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ABSTRACT

In realistic and challenging decision contexts, people may show biases that prevent 

them from choosing their favored options. For example, astronomer Johannes 

Kepler famously interviewed several candidate fiancées sequentially, but was 

rejected when attempting to return to a previous candidate. Similarly, we examined 

human performance on searches for attractive faces through fixed-length sequences 

by adapting optimal stopping computational theory developed from behavioral 

ecology and economics. Although economics studies have repeatedly found that 

participants sample too few options before choosing the best-ranked number from a 

series, we instead found overlong searches with many sequences ending without 

choice. Participants employed irrationally high choice thresholds, compared to the 

more lax, realistic standards of a Bayesian ideal observer, which achieved better-

ranked faces. We consider several computational accounts and find that participants 

most resemble a Bayesian model that decides based on altered attractiveness 

values. These values may produce starkly different biases in the facial attractiveness 

domain than in other decision domains. 
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1 INTRODUCTION

Many real-world decisions require optimal stopping. Accept a job offer or keep 

looking? Sell a stock now or wait for the price to rise? Buy a dress today or wait for a 

sale? In such “best choice” scenarios, agents must weigh the temptation to sample 

further options (so as potentially to improve on the current option) against the risk of 

missing the best option if too many are sampled. The classic illustration comes from 

astronomer Johannes Kepler’s search for a wife. After considering several 

candidates, Kepler returned to a previous candidate and was duly rejected. Indeed, 

numerous investigators of this best-choice optimal stopping problem have 

associated it with mate choice (Eriksson & Strimling, 2009; Guan, Lee & Silva 2014; 

Todd, Billari & Simão, 2005; Todd & Miller, 1999), variously naming it the “fiancé(e)”, 

“marriage”, “dowry” or “fussy suitor” problem (Ferguson, 1989). Likewise, behavioral 

ecologists have, for decades, extensively studied how this decision structure relates 

to non-human animal mate choice using empirical studies (Valone et al., 1996) and 

theoretical models (Castellano et al., 2012; Collins, McNamara & Ramsey, 2006; 

Luttbeg, 1996; 2002; Janetos, 1980; Real, 1990). The computational treatments of 

this decision problem (e.g., Costa & Averbeck, 2015) typically address a version of 

this problem where prospects (e.g., potential partners) are limited in number (e.g., 

because of population size) and/or by search duration (e.g., an animal’s brief mating 

season). Agents facing this complication cannot simply set one aspiration threshold 

in advance and then wait for a sufficiently favorable option, as this strategy risks 

missing the highest-ranking available option (Kolling, Scholl, Chekround, Trier & 

Rushworth, 2018). Optimal agents confronting fixed length sequences benefit by 

incorporating finite-choice horizons (Janetos, 1980). 
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Best-choice studies in humans are largely limited to fixed-length searches for 

best-ranked numbers in economic scenarios (e.g., find the car with the lowest 

mileage). These studies have established a pervasive and well-replicated finding: 

participants search too few options, compared to computational ideal observer 

(optimality) models (Bearden, Rapoport & Murphy, 2006; Costa & Averbeck, 2015; 

Seale & Rapoport, 1997; Seale & Rapoport, 2000; Sonnemans, 2000; Zwick, 

Rapoport, King Chung Lo & Muthukrishnan, 2003). The same finding arises in a 

closely related optimal stopping problem: the beads task and its variants. In the 

classic version of the beads task, participants infer the majority color of beads in a 

fictitious hidden jar before they have viewed an optimal number of samples of bead 

colors drawn from the jar (Furl & Averbeck, 2011; van der Leer, Hartig, Goldmanis, 

McKay, 2015; Hauser et al., 2017b). Vul and colleagues identified a number of other 

economic settings where participants make decisions based on undersampled 

probability distributions (Vul, Goodman, Griffiths & Tenenbaum, 2014). Mechanisms 

asserted to explain undersampling include robust heuristics (Todd & Miller, 1999), 

overweighting of evidence diagnosticity (van der Leer, Hartig, Goldmanis & McKay, 

2017), excessive decision noise (Moutoussis et al., 2011), intrinsic search costs 

(Costa & Averbeck, 2015; Furl & Averbeck, 2011) and urgency signals (Hauser et 

al., 2017b).

Here, our main aim was to test whether humans also undersample in a more 

social decision scenario. We selected the mate choice domain, given that it 

motivated interest in best-choice problems in both mathematics (Ferguson, 1989) 

and behavioral ecology literatures (Castellano et al., 2012; Valone et al., 1996). 

Specifically, we focused on one important factor in human partner choices (out of 

many) – visual attractiveness. Although our initial expectation was that participants 
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might undersample, there was some reason to suspect a different result might 

obtain. Some theories of animal sequential search choices (Janetos, 1980; Real, 

1990), for example, assert that predispositions can bias choices toward phenotypes 

of a certain high quality (Beckers & Wagner, 2011; Ivy & Sakalu, 2007; Valone et al., 

1996) and that these biases may be optimal on evolutionary scales (Cheng et al., 

2014). Insofar as searches for facial attractiveness effectively trigger such 

dispositions, biased preferences toward (relatively rare) high-quality partners might 

be expected to lengthen searches, instead of shorten them. 

Our search task introduces a new approach to studying facial attractiveness 

choices. For the first time, computational models can be applied both as “ideal 

observer” optimality benchmarks and as mechanistic explanations of the 

computations human use when choosing attractive faces. The model we implement 

(Costa & Averbeck, 2015) combines prior information about possible option values 

with probabilistic learning to derive predictions of future outcome values. These 

predictions can then be used to compare currently-available option values against 

the probability of a better option appearing before the end of a fixed-length option 

sequence. This modeling arrangement is well-suited for “full information versions” of 

the best choice problem (Lee et al., 2006), like our facial attractiveness task. This 

model also benefits from being closely-related mathematically to the most 

commonly-used and well-established computational model of the beads task, 

(Averbeck, 2015; Furl & Averbeck, 2011; Hauser et al., 2017a; 2017b; Hauser, 

Moutoussis, Purg, Dayan & Dolan, 2018; Moutoussis, Bentall, El-Deredy & Dayan, 

2011), as common computations underlie solutions to multiple optimal stopping 

problems. The model is also similar to several theoretical Bayesian models of non-

human animal sequential choice (Castellano et al., 2012; Collins, McNamara & 
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Ramsey, 2006; Luttbeg, 1996; 2002). The model draws from the same Bayesian 

framework often used to model behavioral and neural responses related to reward-

guided decision making (Kolossa, Kopp & Fingscheidt, 2015; Solway & Botvinick, 

2012). Likewise, Markov decision processes with dynamic thresholds implemented 

by this model are commonly used for decision models (Averbeck, 2015; Malhotra et 

2018; Huang & Rao, 2013). 

We report here three studies where we implemented a novel facial-

attractiveness version of the best-choice decision task and compared human 

performance with that of a Bayesian ideal observer to measure bias. We tested 

which of multiple computational models best reproduced human behavior in two of 

these studies (that had sufficient data). Models included a biased values model as 

well as rival models that might produce similar behavior. Our primary interest was to 

establish whether the undersampling observed in economic domains indeed reflects 

a peculiarity of human probabilistic reasoning mechanisms that can infect any 

optimal stopping decision domain. If a different result obtains in our task, this calls 

into question whether biases in other new domains can be so easily predicted. We 

will also test gender differences as a secondary, more exploratory hypothesis, as 

some have argued that men and women make different mate choices (Fletcher, Kerr 

& Valentine, 2014). 

2 MATERIALS AND METHODS

2.1 The three empirical studies
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Informed consent was obtained from all participants in all studies, in 

accordance with the Declaration of Helsinki. Study 1 enrolled 49 participants, with 

the sample size based on our recent study on facial attractiveness choices (Furl, 

2016). Participants chose a preferred sex (all 26 females and one male chose male 

faces, all others chose female faces). Because Study 1 offered roughly equally-sized 

face/participant sex groups, we used this dataset for an in-depth analysis of potential 

sex differences.

In phase 1, participants rated the attractiveness of 90 frontal, greyscale, 

youthful, neutral-expression faces (Burton, White & McNeill, 2010) of their chosen 

sex on a 9 point scale. Participants were asked to consider how much they would 

like to date the individuals in their ratings. Participants rated this image set three 

times. Participants’ idiosyncratic preferences for each face were measured by the 

average of the three ratings from phase 1. We used these averages to rank faces in 

each phase 2 sequence and thereby assess decision performance. The use of 

personalized ratings to assess search performance protected these results against 

influences of extraneous variables, including individual participant and stimulus 

differences, that might affect the likelihood that a given face is chosen or not, apart 

from search strategy. Ratings also exposed participants and models to the prior 

distribution of attractiveness values that populated the sequences. 

In phase 2, participants attempted to stop searching sequences of face 

images when they reached the most attractive face that they could. Participants were 

explicitly instructed to maximize the attractiveness of the faces in their choices. 

Depicted individuals were described as receptive potential partners so that 

participants would understand that they could not be rejected by any of their choices 

(the intention here was to avoid participants deliberately avoiding choosing the most 
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attractiveness faces on the grounds that those individuals might be “out of the 

participant’s league”). Five sequences of 12 faces each were organized using 60 

faces pseudo-randomly selected from phase 1. Participants were informed that (a) 

not every face from phase 1 would be an option in phase 2, (b) they could not know 

the proportion of phase 1 faces used in phase 2, and (c) they could not know how 

many sequences there were and so any sequence might be the last chance to 

achieve an attractive date. The probability was small (0.12) that a specific phase 1 

face would be sampled as an option in any given sequence and there was no 

guarantee that any face would appear in any sequence. The presentation of 

sequence options followed Costa & Averbeck (2015) as closely as possible, because 

this study had successfully replicated the classic undersampling effect using several 

economic, number-based scenarios and the same ideal observer model we used. 

The option screens in our studies (1) reminded participants of their number of 

remaining options in the current sequence and (2) showed, along the bottom of the 

screen, small “reminder” pictures of their refused options for that sequence. In Study 

1, a new sequence was triggered upon choice of an option or if the last option was 

reached. This last option automatically became the chosen face for that sequence 

(once initially refused, options could never be returned to).

Power analysis of Study 1 data suggested that fewer than 20 participants 

would be sufficient for 95% power in Study 2. We enrolled 20 participants in this 

study. All 14 females and one male chose male faces, while all others chose female 

faces. Procedures were the same as Study 1, with the following modifications. Study 

2 aimed to increase the amount of data per participant to facilitate our analysis and 

Bayesian model comparison of psychometric choice functions (28 phase 2 

sequences cf. 5 in Study 1). The 426 rated faces (cf 90 in phase 1) rendered it even 
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more improbable that a given phase 1 face would appear as a sequence option (only 

8 options per sequence, hence a given phase 1 face had <2% chance of appearing 

in any sequence). Under these circumstances, participants should have plenty of 

experience with the distribution of attractiveness values. Waiting for any one specific 

face before stopping searching would be a highly irrational strategy. Study 2 also 

roughly equated time spent on each sequence. After each choice, participants had to 

advance by keypress through grey squares that replaced the remaining pictures, so 

they could not finish sequences early by choosing an early option. In study 2, we 

also reinforced the reward value of choice using a feedback screen, displaying the 

participant’s chosen face, the text “This is your date!”, and a request to rate the 

reward value of the choice on a 9-point scale. As we needed many more faces, we 

sampled faces from a much larger set (Bainbridge, Isola & Oliva, 2013), choosing 

face images with happy expressions (which were numerous in this face set and 

allowed us to replicate with a different expression), which ranged in viewpoint degree 

between frontal and three-quarter view, and were color images of youthful individuals 

(apparently above 18 and less than 30, roughly approximating an undergraduate 

participant population) with circular grey masks. 

Study 3 was originally designed to detect a between-participants effect of a 

mortality salience manipulation, N=70, based on a power analysis of a pilot study 

with N=50. The mortality salience group comparisons were not statistically significant 

(to be reported in separate manuscript). Nevertheless, the amount of data afforded 

by the large sample size was suitable for our goal of using choice data to compare 

participants with different theoretical models and so we applied this dataset to this 

purpose. Procedures were similar to Study 2, with the following exceptions. In phase 

1, the 70 participants (60 female) rated the same 90 faces as in Study 1 (one female 
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chose female faces, two males chose male faces, the rest chose opposite-sex faces) 

twice each and their averages were used to rank sequence options, as before. The 

two ratings were separated by either a mortality salience task or a dentistry 

imagination task (Rosenblatt, Greenberg, Solomon, Pyszcznski & Lyon, 1989). At 

phase 2, participants engaged with seven sequences of eight faces each. 

2.2 The Bayesian modelling framework

Our model was customized for each participant. The model received as 

stimuli, and made decisions about, each corresponding participant’s ratings for the 

faces in the same sequences as that participant experienced. The model, therefore, 

was also susceptible to general mate choice factors, which would have influenced 

that individual participant’s attractiveness preferences, and used a search policy that 

sought to maximize these (participant-defined) factors by stopping searching at as 

highly-rated (by the participant) an option as possible. We chose a model that is 

closely-related mathematically to the model most commonly applied to a similar 

optimal stopping task, the beads task (Averbeck, 2015; Furl & Averbeck, 2011; 

Hauser et al., 2017a; 2017b; Hauser, Moutoussis, Purg, Dayan & Dolan, 2018; 

Moutoussis, Bentall, El-Deredy & Dayan, 2011). Our model also incorporates many 

elements previously considered for Bayesian models of animal sequential mate 

choice (Castellano et al., 2012; Collins, McNamara & Ramsey, 2006; Luttbeg, 1996; 

2002). 

Some previously-proposed optimality solutions, which define a “cutoff” based 

on an ideal search period (Dombrovsky & Perrin, 1994; Ferguson, 1989) have been 

mathematically proven to be optimal, given at least some of a restrictive set of 



11

assumptions that define the “secretary problem” version of the task. These 

assumptions include that (1) the agent cannot know or use information about the 

option value sampling distribution, but assumes that this distribution is stationary, (2) 

the agent knows only relative ranks of options but not their absolute values and (3) 

the agent is rewarded only when choosing the highest-ranked sequence option. In 

contrast, our paradigm - a “full information problem” – has no need for these 

assumptions: (1) our participants generated the option sampling distribution 

themselves during phase 1; (2) our participants can directly perceive the absolute 

attractiveness value of each face, rather than its relative rank; (3) Participants are 

instructed to attempt to choose the most attractive face they could possible and had 

no way of knowing with certainty whether they actually achieved the highest-ranked 

face or not. Although it is plausible that cut-off heuristics are somewhat robust to 

violations of some of these assumptions (e.g., Bearden, 2006; Todd & Miller, 1999), 

there is no strong evidence that such heuristics are applicable to “full information 

problems” like our task. In contrast, our choice of model was specifically designed to 

provide normative results on best-choice tasks without making these restrictive 

assumptions (Costa & Averbeck, 2015). 

Conceptually, the model we used computes values for the two possible 

actions (accept option versus decline/sample again) and acts on the higher-valued 

one. The action value for declining the current option can therefore be considered 

the current “aspiration threshold”, which the reward value of the current option must 

exceed for that option to be chosen. Because the action value of declining an option 

depends, in part, on probabilistic forecasts of future reward, the aspiration threshold 

is effectively dynamic and can change as the sequence progresses. 
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Mathematically, the model is based on a discrete time Markov decision 

process with continuous states. Action values combine reward values of potential 

options with internal representations of their probabilities, which are updated by 

every new sample of evidence. The utility u of each state s at time t across all 

available actions is the maximum of the “action values” Q( ,a), which depend on 𝐴𝑆𝑡 𝑠𝑡

( ,a), the reward if action a is taken, and ( ,a), the probability of transitioning to 𝑟𝑡 𝑠𝑡 𝑝𝑡 𝑗|𝑠𝑡

each state in the set of potential states S.  

 𝑢𝑡(𝑠𝑡,𝑎) = 𝑚𝑎𝑥𝑎 ∈ 𝐴𝑆𝑡{𝑟𝑡(𝑠𝑡,𝑎) +∫
𝑆
𝑝𝑡(𝑗│𝑠𝑡,𝑎)𝑢𝑡 + 1(𝑗)𝑑𝑗}

Algorithmically, we use backward induction to compute utilities for each new 

state, because they depend on the utilities of subsequent states. Thus, we start by 

computing utilities for the final state which (because there are no state transition 𝑠𝑁, 

probabilities) is simply ( ) for all . Utilities for preceding states can 𝑢𝑁(𝑠𝑁) = 𝑟𝑁 𝑠𝑁 𝑠𝑁 ∈ 𝑁

then be computed as above, working backward from the last to the current one. 

The model considers options as sampled from a Gaussian distribution with a 

N-Inv-χ2 prior (Gelman et al., 2004), which has four parameters: the prior mean  𝜇0

and variance  (set to the mean and variance of the attractive rating distribution in 𝜎2
0

phase 1, which reflects the participants’ and model’s prior experience with the face 

set) and their respective degrees of freedom  = 2 and  = 1 (set as in Costa & 𝜅0 𝜈0

Averbeck, 2015). Each new sample yields a posterior distribution with new quantities 

, , , . The model’s probabilistic representation of future outcome values is the 𝜇𝑡 𝜎2
𝑡 𝜅𝑡 𝜈𝑡

distribution of state transition probabilities when the agent declines an option and 

chooses to sample another . 𝑝𝑡(𝑗│𝑠𝑡,𝑎 = 𝑑𝑒𝑐𝑙𝑖𝑛𝑒)

In addition to these representations of probabilities, action values also depend 

on representations of rewards. We defined a function R to map the outcome ranks 
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onto reward values, whereby the model’s reward was proportional to the 

corresponding participants’ attractiveness rating. Using h as the relative rank of the 

current option (compared to declined options) and N as the number of outcome 

ranks in the sequence, we could compute the reward value of accepting the current 

option as

𝑟𝑡(𝑠𝑡,𝑎 = accept) =  
𝑁

∑
𝑖 = 1

𝑝(𝑟𝑎𝑛𝑘 = 𝑖) ∗ 𝑅(𝑖 + (ℎ ‒ 1))

The corresponding reward value for declining an option is equivalent to the cost to 

sample, a quantity that in previous research (Furl & Averbeck, 2011; Costa & 

Averbeck, 2015) was usually zero (for an ideal observer model when no extrinsic 

cost was imposed by the experiment) or positive (when either the experiment costed 

samples or participants were assumed to experience an intrinsic aversion to 

sampling).

2.3 Theoretical model comparison

We compared participant data against the ideal observer model to test a null 

hypothesis that participants use a normative solution to this decision problem. The 

ideal observer implemented a cost to sample of zero, as there is no extrinsic cost in 

the study design. However, as reported in the Results, the human behavioral data 

suggested an oversampling bias, compared to the ideal observer. We therefore 

developed three candidate computational theories (described below), and tested 

how well they could predict the pattern of participants’ choice thresholds. Models 

whose predictions conflict with basic patterns of the human behavioral data can be 
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considered falsified (Palminteri, Wyart & Koechlin, 2017; Navarro, 2018), while 

models that can predict the participants’ results continue to be viable candidates. 

We determined participant choice thresholds by computing proportion choices 

in each of eight attractiveness bins and plotting them for every serial position. The 

resultant sigmoidal curves transition from zero choice (below-threshold 

attractiveness) to high levels of choice (above-threshold attractiveness). To estimate 

participant threshold locations for every serial position, we fitted logistic functions to 

these curves and computed points of subjective equality as the logistic inflection 

points. The inflection point estimates the attractiveness level where participants 

begin choosing faces. This analysis required considerable data to ensure there were 

sufficient data for stable proportion choice estimates for every one of these data 

points, for which Study 1 was insufficient (too few sequences per participant and too 

many sequence positions). We therefore performed our model comparisons by 

examining participant thresholds in Study 2 (which has many sequences per 

participant and fewer sequence positions) and 3 (we aggregated sequences over all 

70 participants). 

2.4. Theoretical model development

As reported in the Results, our analysis of psychometric functions showed 

that participants decreased their choice thresholds as sequences progressed (Lee, 

2006). We therefore compared these thresholds against those of three rival 

computational theories that were designed to produce oversampling. Because the 

decreasing choice thresholds we observed in our studies cannot be produced by 

heuristics that do not employ probabilistic representations or use dynamic aspiration 
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thresholds (e.g., Todd & Miller, 1999), we considered such heuristics prima facie 

falsified (Palminteri, Wyart & Koechlin, 2017) and we focus our more intensive model 

comparison on computational theories that rely on similar probabilistic mechanisms 

as the ideal observer model, as these use dynamic thresholds that in principle could 

reproduce participants’ threshold setting behavior. 

As described in the Introduction, we were inspired by theory from behavioral 

ecology suggesting that animals engaging in sequential mate searches may be 

predisposed to choose mates only with certain high-quality phenotypes (Janetos, 

1980; Real, 1990; Valone et al., 1996; Cheng et al., 2014). We implemented a 

similar idea in the biased values model. Here, the attractiveness values of the 

sequence options are altered (relative to participants’ original attractiveness ratings) 

and the model operates on these altered values. Such might be the case if 

participants normally use a normative probabilistic decision mechanism for decision 

making, but this mechanism is influenced by an external factor at the point of input. 

This external factor could be, among other things, a predisposition induced by the 

mate choice framing of the decision problem. To computationally instantiate such a 

state of affairs, we transformed the sequence values before they were submitted to 

the model using a logistic utility function, which was derived by fitting logistic 

functions (with maximum, sensitivity and bias as free parameters and minimum fixed 

to zero) to participants’ averaged choice probabilities across the attractiveness bins 

(i.e., participant data in Fig. 3, averaged over serial positions). This transformation 

limits the influence that faces below a certain attractiveness level can have over 

choice, effectively raising attractiveness thresholds and leading to oversampling. 

However, the biased values model is not the only way a probabilistic Bayesian model 

like the one we consider might produce the oversampling observed in our 
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participants. Even if the biased values model can predict participant behavior, other 

candidate models would need to be eliminated to draw a strong conclusion. 

One such competitor model that we considered was a sample reward model. 

This model was motivated, in part, because a closely-related Bayesian model using 

a cost to sample term has been proposed to explain the classic undersampling effect 

both for number-based versions of the best-choice task (Costa & Averbeck, 2015) 

and for the beads task and its variants (Hauser et al., 2017b). This model 

characterizes the undersampling that occurs on these tasks as an intrinsic aversion 

to sample, or urgency signal (Furl & Averbeck, 2011; Hauser et al., 2017b). Using 

the same logic, we tested here whether searches might be extended because 

participants find viewing faces rewarding – akin to the apparently addictive qualities 

of on-line dating applications. We adapted our Bayesian model’s cost-to-sample 

parameter (Costa & Averbeck, 2015) to implement an intrinsic reward value for 

sampling, which biases decisions in the direction of continued sampling. We 

employed a negative cost to sample value (-0.035), which was selected to produce 

oversampling equal to that of the mean participant. 

The third model we considered was the attractive prior model, which assumes 

that participants mis-represent the ratings distribution during phase 1, such that their 

prior belief is that faces will be, on average, more attractive than they were actually 

rated as being. Several factors might cause this. Participants’ memory of the phase 1 

set might be biased in favor of remembering more attractive faces than unattractive 

faces. Participants may rely on a different prior than the phase 1 distribution, 

perhaps acquired outside the study setting. Or participants may be susceptible to 

optimism bias, which brings an inflated prior expectation of positive future outcomes. 

Participants with the biased expectation that a highly attractive face might occur will 
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wait longer to choose. We added a constant (0.5) to the prior mean , to produce 𝜇0

oversampling equal to that of the mean participant. 

3 RESULTS

3.1 Optimal sampling? Comparisons with ideal observer

All three studies replicated the finding that participants sample more faces 

before choice than the ideal observer (Fig. 1a-c). Two-tailed t-tests, pairing 

participants with their corresponding models, showed highly significant effects (Study 

1: t(48) = 8.6, P < 0.001; Studies 2 and 3: See Table 1). Despite searching less, the 

ideal observer achieved higher-ranked faces than participants (Fig. 1d-f). Two-tailed 

Friedman tests, pairing participants with their corresponding models, showed highly 

significant differences (Study 1: χ2(1, N = 49) = 13.30, P < 0.001; Studies 2 and 3: 

See Table 2). 
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Table 1. Pairwise two-tailed t-tests for differences between participants and 
models for mean number of samples until choice.

participants sample 
reward

attractive 
prior biased values

study 2 d = .02
t(19) = .1
P = 1sample 

reward study 3 d = .07
t(69) = -4.0
P = 1

study 2 d = .02
t(19) = .1
P = 1

d = <.001
t(19) < .1
P = 1attractive 

prior study 3 d = .02
t(69) = .1
P = 1

d = .09
t(69) = -.7
P = 1

study 2 d = .53
t(19) = -2.3
P = 0.34

d = .66
t(19) = -2.9
P = 0.1

d = .66
t(19) = -2.8
P = 0.1biased 

values study 3 d = .14
t(69) = -1.2
P = 1

d = .22
t(69) = -1.8
P = .72

d = .13
t(69) = -1.1
P = 1

study 2 d = 2.97
t(19) = 13
P < .001

d = 3.76
t(19) = 16.4
P < .001

d = 3.1
t(19) = 13.5
P < .001

d = 3.25
t(19) = 14.1
P < .001ideal 

observer study 3 d = 1.54
t(69) = 12.8
P < .001

d = 2.17
t(69) = 18
P < .001

d = 2.01
t(69) = 16.7
P < .001

d = 1.87
t(69) = 15.5
P < .001

Note: P-values are Bonferroni-corrected. Tests printed in bold are significant after 
Bonferroni correction for number of pairs in each study. Tests presented in normal 
typeface are significant only when uncorrected. Tests presented in gray are non-
significant, with or without correction. 



19

Table 2. Pairwise two-tailed Friedman tests for differences between participants 
and models for mean rank in sequence of chosen option.

participants sample 
reward

attractive 
prior biased values

study 2 d = 1.27
χ2 = 16.2
P < .001sample 

reward study 3 d = .48
χ2 = 10.6
P = .001

study 2 d = 1.4
χ2 = 12.8
P = .003

d = .08
χ2 < .1
P = 1attractive 

prior study 3 d = 0.54
χ2 = 11.5
P < .001

d = .11
χ2 = 5.9
P = .15

study 2 d = .09
χ2 = .5
P = 1

d = .91
χ2 = 5
P = 0.2

d = 1.09
χ2 = 5
P = .25biased 

values study 3 d = .34
χ2 = 6.1
P = .13

d = .17
χ2 = .1
P = 1

d = .21
χ2 = 2.6
P = 1

study 2 d = 1.44
χ2 = 12.8
P = .003

d = .45
χ2 < 7.2
P = .07

d = .36
χ2 = .8
P = 1

d = 1.05
χ2 < 0.1
P < .001ideal 

observer study 3 d = 0.82
χ2 = 22.9
P < .001

d = .39
χ2 = 5.4
P = .2

d = .27
χ2 = .4
P = .53

d = .46
χ2 = 4.4
P = .35

Note: P-values are Bonferroni-corrected. Tests printed in bold are significant after 
Bonferroni correction for number of pairs in each study. Tests presented in normal 
typeface are significant only when uncorrected. Tests presented in gray are non-
significant, with or without correction.

Participants might oversample, as we observed, if they only chose rare, highly 

attractive faces. If so, participants should show a low, flat response rate across 

positions, with the highest proportion choices for the mandatory last image. This is 

because faces with the highest attractiveness values occur with the same low 

probability at every sequence position and, moreover, have a low probability of 

appearing anywhere in such short sequences. Fig. 2 confirms this response pattern. 

In contrast, the ideal observer chose most frequently about a third of the way through 

the sequence and thereby avoided the default last choice. 
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We also compared how attractiveness thresholds changed as sequences 

progressed. Proportion choices across attractiveness bins (Fig. 3) revealed 

sigmoidal curves, where choice can abruptly transition from zero choice to high 

levels of choice. The attractiveness value (bin) near this transition is taken as the 

choice threshold for that sequence position. We quantitatively estimated this 

threshold location (Fig. 4) as the point of subjective equality (i.e., inflection point of a 

fitted logistic function). Participants adopted nearly the highest possible 

attractiveness thresholds (i.e., bins 7, 8), consistent with a high-risk strategy of 

choosing rare, high-attractiveness faces. In contrast, the ideal observer used much 

lower choice thresholds. The ideal observer realistically estimates probabilities of 

attractiveness values so can accurately predict, for the remaining options, which 

attractiveness values are probable. The finite horizon that participants and the ideal 

observer adopted can be seen as a decline in thresholds toward sequence ends. 

Purpler curves in Fig. 3 are shifted leftward, compared to the bluer ones, and 

thresholds plotted in Fig. 4 are negatively-sloped. 

3.2 Computational explanations for oversampling

To explain how participants deviated from the ideal observer model, we tested 

whether the three hypothetical Bayesian models described in Methods showed the 

same maladaptively high threshold pattern as the participants in Studies 2 and 3 

(where we had sufficient data). When we compared participants, the ideal observer 

and these three new models using an omnibus analysis, we found highly significant 

main effects for both number of samples (ANOVA; Study 2: F(3,54) = 80.34, P < 

0.001; Study 3: F(3,204) = 56.93, P < 0.001) and rank of chosen option (Friedman’s 

test; Study 2: χ2(3, N = 20) = 27.50, P < 0.001; Study 3: χ2(3, N = 70) = 27.45, P < 
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0.001). Post hoc pairwise tests included both t-tests for number of samples and 

Friedman’s tests for ranks – all two-tailed and Bonferroni-corrected for numbers of 

pairs within each study. In both studies (Tables 1 and 2), sample reward, attractive 

prior and biased values models resembled the participants in the sense that they 

oversampled, compared to the ideal observer. We had less evidence available to 

conclude any other pairwise differences between models or participants in the 

amount of sampling (Table 1). In contrast, sample reward and attractive prior models 

chose higher-ranked faces than participants, with less evidence for differences in 

chosen rank with the ideal observer model. The biased values model showed more 

ambiguous effects, with no detectable differences in rank of chosen faces with 

participants or other models (after Bonferroni correction), and a significant difference 

from the ideal observer only in Study 2.

These oversampling and rank measures verify that all three hypothetical 

models are viable explanations of participant oversampling behavior. However, these 

measures cannot easily distinguish whether any model explains participant behavior 

better than the others. We therefore also examined serial position effects. Fig. 2 

shows that sample reward and attractive prior models had overlapping serial position 

curves, with slowly increasing choice rates as sequences progressed. In contrast, 

participants and the biased values model had overlapping serial position curves that 

maintained low choice rates throughout the sequence, resorting about 40% of the 

time to the last sequence option. When proportion choices was further broken down 

by serial position and attractiveness bin (Fig. 3), only the biased values model 

resembled the participants. Like participants, the biased values model used nearly 

the highest possible attractiveness thresholds (Figs. 3) and showed less of a 

threshold decline as sequences progressed, compared to the other models. This is 
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also apparent in the points of subjective equality, where only the biased values 

model closely tracked the participants’ thresholds (Fig. 4). Both sample reward and 

attractive prior models started with high thresholds, but then declined their thresholds 

more quickly than did the participants and biased values model. 

We quantified this similarity of attractiveness thresholds for participants and 

biased values model by correlating participants’ choices in all attractiveness bins and 

sequence positions (Fig. 3) with those of each model. These correlations are plotted 

in Fig. 4 and two-tailed pairwise Bonferroni-corrected significance tests are reported 

in Table 3. In Study 2, all three hypothetical models were better correlated with 

participants’ pattern of choices than was the ideal observer. In both of the studies 

where these models were compared, the biased values model was better correlated 

with participants’ pattern of choices than any of the other models. 

3.3 Sex differences

As a secondary interest, we examined sex differences, given that sexes differ 

in attractiveness discriminability in contexts not requiring optimal stopping (Fletcher, 

Kerr & Valentine, 2014). Some theorists argue that men (but not women) should 

possess cognitive mechanisms adapted for minimising missed mating opportunities 

(Haselton & Bus, 2000; Haselton & Nettle, 2006; cf. McKay & Efferson, 

2010; Perilloux & Kurzban, 2015). However, our data offer no strong evidence that 

oversampling bias varies by sex. Agent × face sex interactions were non-significant 

in all three studies (P > 0.08). In Study 1, where sexes were balanced, two-tailed t-

tests using the participants who preferred opposite sex faces (N = 46, 52% female) 

showed no effect of sex on number of samples (P = 0.10) or rank (P = 0.38). 

Bayesian analysis, implemented in JASP (Wagenmakers et al., 2017), showed 
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inconclusive Bayes Factors comparing a sex difference versus no sex difference 

model for sampling (0.882, error = 0.002) and rank (0.40, error = 0.022). We ranked 

both human and model choices according to each participant’s own individual 

attractiveness ratings. As this already controls for individual differences in face 

preferences, sex differences in these preferences may also have been controlled.

Table 3. Pairwise model comparisons between models and participants of 
correlation coefficients of functions relating  sequence position and proportion 
choices (Fig. 3) 

sample 
reward

attractive 
prior

biased values

study 2 d = .27
t(19) = -1.2
P = 1

attractive 
prior

study 3 z = -.8
P = 1

study 2 d = 1.02
t(19) = -4.5
P = .002

d = .9
t(19) = -3.9
P = .006

biased values

study 3 z = -3.5
P = .003

z = -2.7
P = .04

study 2 d = .96
t(19) = 4.2
P = .003

d = 1.15
t(19) = 5.0
P < .001

d = 1.77
t(19) = 7.7
P < .001

ideal observer

study 3 z = 1.1
P = 1

z = 1.9
P = .36

z = 4.6
P < .001

Note: P-values are Bonferroni-corrected. Tests printed in bold are significant 
after Bonferroni correction for number of pairs in each study. Tests presented in 
gray are non-significant, with or without correction.

4 DISCUSSION

4.1 Oversampling versus undersampling 

Previous laboratory studies of optimal stopping have repeatedly shown that 

human participants sample fewer options than is computationally optimal. 

Participants in best-choice tasks are typically asked to choose high-ranked numbers 

in fictitious scenarios including buying a camera, renting an apartment, maximizing 
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salary on a job offer and finding a credit card with a low interest rate (Costa & 

Averbeck, 2015; Seale & Rapoport, 1997; 2000; Sonnemans, 2000; Zwick et al., 

2003). This best-choice task undersampling probably share a common 

computational mechanism with similar undersampling effects that have been 

replicated several times across the variants of a closely-related optimal stopping 

task, the beads task (Furl & Averbeck, 2011; Hauser et al., 2017b; van der Leer, 

Hartig, Goldmanis, McKay, 2015). In parallel, theoretical biologists have, for 

decades, considered sequential searches (analogous to best-choice tasks) to be one 

of the paradigmatic contexts for mate choice and therefore have proposed 

computational models similar to the one we used, which animals could use to solve 

sequential mate choice problems (e.g., Castellano et al., 2012). Inspired by this 

approach, we modified the classic human laboratory number-based best-choice task 

to involve instead a mate choice scenario with images of faces.  Our results 

markedly departed from previous research: human participants sampled more faces 

than was optimal, rather than less. That is, participants sampled more and chose 

lower-ranked outcomes than the ideal observer. This was true, even though 

participants themselves generated the prior distribution of attractiveness values in 

phase 1, which should have indicated to them that extremely high-attractiveness 

faces would rarely appear in any short sequence. This main finding proved replicable 

across three studies that varied image sets, facial expressions, sequence lengths, 

numbers of sequences and other methods. The participants showed declining 

thresholds across serial positions, which accords with previous studies on searches 

for high-ranking numbers (Lee, 2006) and could arise from probabilistic 

representations with dynamic aspiration thresholds. Despite this threshold decrease, 

participants kept thresholds too high throughout sequences. Consequently, they 
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often refused high-ranked, but below-threshold, faces and continued sampling 

options until sequence termination. 

Perhaps the most direct impact of this finding is to call into question existing 

theories of human decision making, which have been designed specifically to predict 

undersampling on optimal stopping tasks. Some theoretical proposals have applied 

the same types of computational models we consider here, incorporating a positive 

intrinsic cost to sample or urgency term to explain undersampling on the number-

based best-choice task (Costa & Averbeck, 2015) and variants of the beads task 

(Furl & Averbeck, 2011; Hauser et al., 2017a). A closely-related explanation (Todd & 

Miller, 1999) supposes that participants will choose a sampling rate below the 

optimal one so long as it maintains near-optimal accuracy. Oversampling, however, 

would be surprising from the perspective of these theories, as they assume that 

lengthy searches are avoided because they consume resources and amplify risks 

(Furl & Averbeck, 2011; Todd & Miller, 1999). Nevertheless, we were motivated by 

similar reasoning to test the sample reward model, which generates oversampling 

from a sampling incentive, rather than a sampling cost. However, this model 

produced a different pattern of choice thresholds than the human participants, and 

so is not the most likely explanation for oversampling. In any case, there is hardly 

any existing consensus that favors this cost to sample explanation for 

undersampling. Alternative theoretical explanations for undersampling include 

overweighting of evidence diagnosticity (van der Leer, Hartig, Goldmanis & McKay, 

2017) and excessive decision noise (Bearden, 2007; Moutoussis et al., 2011). Our 

data does not directly resolve controversy over the undersampling effect. However, 

our framework offers a new theoretical perspective. Our biased values model, which 

at least seems to explain oversampling, suggests that sampling biases can arise 
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when option values are externally-weighted by other processes prior to their input 

into an otherwise-optimal probabilistic reasoning mechanism. 

4.2 When does oversampling occur?

Why did this differential weighting and its consequent effect on choice 

thresholds and sampling rates, occur in our study but not previous ones? Many 

elements of our design, such as roughly normal option sampling distributions, 

numbers of options, numbers of sequences and reminders of previously rejected 

stimuli have all previously led to undersampling on the number-based task (Costa & 

Averbeck, 2015). Our three studies also replicate our finding across variations in 

experimental design elements such as numbers of sequences (from 5 to 28) and 

sequence options (8 or 15). Previous theories to explain the undersampling effect do 

not raise any predictions that simple design elements would negate the 

undersampling effect. Thus, any answer to the question of what causes 

oversampling would bring important theoretical implications. Our results here 

suggest that human sampling biases are not as predictable as previously believed 

and that further research will be needed to conclusively predict when participants will 

oversample, undersample or be optimal. Here, we discuss the two most obvious 

possibilities.

The most obvious difference between our paradigm and previous ones 

involves the mate choices that are implied when maximizing facial attractiveness. 

This possibility accords with the biased values model, which was broadly inspired by 

biological theory proposing that mate-choosing animals set high thresholds, perhaps 

genetically determined (Cheng et al., 2014) on phenotypic variation when 
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sequentially searching mates (Gibson, & Langren, 1996; Janetos, 1980; Real, 1990; 

Valone, Nordell, Giraldeau & Templeton, 1996), to the extent that some animals 

won’t mate if sufficiently attractive options are not encountered. Our participants did 

not directly choose mates in our paradigm. They attempted to stop on the most 

attractive face possible, where attractive was explicitly defined as a desire to date 

the person. Moreover, mate choice does not uniquely occur only in the decision 

structure we presented to participants. Nevertheless, one possibility is that the 

activity of assessing attractiveness and the mention of a dating decision frame is 

sufficient to instigate mate choice predispositions. Such predispositions could then 

bias otherwise-optimal probabilistic choice mechanisms, in the way described by the 

biased valued model. 

While the idea that the mate choice frame leads to oversampling via the 

biased values mechanism is a likely explanation, there are other differences between 

our paradigm and previous ones that require further study. A second obvious 

difference from previous work is the use of naturalistic image stimuli to convey option 

values to participants, instead of abstract stimuli like numbers conveying prices 

(Costa & Averbeck, 2015), relative ranks (Seale & Rapaport, 1997) or fictitious bead 

colors (Furl & Averbeck, 2011). A potential role for images in determining search 

strategy is intriguing because many real world searches (in addition to on-line dating 

applications) depend on natural images in general and face images in particular. In 

this case, hitherto unpredicted effects of decision domain may be more widespread 

than previously thought. Some real-world contexts, such as sequential eyewitness 

lineups or border control, require agents to assess sequentially-presented faces. 

These agents can only commit time and resources when sufficiently familiar faces 

are presented. Aside from face images, consumers engage with sequentially-
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presented naturalistic images when shopping for goods on-line and in catalogues. 

Many such situations involve choosing between committing to a pictorially depicted 

option and terminating search and forgoing an option to which it may be costly or 

impossible to return (e.g., a limited-time sale). Although one may have predicted only 

undersampling in these contexts previously, our results pose new empirical 

questions about whether different decision domains may induce different patterns of 

searching.

Are there also implications of our results for real-world mate searches in 

humans? Behavioral ecologists have long considered sequential search a 

fundamental mate choice context for animals (Beckers & Wagner, 2011; Castellano 

et al., 2012; Cheng et al., 2014; Collins, McNamara & Ramsey, 2006; Ivy & Sakalu, 

2007; Luttbeg, 1996; 2002; Janetos, 1980; Real, 1990; Valone et al., 1996). Many 

scholars, starting with Kepler, assumed that human mate choice was a context with 

optimal stopping elements (Eriksson & Strimling, 2009; Guan, Lee & Silva 2014; 

Todd, Billari & Simão, 2005; Todd & Miller, 1999), giving rise to characterizations 

such as the “fiancé(e) problem” (Ferguson, 1989). Based on similar reasoning, 

previous research examined sequential mate choice contexts in paradigms 

simulating speed dating and on-line dating (Beckage, Todd, Penke, Asendorpf, 

2009; Taubert et al., 2016) and has proposed that marriage rates are predictable 

based on best-choice optimal stopping logic (Todd et al., 2005). Our paradigm has 

enabled, for the first time, an application of computational probabilistic decision 

theory to facial attractiveness choices. Despite this existing theoretical and empirical 

interest in mate choice as a sequential search problem, directly extending our results 

to human mate choices “in the wild” remains complicated and requires further data. 

The principal obstacle may be that there is not one “canonical mate choice context” 
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but a vast diversity of mate-related contexts and decisions (e.g., commit to a date 

Saturday versus proposing marriage), not all of which are sequential. In general, our 

results may simply apply to any case where an agent must choose between 

committing exclusively to a receptive partner or moving on to explore other options. 

The frequency of these situations in the real world and whether they replicate the 

same decision biases remain open empirical questions.

4.3 Theories of decision making based on probabilistic representation

We tested rival computational theories to explain the oversampling bias. All 

three of our models successfully reproduced the participants’ oversampling bias and 

we distinguished among them based on their ability to predict participants’ dynamic 

aspiration thresholds across sequence positions. We considered probabilistic models 

with dynamic thresholds that could produce the participants’ threshold changes. Two 

of our models showed threshold changes that conflicted with those of the 

participants. Our sample reward model implemented an intrinsic reward for sampling 

more options, as might be expected if viewing attractive faces is rewarding. We also 

tested an “attractive prior” model in which the prior distribution had a maladaptively 

high mean value, as might be the case if the values of highly attractive individuals 

were especially well-encoded during the rating phase, if the prior distribution were 

skewed by experience outside the laboratory setting or if participants were subject to 

an optimism bias. While reward sample and attractive prior models produced some 

similar results to our participants, including oversampling biases, they also both 

manifested a precipitous threshold drop over sequence positions that did not match 

the more modest decline shown by our participants (Fig. 4). This occurs because 
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thresholds in these two models can quickly re-adjust toward optimal as sequences 

progress. When there are fewer samples remaining to view, the sample reward 

model loses its prospect for future reward and incentive to continue sampling. 

Likewise, the attractive prior model learns from newly sampled values and thereby 

can quickly update and correct its probability distribution of values. Thus, both 

models start sequences with a bias but revert toward optimal as sequences 

progress.  Although we have focused on some models that could plausibly 

reproduce oversampling and dynamic thresholds, our results cannot fully exclude all 

models or further modifications that might also reproduce our study data. 

The evidence we have at hand favors a biased values model, in which the 

attractiveness values are non-linearly transformed prior to an otherwise-optimal 

decision process. The models we tested are, at best, approximations to the brain’s 

computations. Nevertheless, the core idea is that participants compute decision 

variables based on probabilistic representations of possible outcomes. This 

conclusion builds on evidence showing similar probabilistic reasoning mechanisms 

involved in other types of optimal stopping contexts (Castellano et al., 2012; Costa & 

Averbeck, 2015; Furl & Averbeck, 2011; Moutoussis et al., 2011). These 

mechanisms need not be specialized for solving best-choice tasks. Similar 

probabilistic representations could flexibly contribute to reward-guided decision-

making more generally (Averbeck, 2015; Gottlieb & Oudeyer, P-Y, 2018; Kolossa & 

Fingscheidt, 2015). 

There are alternate theoretical approaches worth discussing. These were not 

included in our model comparison because they either (1) represent only partial 

theoretical accounts that don’t fully specify computations participants hypothetically 

use to solve best-choice problems; (2) use static aspiration thresholds that cannot in 
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principal reproduce the dynamic threshold strategies used by our participants or (3) 

they have not yet been fully developed as solutions for the “full information” version 

of the best-choice problem that we consider here. For example, cut-off heuristics 

propose that participants set a static aspiration threshold based on a learning period 

(Seale & Rapoport, 1997). These heuristics theories are based directly on a 

mathematical proof that provides an optimal solution to “secretary problems”. 

Secretary problems are a special class of optimal stopping decisions and the optimal 

solutions mathematically holds only for its set of restrictive assumptions. Heuristic 

cut-off theories suppose that participants are aware of use this optimal solution and 

use a version of it that limits sampling slightly. This heuristic modification can lead to 

near-optimal performance in the context of secretary problem with less (potentially 

costly) sampling (Todd & Miller, 1999). However, the assumptions of the secretary 

problem do not hold in our paradigm (see Methods). Moreover, to accommodate our 

participant data, this heuristic would need further modification to explain why 

participants would increase rather than decrease sampling for our paradigm. More 

importantly, the heuristic would also need to be modified to have a dynamic 

aspiration threshold to replicate our participant’s thresholds. Similarly, other models 

in the literature (Lee, 2006) would also need modification, as existing formulations 

also do not, at present, specify how participants compute their dynamic thresholds. 

On the whole, probabilistic representations like those we consider (Costa & 

Averbeck, 2015) are already well-suited by their design to full information problems 

like we consider. Further, they can provide a priori predictions about how participants 

compute their decisions that can reproduce the main features of our participants’ 

data.
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4.4 Conclusions

Our results suggest that surprisingly different biases might arise depending on 

decision context. Our evidence favoring the biased values model suggests that the 

attractiveness values (perceived phenotypes) that are entered into optimal 

probabilistic choice mechanisms are perhaps non-linearly related to those expressed 

in subjective ratings. Our approach aims to begin to disentangle influences of 

physical attractiveness and decision context in a way that allows us to bring to bear 

rigorous computational modelling methods that reveal new insights into human 

decision computations that could not otherwise be demonstrated. This approach 

continues the unification of a common cognitive framework that ties together 

theoretical development in mathematics, economics and behavioral ecology.
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Figure 1. Oversampling biases. Mean number of faces that participants and 

models sampled until choice are shown for Studies 1 (a), 2 (b) and 3 (c). Mean 

attractiveness rank in each sequence of chosen faces is shown for Studies 1 (d), 2 

(e) and 3 (f). Distributions are indicated by kernel densities overlaid with individual 

data points with white horizontal lines denoting mean values.

Figure 2. Serial position effects. Mean proportion choices for each sequence 

position are shown for participants and models. Shaded areas show 95% confidence 

intervals. Panels a-c are Studies 1-3.

Figure 3. Proportion choices for each attractiveness bin plotted separately for 

each serial position.

Figure 4. Model comparisons. Points of subjective equality (attractiveness 

thresholds, measured as inflection points of logistic functions fitted to data in Fig. 3) 

are shown for Studies 2 (a) and 3 (b). To directly compare the models’ ability to 

explain participant behavior, correlations between participants’ behavior and that of 

each model were computed for the patterns of data shown in Fig. 3. For Study 2, 

correlations were computed between data from each model and performance from its 

corresponding participant. Shown are average correlations and their 95% confidence 

intervals over these participant/model pairs (c). In Study 3, each correlation was 

computed between data from a model and performance aggregated over all 

participants.



42










