase vortices, separating a normal
phase at high temperature and a low-temperature phase
with quasi-long-range order. However, the first homo-
topy group for our S° manifold is trivial: ;(S°) = 0,
meaning that any closed loop in the manifold of S® may
be continuously shrunk to a point. This means that phase
vortices are not topologically stable. Explicitly, we can
destroy the phase of the amplitude at M; by a trajectory
on the S® manifold that takes the coherent state through
a region where ¢; = 0. In addition, m(S®) is also triv-
ial and so there are no topologically stable defects for
our coherent states in two dimensions. In the absence of
topological protected phases, the Mermin-Wagner theo-
rem [17] implies that a 2D S°-degenerate condensate is
a rare example of an interacting Bose system without
superfluidity in the thermodynamic limit at any non-
zero temperature. In this sense, a condensate with non-
Abelian symmetry generators may be viewed as a “failed
superfluid” in two dimensions.

To be more quantitative, we will now compute the ex-
citation spectrum of the condensate and investigate the
implications for the system. We focus on long-wavelength
fluctuations (k| < Q) around a coherent state on the
manifold (2). This corresponds to introducing spatial
variations, ¢; — ¢;(r) = +/ni(r)exp[if;(r)], that are
smooth on the scale of the lattice spacing. The La-
grangian density for these fluctuations is given by [18]

L=nY"c; (ihd - e) e — munel{e; ()} (4)

j=1

where ¢ (j = 1,2, 3) is the energy of p-band Bloch state
near the M; point with crystal momentum Q; + k, and
€k is obtained by replacing k with k = —ihV. We study
small fluctuations and retain only terms quadratic in the
fluctuations. If we denote B;k as the creation operator
for the Bloch state, this is equivalent to Bogoliubov the-
ory which approximates Bjx—¢ — VN ¢; in the Hamil-
tonian and keeps only terms quadratic in Bjy.

In this p-band model, we obtain three bands of Bo-
goliubov quasiparticles with energy F,x and crystal mo-
mentum ik (g = 1,2,3). We have also verified this long-
wavelength model by a numerical Bogoliubov calculation
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FIG. 3. The eight lowest, positive-energy modes in the Bogoli-
ubov spectrum for the state (c1,c2,c3) = (1,1,1)/v/3 (left)
(1,4,0)/+/2 (right) with 1/QR = 0.3, aVp = eq, U = 6eq.
The spectrum converges using a m. = 271 plane-wave basis.

not restricted to the p-band. Unlike the mean field en-
ergy, the Bogoliubov spectrum does depend on the rel-
ative phases of the amplitudes ¢; even if Vo = 0. This
is because particles at different M points can be coupled
by intervalley ‘superexchange’ involving an intermediate
state with two uncondensed particles (Fig. 2 right). This
process rules out a fragmented condensate [11].

Figure 3 shows the lowest, positive excitation energies
for fluctuations around two coherent states: the symmet-
ric state (c1,ca,c3) = (1,1,1)/4/3 and the Liu-Wu state
(1,4,0)/v/2. For both states, we find a gapless mode
with a linear dispersion. If we approximate the single-
particle dispersion around the M points as isotropic with
band mass m*, E,—1 x ~ (f/oﬁ/m*)l/2 hk for k < @ and
Vo > Vl,g [18]. This corresponds to fluctuations in the
overall density, analogous to the usual U(1) superfluid
Goldstone mode arising from global phase invariance.
The corresponding phase variable is §® = v/ Y, |¢;]206;
where 66; is the fluctuations in the phase of ¢;. This
variable is not quantized because 0 < |¢;| < 1, consistent
with the lack of topological defects in the system.

For our S® degenerate scenario (Vi = Vi = 0), there
are also two quadratic modes, F,—23x. Their £ — 0
eigenvectors correspond to excitations to p-band states
orthogonal to the condensed single-particle state. Such
excitations are analogous to “phasons”: a continuous in-
ternal rearrangement of a crystal [19] sampling various
density configurations (Fig. 1). We note that spin waves
in ferromagnets are also quadratic modes and this disper-
sion is associated with the order parameter being a good
quantum number of the Hamiltonian. The analogous
conservation law in our system (4) is the conservation of
the number of particles in the two single-particle states
orthogonal to the condensed state. More mathemati-
cally, by adapting the analysis for the Watanabe-Brauner
counting rules [20, 21], we can show that quadratic modes
exist if the expectation values of the commutators of the
non-Abelian generators, {A%}, do not vanish for states
within the manifold. This connection with the enlarged
symmetry of the manifold is consistent with these modes
acquiring energy gaps of (2V3 — Va)7/4 and (V1 Va/2)'/%7



if V1.2 # 0 (for the (1,i,0) state). (We address the influ-
ence of a small gap later.)

We also find Bogoliubov eigenstates with negative en-
ergies corresponding to s-band states. Metastability
against scattering into the s-band has been addressed
[6, 7] and a metastable p-band atomic BEC has been
achieved [4, 5]. This is however is difficult to realize in he-
lium films due to inelastic scattering with the substrate.

The S®° symmetry is emergent meaning that the gener-
ators described above do not commute with the Hamil-
tonian but only do so in the expectation value of the
macroscopic coherent state. Such emergent symmetries
are typically broken by the “order-by-disorder” mech-
anism [22-24] which reduces the symmetry by picking
the state that minimizes the quantum zero-point en-
ergy E,p = 3 > (Bux — E;(g()) where ELOk) are the non-
interacting band energies. In systems where order-by-
disorder is typically important, this quantity is on the
order of € [24]. We have evaluated the zero-point energy
for the parameters considered in Fig. 3. We find that the
order-by-disorder mechanism favors the symmetrically
condensed state, (¢1,c2,c3) o (1,1,1) and its three other
degenerate counterparts: (—1,1,1) and permutations. In
other words, this reduces the degeneracy on the S° man-
ifold to a U(1)®Z4 symmetry. These states have a zero-
point energy per particle of EZP/N ~ 4 x 10_26Q/nceu
where neen = V3na?/2 is the number of particles per
unit cell. (The p-band has a bandwidth of ~ 107 teq for
these parameters.) However, the range of zero-point en-
ergies over the whole manifold is only 1% of this quantity:
AE,,/N ~ 107%€q/ncen, with the (1,7,0) state having
the highest zero-point energy. We believe that this sur-
prisingly small range can be related to the small matrix
elements for the intervalley superexchange contribution
to the zero-point energy (Fig. 2 right). This involves
intermediate states produced by momentum transfers of
the order of /2 from a condensed wavevector M, and we
see numerically that the splitting scales approximately as
Vé/Z/Vo for Vo > Vig/e (=6 x 107214 in Fig. 3). Such
small energy differences between the coherent states in
the S° manifold means that they should all be accessible
at low temperatures.

To establish the stability of the S®-symmetric conden-
sate, we have calculated the condensate depletion, de-
fined as the fraction of bosons not in the condensate.
This diverges with the system size L as T'log[L/I(T)]
where {(T) ~ 1/T is a lengthscale beyond which fluctu-
ations destroy the condensate, similar to a conventional
2D U(1) condensate. We also calculated the normal fluid
density p, which exhibits viscosity due to thermally ex-
cited quasiparticles [25]. This quantity exhibits anoma-
lous behaviour — a simple calculation (ignoring interac-
tions between the Bogoliubov quasiparticles) shows that
pn ~ Tlog[L/I(T)]. This is quite different from the T3
behaviour for a conventional 2D superfluid but is intrigu-
ingly reminiscent of helium on graphite [1]. This new

behavior can be traced to the quadratic modes that are
absent from U(1) superfluid. (See [18] for details.)

We return now to the issue of the small energy gap
due to a small Vo: FEy ~ 10756Q for parameters in
Fig. 3. This reflects the anisotropy on the S° mani-
fold of coherent states, reducing the symmetry to U(1).
Scaling theory [26] suggests that this restores the BKT
phase at a critical temperature suppressed from a sim-
ple U(1) condensate by an order of magnitude [27] ~
1/log(eqg/Eg) ~ 107!, Moreover, the U(1) vortex size
~ (eo/Eg)~1/?a ~ 300a is large so that optical lattices
smaller than this size will not see the vortex-unbinding
transition. This leaves us scope to explore the non-
Abelian condensate as a failed superfluid.

In this work, we have proposed a non-Abelian con-
densate with spatial density modulations. Can this be
a candidate for a “supersolid” phase that spontaneously
breaks both translational and global gauge symmetries?
The condensation at non-zero momenta may be induced
by certain two-body interaction potentials with negative
Fourier components at the ordering wavevector. Such
condensation may occur even in the absence of an ap-
plied field by creating a roton instability [12, 13]. Such a
system is generically an Abelian condensate with decou-
pled Bogoliubov and phonon modes. (In the context of
our S® manifold, the interactions creating the roton in-
stability will generically determine all the relative weights
and phases of the amplitudes ¢;, other than the ones re-
sponsible for these U(1) modes.) Therefore, one expects
to see a BKT transition in contrast to [1]. Nevertheless,
we can show [28] that non-Abelian condensates can be
local minima in mean-field theory for special fine-tuned
Hamiltonians. These states, however, appear to be dy-
namically unstable in general, as evidenced by imaginary
eigenvalues in their Bogoliubov spectra. A notable excep-
tion arises if the single-particle spectrum deviates from
the typical quadratic kinetic energy dispersion (e.g. due
to band structure, or internal degrees of freedom) where
we have found a condensate with SU(2) symmetry in ad-
dition to the U(1) translational symmetries. Such a setup
will be the focus of future studies.

In summary, we have proposed a scenario for a con-
densate with non-Abelian features, such as a lack of a
BKT transition and additional gapless “phason” modes.
We believe this is the first example of such a condensate
that exploits spatial structure instead of additional inter-
nal degrees of freedom. By leveraging the single-particle
degeneracy of the p-band, we study an interaction that
does not spoil the SU(3) symmetry of the system at the
mean-field level. We find a “failed superfluid” in two
dimensions. Our scenario is not confined to a triangu-
lar lattice and is anticipated to generalize to degenerate
higher band condensates in e.g. square, hexagonal lattices
and in three dimensions. Intriguingly, our failed super-
fluid shares similar low-temperature behavior and a lack
of a BKT transition with the *He bilayer on graphite [1].



Nevertheless, a complete theory for this helium system
that motivated our story remains elusive.
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Supplemental Material 1: Dipolar interactions

In this section, we review the work of Fischer [8] which demonstrated how a finite-range interaction can be realized
for dipolar bosons confined to a cloud in the zy-plane.

Consider dipolar bosons of mass m with dipole moment d., polarized by a strong electric field in the z-direction. The
interaction between two bosons at a (three-dimensional) displacement of r consists of two components. Firstly, there
is a contact interaction parametrized by an s-wave scattering length a, or an interaction strength gsp = 4mh2as/m.
There is also a dipole-dipole interaction of the form Vy4(r) = (3gq/47r3)(1—322/r?) with g4 = d?/3€q. This is repulsive
when 22 + 32 > 22 and attractive when 2?2 + y? < 22 (when the dipoles are nearly collinear in the z-direction).

When these bosons are confined by harmonic trap to a Gaussian wavepacket of width d, in the z-direction, the
Fourier transform of the effective interaction in the 2D plane can be written as

1 2 2
Vy= 9d | 1+ 9sp/29a 93D /294 — §qdzw (qdz>] , with  w(x) = e* erfe(x), (S1)

dz 71'/2 2 \/5

where q is the 2D wavevector of the Fourier transform. Fischer [8] proposed that the contact interaction strength
g3p can be tuned to be equal to gq so that Vg — 0 as ¢ — oco. Thus, the short-range contributions from the dipolar
interaction and contact interaction cancel each other, producing an interaction with lengthscale d,. For this study,
we want this lengthscale to be large compared to the wavelength ~ 1/Q of the density modulations of our coherent
state (2). This corresponds to the condition that confinement in the z-direction must be larger than v/3a where a
is the length of the triangular lattice vector. This suppresses intervalley processes that break the S° symmetry. In
summary, we impose two conditions on the interaction to observe the S® symmetry

9d = 93D, dz > \/§a7 (82)

which can be achieved by using a Feshbach resonance and by adjusting the out-of-plane confinement of the trap. We
plot the resulting Bogoliubov spectrum in Fig. S1.

We should recall that the bosons are regarded as quasi-2D because they are condensed in the ground state of the
confinement potential in the z-direction. The next lowest state is higher in energy by h?/md?. We should not allow
d. to be so large that h?/md? becomes smaller than the bandwidth of the p-band for motion in the zy-plane. This
can be achieved without violating the condition (S2) in a deep optical lattice where the bandwidth is only a fraction
of eg. For instance, U = 6¢eg (used in Fig. 3), gives a bandwidth of the order of 0.05¢g. Thus, there is a window of d,
where the system remains quasi-two-dimensional while the interparticle interaction is smooth over the lattice spacing.
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FIG. S1. The eight lowest, positive-energy modes in the Bogoliubov spectrum for the state ¢1 = c2 = c3 (left) and ¢1 = 1,¢2 =
cs = 0 (right). Parameters: gq = g3p, d» = 7.5/Q, 3\/2/7 gai/2d. = eq, U = 6eq.

Supplemental Material 2: Symmetry generators and counting rule

In the main text, we found that as long as the condition V;>¢g = 0 is obeyed, the coherent state is degenerate in
mean field theory on the manifold

|T) ~ exp [\/N (clBI + Bl + Cng)} [vac) , ler]? + Jea)® + e3> = 1 (S3)
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where BI72)3 are the creation operators of the three Bloch states atat the M points of the first Brillouin zone. If we
project the Hamiltonian onto this set of states, we can write

2
PHP =ey Y BIBi+ % (Z B} Bl-> (S4)

K2

The degeneracy arises from the fact that
(¥|[B]B;, H]|¥) =0 (55)

for all the coherent states defined above. Physically, this corresponds to the fact the mean-field energy is the same for
any arbitrary occupation of the three Bloch states with the same total boson number. We can take linear combinations
of these commutators to show that (V[[A?, H][¥) =0 where A® =37, ., , 3 BT)\(G)Bj/2 and A(@ are the Gell-Mann

Y]
matrices as

010 0 —i 0 100 001
AXD=1100], XD =14i 0 0], A& =10-10], XY =1o000],
000 00 0 000 100
00 —i 000 00 0 10 0
Ao =100 0 |, O =1o001], XD =100 -], A =201 0 (S6)
i 0 010 0i 0 00 —2

There is an SU(3) symmetry in the sense that any two coherent states on this manifold can be connected by a SU(3)
unitary transformation which can be parametrized by exp {z Z§=1 OGAG]. This manifold may be parameterized via

an SU(3) rotation on the highest-weight state using the generators according to:

8
|¥) = exp [z ZGGAal exp {\/NBH |vac) (S7)

a=4

Note that rotations involving the generators A?2 on the highest-weight state leaves it invariant and therefore the

entire manifold may be parameterized parsimoniously using only five generators: A%~+8 i.e. rotations involving the
generators which form an SU(2) subgroup do not alter the highest-weight state.

We discuss the Watanabe-Brauner counting rule [20] for the Nambu-Goldstone modes, which was generalized by
Takahaski and Nitta to apply to emergent symmetries in the Bogoliubov framework [21]. The Bogoliubov Hamiltonian
which we consider has a term which is linear in k& and thus deviates from the conditions under which the counting
rule was derived by these authors; nevertheless we can show that the rule is respected. We summarize this algorithm.
Suppose we have n broken symmetry generators Pi, ..., P,. Define a matrix: I';; = (¥ |[FP;, P;]| ¥). The number
of modes with even dispersion in k are given by neyen = %rank(F) and the number of odd modes are ngqq =
N — 2Neven. Using the operators A8 as the symmetry generators, we find that noqq = 1, Neven = 2, agreeing with
our perturbative analysis and numerical simulations.

Supplemental Material 3: Excitations

In this section, we outline two methods to study the excitation spectrum. The first method applies the Bogoliubov
approximation to the full Hamiltonian and obtains numerical results for the excitations for multiple bands in the
whole Brillouin zone. The second method describes an effective theory for long-wavelength fluctuations in the p-band
of the system. This is useful in understanding the Goldstone modes of the system.

Numerical Bogoliubov Calculation

Consider first non-interacting bosons in the triangular potential U(r) [see (1)] consisting of Fourier components
at the reciprocal lattice vectors £Gi 2 3. For our numerical work, we work in the plane-wave (Fourier) basis. The
eigenstates are Bloch states. A Bloch state in the band -y is created by the creation operator

(BT = dd b rq- (58)
G



where G = p1 G +p2Go with integer py 2 are the reciprocal lattice vectors, bL creates a plane-wave state at wavevector
p, and q is restricted to the first Brillouin zone of the non-interacting problem (red hexagon in Fig. S2). In other
words, it is a superposition of plane waves with wavevectors separated by reciprocal lattice vectors G. There are
two p-bands, the lower one of which has energy minima at the M; 23 points of Brillouin zone corresponding to
q=Qi23=Gi23/2. We will from now on refer to this lower band as “the p-band”.

FIG. S2. The Brillouin zone of the external poten-
tial (red). The p-band minima occur at the three
inequivalent M points. Upon condensation at the
M points, the periodicity of the system doubles
in real space, and excitations have a reduced
Brillouin zone (blue). The larger (red) Brillouin
zone is now divided into four smaller Brillouin
zones. They can be labelled m = 0 (centered at
the I’ point)7 and m = 1,2,3 centered at Mi 23
1 (up to translation a reciprocal lattice vector G,).

0
ka/Q

We are concerned with the excitation spectrum after the particles have Bose-condensed into the Bloch states at
the three M points. The spatial modulation of the condensate has Fourier components at integer multiples of Q2 3.
This means that the Brillouin zone for the excitations is halved in each direction (Fig. S2). So, it is more convenient
to label states in four reduced Brillouin zones (m = 0, 1,2, 3, shown in Fig. S2). Let us also divide all the plane-wave
states into reduced Brillouin zones centered at Q,, = p1Q1 + p2Q2 for some integers p; 2. (The numerical calculation
cuts off the basis at m = m..) Let us denote the creation operator for a free particle with wavevector Q,, + k and
energy h%(Q,, +k)%/2m as b:n’k = bgmﬂ( where k is restricted to the first Brillouin zone (central m = 0 blue hexagon
in Fig. S2) of the reduced Brillouin zones. In this work, we will focus on condensation into the p-band which has
energy minima at the M o 3 points (Fig. S2). The condensate creation operator can be written as:

clBI,k:o + CQB;k:O + CSBg,k:o = Z O‘mbin,kzo (89)
m

where B;)k creates a Bloch state with crystal momentum k near the M; point. (For each j, B]T,k:O superposes a set
of plane waves at wavevectors G, + Q; = G, + G;/2. The three sets of plane waves for the three different j’s are
disjoint and they span the set of plane waves at all the reciprocal lattice vectors of the reduced Brillouin zone, Q,,.)

To construct the Bogoliubov Hamiltonian, Hpog, we make the shift in the microscopic Hamiltonian (1) using
bm,o — V' Na,,. The Bogoliubov approximation keeps only terms quadratic in «,,. These terms are quadratic in the
boson operators and can be written in the Nambu form:

1 1
_ } : T } :
HBog = ikeBZkakbk - 5 e Ek+Qm (810)

where by = (bo k; s b, k; bé,—k? - blnm_k)T. The Nambu form contains kinetic energy terms of the form bb' but the
original Hamiltonian only has terms of the normal ordered form b'h. The constant term above has been inserted to
subtract out an unwanted constant from this rearrangement.

The eigenenergies and eigenvectors of the Bogoliubov quasiparticles are obtained by solving the equation Hyby =
Eyosby where o3 = diag(1,1,1,...,—-1,—1,—1,...) is a block-diagonal 2m. x 2m, matrix. This is equivalent to a
diagonalization using the Bogoliubov transformation by = TGk with

Ty = < u*k Zk > , uku;r( —vkvl =1 (S11)
U_g U_g

giving us a diagonal form of the quadratic Hamiltonian

1
HBog :Z E#kﬂ;kﬂyk + 5 Z (E#k — GQ“’_,_k) . (812)
rk prk



Single Band Effective Theory

Here, we outline a minimal effective theory to describe the long-wavelength excitations of the p-band condensate.
We will use a number-phase representation of the condensate which reveals the physical content of these excitations.
(For this section, we have set A = kg = 1.)

Let BT be the creation operator for a Bloch state with crystal momentum Q; + k near the M; point with energy
ex (1 = 1,2,3) We will provide analytic results for the simplified case when the dispersion relation is isotropic
€k = ex = h?k?/2m*. This calculation is easily generalized to the actual anisotropic dispersion but the analytic
results are cumbersome.

We study fluctuations around the coherent state (2): |¥) = e~ V/2 exp[\/ﬁ(clBI ko + CQB; ko + 03Bg ko) [vac).
In the number-phase representation, 7 , 7

¢j(r) = \/n;(r)e’® ), (S13)

this coherent state has a mean-field energy (3) density per unit area of

3 53
\% Vi Vs
nuMp = ?O(nl +ny +n3)? + ?1 Z n;njy1 [1 4 cos(26; —260;41)] + ZZ Z n? . (S14)
Jj=1 j=1

where 7 is the mean-field number density, and the addition in the j-index is modulo 3. We concentrate on long-
wavelength fluctuations (|k| < @) in the amplitudes

k<<Q
VNc¢j — VNej(r) =1/ — I Z cjxe’®T (S15)
k
where L? is the area of the system. To be more precise, we consider states of the form

{ej(r)}) = e M2 exp {\/JV ¢;(x)y)(r) d* ]Ivac = exp ZCJkB [vac) ,

1 ik 1 —k-
= 7D cxe™T, i) =) Be T
Jk k

where ¢; i is not small only for k < @ and ;(r) is the field operator projected onto the Bloch states in the p-band
around the M; point. The Lagrangian density £ for the long-wavelength fluctuations can be written as

(S16)

3
=nde (110 — €5.) €5 — monag [{e; ()} (817)

where €k is obtained from the single-particle band energies €; by replacing k — k = —ihV.

For small fluctuations in the density and phase, n;(r) = n; +dn; and 0; = 0; +60;, we write ¢; ~ \/ii; exp(if;) (1 +
dn;/2n; +1i60;) where \/n; exp(if;) is the mean field value of ¢; that minimizes unp. Then, we expand £ and collect
the terms quadratic in §0; and dn;. Consider first the SU(3) symmetric Hamiltonian with V2 = 0 with the S°
manifold of degenerate coherent states described by any (c1,co,c3) with 7 = 7y + fig + fg fixed. The quadratic
fluctuations are described by the Lagrangian density:

3

0Lgs =Y [—5ni6t50i -

=1

1 1 1%
W <nz|V602|2 + %Vénﬂ)} — ?0(577,1 + dng + 5713)2 . (818)

Note that dn; and d6; are canonically conjugate variables. Three pairs of natural canonical conjugates for this problem
are

n; Vi /n V2 /0 N
szpijjnijv ¢i:ZHj\/ﬁ759j, P=| —/f/(7—7a) /(7 — ng) 0 (S19)

ning/n(n —ng) —\/nang/n(n —ng) /(n—ns)/n




Using these canonical variables, we can write

3

1 1 Von
s =3 |-vtrs: - g IV + 419 )| - 002 (520)

‘ m* 2
i=1

The spectrum for this system can be easily extracted by comparing this with the Langrangian for a simple harmonic
oscillator with frequency w: Lsgo = pd — p?/2m —mw?q?/2. We find three gapless modes. Mode 1 has the dispersion
relation By = /ex(ex + 2Vpn) which is linear in the wavevector k for small k. This corresponds to overall density
fluctuations én = /nvy = dny +Jdns+dn3. The conjugate phase variable is 6® = ¢y /v/fi = 115601 + 17126602 +n3503. The
two other modes are degenerate and simply have the non-interacting dispersion Eox = Esix = €. In second-quantized
form, the annihilation operators for the three modes can be written as

. 1/2
7 €k €k

Y IR . S lysie = 1. 21
ik ]k¢]k 2ljk Vik , 1k (2‘/071 €k> El(] ) ) 2/3,k (S )

We can show that the existence of a linear mode and two quadratic modes is robust when we restore the anisotropy
in the band energies around the three M points. The quadratic modes become non-degenerate and their energies do
depend on the interaction strength V. Moreover, the spectrum becomes dependent on the choice of the mean-field
coherent state.

The \7172 interaction terms break the S° symmetry. The ground state is (ci,c2,c3) = (1,%i,0)/v/2 with a U(1)
symmetry for the overall phase. Fluctuations around this state can be described by the number and phase fluctuations
at the two condensed amplitudes c; 2 and a decoupled single-particle Hamiltonian for fluctuations around c3 = 0.

1 .
0Ly = — |:Vlat¢1 — preP1 + e (4V0ﬁ + Vo + 261;) Vl]

N 1 -
— [ugat@ + @2 (Vlﬁ + 61”{) o2 + §V2 (Vgﬁ + 2612) 1/2] , (S22)
dL3 = ncj (i@t — € — % + - Von> c3 (S23)

with the chemical potential p = 2nuyr = (Vo — ‘72 /4)7. Mode 1 for overaHNde}lsity ﬂuctuationg remains linear. The
quadratic modes from the SU(3)-symmetric case now have energy gaps of (ViV2/2)Y/?n and (2V; — Va)n /4.

Condensate depletion

The condensate depletion A is defined as the fraction of particles with momenta different from the ones in the
coherent state (2).

1
A= > (el e (S24)
J,k#0
At the level of our approximation of small fluctuations

Az ¥ (5o (U5 i) - 2 2 Gy

s
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1o o B + L
2 (Gt —2) + Zom s

. (S25)

The first term is the depletion at zero temperature. It is finite in 2D. The second term arises from the thermal
excitation of quasiparticles. Both linear and quadratic modes contribute terms that scale as T log(LT).

Superfluid density
The local current density is given by J = N ). ¢;Vierc;. For an isotropic quadratic dispersion around the M

points, this gives J = —iN Y. (¢; Vrc; — ¢;Vec))/2m*. If we confine our attention to slow spatial variations only, the
current is given in the number-phase representation by

1 1
~ i 02 ~ — _i 91- i 91 2



The first term involves excitations of a single quasiparticle while the latter involves two quasiparticles. The first is
longitudinal and therefore does not contribute to the normal fluid response. The second term is diagonal in the index
i and remains so after the orthogonal basis transformation (S19). Its Fourier transform is

1 Ciard?r 1 lig-x
Jig> — ZZ: / vi(Vgi) 1qe™ " T2 o %}qu Viq—kPik = Z ZTqu (Gig—x — aj’qu)((lik + aj;k)~

m 2m* <
ik
(S27)
The normal fluid density is given by [25]
2 e &g v)]?
Pn= Taz dmy - g, —¢E, ’ (528)

where v labels eigenstates with energies £, of the gas of Bogoliubov excitations with partition function Z and J|  is
the component of the current operator transverse to q. Inserting the quasiparticle spectrum gives

2 Kigliqx\ [Nigqk+Na Nigx—N;
= 1 a'i,q 9 _ Vg 2
p m*2L2 qob Z < lix ) Eiqx+FEx FEiqx—FE (529)

%

where V;i is the Bose occupation number of the eigenstate with energy E; k. The contribution from long-wavelength
fluctuations at a fixed low temperature T' can be obtained by noting that N;x ~ T/E;c (equipartition) and summing
only up to E ~ T.

Ejn<T 2
AT Kiq
pn = sae iy <Eik> (830)

The contribution from the linear mode gives a dependence of 7% while the quadratic mode gives T log(LT).

When the anisotropy of the dispersion around the M points is included in the calculation, these temperature
dependences are robust. There is also a reduction of the superfluid fraction from unity at zero temperature, as
expected on general grounds due to the loss of Galilean invariance.

Supplemental Material 4: Suppression of the BKT Transition

In this section, we estimate the temperature scale at which the breaking of the symmetry of the S° degenerate
manifold due to a small non-zero interaction Vy which couples bosons at two M points by a momentum transfer of
Q. This reduces the symmetry of the degenerate manifold to U(1).

We borrow from Nelson and Pelcovits [26] and Fellows et al [26] and consider the O(M+2) non-linear sigma model
with a small anisotropic term, defined by the (M + 2) x (M + 2) matrix D, that breaks the symmetry to an O(2)
model. This is described by the energy density:

J J
H =5 (Vn) + ﬁnTDn (S31)
where n is a unit vector on the S™*1-sphere, J, is a dimensionless measure of the anisotropy and a = 27/v/3Q is the
lattice spacing. In the absence of the anistropy, the Mermin-Wagner theorem states that the system is disordered in
the thermodynamic limit in two dimensions at any non-zero temperature. For a non-zero J; < 1, a BKT transition
occurs at a critical temperature T, ~ J/In(J/J,). In the opposite limit of large J , this is equivalent to the O(2)
model which has a critical temperature of TgxT ~ 7J/2.

We should also note that the anisotropy gives rise to topologically stable vortices. The size of these vortices diverge
as & ~af+/J/JL as J — 0.

Our system cannot be mapped directly onto an O(M+2) model. However, we believe that we can use these results
to estimate the effect of anistropy. We estimate that J ~ h%n/2m* where m* is the effective mass of the single-
particle dispersion relation around the M points. Since the anisotropy arises from intervalley exchange, the anistropy
energy per unit area is controlled by 72V, ~ nE;. We estimate J| /a? ~ nE,. This gives J| /J ~ 812m*Eg/h? =
(472 ]3) (m* /m)(Ey feq). ]

For Fig. 3 where U = 6eg, Vo = neg and V4 ~ 1075V, we find m*/m ~ 0.2 this gives J, /J ~ 1075. So, the BKT
transition temperature is suppressed by a factor of 1/1In(J, /J) ~ 107! for an infinite system. This will be observable
for systems larger than the vortex size £ ~ 300a.



