Tectonics

RESEARCH ARTICLE
10.1029/2018TC005177

Special Section:

Collisional orogenic systems as
recorders of collisions between
arc and continents

Key Points:

« The Wandamen Peninsula in West
Papua consists of multiply deformed
medium-high grade metamorphic
rocks

« These rocks record multiple
deformation events that occurred
within the last six million years

« These rapid rates of deformation,
metamorphism, and uplift should be
considered in studies of ancient
orogens and within numerical
models

Supporting Information:

« Supporting Information S1
« Data Set S1

« Data Set S2

« Data Set S3

« Data Set S4

« Data Set S5

Correspondence to:
L. T. White,
lloydw@uow.edu.au

Citation:

White, L. T., Hall, R., Gunawan, 1., &
Kohn, B. (2019). Tectonic mode
switches recorded at the northern edge
of the Australian Plate during the
Pliocene and Pleistocene. Tectonics, 38.
https://doi.org/10.1029/2018TC005177

Received 7 JUN 2018
Accepted 12 DEC 2018
Accepted article online 19 DEC 2018

©2018. American Geophysical Union.
All Rights Reserved.

ADVANCING
EARTHAND
ﬂuu SPACE SCIENCE

Tectonic Mode Switches Recorded at the Northern Edge
of the Australian Plate During the Pliocene
and Pleistocene

L. T. White'? (2, R. Hall? "), I. Gunawan? ("), and B. Kohn*

'GeoQUEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong,
New South Wales, Australia, “Southeast Asia Research Group, Department of Earth Sciences, Royal Holloway University
of London, Egham, UK, 3Institut Teknologi Bandung, Bandung, Indonesia, 4School of Earth Sciences, University of
Melbourne, Melbourne, Victoria, Australia

Abstract we report new data from medium-high grade metamorphic rocks found at the northern
margin of the Lengguru Fold Belt in West Papua. The study involved a systematic analysis of
cross-cutting structures to establish the relative timing of deformation, together with isotopic dating to
define when these tectono-thermal events occurred. These data show that the region underwent
multiple episodes of deformation within the last six million years. Metamorphic mineral growth was
associated with the development of ductile shear zones. This episode occurred during a phase of
crustal stretching associated with the formation of a metamorphic core complex. Metamorphic zircon
growth at 4.9 to 5.3 Ma was documented in two of the dated samples. These data are interpreted to
postdate the peak pressure and temperature conditions of the phase of regional crustal stretching. The
shear fabrics associated with the metamorphic core complex were later overprinted by at least two
generations of folds. The change in mode from crustal extension to shortening reflects a tectonic mode
switch. A subsequent mode switch is documented by numerous brittle extensional faults that cross-cut
the earlier formed ductile fabrics. We interpret ca. 0.75-1.51 Ma (U-Th)/He age data to reflect
cooling associated with the later stages of crustal shortening (marked by folds) or the later extensional
unroofing of the peninsula. This work demonstrates that an orogen can record multiple tectonic mode
switches within several million years. These outcomes should be considered in studies of ancient
orogens where analytical uncertainties associated with isotopic dating may mask short-lived

mode switches.

Plain Language Summary How much time is required for a mountain belt to develop? Our
knowledge of mountain building is somewhat limited because many of the best-studied mountain belts
are quite old and our ability to date tectonic events is less precise the farther back we look through time. The
work presented here investigates a mountainous peninsula that developed at the northern margin of the
Australian Plate within the last six million years. This region records multiple episodes of deformation—we
show that the relatively young rocks have been stretched, then pushed together and then stretched again
(much like an accordion). These cycles must occur over a period of one to two million years, which is very
fast compared to numerous studies of ancient mountain belts that consider the same processes occur over
tens of millions of years.

1. Introduction

Most of Earth’'s mountain belts form at plate boundaries—the rocks in these regions typically record multi-
ple episodes of deformation that reflect the evolution of the ancient stress field where cycles of crustal short-
ening are overprinted by crustal extension (or vice versa; Balanya et al., 1997; Beltrando et al., 2007; Collins,
2002; Forster & Lister, 2005; Froitzheim et al., 1994; Lister & Forster, 2009; Rawling & Lister, 1999). A
change from crustal shortening to crustal extension (or vice versa) is known as a “tectonic mode switch”
(Lister et al., 2001; Lister & Forster, 2009). Tectonic mode switches reportedly occur within <10 million-year
periods (e.g., Beltrando et al., 2007, 2008; Dewey, 2005; Lister et al., 2001; Viete et al., 2013). In this paper, we
examine a sequence of multiply deformed metamorphic rocks from the Wandamen Peninsula in western
New Guinea (Figure 1). Previous work in this region indicates that these rocks were metamorphosed within
the last 10 million years (Bladon, 1988; Francois et al., 2016). We suspect that these multiply deformed
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Figure 1. Maps showing the study area with reference to (a) New Guinea and (b) a larger scale map showing the location of the Wandamen Peninsula. Various
geographic features and localities that are referred to in the text in both (a) and (b) are also shown.
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metamorphic rocks potentially record information about the rates at which tectonic mode switches can
occur on time scales of less than 10 million years.

Previous studies of the Wandamen Peninsula focused on the regional geology (Bailly et al., 2009; Dow et al.,
1988) and metamorphic history (Bladon, 1988; Bailly et al., 2009; Francois et al., 2016). However, these stu-
dies report differences in the timing and sequence of deformation events. The timing of metamorphism is
limited to several K/Ar ages (Bladon, 1988) and a few U-Pb ages of zircon (Francois et al., 2016; Figure 2).
Francois et al. (2016) tentatively proposed two phases of metamorphic zircon crystallization at 8-7 and
6-5 Ma. However, these ages were based on dates obtained from several zircon grains obtained from one
location on the northern coastline of the Wandamen Peninsula (Figure 2). It is possible that the 8-7 Ma zir-
con dates are not geologically meaningful, and instead reflect a mixed age from laser ablation-inductively
coupled plasma-mass spectrometry (LA-ICP-MS) analyses of multiple growth zones within the zircon (i.e.,
partial analyses of inherited cores and younger metamorphic growth). It is important that these issues be
resolved in order to understand the tectonic history of the region. We therefore systematically documented
cross-cutting relations at different locations around the peninsula. These observations were taken from fresh
exposures, oriented hand samples, and thin sections of metamorphic rocks to establish the sequence of
deformation events. U-Pb age data were also collected from zircon extracted from nine samples to establish
the timing of metamorphism and to characterize the protolith. We also collected (U-Th)/He data from zircon
from three of the metamorphic rock samples to understand the timing of regional cooling relative to
deformation phases.

2. Geologic Setting

North-western New Guinea currently marks a section of the boundary between the Australian, Caroline,
and Pacific plates (Figure 1). A plate boundary has existed north of New Guinea since the Devonian where
New Guinea represented the northern edge of eastern Gondwana (e.g., Baldwin et al., 2012; Davies, 2012;
Gunawan et al., 2012; Jost et al., 2018; Webb & White, 2016). However, widespread deposition of carbonate
sequences along the northern margin of New Guinea during the Cretaceous to early Eocene indicates that
there was a period of relative tectonic quiescence on the southern (“Australian”) side of the plate boundary
during this time (e.g., Gold, White, et al., 2017; Pieters et al., 1983; Visser & Hermes, 1962). Tectonic activity
commenced once more in the mid-late Eocene with the final separation of the Australian and Antarctic
plates at ~45 Ma (van den Ende et al., 2017; White et al., 2013) and subsequent rapid northward movement
of Australian Plate (e.g., Schellart & Spakman, 2015; Schellart, 2017). This and later events are recorded
through multiple episodes of magmatism, metamorphism, deformation, and uplift in New Guinea and east-
ern Indonesia (e.g., Ali & Hall, 1995; Bailly et al., 2009; Baldwin et al., 2012; Davies, 2012; Gold, White, et al.,
2017; Pigram & Symonds, 1991; Sapin et al., 2009).

At least two major accretion events are recognized along the length of New Guinea between ~45 Ma and the
present day; (1) the obduction of the Papuan Ophiolites, accretion of volcanic arc fragments of Pacific affi-
nity, and the development of a widespread unconformity across western New Guinea and the southern
Molucca's during the Oligo-Miocene (Ali & Hall, 1995; Gold, Burgess, et al., 2017; Gold, White, et al.,
2017; Hall, 1996; Hall, Ali, & Anderson, 1995; Hall, Ali, Anderson, & Baker, 1995; Holm et al., 2013,
2015), and (2) accretion of the additional arc material during the Pliocene-Pleistocene (e.g., Davies, 2012;
Dow et al., 1988; Holm et al., 2016; Monnier et al., 1999; Pigram & Symonds, 1991; Pubellier et al., 2003).
These accretionary events are considered to have been driven by the northward advance of the Australian
Plate since the Eocene and 40° clockwise rotation of the Philippine Sea Plate along the northern margin
of the Australian Plate between the Early Neogene and present day (Ali & Hall, 1995; Hall, 1996, 2002;
Hall, Ali, & Anderson, 1995; Hall, Ali, Anderson, & Baker, 1995; Hill & Hall, 2003). The deformation asso-
ciated with these accretionary and other tectonic events ultimately produced New Guinea's unique topogra-
phy—that is, an island that broadly represents a bird in flight—with the Bird's Head Peninsula found in the
west, the Bird's Neck to the south/southeast, the central part of the island marking the bird's body, with its
tail found at the eastern end of the island (Figure 1). The bird-like geometry is further defined by a mountain
belt that extends through the Bird's Neck, Body, and Tail. This mountain belt is known as the Central Range
in the Bird's Body and the Lengguru Fold Belt in the Bird's Neck (Figure 1). The work that is presented here
focusses on the Wandamen Peninsula, considered here to be a component of the Lengguru Fold Belt (Moffat
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Figure 2. Map showing lithology and topography of the study area, together with the location and results of existing geochronological data and those obtained in
this study. The maps also include the names of sampling/field localities as well as the sample numbers referenced to in the text, figures, and supplementary data.
Readers interested in additional sample metadata are encouraged to read Data Set S1 and S2.
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et al., 1991; Pieters et al., 1983; Visser & Hermes, 1962; Figure 1). The peninsula is essentially located
between the Bird's Head Peninsula, the Bird's Neck, and the Bird's Body (Figure 1). There is some debate sur-
rounding the relative movement of crustal fragments with respect to one another—particularly the direc-
tion, timing, and amount of rotation of the Bird's Head Peninsula (Charlton, 2010; Hall, 2012). This
debate is not yet resolved, but the work that is presented here will add to a growing body of data that can
be used to address such questions in the future.

2.1. The Lengguru Fold Belt

The Lengguru Fold Belt has an overall arcuate geometry that defines the shape of the Bird's Neck region
(Figure 1). It consists of a series of anticlines and thrusts that deform the Cretaceous Simora Formation
and Ekmai Sandstone, the carbonate sequences of the New Guinea Limestone Group (Late Cretaceous-
Oligocene), and the marl and siltstone deposits of the Mio-Pliocene Klasafet Formation. The folded units
are overlain by the various facies of the Plio-Pleistocene Steenkool Formation, some of which contain clasts
of Eocene and Miocene carbonates. These rocks are age equivalent to the Klasaman Formation found in the
Bird's Head and the Buru Formation found in the Central Range (Brash et al., 1991; Moffat et al., 1991).

The depositional and deformational history of the Lengguru Fold Belt is recorded in onshore exposures as
well as in offshore seismic imagery. Field investigations show that at least two episodes of folding occurred
at the Nabire/Weyland region at the eastern edge of the Lengguru Fold Belt (Dow & Ratman, 1981). The
early phase consisted of isoclinal folds with steep axial planes, and these fabrics were overprinted by tight
folds with subhorizontal fold axes. Aspects of this history are captured in offshore seismic imagery (Bailly
et al., 2009; Sutriyono & Hill, 2001) (Figures 3a-3b). This imagery shows that the Klasafet Formation and
older units are folded. This episode of folding occurred before or at the same time as the development of a
regional Pliocene unconformity (Figure 3b). The earlier formed folds and unconformity were later cross-
cut by Plio-Pleistocene extensional faults (Figure 3b). Parts of the region have also been cross-cut by rela-
tively recent strike-slip faults, such as the <2 Ma Tarera-Aiduna fault zones (e.g., Pubellier & Ego, 2002).

While the deformation sequence is relatively clear, our ability to precisely date the timing of deformation
events is currently limited to the biostratigraphic ages previously assigned to chronostratigraphic units.
The level of precision is low because few publicly available biostratigraphic data exist and because the data
available for Mio-Pliocene sequences above and below the unconformity contain microfossils that are not
particularly age diagnostic. We tried to minimize this uncertainty, by revising the ages that were assigned
to the Klasafet and Steenkool formations using planktonic foraminifera reported for each formation within
the onshore 1:250,000 geological map sheets and the ASF-1X exploration well (Robinson, Harahap, et al.,
1990; Robinson, Ryburn, Harahap, Tobing, Achdan, et al., 1990a; Robinson, Ryburn, Harahap, Tobing,
Bladon, et al., 1990b) together with the most recent geological time scale (Gradstein et al., 2012;
Figures 3a and 3c). Our revision of available biostratigraphic data shows that there is an approximately five
million-year period of uncertainty in defining the chronostratigraphic boundary between the two sequences
(i.e., between 11.5 and 5.5 Ma). We recognize that this interpretation is a crude and oversimplified attempt at
biostratigraphic dating—but this reflects the limited data available for the region that exists in the public
domain. The uncertainty associated with the age of these sedimentary sequences explains why some workers
consider that folding of the Lengguru Fold Belt began at ca. 11 Ma (e.g., Bailly et al., 2009; Francois et al.,
2016) while others propose folding occurred much later at ca. 5 Ma (Decker et al., 2009; Dow et al., 1985;
Moffat et al., 1991; Pieters et al., 1983; Visser & Hermes, 1962).

The uncertainty that surrounds the timing of folding and uplift is also partly due to model-driven interpreta-
tions of the regional stratigraphy and tectonic history of the region. For instance, Bailly et al. (2009) consid-
ered deformation of the Klasafet Formation was synchronous with its deposition. However, it is equally
plausible that these beds were deformed after their deposition. Other workers have interpreted the deposi-
tion of the Klasafet Formation to mark the initial stage of collision/accretion during the mid-to-late
Miocene (Brash et al., 1991). Their rationale was that the deposition of deeper water sediments reflected
rapid subsidence associated with flexure caused by arc-continent collision. This interpretation is possible,
but is dependent on the location of sedimentation with respect the plate boundary and the growing moun-
tain belt. The opposite scenario is also plausible, that is, shallower conditions could develop due to surface
uplift associated with deformation at the plate boundary. In fact, a change from marine to continental sedi-
mentation in the suture zone between the Indian and Eurasian plates is one of the geological criteria used for
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Figure 3. (a) Map showing the surface geology of the south-eastern Lengguru Fold Belt and Bintuni Basin, as well as the location of two seismic lines (Lines 90-24
and 43) and exploration well ASF-1X. (b) The geological interpretation of the seismic lines and corresponding well tie was adapted from Bailly et al. (2009). (c) Also
shown is the age range of foraminifera obtained from the folded units beneath the intra-Pliocene unconformity (i.e., the Klasafet Formation: indicated on the
interpreted seismic sections) and the unfolded late Miocene to Pliocene sequences (i.e., the Steenkool Formation). The biostratigraphic data were obtained from
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define India-Eurasia collision (e.g., Aitchison et al., 2007; Searle et al., 1988). These issues simply highlight
that more data are needed to test existing interpretations of the tectonic history of New Guinea.

2.2. The Wandamen Peninsula

The metamorphic rocks examined in this study were collected from the Wandamen Peninsula—a remote
mountainous promontory at the northeastern margin of the Lengguru Fold Belt (Bailly et al., 2009; Dow
et al., 1985; Visser & Hermes, 1962; Figures 1 and 2). The peninsula is approximately 70 km long and
18 km across, with some of the central parts being over 2,000 m above sea level (Figure 2). The peninsula
is almost entirely composed of muscovite-biotite-quartzofeldspathic gneiss, biotite + garnet schist and
amphibolite. Some exposures of metacarbonate as well as eclogite river detritus have also been reported
(e.g., Figure 2 and supporting information Data Set S1). The metamorphic rocks are overlain by recently
deposited alluvium dominated by angular metamorphic clasts (Dow et al., 1988; Dow & Ratman, 1981;

Dow & Sukamto, 1984; Robinson, Ryburn, Harahap, Tobing, Achdan, et al., 1990a).

The metamorphic rocks are termed here the “Wandamen Metamorphics” (following Dow & Ratman, 1981;
Dow & Sukamto, 1984), however, others have referred to these rocks as the “Wandamen Gneiss” (e.g., Bailly
etal., 2009; Dow et al., 1988; Pieters et al., 1983; Robinson, Ryburn, Harahap, Tobing, Achdan, et al., 1990a).
The metamorphosed quartzofeldspathic rocks mainly consist of quartz, plagioclase, K-feldspar, biotite, and
muscovite, with rare porphyroblasts of garnet, epidote, and clinozoisite. These rocks have been considered to
represent metamorphosed granitoids (Dow et al., 1988; Dow & Ratman, 1981; Dow & Sukamto, 1984;
Robinson, Ryburn, Harahap, Tobing, Achdan, et al., 1990a). If true, the gneisses could represent granitoids
found in the Bird's Head and Cenderawasih Bay which range in age from Devonian to Triassic (see Bladon,
1988; Jost et al., 2018; Webb & White, 2016). The mineralogy of the schists is more variable (i.e., quartz + bio-
tite + garnet + muscovite + kyanite + staurolite + sillimanite + tourmaline), with some exposures having
garnets up to 10 cm in diameter (Francois et al., 2016). The mineralogy and geochemistry of the schists indi-
cates they are predominantly metamorphosed sedimentary rocks, most likely from the Paleozoic Kemum
Formation or Mesozoic Kembelengan Group found in the Bird's Head and Neck, respectively (Bailly
et al., 2009; Dow et al., 1988; Francois et al., 2016).

The earliest work on the Wandamen Metamorphics proposed that these rocks formed in the range of 520-
730 °C and 5-9 kbar (Dow et al., 1988; Robinson, Ryburn, Harahap, Tobing, Achdan, et al., 1990a). Higher
pressure estimates have been obtained from subsequent thermobarometric analyses of several samples from
the northern and southwestern sections of the peninsula (Francois et al., 2016). Three metamorphic episodes
have also been reported (Francois et al., 2016) These episodes include a prograde burial phase (M;) marked
by garnet + kyanite + phengite schists that formed at medium-high pressure (12-16 kbar) and temperatures
of >650 °C (Francois et al., 2016). A later lower pressure (10-12 kbar), but similar temperature (650-760 °C)
phase (M,) was recorded from samples containing biotite and was interpreted to record later decompression
(Francois et al., 2016). A final phase of metamorphism (M3) is recorded by late brittle fractures filled with
chlorite, white mica, and quartz (P: 6.8 + 1 kbar and T: 520 + 50 °C; Francois et al., 2016). These temperature
estimates are supported by those obtained from Raman carbon thermometry analyses of numerous samples
across the peninsula (which record temperatures within the range of 330-660 °C; Bailly et al., 2009).

Less is known about the amphibolites and (retrogressed) eclogites found on the peninsula. These occur
within metamorphic layers and as boudins within the schist and gneiss (Bailly et al., 2009; Dow et al.,
1988; Francois et al., 2016). Fresh eclogite has so far only been recovered as river detritus (Bailly et al.,
2009; Francois et al., 2016; Figure 2). Late Cretaceous high-pressure metamorphism was interpreted on
the basis of an 89 Ma K-Ar age obtained from a piece of epidote amphibolite river detritus from the northern
Wandamen Peninsula (Dow et al., 1988; Figure 2), but the rock that was dated was considered to represent a
different lithology to the amphibolite boudins found within the Wandamen Metamorphics (Dow et al.,
1988). Subsequent geochemical work indicates that the eclogites were likely derived from a primitive alka-
line basalt, while the amphibolite was likely derived from a subalkaline tholeiitic series basalt or basaltic
andesite typical of a volcanic arc—presumably derived from the Pacific Plate (Francois et al., 2016).
Thermobarometry analyses indicate that the eclogite potentially reached pressures of 17-23 kbar and tem-
peratures of 700-800 °C (Francois et al., 2016). These high-pressure rocks are not discussed in detail in this
paper as they form the focus of another study.
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Our knowledge of the approximate timing of metamorphism of the Wandamen Metamorphics is derived
from K-Ar analyses of biotite, muscovite, and hornblende and U-Pb LA-ICP-MS analyses of zircon
(Bladon, 1988; Dow & Ratman, 1981; Francois et al., 2016; Robinson, Ryburn, Harahap, Tobing, Achdan,
et al., 1990a; Figure 2). The K-Ar analyses were collected from float samples and yielded ages between 7.3
and 0.3 Ma (Bladon, 1988; Dow & Ratman, 1981; Robinson, Ryburn, Harahap, Tobing, Achdan, et al,,
1990a). Subsequent U-Pb dating of zircon yielded several ages between 9 and 4 Ma (Francois et al., 2016)
—some of these analyses included dates of zircon with kyanite inclusions. The dates obtained from these zir-
con grains presumably reflect crystallization after M; considering that metamorphic zircon growth typically
postdates maximum pressure conditions (e.g., Kohn et al., 2015). Francois et al. (2016) speculated that the
zircon age data they obtained recorded two episodes of zircon growth, one at 8-7 Ma and another at
6-5 Ma. However, these workers also considered that older age population may reflect a mixing age because
the 9-7 Ma ages were obtained only from samples that recorded evidence of earlier zircon growth (i.e.,
inheritance recorded in zircon cores), while the 6-4 Ma ages were recorded in samples that showed no evi-
dence of inheritance. One of our aims was to resolve this uncertainty by (1) analyzing samples collected from
several locations across the Wandamen Peninsula (Figure 2); (2) analyzing ~50-100 zircons extracted from
each sample (where possible), and (3) utilizing data reduction software that is capable of resolving the abla-
tion of multiple age domains within zircon grains analyzed by LA-ICP-MS.

Our other major aim was to develop a more comprehensive understanding of the deformation history of the
Wandamen Metamorphics. All previous workers recognize that the peninsula (1) contains antiforms with
wavelengths of ~0.5-1.0 km, and (2) there is a dominant schistosity and pronounced north-south mineral
or stretching lineation in some locations (Figure 4; e.g., Bailly et al., 2009; Dow et al., 1988; Dow &
Ratman, 1981; Francois et al., 2016; Pieters et al., 1983; Robinson, Ryburn, Harahap, Tobing, Achdan,
et al., 1990a). However, there has been little discussion of the development of these structures. To address
this lack of detail, we systematically documented cross-cutting relations in the field, as well as in hand sam-
ples and thin sections. We then applied our findings to regional geological data to revise existing interpreta-
tions of the tectonic evolution of the Bird's Head of New Guinea.

3. Methodology
3.1. Fieldwork

Fieldwork was conducted on the eastern and northern coast of the Wandamen Peninsula in 2013 and along
the western coast in 2014 (Figures 2 and 4). Both field seasons focused on documenting cross-cutting rela-
tions and collecting samples for detailed microstructural analysis and geochronological work. The fieldwork
undertaken during 2013 was entirely conducted using a speed boat launched from a larger vessel that served
as a floating base camp. The speed boat was used to access the remote sections of the rugged eastern coastline
and inlets along the northern coastline. Much of the eastern coastline is difficult to access—it is isolated, cov-
ered in dense tropical vegetation, and the terrain is very steep.

A subsequent field campaign was undertaken in 2014. This involved sampling road exposures and river tra-
verses along the western coastline of the peninsula. Fresh exposures of rock are common and are relatively
easy to access. However, access to the interior of the peninsula is more difficult due to the rugged terrain and
dense tropical rainforest vegetation.

Each of the field sites indicated on Figure 2 represent locations where observations and samples were col-
lected. A more detailed sample map and collection of photographs is provided in Data Set S2. Sample meta-
data (locations and descriptions) have been recorded using International GeoSample Numbers registered
using the System for Earth Sample Registration (http://www.geosamples.org/). These data are also available
provided in Data Set S1.

3.2. Structural Analysis

Cross-cutting relations were documented using the sequence diagram approach (Beltrando et al., 2008;
Forster & Lister, 2008; Viete et al., 2010). This method involves recording observations of cross-cutting rela-
tionships observed at exposures, followed by a compilation and comparison of the sequences seen in the
region. Subsequent examination of microstructures and textures observed in hand specimens and thin sec-
tions can also be combined with the field evidence to build a comprehensive sequence diagram for a given
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have been indicated on this map.
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Table 1

TSDs Consist of Using a Series of Annotations to Describe the Sequence of Cross-Cutting Structures and Metamorphic
Mineral Growth Events at an Outcrop and/or in a Sample

Annotation Description

SIISL Bedding fabric (SO) with one or more parallel fabrics overprinting
(difficult to differentiate between fabrics)

S Fabric with unrelated folding event

F Folds

Fr Recumbent folds

FR chevron Recumbent chevron folds

Fy Upright folds

SZNE Shear zone with denoted lineation trend direction

FLT Brittle fault

FLTgxT/REV/DEX/SIN  Brittle fault with EXT = extensional; REV = reverse; DEX = dextral;

or SIN = sinistral sense of movement

- >S7Z > >

— — Above sequence: duration of shear zone activity

> > SC>>>>>>

>>>>> > Below sequence: duration of specific event (e.g., S-C fabric)

A (e.g., ABt) Static metamorphic mineral growth event (e.g., biotite assemblage)

A Metamorphic mineral growth event (e.g., Bt) that continues for the specific

Bt duration marked by arrows below TSD

>>>>>

A Metamorphic mineral growth event (e.g., Bt) that is initially static but then continues for the
Bt specific duration marked by arrows below TSD

>>>>>

Note. The nomenclature is largely the same as that used by Forster and Lister (2008), however, several additional anno-
tations were added to suit the particular region that was studied. TSD = tectonic sequence diagram.

locality. Sequence diagrams from different localities are then compiled and compared to decipher the
broader deformation sequence of a region. Elements of a deformation sequence may not be recorded at
every location due to differences in the mechanical properties of the rocks as well as the orientation of the
local strain field. However, the sequence diagram approach accommodates these uncertainties and
removes bias involved in assigning particular structures to the traditional numbered deformation events
on the basis of style or orientation.

We used a form of shorthand, adapted from Forster and Lister (2008), to record the tectonic sequence dia-
grams (further explained in Table 1). All of these structural observations were documented on-site and were
collected from fresh exposures. These sites were further characterized using observations made from
oriented samples and oriented thin sections.

3.3. U-Pb and (U-Th)/He Geochronology

U-Pb geochronology data were collected from nine samples of schist and gneiss and one sample of modern
river sand (Figure 2) to document the timing of metamorphic zircon growth and to examine the detrital age
spectra of the metamorphic protolith. The samples were processed in the laboratories at Royal Holloway
University of London. Rock samples were first pulverized using a jaw crusher. Aggregate <~1 cm® was dis-
carded to minimize the risk of residual contaminants within the jaw crusher. All material >1 cm® was
washed and dried before being milled using a Fritsch Pulverisette 13 tungsten-carbide disk mill. The milled
aggregate and river sand were dry-sieved to obtain material <250 um before each sample was washed once
more—the finest grain fractions were decanted and discarded. Heavy and light mineral separates were
obtained from this material through the use of a Wilfley-Table, magnetic separation, and diiodomethane.
Zircon from each sample was then hand-picked and set into epoxy resin along with the Temora II U-Pb
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standard (Black et al., 2004). The polished mounts were photographed under transmitted and reflected light
and imaged using a Hitachi S3000 Scanning Electron Microscope at Royal Holloway University of London to
obtain secondary electron and cathodoluminescence images to document internal growth zones within
each zircon.

U-Pb isotopic ratios of targeted zircon grains were then collected using a New Wave NWR 193 laser ablation
system coupled to an Agilent 7700 quadrupole-based inductively coupled mass spectrometer (LA-ICP-MS) at
the London Geochronology Centre, University College London. PleSovice zircon was used as the internal
standard to age calibration (Sldma et al., 2008), while Temora II was treated as an unknown to assess the
results obtained from each analytical session. NIST SRM 612 glass (Pearce et al., 1997) was used as a trace
element standard for U and Th compositional data. The resultant data were reduced using Iolite v3.6 (cf.
Paton et al., 2011), the U_Pb_GeochronologyX data reduction scheme (cf. Paton et al., 2010), and a 235yy
280 ratio of 137.818 (Hiess et al., 2012) and broadly follow the protocols defined by Horstwood et al.
(2016). Data reduction involved integration of the baseline, standards, and unknowns for five analytical ses-
sions (typically with the manual selection of 10-15 s integration periods). Shorter integrations were used for
several analyses of unknown zircon where spectra (e.g., U, Th, La, 235U) showed significant differences
within an analysis. These cases were double-checked and were typically found to correspond to mixed spec-
tra associated with ablation through multiple age growth zones—where an age was determined for the core
or rim. Results that are <1 Ga are reported using the ***U/?°°Pb system, while older ages are reported using
the 2°’Pb/**°Pb system. A common-Pb correction was not applied. Weighted mean ages and relative
probability plots were generated using IsoplotR (Vermeesch, 2018). Additional information is provided in
Data Set S3.

Zircon separates for three samples that contained clear evidence of young metamorphic zircon growth were
later sent to the University of Melbourne for (U-Th)/He analyses. Two of the samples were collected at
1-15 m above sea level IELTWO000H; IELTWO000U), the other was collected at ~240 m above sea level
(IELTWO001M; Figure 2). Five zircons containing two crystal terminations were selected from each sample.
The analyses were conducted following the methods of Gleadow et al. (2015), the only difference being that
our samples were spiked with ***U and ?*°Th. Further, we utilized the Fish Canyon Tuff zircon reference
material (e.g., Gleadow et al., 2015; Phillips et al., 2017) as an internal unknown as a further check
during analysis.

4. Results
4.1. Structural Analysis

Measurements of the orientation of representative structures were collected at each field site. The structural
data were plotted on a geological map—together with the structural data reported by Robinson, Ryburn,
Harahap, Tobing, Achdan, et al. (1990a; Figure 4). Cross-cutting relations were recorded at each field site
using the sequence diagram approach. These observations were combined with additional observations from
hand specimens and thin sections. All of these data were compiled to generate a tectonic sequence diagram
for each visited location which are summarized in Table 2. Representative photographs of the deformation
sequence are shown in Figures 5-8. A more comprehensive record of cross-cutting relations observed at each
field site, thin section, and hand sample are provided in Data Set S2.

The revised geological map demonstrates that the dominant schistosity shows considerable variation in
strike and dip across the peninsula (Figure 4). The variable orientation of the dominant, early formed schist-
osity is because these fabrics were subsequently folded by at least two generations of folds (Figures 4, 5, Data
Set S2, and Table 2). This reorientation caused the rotation of shear-sense indicators, means that these struc-
tures cannot be reliably used to infer crustal extension or shortening. However, the widespread presence of
boudinaged layers (as well as the boudins containing amphibolite and retrogressed eclogite) demonstrate
that the Wandamen Metamorphics underwent a phase of stretching. The boudinaged layers have been
folded (Figure 5). We have therefore interpreted that the boudinaged layers developed due to layer parallel
stretching before folding, either during the development of the regional, dominant schistosity, or at the same
time as the development of C/C’ shear fabrics (Table 2). However, it is also possible that boudinage occurred
due to layer parallel stretching during the episode of folding—this uncertainty is recorded in the sequence
diagrams shown in Table 2. The folded ductile shear fabrics were subsequently cut by brittle extensional
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11



10.1029/2018TC005177

Tectonics

<<< <<<<<adeurpnog SureA Z1DV
<KL LKL LKL L JuD /oSN / IV
WeI0g /Ay ZS NS 80T-€1
JUD/ SN/ IV
N4 a4 ZS NI LOT-€1
<L L L L 28
JUD/OSNIN/¥IV
g ZS NS 90T-€T
1gv
a4 Nzs RIS SOT-€1
<L L L d L1
1D/ SNV
d 578 NI YOT-€1
<< L L L URIDg
(Suryojoms s- vaﬁ_ﬁ_uom
XNy T Ul Wdg Ol NN €0T-€T
(Suryoyoms m.vaﬂ_ﬁUOM "ud1dg
LXd1719 N4 g RIS 20T-€1
Burrens s-N)Gurppoy gv
IXAT T N4 Tg)IS T0T-€T
<L LKL LKL L OSSNV
g HNN7q NI 00T-€1
<L L L gl g g
a4 dNd7g NN 660-€1
SISB[D ISIYDS JO
uonisodop/uorsorg uLID Pdg UIDg 960-€T
IXA 1T S60 PUE 60 UdaMIdg
INoLV
J[eDV
w1 Pidg “UdIDg RIS 60-¢1
J1qeadueyoIajuy J1qeadueyoIuy OSNA/A9V
| ZS NI £60-€1
oLy
1gv 1gv
ng “ua1dg Ig||1S T60-€T
n
el
w1 Pdg “UdIDg RIS 160-€1
wreiderp 2ouanbas oruojo9 ], K1100] SdH

AGU
100

DINSUIUIJ UIUDPUDA| Y] PUNOLY SaUIDIOT L2 1D SU01IIS UYL puv a)duns puby Piatd wWoid sisApuy [pinnags Aq pautuidaq sjUaag 21uo01dd L, fo saouanbas pajpingo,
z9IqeL

12

WHITE ET AL.



10.1029/2018TC005177

*ZS 39S BB oY) ul papraoid st souanbas yoes 10§ 2ouapIAd orydeid

-ojoyd [eUONIPPY "SUI[BULINO], = INOJ, ‘Z}Ieny) = Z}) J3UIeD = JU5) A}IA0ISNIA = ISNA ‘IOl = g "UOIIRULIOJIP Juanbasqns 0) anp pajelol U3 SABY SAINJONIS ISAY) ‘SISED JO AJLIofew ay) Ul
‘I9ASMOY ‘S)USUIITD SWOS 10§ palrodar uaaq sey Juatrade[dSIp JO UONILIIp J1odsuer) oy ], ‘90UaNbas 2ATJB[aI Y} SUIULIDIAP 0} A[qBUN SI3M M JT A[[BITIISA PIORIS 91k AJI[BI0] SUIES Y} 1€ SUId)] “2JON

Tectonics

“OSNIN/ 19/ IOV
(sueqar)-zytyy “Z0V
L1 N4 ZS RIS Ly-vTHYA
<LK LK< <<<<<<<gunury SN/ TUOY
N4 7S NI 9b-vTHYL
SIIOULIAN
<<< <<<<<ageurpnog SN/ 19/ UV
ZS NS Sh-vTHL
<<< <<<<<adeurpnog 1d/°Xd/ UOV
0 VA NS -y THL
L1 S ch-vTHL
Sunyury SI1A0OSIIN/ZIDV
N4 7S NI -+ THI
OSNN/ 1V
I1d ZS NI Ov-vTHI
SN/ 19/ 2OV
04 S NI 6¢-vTHI
JUD/ISNIN/ IV
N4 NI Ye-¥THA
uedg <<< <<<<<adeurpnog Ju9 /SN /IgV
N4 ZS NS €¢-vTHA
"URIdg JUD/ SN/ IV
IXd71719 N4 NI OTT-€1
AHdT TS JuD/ISNN/1gV
IXAT T ZS BN 60T-€T
wreiderp 2ouanbas oruojo9 ], K11001 SdH

AGU
100

(panuyuod) g dqeL

13

WHITE ET AL.



~1
AGU

100

ADVANCING EARTH
AN SPACE SCIENCE

Tectonics 10.1029/2018TC005177

Folded gneissic
layering

" %

#

L

¥

e U;g‘fighf folding of
£ predexisting S /S

layering” ~cren

Figure 5. Photographs of folded gneiss from various locations around the Wandamen Peninsula. (a)-(b) represent sam-
ples IELTWOOLF (lightest, leucocratic material) and IELTWO001G (darker gray material) and in their present-day orien-
tation indicate top to the north, sense of shear; (c)-(e) provide clear evidence that the gneissic layering has been deformed
by various stages and amounts of folding at different scales; (f) provides evidence of boudinaged gneissic layers—these
fabrics have also been folded.

faults (Figures 7a-7b). This late extensional phase may have continued to the present day. For example, there
are sections of submerged forest along the eastern side of the peninsula that mark the location of a slip surface
(Figure 7c). Historical satellite imagery shows that this ~5 km long tract of land was submerged between
December 2002 and December 2003 (https://vimeo.com/286463271; supporting information S1). People
from the region stated that a tsunami occurred near this location in 2002—we suspect the tsunami and
submerged block are related. This feature could have been driven due to sediment loading and/or
liquefaction caused by a nearby earthquake in 2002 or 2003 (see supporting information S1).
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Figure 6. Photographs of (a-d) folds with a north-south axial plane as well as shallowly northward plunging plagioclase
rods within the core of these folds. The earlier formed recumbent folds (e.g., Figure 4) are overprinted by a phase of
(e) generally upright, differentiated crenulation cleavages and (f) open folds with a north-south trending axial plane.

4.2. Petrography

The relative timing of metamorphic mineral growth can also be documented with respect to microstruc-
tures (and the overall tectonic sequence diagram; Table 2 and Figure 8). Biotite, muscovite, and garnet
grew early during the deformation sequence—that is, at the same time as the regional schistosity (Ss) that
is subparallel to the metamorphic layering and original bedding. These fabrics were subsequently cross-
cut by later shear fabrics. This relationship is demonstrated in numerous garnets, where porphyroblasts
show evidence of rotation or boudinage (and many have been split in two; Figure 8). There is also evi-
dence of two episodes of biotite growth—the earliest growth is associated with the development of the
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Figure 7. All earlier fabrics are cross-cut by brittle extensional faults. This
includes (a-b) mesoscopic structures that cross-cut schist and gneiss, as
well as (c) apparent recent displacement of parts of the coastline into the sea.

regional schistosity (Ss), the later growth is associated with the
development of crenulations associated with the first generation of folds
(Fg; Table 2).

4.3. Geochronology

U-Pb isotopic data were obtained from zircon extracted from nine samples
of schist and gneiss as well as one stream sediment sample (IELTWO001K;
Figures 2 and 9, 10 and Data Sets S1, S3, and S4). Most of the samples
yielded diverse age spectra interpreted to reflect detrital zircon from the
metamorphic protolith (Figure 9). Carboniferous to Devonian ages are
common in most of these schist, gneiss, and sediment samples (Data Set
S4 and Figures 9b-9j). Some samples also record Triassic ages
(Figures 9b-9c and 9j) and one sample of schist yielded primarily
Proterozoic zircon (Figure 9d). Three samples yielded younger distinct
age populations that could be interpreted to reflect metamorphic ages.
One sample of quartz-biotite gneiss (IELTWO000H) yielded a single age
population, with a weighted mean age of 31.9 + 1.2 Ma (mean square
weighted deviation (MSWD) = 0.6, N = 7; Figures 9a and 10a)—this sam-
ple contained no older zircon. Two samples yielded Pliocene and older
ages (Figures 2, 9b-9c, and 10b-10c)—this includes a quartz-biotite-
garnet gneiss (IELTWO001M) that yielded a weighted mean age of
4.9 + 0.1 Ma (MSWD = 1.0, N = 13), and a quartz-muscovite-biotite schist
(IELTWO000U) that yielded a weighted mean age of 53 + 0.3 Ma
(MSWD = 0.9, N = 9; Figures 10b-10c).

Each sample contained zircon that differed in size and shape and had dif-
ferent internal textures (Figure 11). The Oligocene zircons extracted from
IELTWOOOH (quartz-biotite gneiss) are strikingly different from all other
samples (Figure 11g). These zircons are large oscillatory-zoned grains that
yield Th/U values >0.1 (Data Set S4) and show no evidence of earlier
formed cores or younger rims. We therefore interpret this rock to be a
paragneiss—with the zircon age reflecting the crystallization age of the
protolith. The texture of the zircon could not be used to distinguish differ-
ent age populations. These age populations were only resolved by obtain-
ing the LA-ICP-MS data. For example, IELTWO000J contained almost
entirely Proterozoic zircon (Figure 9d). These zircon grains show evidence
of igneous and metamorphic textures, as well as rims that grew around
earlier formed cores (Figure 11a). Similar textures were obtained from
most of the other samples, yet these zircon rims reflected Carboniferous
growth. The Pliocene zircon grains were often obtained from oscillatory-
zoned zircon grains with no inherited cores (e.g., Figure 11f)—yet these
zircons all record Th/U values <0.1 (Data Set S4) and we interpret these
ages (4.9-5.3 Ma) to represent the timing of regional metamorphism.

4.4. (U-Th)/He Thermochronology

(U-Th)/He dates were obtained from zircon separates from the three sam-
ples that yielded Oligocene and Pliocene zircon ages (IELTWOOOH;
IELTWO000U; IELTW001M; (Data Set S5). A weighted mean age was cal-
culated for each sample: 1.57 = 0.46 Ma (n = 5) [IELTWOO0OH];

1.51 + 0.08 Ma (n = 5) [IELTWO000U]; 0.75 + 0.09 Ma (n = 5)
[IELTWO001M]. These results indicate that the samples that were collected
at the northern end of the Wandamen Peninsula cooled through 180-
200 °C at ~1.5 Ma, while the sample from the southern part of the penin-

sula cooled through this range at 0.75 Ma (Figure 2).
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Figure 8. The same sequences of events that are observed in field and hand samples can be seen in thin sections. This
include (a-b) shear fabrics delineated with biotite and muscovite. (c-d) Garnet that grew early during the sequence
(i-e., “M7”) has since been cut by extensional fabrics and boudinaged due to continued stretching; (e-h) shear fabrics
delineated by earlier mica growth that have been kinked and folded.

5. Discussion
5.1. Differences Between our Results and Earlier Work
Our observations of cross-cutting relations indicate that there is a relatively consistent sequence of deforma-

tion events recorded across the Wandamen Peninsula (Figures 5-8, Table 2, and Data Set S2). These results
conform to the relative sequence of deformation events recorded in offshore seismic imagery (e.g., Figure 3).
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Figure 9. U-Pb age spectra of zircon from various (a-i) metamorphic rocks and (j) river sediment from the Wandamen Peninsula.

However, our results show some differences with earlier structural interpretations (e.g., Bailly et al., 2009;
Francois et al., 2016). For instance, Francois et al. (2016) report that an early episode of folding was
associated with the development of an axial planar “S,” fabric and these fabrics were cross-cut by S/C
structures. We found no evidence of this deformation sequence. The earliest recognizable fabrics consist
of a regional schistosity that is subparallel to bedding/layering. This regional schistosity was subsequently
sheared (C/C’ planes) and folded within isoclinal, recumbent, and open folds (Figures 4-6, Table 2, and
Data Set S2). Francois et al. (2016) also state that the shear fabrics (C/C’ planes) are associated with a
north-south oriented stretching lineation which always indicates a top to the north sense of shear. We did
not observe this relationship either. In the northern Wandamen Peninsula (where Francois et al., 2016,
focused) the sense of shear obtained from S/C/C’ fabrics is approximately perpendicular to the pervasive
north-south mineral or stretching lineation. The pervasive north-south stretching lineations occur in the
core of later developed antiforms (Figure 5 and Data Set S2), and the earlier developed S/C/C’ fabrics
have been rotated in the limbs of these folds (Figure 5 and Data Set S2). These rocks have fabrics that can
be used to determine the sense of shear—but these structures have been overprinted and rotated by later
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Figure 10. Weighted mean ages calculated for discrete age populations
identified in samples (a) IELTWO000H, (b) IELTW001M, and (c)

IELTWO000U.

folding, explaining why there is considerable variation of shear sense
obtained across the peninsula (e.g., Figure 4).

Our observations of the deformation sequence differ to the sequence sug-
gested by Francois et al. (2016)—primarily the earlier part of the deforma-
tion sequence. Despite these differences, our interpretation of the
deformation sequence remains faithful to the relative timing of meta-
morphic mineral growth proposed by Francois et al. (2016). We therefore
adopted the nomenclature Francois et al. (2016) used to identify meta-
morphic episodes (M;, M,, M3), as well as their thermobarometry data.
A discussion of these metamorphic events (M;, M,, M3) relative to our
structural observations and geochronology data is presented in the follow-
ing section as well as in Figures 12 and 13.

5.2. Deformation Sequence

There is widespread evidence of an early schistosity that developed parallel
to metamorphic layering and original bedding planes (e.g., Figure 5c and
Data Set S2)—these fabrics were recognized by some of the earlier work
in the region (e.g., Pieters et al., 1983), but not by others (e.g., Bailly
et al., 2009; Francois et al., 2016). The 31.9 Ma age obtained from a
quartz-biotite gneiss (IELTWO00H) at the northern margin of the
Wandamen Peninsula (Figures 2 and 10) is interpreted to reflect the empla-
cement of a granitoid in northern New Guinea. We assume this rock was
deformed after it crystallized and it therefore may provide an upper bound
to the deformation sequence (Table 2). However, we cannot determine if
the protolith was originally emplaced within the northern Wandamen
Peninsula, or if it was later transported via faults/shear zones. We have
therefore related our structural and geochronological results to the existing
petrological and thermobarometric data (e.g., Francois et al., 2016).

Pseudosections generated by Francois et al. (2016) indicate that the
Wandamen Metamorphics were found at depths of ~45-60 km (12—
16 kbar) and temperatures of >650 °C during M; (Figure 12a). The
regional schistosity and M; garnets were later overprinted by shear fabrics
(Cand C’; e.g., Figures 5b and 8c-8d). These shear fabrics likely developed
during a phase of crustal extension (Figure 13a)—explained by the shear
fabrics and widespread occurrence of boudins that were subsequently
folded. The ~5 Ma zircon ages are interpreted to reflect the cooling path
of M;—this interpretation factors in the zircon inclusions found within
kyanite grains (e.g., Francois et al., 2016) and that metamorphic zircon
crystallization records growth after peak P-T conditions (e.g., Kohn
et al., 2015). Considering the structural and metamorphic evidence, we
interpret the muscovite + biotite + garnet + kyanite mineral growth to
reflect part of a Barrovian sequence that developed as part of a meta-
morphic core complex due to crustal extension/transtension at ~7-5 Ma
(Figures 12c and 13a). This led to the development of a regional schistosity
(Ss), boudins, and partial melts, which were later cut by extensional shear
zones that developed due to continued stretching (Figure 13a).

The ductile fabrics were overprinted by pervasive, predominantly N-S
oriented stretching and mineral lineations (including rodding of feldspar
at several locations; Figures 6b—6d). These lineations developed parallel
to fold axes—similar to those studied in other parts of the world (e.g.,
Ridley, 1986). We propose that the stretching/mineral lineations devel-
oped at the same time as regional isoclinal folding (Figures 6a-6d and
13b). Such features can develop during transpression or pure shear of
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Figure 11. Representative scanning electron microscope cathodoluminescence imagery of zircon from samples (a) IELTW000J, (b) IELTWO000C, (c) IELTWOOOF,
(d) IELTWO01K, (e) IELTWO001B, (f) IELTWO001M, (g) IELTWO000H, and (h) IELTWO000U. The location and result of individual laser ablation-inductively coupled

plasma-mass spectrometry analyses are also shown.
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Figure 12. (a) Summary of thermobarometric results obtained for the
Wandamen Metamorphics from the northern Wandamen Peninsula as
reported by Francois et al. (2016). (b) U-Pb and (U-Th)/He age and approx-
imate temperature estimates for metamorphic zircons from samples
IELTWO001M, IELTWO000U, and IELTWOOOH. This plot also indicates an
approximate cooling curve approximate temperatures estimated for each
metamorphic phase (M, M, and M3—as reported by Francois et al., 2016).
(c) Summary and interpretation of the age, structural, and thermobarometry
data for the Wandamen Metamorphics. These data are comparable to

(d) the record of fluctuations in regional (but not global) sea levels (modified

from Gold, White, et al., 2017).

vertical/subvertical layers (e.g., Fossen et al., 1994; Fossen & Tikoff, 1998;
Froitzheim, 1992). These features indicate there was a change in the stress
field—we assume this change reflects a shift from predominantly
east-west extension to contemporaneous east-west shortening and
north-south stretching (using the modern-day orientation of fabrics).
Continued shortening led to the development of recumbent folds in parts
of the peninsula (Figures 4d and 5f) as well as north-south stretching
(Figure 13b). A second phase of biotite growth (M,) occurred during the
development of the early folds, with metamorphism occurring at pres-
sures of 10-12 kbar and temperatures of 650-760 °C (Francois et al.,
2016; (Figures 12a-12c and 13). These fabrics were subsequently
deformed by open upright folds (Figures 5f and 13c) bringing the rocks
to depths of 35-45 km (Figure 12a). We consider that the ductile M, fab-
rics developed between ~5 and ~4 Ma—that is immediately after those
that formed during M; (Figures 12a-12c and 13b).

All of the fabrics were then cut by brittle extensional faults (with some
minor associated thrust faults). It is these faults that contain the chlorite,
white mica, and quartz growth that Francois et al. (2016) identified as M3
(P: 6.8 + 1 kbar and T: 520 + 50 °C). These structures reflect a relative
change in temperature and/or strain rate compared to the earlier
developed ductile fabrics. We suspect this was due to rapid uplift of the
metamorphic rocks from ~35-45 to ~20 km between M, and M;
(Figures 12a-12c and 13c). The brittle extensional faults must have
xinitiated at some point before ~1.5 Ma if we consider the thermobaro-
metry data of M3 together with the zircon (U-Th)/He data (with locking
temperatures of ~180-200 °C; Figures 12a-12c and 13d). The final phase
of uplift must have consisted of ~20 km of extensional exhumation
between ~3 Ma and the present day (~5 mm/year). This episode of tec-
tonism is apparently continuing today—one example includes the
~5 km? area of forest that subsided into the sea along the eastern edge
of the Wandamen Peninsula between December 2002 and December
2003 (Figure 7c and supporting information 7S1; https://vimeo.com/
286463271).

The difference in the two (U-Th)/He age populations likely reflects pro-
gressive north to south cooling and uplift of the peninsula (Figures 2
and 12b). We can calculate a cooling rate of ~140 °C/Ma if we assume that
exhumation was linear between 5 and 0 Ma (Figure 12b). However, sev-
eral episodes of stretching and shortening occurred during this time, so
we suggest the cooling and uplift rates are better defined using the P-T
estimates of Francois et al. (2016) combined with our geochronological
results. These data indicate that the rocks cooled at a rate of ~50 °C/Ma
and were uplifted at a rate of 10 mm/year between 7 and 3 Ma. The cool-
ing rate later increased to 180 °C/Ma, while the uplift rate decreased to
~5 mm/year between 3 and 0 Ma (Figure 12a). These rates are similar to
those reported for other young metamorphic rocks found in Sulawesi
(e.g., Hennig et al., 2017) and conform to the rates applied in numerical
modeling of gneiss dome exhumation (e.g., Korchinski et al., 2018; Rey
et al., 2017).

5.3. Evidence of Late Miocene Metamorphism

One of the aims of this study was to investigate evidence of 8-7 Ma meta-
morphic zircon growth reported by Francois et al. (2016). These 8-7 Ma
ages were obtained from 1 to 2 zircon grains in three samples collected
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6-5Ma from one locality in the northern Wandamen Peninsula. We hypothesized

that the 8-7 Ma ages potentially reflected a mixing age because the sam-
ples also yielded ~5 Ma as well as older inherited ages. To test this hypoth-
esis, we examined more samples (n = 10) from seven different locations
around the peninsula (Figure 2). We also analyzed a greater number of
zircons per sample (n = ~ > 50 analyses, where Francois et al., 2016,
reported anywhere between 3 and 13 analyses per sample). In addition,
we used Iolite to examine and process the raw LA-ICP-MS spectra (which
can be used to show if different isotopic ratios are obtained due to laser
ablation of different age domains within a zircon). In doing this work,
we found no clear evidence for zircon growth at 8-7 Ma. We therefore sug-
gest that the earlier reported 8-7 Ma dates (Francois et al., 2016) reflect
mixing ages associated with the ablation of younger ~5 Ma zircon rims
and older cores. The 8-7 Ma ages should not be interpreted as
geologically meaningful.

West ‘

5.4. Metamorphic Protolith

Zircon was dated from nine samples of metamorphic rock collected in situ
(as well as one sample of river detritus). The samples were collected from

‘ East seven localities across the Wandamen Peninsula (Figure 2). Only two of
the samples recorded Pliocene ages IELTW001M and IELTW000U). We
et assume that the other samples (1) did not reach temperatures and pres-
_k|§ sures suitable for generating new zircon grains or new rim growth on
~3 km

existing grains, and/or (2) metamorphic rims were too thin to
observe/analyze. Despite this, the age spectra obtained from these sam-
ples yield data that provides further insight into the metamorphic proto-
lith (Figure 9). Most of these samples contain Devonian to earliest
Jurassic zircons (dominated by Devonian, Carboniferous, and Triassic zir-
con). These zircons are interpreted to have been derived from the erosion
and transport of material sourced locally (e.g., Gunawan et al., 2012).

Recent geochronology studies have dated Triassic igneous rocks to the

Figure 13. Schematic illustration showing the interpreted structural evolu- south, east, and northwest of the Wandamen Peninsula (Decker et al.,

tion of the Wandamen Peninsula/Wandamen Metamorphics using an 2017; Jost et al., 2018). Evidence of Devonian-Carboniferous magmatism
approximate scale and orientations using the present-day orientation of the ~ was also reported by Jost et al. (2018). These studies reported Paleozoic
peninsula. (2) Crustal extension occurred during 6-5 Ma resulting in the ages from outcrops in the Bird's Head, so the data we report here indicate

development of a metamorphic core complex, bringing middle to lower
crustal rocks closer to the surface quite rapidly. (b) The extensional fabrics
were later recumbently folded (east-west shortening), with contempora-
neous north-south extension producing rods/stretching lineations between
5 and 4 Ma. (c) A later phase of upright folding overprinted the earlier
developed fabrics between 4 and 3 Ma. (d) All earlier fabrics were over-

that some of these Paleozoic igneous rocks may have been eroded
and redeposited.

We take the youngest zircon from each of the Wandamen metasedimen-
tary rocks to record maximum depositional ages of the protolith. The

printed by brittle extensional faults and the peninsula was exhumed majority of the samples contain Mesozoic zircons—these likely corre-
between 3 and 0 Ma. (a) was modified from Whitney et al. (2013). spond to metamorphosed equivalents of the Tipuma Formation, Mawi

Complex, and Kembelangan Group. However, two samples yielded quite
different age spectra JIELTWO000J and IELTWO0O0H) from the other samples (Figure 9). These samples were
collected on the northeastern edge of the Wandamen Peninsula and the island north of it (Palau Roon). The
northernmost sample yielded almost entirely Neoproterozoic zircons (IELTW000J)—and was originally
mapped as within an area of Devonian or older low-grade metamorphic rocks (Robinson, Ryburn,
Harahap, Tobing, Achdan, et al., 1990a) with the age interpreted from field relations. This small area of
Paleozoic or Neoproterozoic rock could represent a metamorphosed equivalent of the Kemum or Aisasjur
Formation. The other sample (IELTWO0O00H) yielded a tight cluster of Oligocene ages (weighted mean age
of 31.9 + 1.2 Ma). We interpret this sample to represent a metamorphosed granitoid or felsic volcanic—its
weighted mean age indicates this sample is potentially related to the Paleogene Arfak/Mandi Volcanics
(e.g., Pieters et al., 1983) although these units consist of basalts and basaltic andesites. The sample dated
in this study potentially represents a more felsic component of the Oligocene island arc that developed at
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the southern margin of the Philippine Sea Plate, which accreted to the northern margin of New Guinea (e.g.,
Ali & Hall, 1995; Hall, Ali, & Anderson, 1995; Hall, Ali, Anderson, & Baker, 1995).

5.5. Comparing our Results With Other Regional Data

The structural and geochronology results obtained in this study provide additional age data to be used to
supplement tectonic interpretations of regional data sets. These new data indicate that there was a major
change in the stress field in western New Guinea after ca. 5 Ma—an event that is recognized across other
parts of New Guinea (e.g., Cloos et al., 2005) and eastern Indonesia (e.g., Hall, 1996, 2002). In the
Wandamen Peninsula, this time marks a shift from the east-west crustal extension responsible for the for-
mation of the Wandamen metamorphic core complex—to east-west transpression/shortening (with the
earliest phase of this shortening also recording north-south ductile extension; Figures 13a-13c). This epi-
sode of transpression/shortening was recognized by Dow and Sukamto (1984) and Bailly et al. (2009). It is
also recorded in

1. offshore seismic data which shows the Miocene Klasafet Formation (and age equivalent units) have
been folded (e.g., Bailly et al., 2009, and arguably Pairault et al., 2003, as well as Sapin et al., 2009;
Figure 3),

2. the local sea-level curve differs to global sea-level curves. The local sea-level curve shows a change from
deeper water conditions (50-100 m) to shallower water conditions (0-10 m) between the Early to Late
Pliocene (Gold, Burgess, et al., 2017; Gold, White, et al., 2017; Figure 12d),

3. the removal of early Pliocene to Mesozoic sequences due to erosion—as recorded in various hydrocarbon
exploration wells (cf. Figure 18 in Gold, White, et al., 2017) as well as in regional offshore seismic imagery
(e.g., Bailly et al., 2009; Pairault et al., 2003).

Our structural and geochronological data combined with these other data sources confirms the suggestion

that the Lengguru Fold Belt must have developed due to a young (5-3 Ma) episode of crustal shortening

(e.g., Decker et al., 2009; Dow et al., 1985; Moffat et al., 1991; Pieters et al., 1983; Visser & Hermes, 1962),

rather than an earlier episode at ca. 11 Ma (e.g., Bailly et al., 2009; Francois et al., 2016).

The Wandamen region then went into a phase of crustal extension after ca. 3 Ma (Figure 13d). This phase
of crustal extension is marked by the generation of brittle extensional faults observed in different parts of
the Wandamen Peninsula (Figure 7), as well as in offshore seismic imagery of the Lengguru Fold Belt
(e.g., Figure 3b; Balilly et al., 2009). The deformation history is also consistent with structures observed
in seismic data within Cenderawasih Bay (e.g., Babault et al., 2018), yet there is no publicly available well
data to provide age control on these structures. This extensional episode is also reflected by a phase of
deeper water conditions in the local sea-level curve in the Pleistocene (Gold, White, et al., 2017) and coin-
cides with the initiation of major strike-slip faults such as the Tarera-Aiduna Fault zones (e.g., Bailly
et al., 2009; Pubellier & Ego, 2002). Aerial and satellite imagery also demonstrate that there is widespread
evidence for relatively recent crustal extension throughout the Lengguru Fold Belt (Bailly et al., 2009;
Pubellier & Ego, 2002)—these features are considered to have developed during the Quaternary-Recent
and can likely be linked to the same processes responsible for the apparent extensional faulting observed
along the eastern margin of the Wandamen Peninsula (Figure 7c).

5.6. Tectonic Mode Switches Over One to Two Million Years

Combining the structural and geochronological data obtained in this study, together with earlier work,
shows that western New Guinea records multiple deformation episodes within a relatively short period of
time. These structures could record reorientation of the stress field (e.g., Gray & Foster, 2004) or pulses of
deformation associated with an episodically changing stress field (i.e., a tectonic mode switch; e.g., Lister
& Forster, 2009). The data presented here indicate that the stress field episodically or progressively changed
several times over the last six million years (Figure 13), indicating that episodes of crustal extension and
crustal shortening can occur within periods of one to two million years. These findings further demonstrate
that orogeny can be very short (e.g., Dewey, 2005) and that tectonic mode switches reported from older
mountain belts are certainly possible within <10 million-year periods (e.g., Beltrando et al., 2008; Lister
et al., 2001).
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6. Conclusions

Structural observations indicate that the Wandamen Peninsula records multiple phases of metamorphism
and deformation that we interpret to reflect several tectonic mode switches. New U-Pb and (U-Th)/He data
obtained from two to three samples indicate that the tectono-thermal events occurred within the last six mil-
lion years. An early phase of crustal extension occurred between ca. 6 and 5 Ma. These rocks were later over-
printed by a phase of shortening that produced at least two generations of folds between 5 and 3 Ma. All of
these fabrics were later cross-cut by brittle extensional faults (and minor thrusts) between 3 Ma and the pre-
sent day, with uplift occurring progressively from north to south. We consider that the cross-cutting struc-
tures reflect several tectonic mode switches caused by changes in the stress field at the boundary between
the Australian and Pacific Plates. The work presented here shows that tectonic mode switches can occur
within one to two million-year periods. Such results should be considered in studies of older orogenic belts
where it is more difficult to obtain precise dates for tectonic events.
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