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Summary

The direct solution of the time dependent Schrödinger equation (TDSE) can

yield an accurate theoretical description of the dynamics of atoms subject

to intense electromagnetic radiation. However, it can become computationally

difficult depending on the frequency, intensity, polarisation and duration of the

electric field. In this thesis we explore the dynamics of laser-atom interactions

subject to linear and circularly polarised radiation both in the dipole and

non-dipole regimes.

We begin by outlining the mathematics and physics behind the Hamilto-

nian for the problem and we describe the main physical effects and current

models which describe such effects. We then introduce some of the numerical

methods used to solve the TDSE, such as grid based or spectral methods, be-

fore focussing on a spectral method which uses the Crank-Nicolson algorithm

together with preconditioning and the bi-conjugate gradient method to propa-

gate the solution in time. We use this method to study the propensity rule for

argon in circularly polarised light, namely that an electron counter-rotating

with respect to the laser is more easily ionised than one that is co-rotating.

We do this over a range of frequencies and intensities covering the adiaba-

tic tunnelling regime, non-adiabatic tunnelling regime, and the multiphoton

ionisation regime. We then examine the final state momentum distribution

for both hydrogen and argon subject to an elliptically polarised field and, in

particular, the momentum distribution transverse to the polarisation plane
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(TEMD) which is very sensitive to the electron ion interaction. We study the

TEMD as a function of the ellipticity of the field and we demonstrate the ex-

istence of an inverted cusp for the TEMD for initial l = 1 and m = 0 states.

Finally, we perform exploratory calculations of the momentum distributions

for low frequency fields to examine non-dipole effects.
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Chapter 1

Introduction

The first laser was produced using ruby crystal by Theodore H. Maiman at

Hughes Research Laboratories in 1960 [58]. As early as 1931, Maria Göppert-

Mayer predicted that double photon absorption was possible in her doctoral

dissertation [38] which was proven true in 1961 by Kaiser and Garret [47] who

detected two photon excitation in Eu2+. In 1979 the first observation of above

threshold ionisation was seen in xenon using a neodymium glass laser by Ago-

stini et al [1] where the electron absorbs more photons than is required to

ionise through multiphoton ionisation. Since then many developments have

been made in the field. Intense laser fields are now available covering a fre-

quency range from the infrared to the ultraviolet and X-ray in the form of short

well-defined pulses. In particular the introduction of the ‘reaction microscope’

[28] has allowed experimentalists to map out the momentum distribution of the

final products following interaction of the atom with the laser. On the theory

side, models such as the strong field approximation, the three step model etc.

(see Chapter 2) have been used to try to interpret the results.

In this thesis we will concentrate on the ab initio solution of the time de-

pendent Schrödinger equation (TDSE) for argon subject to intense laser fields

to investigate an interesting propensity rule in relation to the initial state of

the atom. In addition to this, we also look at the momentum distribution

of hydrogen and argon in dipole and non-dipole regimes. The electron mo-

mentum transverse to the direction of the electric field exhibits a sharp cusp

18



1.1. STRUCTURE OF THE THESIS

like shape about zero momentum under certain conditions in contradiction to

theory. When non-dipole effects are introduced, we study the asymmetry in

the momentum distribution along the direction the laser field is propagating.

In this thesis we will concentrate on the ab initio solution of the time

dependent Schrödinger equation (TDSE) and how it can be used to obtain

the momentum distribution in both the dipole and non-dipole regimes and

to address an interesting propensity rule. The intensity of the laser fields

we shall consider are comprised of such a large number of photons that we

can approximate the field by treating it as a classical electromagnetic field

described by Maxwell’s equations. A number of methods shall be outlined to

represent the wave function, either through the use of grid based methods or

as a linear combination of basis set functions. For the majority of calculations

considered, the B-spline basis was the preferred representation of the wave

function of the electron. To propagate TDSE in time, we apply the Crank-

Nicolson scheme with preconditioning and the bi-conjugate gradient method

or BiCGSTAB algorithm. The BiCGSTAB algorithm allows for the efficient

solution of systems of coupled differential equations. We study hydrogen and

argon in an intense laser field where for the latter we use the single active

electron approximation.

1.1 Structure of the Thesis

• In Chapter 2 we describe the basic background material required to study

atoms interacting with electromagnetic fields. We define the Hamilto-

nian and explain the theory behind gauge transformations. The various

regimes for laser-atom interactions are outlined, namely the multipho-

ton, tunnelling and over the barrer ionisation regime. All of the above
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regimes are considered within this body of work. We introduce the dipole

approximation and the regions of laser parameters where it can applied.

• Chapter 3 outlines the various methods we explored for propagating the

TDSE. Different ways to represent the wave function are considered.

Grid based methods are explained alongside the B-Spline and Sturmian

basis set function representation of the wave function. The numerical

techniques required to integrate the TDSE using the Crank-Nicolson

scheme with preconditioning and the bi-conjugate gradient method are

described in detail. Simple 1-D grid based calculations are displayed,

as well as computationally inexpensive 3-D calculations involving Stur-

mian functions. The advantages and disadvantages of representing the

wave function in terms of the Sturmian and B-spline functions are also

discussed.

• In Chapter 4 we investigate the propensity rule and its range of validity

whereby electrons counter-rotating with respect to a circularly polarised

electric field are preferentially ionised compared to co-rotating ones in

the non-adiabatic tunnelling regime. The theory behind the propensity

rule is explained in detail and some experimental evidence is given to

corroborate the theory. We present results for ground state argon subject

to a circularly polarised field for both m = −1 (counter-rotating) and

m = 1 (co-rotating) to compare with the theory. We begin by looking at

the non-adiabatic regime but happen upon interesting results by moving

beyond this point into the multiphoton ionisation regime.

• Chapter 5 is a study into the dynamics of electrons ionised in the di-

rection transverse to the electric field. In the dipole approximation, the

transverse momentum distribution (TEMD) of the ionised electrons isola-
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tes the interaction between the photoelectron and the parent-ion leading

to cusp-like structures in the TEMD. Commonalities are found in the

momentum distributions for hydrogen and argon. However a new inver-

ted cusp structure is found for a particular initial state of the system.

• In Chapter 6, an attempt is made to move into the non-dipole regime for

ground state hydrogen subject to a low frequency, intense linearly pola-

rised laser field. Experimental work in the field suggests that for linearly

polarised fields, electrons should be pulled back towards the ion-core af-

ter experiencing radiation pressure in the direction of propagation during

the pulse. The inclusion of non-dipole components to the Hamiltonian

alongside the parameters of the laser make these problems very compu-

tationally expensive. Several approximations are made in exploratory

calculations of non-dipole effects.

• In Appendix A, we describe some separate work we did on the momen-

tum space representation of the Schrödinger equation which formed part

of a new publication [36]. There we show how the Coulomb kernel in mo-

mentum space can be expressed as a sum over products of Gegenbauer

polynomials.

• In Appendix B, the derivation of the coefficients of the continuum Cou-

lomb functions in the Sturmian basis is laid out in full. These are coef-

ficients are required in Chapter 5.
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1.2 A note on the programming work in this

thesis

At the start of the PhD I focussed on learning how to solve the basic 1 dimen-

sional hydrogen TDSE subject to linearly polarised laser field using grid based

methods using Fortran. Note that all numerical calculations presented in this

thesis were calculated with Fortran. For the 1-dimensional cases considered,

the Crank-Nicolson method was used to propagate the wave function in time,

step by step.

After becoming comfortable with the 1 dimensional case, I was moved on

to the full 3 dimensional hydrogen TDSE subject to linearly and circularly

polarised laser fields. These cases were treated using the Sturmian basis due to

the similarity between the Sturmian functions and the hydrogenic radial wave

functions. Propagation of the wave function in time was performed using the

Arnoldi time propagator. To study the TDSE for argon, an attempt was made

to combine the Sturmian function basis with the B-Spline basis. A working

code was produced that represented the non-hydrogenic behaviour near the

core using the B-Spline functions and the behaviour far from the core, which

can be considered hydrogenic, using the Sturmian functions. The combination

of a pre-written algorithm for the Arnoldi time propagator and the mixed basis

resulted in propagation that ran far too slowly for the problems that are now

presented in the body of this thesis.

In order to address this, the mixed basis approach to representing argon

was put to one side in favour of representing both hydrogen and argon in the B-

Spline basis. The Arnoldi time propagator was removed and I programmed the

Crank-Nicolson method with preconditioner to propagate the TDSE in time

and I programmed the BiCG-STAB algorithm to solve for x in the system
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Ax = b where A and b are known. If applicable, parallel programming was

applied to the new algorithms with OpenMP to speed up the computations

further. The consequences of these changes was a significant decrease in the

time taken for propagation and the amount of memory required to perform

a full calculation was also significantly reduced. This permitted problems

which would require much larger parameters to be compiled and run within

a reasonable amount of time. Even problems involving non-dipole dynamics

where all (l,m) pairs in the Hamiltonian are accessible were made possible.

Unless stated otherwise, the observables of the wave function computed

within this thesis were also programmed by myself. These include momen-

tum distributions, ionisation, excitation and ground state probabilities and

the density of l and (l,m) states in the continuum part of the atomic wave

function.
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Chapter 2

Atomic Interactions with an Intense

Electromagnetic Field

2.1 Introduction

We assume that the electromagnetic field can be treated classically due to the

overwhelming number of photons considered when dealing with very intense

laser fields. In order to describe the field continuously, this chapter introduces

Maxwell’s equations of electromagnetism and defines the general equation for

the electric field and vector potential with any polarisation used in this thesis.

While the field is treated classically, the atomic system is treated quan-

tum mechanically. We describe the main quantum mechanical dynamics that

arise from the interaction of a classical electromagnetic field and define the

Hamiltonian of the system in two main parts: the atomic interaction and the

interaction with the electromagnetic field. The various approximations that

are to be used within this text are explained and we establish the parameter

space to which they can be employed. We will study pulsed fields with intensi-

ties ranging from 1013 to 1015W/cm2 and wavelengths ranging from 800 nm to

2.5 µm. We introduce the dipole approximation for the atom-field interaction

and some of the important concepts and models which have been used in the

field to date. In particular, the main approximations we take advantage of are

the dipole approximation and the single active electron (SAE) approximation
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for laser-atom interactions involving argon (a multi-electron system) and the

Muller potential [62].

2.2 External Field

The classical electromagnetic field in vacuo can be described in terms of the

electric field, E(r, t), and the magnetic field, B(r, t), which satisfy Maxwell’s

field equation without sources:

∇ · E = 0 (2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B

∂t
(2.3)

∇×B =
1

c2
∂E

∂t
(2.4)

where c is the speed of light. We may also choose to describe the electromag-

netic field using the scalar field, φ(r, t), and vector potential, A(r, t), from the

following relations:

E = −∇φ− ∂A

∂t
(2.5)

B = ∇×A. (2.6)

Using equations (2.1) to (2.6) we find that the vector potential satisfies the

homogeneous wave equation

∇2A− 1

c2
∂2A

∂t2
= 0. (2.7)
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Equations (2.5) and (2.6) produce the same electromagnetic field E and B

under the gauge transformation

A→ A′ = A +∇χ (2.8)

φ→ φ′ = φ− ∂χ

∂t
(2.9)

where χ(r, t) is an arbitrary scalar function. Careful choices of χ can simplify

problems involving electromagnetic fields. When no sources are present, the

most common gauge is the Coulomb gauge where the χ(r, t) has been chosen

to satisfy the condition

∇ ·A = 0. (2.10)

With this, we have φ = 0, which transforms definitions of the electric and

magnetic fields to

E = −∂A

∂t
(2.11)

B = ∇×A. (2.12)

A monochromatic transverse plane wave solution to equation (2.7) is

A(r, t) = ε̂A0 sin(k · r− ωt− φ) (2.13)

where k is the propagation vector, ω is the frequency and φ the phase of the

laser field. We use equations (2.11) and (2.12) to define the corresponding

electric field and magnetic field as
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E(r, t) = ε̂E0 cos(k · r− ωt− φ) (2.14)

B(r, t) = (k̂× ε̂)
E0

c
cos(k · r− ωt− φ) (2.15)

where the electric field amplitude and vector potential amplitude are related by

E0 = ωA0 and the unit vector ε̂ is known as the polarisation vector. The laser

field defined by equations (2.14) and (2.15) is described as linearly polarised,

that is to say, the electric field points in a fixed direction ε̂ independent of

time.

The combination of two orthogonal, phase shifted, linearly polarised trans-

verse plane waves produces elliptically polarised light. The ellipticity of a

particular laser field is defined by the quantity ξ. The corresponding vector

potential and electric fields with ellipticity ξ are

A(r, t) =
A0√
1 + ξ2

[ε̂x sin(k · r− ωt− φx)− ξε̂y cos(k · r− ωt− φy)] (2.16)

and

E(r, t) =
E0√
1 + ξ2

[ε̂x cos(k · r− ωt− φx) + ξε̂y sin(k · r− ωt− φy)]. (2.17)

A special case of elliptically polarised light, called circularly polarised light,

occurs when the conditions ξ = ±1 and φx = φy are met. We may also

distinguish the rotation of the field by labelling circularly polarised light when

ξ = 1 as right-circularly polarised light and ξ = −1 as left-circularly polarised

light.
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2.3 The Hamiltonian

The Hamiltonian is the sum of operators pertaining to the kinetic and potential

energies of a system. Given a particle with charge q, no spin and mass m

in an atomic potential V (r), the Hamiltonian operator for an atom in an

electromagnetic field is as follows:

Ĥ =
1

2m
(p̂− qA)2 + qφ+ V (r) (2.18)

where momentum operator is defined as p̂ = −i~∇. In the case of one-electron

systems, we may rewrite equation (2.18) with m = 1, ~ = 1 and q = −1 in

atomic units. Let us also expand the Hamiltonian like so:

Ĥ = −1

2
∇2 − i

2
(A · ∇+∇ ·A) +

1

2
A2 − φ+ V (r). (2.19)

The solution to the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (2.20)

is invariant under the gauge transformation

A(r, t) = A′(r, t) +∇χ(r, t) (2.21)

φ(r, t) = φ′(r, t)− ∂

∂t
χ(r, t) (2.22)

Ψ(r, t) = Ψ′(r, t)e−iχ(r,t) (2.23)

where, in the case of equation (2.20), χ(r, t) represents an arbitrary real, dif-

ferentiable function of r and t. Combining equation (2.19) with the Coulomb

gauge ∇ ·A = 0, φ = 0, and the fact that
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∇ · (AΨ) = A · (∇Ψ) + (∇ ·A) ·Ψ (2.24)

equation (2.20) is reduced to

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (2.25)

=

[
− 1

2
∇2 − iA · ∇+

1

2
A2 + V (r)

]
Ψ(r, t). (2.26)

The components in the Hamiltonian as described in equation (2.25) can be

understood as the summation of the atomic interaction and the interaction

with field such that

Ĥ0 = −1

2
∇2 + V (r) (2.27)

ĤI = Ĥ − Ĥ0 = −iA · ∇+
1

2
A2. (2.28)

2.3.1 Dipole Approximation

If we assume that the wavelength λ of the laser field is much larger than the

atomic system, along with the intensity of the field not being too high, then

we can neglect the spatial variation of the electromagnetic field the atomic

system is subject to. Dropping the spatial dimension of the the laser field is

known as the dipole approximation, that is to say the vector potential is only

a time-dependent factor of the TDSE.

In order to see why this works, we can take the plane wave form of the

vector potential in equation (2.13) with φ = 0 and expand it in terms of its

Taylor series with respect to position:
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A(r, t) =
1

2i
{ε̂A0 exp[i(k · r− ωt)]− c.c.}

=
1

2i

{
ε̂A0 exp(−iωt)

(
1 + ik · r +

1

2!
(ik · r)2 + . . .

)
− c.c.

}
.

(2.29)

From here, the matrix element between the initial, 〈Ψ0|, and final state, |Ψf〉,

is

〈Ψ0| ĤI |Ψf〉 ∝ 〈Ψ0|A · ∇ |Ψf〉+ 〈Psi0|A2(r, t) |Ψf〉

∝ exp(−iωt)ε̂ ·
(
〈Ψ0| ∇ |Ψf〉+ 〈Ψ0| (ik · r)∇ |Ψf〉

+
1

2!
〈Ψ0| (ik · r)2∇ |Ψf〉 · · · − c.c.

)
+ 〈Psi0|A2(r, t) |Ψf〉 .

(2.30)

For the majority of the laser parameters considered in this thesis, the matrix

elements containing k · r are small compared to 〈Ψ0| ∇ |Ψf〉 and the power se-

ries in k · r converges quickly and allowing us to neglect the spatial component

of the electric field. Similarly for the A2 term in equation (2.30), dropping the

spatial component k · r leaves a purely time dependent part of the interaction

of the form

〈Psi0|A2(r, t) |Ψf〉 ≈ 〈Psi0|A2(t) |Ψf〉 . (2.31)

This quantity is equal to 0 unless state the final state f is equal to the initial

state 0 and therefore does not contribute to the dynamics of the interaction

within the dipole approximation.

Since A(r, t) = A(t) in the dipole approximation, the Coulomb gauge is

automatically satisfied along with the electric field and magnetic field being
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defined as follows:

E(t) = −dA(t)

dt
(2.32)

and most importantly

B = ∇×A(t) = 0. (2.33)

Equation (2.33) only remains a valid assumption, however, when the velo-

city of electrons in the continuum remain insignificant relative to the speed of

light. Equations (2.14) and (2.15) tell us that

|B|
|E|

=
1

c
. (2.34)

The v×B component of the full Lorentz force, pulls the magnetic force back

into the fray as the ratio v/c increases. Figure 2.1 points out the regions

where non-dipole effects must be considered. An electron’s maximum velocity

in the continuum is a function of the field’s wavelength and intensity. As such,

the long wavelength regions of figure 2.1 highlight the necessity to include

non-dipole terms. The upper dipole limit occurs when the wavelength of the

field is comparable to the size of the atomic system, at which point spatial

homogeneity can no longer be considered a reasonable assumption.

2.3.2 Gauge Transformations

For one-electron systems where Ĥ0 = −1
2
∇2 + V (r), we may write

i
∂

∂t
Ψ(r, t) =

[
Ĥ0 − iA · ∇+

1

2
A2

]
Ψ(r, t). (2.35)

Within the dipole approximation, we can eliminate the term A2 using the
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Figure 2.1: The wavelength-intensity parameter space for when the dipole
approximation is valid [57].

gauge transformation

Ψ(r, t) = e−
i
2

∫ tA2(t′)dt′ΨV (r, t), (2.36)

yielding the velocity gauge form of the TDSE

i
∂

∂t
ΨV (r, t) =

[
Ĥ0 − iA(t) · ∇

]
ΨV (r, t). (2.37)

Another gauge transformation that may be implemented is the length gauge

by using the Göpert-Mayer transformation χ(r, t) = A(t)·r. Within the dipole

approximation E(t) = −dA(t)
dt

and along with equations (2.21) to (2.23) we have
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A′(t) = 0 (2.38)

φ′ = −E(t) · r (2.39)

ΨL(r, t) = eiA(t)·rΨV (r, t). (2.40)

The TDSE in the length gauge then becomes

i
∂

∂t
ΨL(r, t) =

[
Ĥ0 + E(t) · r

]
ΨL(r, t). (2.41)

A gauge transformation is a unitary transformation on the TDSE and in

theory should amount to measurable quantities being equal between the gau-

ges. In practice, when approximations are made in the case of strong field

approximations in particular (to be discussed shortly) or under certain condi-

tions of the electric field, this is not the case. It is well known that the length

gauge requires an increased number of angular momenta and basis functions

to describe the electron dynamics faithfully when compared with propagation

under the velocity gauge [23].

The canonical momentum in the length gauge is equal to the kinetic mo-

mentum of the electron, whereas the velocity gauge has canonical momentum

equal to the kinetic momentum of the electron with the quantity A(t) subtrac-

ted. This is equivalent to subtracting the classical momentum of the electron

in an electromagnetic field, rendering the canonical momentum to vary slowly

compared to the length gauge. Cormier and Lambropoulos [23] demonstrate

this for hydrogen subject to a 619.88nm pulse with intensity 3.16×1013W/cm2

for 12 cycles in both gauges. The observed populations of the angular momen-

tum numbers between the two gauges showed a clear advantage in using the

velocity gauge. The length gauge populates the high angular momentum so-
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mewhat equally, whereas the velocity gauge sees a very small number of angular

momenta populated beyond what is considered non-negligible (see figure 2.2).

Figure 2.2: Distribution of the population of the wave function as a function
of angular momentum l at a time t = 21 a.u. when the field, E(t), is instan-
taneously 0 during the pulse [23].

2.4 Classical Motion in a Monochromatic

Field

The Lorentz equation which governs the classical dynamics of an electron in

an electromagnetic field is as follows [84]

d

dt
pcl = −[E(r, t) + v ×B(r, t)]. (2.42)

Taking φ = 0 in equation (2.5), employing the Coulomb gauge and neglecting

relativistic effects, the momentum pcl = v in atomic units and E and B are
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related to A by equations (2.5) and (2.6), respectively. Since we are working

in the non-relativistic regime, it is true that v/c � 1, permitting us to omit

the second term of equation (2.42). Making the assumption that the initial

velocity of the electron is small enough that the displacement from its initial

position r0 along the propagation direction remains much smaller than the

carrier wavelength means that, in the long-wavelength limit, we have [46]

d

dt
v = −E(r0, t). (2.43)

Integrating equation (2.43) tells us the velocity of an electron with initial

velocity v0 at time t0

v(t) = −
∫ t

t0

E(r0, t
′)dt′ + v0

= A(r0, t)−A(r0, t0) + v0.

(2.44)

The canonical momentum in the velocity gauge is

p = v(t)−A(r0, t) (2.45)

and so

p(t) = p(t0) (2.46)

which shows that the canonical momentum is conserved in the long-wavelength

approximation in the velocity gauge. The classical motion of the electron is a

superposition of the quiver motion and the drift motion defined as follows

vq(t) = A(r, t) (2.47)
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and

vd(t) = v0 −A(r0, t0) = p0. (2.48)

The position of the electron at time t with initial velocity v0 and location r0

at time t0 is found by integrating equation (2.44)

r =

∫ t

t0

A(t′)dt′ + v0(t− t0) + r0

= α(t, t0) + v0(t0 − t) + r0

(2.49)

where α(t, t0), the quiver motion of the electron, is defined as

α(t, t0) =

∫ t

t0

A(r0, t
′)dt′. (2.50)

For a linearly polarised laser field, the electron oscillates along the polarisation

vector with amplitude α0 = E0/ω
2 = A0/ω.

2.4.1 Ponderomotive Energy

The ponderomotive energy, Up, is an important parameter in laser-atom phy-

sics. It is defined as the cycle averaged quiver energy of the free electron in the

field. Assuming the electron is at rest in a monochromatic field acting along

the x-axis, where the field is defined as

E(t) = E0 cos(ωt)ε̂x (2.51)

the kinetic energy is given by

Ek =
E2

0

2ω2
sin2(ωt) (2.52)
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and therefore the cycle averaged kinetic energy is

〈Ek〉T ≡ Up =
E2

0

4ω2
=

I

4ω2
. (2.53)

The notation 〈〉T denotes the time averaging over one laser cycle T = 2π/ω.

A direct electron is an electron that accrues enough kinetic energy to never

return to the core. The maximum kinetic energy an electron can have when its

motion is defined by equation (2.52) is Edir,max
k = 2Up, the maximum kinetic

energy of an electron in a monochromatic field [59].

2.5 Volkov Solutions to the TDSE: An

unbound electron in a laser field A(t)

Frequently, the solution of the free particle in a vector potential A(t) is re-

quired when modelling behaviour very far from the ion core, at which point

the particle is considered asymptotically free. The quantum mechanical solu-

tion of a free electron in a laser field with vector potential A(t) in the dipole

approximation are given by the Volkov states.

Let us consider a free electron in a laser field with vector potential A(t)

within the dipole approximation. The motion of the electron is described by

i
∂

∂t
ψ

(V v)
k (r, t) = ĤFψ

(V v)
k (r, t) (2.54)

where, for q = −1,

ĤF (t) =
1

2
[p + A(t)]2. (2.55)

Applying the velocity gauge to equation (2.54) produces
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i
∂

∂t
ψ

(V v)
k,V (r, t) =

[
p2

2
+ A(t) · p

]
ψ

(V v)
k,V (r, t). (2.56)

Since ĤV
F commutes with p and since eik·r is an eigenfunction of p correspon-

ding to the eigenvalue k in a.u., equation (2.56) admits the solution [46]:

ψ
(V v)
k,V (r, t) =

1

(2π)
3
2

eik·rfk(t). (2.57)

The Volkov states are plane waves with an oscillating phase dependent on

the vector potential A(t). Substituting equation (2.57) into equation (2.56)

produces the first order differential equation

i
∂

∂t
fk(t) =

[
k2

2
+ k ·A(t)

]
fk(t) (2.58)

yielding solutions of the form:

fk(t) = Ce−iEkt−ik·α(t) (2.59)

where Ek = k2

2
and

α(t) = −
∫ t

−∞
A(t′)dt′. (2.60)

is the classical quiver amplitude of an electron in a laser field.

Choosing C = 1, we obtain from equation (2.57)

ψ
(V v)
k,V (r, t) =

1

(2π)
3
2

eik·[r−α(t)]−iEkt (2.61)

with normalisation condition

〈ψ(V v)
k,V |ψ

(V v)
k,V 〉 = δ(k− k′). (2.62)
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The choice C =
√
k in a.u. results in the ‘energy normalisation’ of the Volkov

states

〈ψ(V v)
k′,V |ψ

(V v)
k,V 〉 = δ(Ek − E ′k)δ(k− k′). (2.63)

2.6 Multiphoton Ionisation

Multiphoton processes were first observed in 1963 by Damon and Tomlinson

[25] and again in 1965 by Voronov and Delone [83], who recorded two-photon

electron detachment from the negative ion I−. The multiphoton regime is

dominant when the photon energy is lower than the ionisation potential of the

atom within the laser field, requiring a number of photon absorptions to ionise.

For single electron atoms we have the multiphoton ionisation (MPI) reaction

nω + Aq → Aq+1 + e− (2.64)

where n is the number of photons absorbed and q is the charge of the atomic

system.

2.6.1 Above Threshold Ionisation

In 1979, P. Agostini et al discovered that for sufficiently high intensities (I >

1011 W/cm2, the ionised electron can absorb more than the minimum number

of photons required to enter the continuum [1]. This phenomena was called

above threshold ionisation (ATI). The spectra in [1] were seen to exhibit several

peaks at

Es = (n+ s)ω − Ip (2.65)
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2.6. MULTIPHOTON IONISATION

separated by the photon energy ω, where n is the minimum number of photons

needed to exceed the ionisation potential Ip and s is the excess number of

photons absorbed.

An experimental example of ATI spectra measured in 1988 by G. Petite

et al [67] is shown in figure 2.3. At weak intensities we find the intensity

dependence of the peaks follows the lowest order perturbation theory (LOPT)

prediction that the ionisation rate for an (n+s) photon-process is proportional

to In+s. For higher intensities, we find the LOPT prediction breaking down

as peaks at higher energies arise where a disproportionate number of excess

photons have been absorbed.

We may also remark on the fact that the low energy peaks have been

noticeably suppressed. This is due to the Stark shifting of the atomic states

in the presence of the laser field. The (AC) Stark shift of a system is the

effect of the electric field on the energy levels of the atomic states. Relative

to the electric field, electrons that are strongly bound to the ion core are

barely affected by the Stark shift of the system. On the other hand, induced

Stark shifts of the Rydberg and continuum states are given by the electron

ponderomotive energy Up = E2
0/4ω

2, described in section 2.4.1 as the cycle-

averaged kinetic energy of an electron in a laser field.

For a wavelength of λ = 1064nm, Up becomes equal to the photon energy

at approximately I = 1013W/cm2. Since the continuum states are shifted

upwards by Up relative to the lower bound states, we find that there is a

corresponding increase in the intensity-dependent ionisation potential of the

atom such that Ip(I) ≈ Ip + Up. If nω < Ip + Up then ionisation by n photon

absorption is energetically forbidden, however, for smoothly varying pulses,

the electron is subject to a range of intensities and a dampening rather than

a nullification of low energy peaks is observed.
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The intensity profile for a pulse can vary both in time and space in a realistic

experiment. The variation in space leads to a ponderomotive force and one can

account for its effect on the ATI spectrum in figure 2.3 (see section 1.3 and

subsection 2.2.2 in [46]).

Figure 2.3: Electron energy spectra showing ATI of xenon subject to a laser
with wavelength λ = 1064nm. Top: I = 2 × 1012W/cm2. Bottom: I =
1013W/cm2 [67].

2.7 Tunnelling and Barrier Suppression

Ionisation

If the frequency is low enough and the intensity of the field is large enough

to mean that the electric field is comparable to the Coulomb potential, then

we can interpret ionisation using a quasi-static model. The bound electron

experiences the sum of the Coulomb potential and the instantaneous electric
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field in the length gauge (i.e. E(t) · r) to form an effective potential, an

illustration of which can be seen in figures 2.4 and 2.5.

Figure 2.4: Classically forbidden tunnelling ionisation.

Figure 2.5: Barrier suppression ionisation.

The diagram in figure 2.4 is a one dimensional depiction of tunnelling ioni-

sation, whereby the electric field at time t1 suppresses the effective barrier to
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2.7. TUNNELLING AND BARRIER SUPPRESSION IONISATION

the point at which tunnelling may occur. Tunnelling is most prevalent during

the peaks of the electric field when it lowers the potential barrier resulting in

periodic bursts of ejected electrons.

Figure 2.5 displays barrier suppression ionisation (BSI) or over the barrier

ionisation (OBI) which occurs when the electric field at time t2 has become

strong enough to lower the effective barrier enough for the electron to ionise

without the need for tunnelling.

2.7.1 Keldysh Parameter

Since it is possible for ionisation to occur under different circumstances (mul-

tiphoton, tunnelling or BSI), it would be useful to know prior to a calculation

which form of ionisation we would expect to observe. Keldysh [52] defined the

dimensionless quantity γ, the Keldysh parameter, to distinguish between these

separate regimes. Keldysh considered the ratio of the characteristic time for

tunnelling, Tt, to the characteristic time of the laser field (the period T ):

γ =
Tt
T

=
ω

wt
=
ω
√

2Ip

E0

=

√
Ip

2Up
. (2.66)

When γ � 1 then multiphoton processes dominate ionisation and when

γ � 1 then we find tunnelling through a static barrier is the dominant process

for ionisation. The peak electric field required to enter the BSI regime is

EBSI =
E2
n

4Z
=

Z3

16n4
(2.67)

where En = Z2/2n2 is the binding energy of the atom. With this parameter,

we can further distinguish the processes that lead to ionisation. If E0 < EBSI

and γ � 1, then adiabatic tunnelling becomes the prevalent mechanism for

ionisation whereby the electron escapes along the instantaneous direction of
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the electric field, ignoring any oscillations and rotations of the electric field

during the tunnelling time. On the other hand, if E0 ≥ EBSI and γ � 1, then

we should find ourselves in the barrier suppression ionisation regime since the

electric field is strong enough to completely overcome the Coulomb at peak

amplitude.

If however we find γ ≈ 1 and E0 < EBSI , then we enter the non-adiabatic

tunnelling regime. This regime drops the assumption that the field has fre-

quency low enough to discount the effects of its oscillatory and rotational be-

haviour during the ‘time’ the electron spends tunnelling through the no longer

static barrier.

2.8 Three Step Model

The following model provides an intuitive picture of the ionisation process and

has been very successful in interpreting a broad range of processes in strong

field ionisation.

The three step model assumes that tunnelling plays a role in the ionisation

process (i.e. γ ≤ 1) and that at the moment of ionisation, the electron has

tunnelled through the barrier and has initial velocity v = 0. Once in the

continuum, the effect of the Coulomb potential is neglected.

As the name suggests, the ionisation process is broken into three steps:

1. The Coulomb potential combines with the slowly oscillating laser field to

create a barrier in the direction of the field. The electron tunnels through

this barrier at which point the atomic potential can be neglected. The

tunneling is treated quantum mechanically or semi-classically.

2. Once the electron is in the continuum, its motion is then dictated by the
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laser field. When the field switches direction, the electron is accelerated

back towards its parent-ion.

3. At the point of recollision, three scenarios may occur: the electron scat-

ters elastically; scatters inelastically, which may lead to multiple ioni-

sations and inner shell excitations of the atom; or it can radiatively

recombine into an empty bound state of the ion, releasing a photon with

energy ω = Ek + Ip, where Ek is the energy gained by the laser field.

This final scenario is known as high harmonic generation.

Classical calculations predict that the maximum kinetic energy the electron

can accrue directly in the laser field is 2Up. If the electron is to scatter elasti-

cally when recolliding with the parent-ion, then the maximum kinetic energy

an electron can gather occurs when it backscatters at an angle of 180◦ with

a maximum electron energy of 10Up. Note that this is the maximum classical

energy possible following recollision, there will be a range of electron energies

between 2Up and 10Up determined by the time at which ionisation occurs and

the time recollision occurs.

If the electron is to recombine with the parent-ion, the highest energy pho-

ton will be emitted when the electron has gathered the largest possible kinetic

energy in the laser field at the moment the electron recombines. Classical me-

chanics tells us the highest possible photon energy under these circumstances

is ω = Ip + 3.17Up.

In a regime whereby non-dipole effects can be discounted, atoms interacting

with many cycle laser fields incur the generation of high order harmonics when

the electron recombines with the core. At the point of recombination, the atom

responds in a nonlinear way, emitting coherent radiation at frequencies equal

to odd integer multiples of the laser frequency due to inversion symmetry of
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the atom [76].

2.9 Strong Field Approximation

The final topic we shall discuss briefly before moving onto methods of solving

the TDSE is the Strong Field Approximation SFA, a simple and approximate

theoretic approach to the problem of laser-atom interactions. The general

principle of the SFA is that the initial bound state of the atom is unaffected

by the laser field up to some time t′ at which point ionisation occurs, while

the final state in the continuum neglects the Coulomb potential entirely or

is treated as a perturbation [52], [65]. This model assumes that the field is

strong enough to ionise directly from the initial state, ignoring any and all

intermediary excited states of the atom.

The ionisation amplitude describing the above simplified hypothesis for an

electron ejected with momentum p is given by

Mp,x(ti, tf ) = −i
∫ tf

ti

dt′ 〈ψ(V v)
p,x (tf )|HI,x(t

′)|ψ0(ti)〉 (2.68)

where ψ0 is the initial state and ψ
(V v)
p,x is the Volkov state of an electron with

momentum p in the continuum described in section 2.5. HI,x(t) is the laser-

atom interaction term usually expressed in the length gauge. Time t′ is the

time at which ionisation takes place and so the point at which the binding

potential is neglected in favour of the electric field [11]. Unlike the TDSE, the

SFA is gauge-dependent. The subscript x in equation (2.68) denotes the choice

of gauge, either x = L or x = V for the length or velocity gauge, respectively.

The results produced by equation (2.68) differ significantly when selecting a

different gauge. A more general theory derived by Perelomov, Popov, and

Terentev (PPT), which shall be discussed further in Chapter 4, eliminates the
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gauge dependence of the SFA.

Equation (2.68) may be recast using integration by parts into

Mp,x = −i
∫ tf

ti

dt′ 〈ψ(V v)
p,x (tf )|V (r)|ψ0(ti)〉 (2.69)

which depends on the gauge only via the final Volkov state by

〈r|ψ(V v)
p,V 〉 =

e−iSp(t)

(2π)
3
2

eip·r (2.70)

in the velocity gauge and

〈r|ψ(V v)
p,L 〉 =

e−iSp(t)

(2π)
3
2

ei[p+A(t)]·r (2.71)

in the length gauge where the action Sp(t) is defined as

Sp(t) =
1

2

∫ t

dτ [p−A(t)]2. (2.72)

Substituting the length gauge form into equation (2.68) and using saddle point

methods for the integral, we can connect the results with the three step model

involving tunnelling and semi-classical interpretations of the ionisation process.
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Chapter 3

Solution of the Time Dependent

Schrödinger Equation for Short

Pulses

3.1 Introduction

There exist semi-classical and perturbative methods such as SFA that are able

to accurately describe the interaction between electromagnetic fields and atoms

for certain frequencies and intensities. For example, perturbation theory relies

on a laser pulse that is not too intense and a frequency that is not too high

or low so as to induce non-dipole or even relativistic effects. Restrictions to

semi-classical methods also include the shape and length of the pulse. If we

do not wish to impose any fixed shape and length on the pulse (within reason)

and relax the restrictions on the intensity and frequency that the field may

take, we must look outside of perturbative methods to solve the TDSE. One

major non-perturbative method is the direct numerical integration of the time-

dependent Schrödinger equation. It is important to note that depending on

the characteristics of the electromagnetic field, direct integration may require

large numbers of grid points or functions in basis sets to accurately represent

the wave function during and after the pulse, which can mean computationally

expensive calculations. Direct numerical integration is often limited to single
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electron atom interactions.

In order to broaden the reach of this method to many electron atoms, one

may employ the single active electron (SAE) approximation which assumes

that the laser only interacts with the outer most electron and the electron’s

interaction with the atom is represented by an effective potential V (r). This

approximation is most applicable to the alkali metals since the valence electron

sits outside a closed shell, but it is also effective to apply it to atoms where the

probability of multiple excitations is small. Therefore, atomic systems where

the SAE approximation is effective require that the single active electron has

a very high probability to be completely ionised by sequential processes before

the next is even excited [75].

The SAE reduces the problem of many electron interactions to a one-

electron equation which provides both a significant reduction in complexity,

as well as bound state plus continuum state superposition solutions. The ob-

vious disadvantage to the SAE is that it completely ignores electron-electron

interactions which may lead to non-sequential multiple ionisation.

This section explores a number of methods to find the full solution, Ψ(r, t),

for all points in space and time, to the TDSE

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (3.1)

where atomic units have been used.

Two problems need to be faced: firstly, the representation of Ψ(r, t) in

space at any time t and secondly, its propagation in time from some initial

state Ψ(r, t0). There are broadly two methods which are used to represent

the wave function in space: grid based methods, where space is divided into a

discrete uniform grid or basis set methods, where the wave function is expanded
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in a fixed basis with coefficients which depend on time. We will mainly use

the latter, however, we introduce the former by first describing a widely used

time propagation scheme before describing the Biconjugate Gradient Stabilised

method (BiCGSTAB) method, the method of propagation to be used within

this body of work.

3.1.1 Finite Difference Methods

Explicit and Implicit Methods

Suppose we have the solution to a differential equation, uj, at point j. We

can calculate the solution at the next point uj+1 from quantities that we have

already. For a clearer example, suppose we have a simple differential equation:

y′ = −cy. (3.2)

We may approximate the solution to equation (3.2) from known solution

yj with the Forward-Euler scheme [70]

yj+1 = (1− ch)yj (3.3)

where h > 0 denotes the step size. While very simple to implement, explicit

schemes are inherently unstable. By choosing h > c/2, we can see that |yj| →

∞ as j → ∞. Therefore large values for c would necessitate tiny step sizes.

Figure 3.1 below showcases this instability for the parameters c = 2 and h =

1.001 > 2/c.

Implicit schemes trade longer computation for stability. Solving equation

(3.2) with the Back-Euler scheme, whereby the right-hand side of the equation

is evaluated at a new location by
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Figure 3.1: This figure highlights the importance of choosing h small enough
to avoid problems with stability.

yj+1 =
yj

1 + ch
, (3.4)

we can see that as h → ∞, yj+1 → 0. This stability for all step sizes is

not general for all implicit schemes, in fact it is only true for linear systems.

However, in general, stability of solutions to implicit schemes is better than

solutions to explicit schemes and therefore are better suited to deal with stiff

sets of equations.

3.2 Schrödinger Equation in 1 Dimension

The Crank-Nicolson scheme [24] was developed in 1946 by John Crank and

Phyllis Nicolson to provide a novel way to solve partial differential equations, in

particular Crank and Nicolson were interested in the solution to the equations

describing the diffusion of heat.

At its core, the scheme proposed by Crank and Nicolson combines the

stability of an implicit scheme with second order accuracy in space and time by

averaging the explicit and implicit Forward Time Centered Space differencing
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3.2. SCHRÖDINGER EQUATION IN 1 DIMENSION

schemes [70].

As an example, consider the TDSE in one dimension

i
∂

∂t
Ψ(x, t) = HΨ(x, t), (3.5)

where H doesn’t depend explicitly on time.

Equation (3.5) admits the solution

Ψ(x, t) = exp(−iHt)Ψ(x, 0), (3.6)

where Ψ(x, 0) is the initial wave function at time t = 0. Discretising the wave

function over an equally spaced mesh in space and time such that Ψ(xi, tj) =

ψji , we may form an explicit scheme to compute ψj+1
i from ψji :

ψj+1
i = (1− iHδt)ψji . (3.7)

By multiplying equation (3.6) by exp(iH(t)), we can calculate ψj+1
i implicitly

from ψji using

ψj+1
i = (1 + iHδt)−1ψji . (3.8)

At each time step, both equations (3.7) and (3.8) do not preserve the norm

of the wave function and so, the wave function must be renormalised at each

time step. Combining equations (3.7) and (3.8), we arrive at the Cayley-Klein

form [37] for the time evolution operator which preserves the norm and is

second order accurate in time:

exp(−iHt) ≈
1− 1

2
iHδt

1 + 1
2
iHδt

. (3.9)

Hence,
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Figure 3.2: Plot of |Ψ(x)|2 of ground state hydrogen in one dimension subject
to a linearly polarised 10 cycle pulse with ω = 0.7 (a.u.) (see equation (3.21))
and intensity I = 3.509 × 1014 W/cm2 computed using the Crank-Nicolson
method in equation (3.10).

(1 +
1

2
iHδt)ψj+1

i = (1− 1

2
iHδt)ψji . (3.10)

Note, that this equation also holds for H = H(t) where we assume H(t) is

constant in the time interval δt. Usually H(t) is evaluated at the mid-point of

the interval.

The right hand side of equation (3.10) requires a matrix vector multipli-

cation while the left hand side requires the solution of a tridiagonal system of

linear equations in order to fully recover ψj+1
i . Figure 3.2 is the result of a 3000

point mesh in a box of size x ∈ [−125, 125] using equation (3.10) calculated in

the length gauge.
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3.3 Basis Methods

In this approach the wave function can be represented in terms of an expansion

of a complete square-integrable set of basis states ψk(r)

Ψ(r, t) =
N∑
k=1

ak(t)ψk(r). (3.11)

As usual, the computational complexity to solve equation (3.1) is a high pri-

ority and so, the expansion of the wave function must be truncated. The key

to basis state methods is to find the least number of basis states needed to

accurately represent the wave function during and after the pulse. We repre-

sent the ψk(r) in spherical coordinates and the angular part of the basis is

represented by the spherical harmonics Yl,m(θ, φ). We will focus on two radial

bases: Coulomb-Sturmian functions and B-Splines.

3.3.1 Sturmian Functions

The choice of basis heavily influences the number of basis functions one requi-

res to accurately represent the wave function. The Coulomb-Sturmian basis,

referred to here as simply the Sturmian basis, are the solutions of the Sturm-

Liouville equation

(
− 1

2

d2

dr2
+
l(l + 1)

2r2
− κn

r
+
κ2

2

)
Sκn,l(r) = 0. (3.12)

Equation (3.12) bears close resemblance to the reduced radial Schrödinger

equation for the Hydrogen atom

(
− 1

2

d2

dr2
+
l(l + 1)

2r2
− 1

r

)
un,l(r) = Enun,l(r) (3.13)
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where un,l(r) = rRn,l(r). In fact, by choosing κ = 1
n
, we find that Sκn,l(r) =

Rn,l(r). This displays the close relationship between the Sturmian functions

and the hydrogenic radial wave functions. However, Sturmians form a com-

plete (discrete) set as opposed to the hydrogenic functions which require the

continuum states for completeness. The Sturmian functions are given by [35]

Sκn,l(r) = Nκ
n,lr

l+1e−κrL2l+1
n−l−1(2κr) (3.14)

where n and l are the principal quantum number and orbital angular momen-

tum, respectively and where

Nκ
n,l =

√
κ

n
(2κ)l+1

√
(n− l − 1)!

(n+ l)!
(3.15)

is chosen such that

∫ ∞
0

Sκn,l(r)S
κ
n,l(r)dr = 1. (3.16)

The parameter κ acts as a dilation parameter. By increasing the value of κ the

quantity e−κr becomes more prevalent and suppresses behaviour further from

the origin, decreasing the value of κ has the opposite effect.

Comparing figures 3.3 and 3.4, there is a stretch of factor 2 when halving

the dilation parameter κ. Therefore as well as the total number of Sturmians

(denoted by N) in the basis set that will determine the size of the ‘box’ a

calculation uses, one may also tweak κ to manipulate the box size, too. The

range of the functions is approximately

r =
2N

κ
(3.17)

the approximate outer turning point.
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Figure 3.3: Sturmian functions with fixed l = 2 and κ = 0.5
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Figure 3.4: Sturmian functions with fixed l = 2 and κ = 0.25

For hydrogen in a laser field, the Sturmian representation of the wave

function is in general then

Ψ(r, t) =
∑
n,l,m

an,l,m(t)
Sκn,l(r)

r
Yl,m(θ, φ). (3.18)

We will also usually require the ‘atomic’ basis (i.e. the field free states) to

calculate excitation probabilities by projecting the atomic states onto the wave

packet at the end of the pulse. The field free Hamiltonian, H0, and eigenvalue
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Figure 3.5: Density of positive eigenvalues as the number of Sturmians is
increased incremented by 100.

equation is

H0Ψn(r) = EnSΨn(r), (3.19)

whose solution gives the atomic states or basis.

Since the Sturmian functions are not orthogonal, the overlap matrix S is

present on the right hand side of equation (3.19). When it comes to calculating

observables after the pulse, the density of states in the continuum that the basis

set occupies is something that must be taken into account. A density of states

that is too low around a certain energy region will result in an inaccurate

representation of the continuum.

To highlight the need to choose N large enough to include the energies a

calculation will require, figure 3.5 displays the density of eigenvalues against

increasing N . If the maximum expected electron energy will be no greater than

1 a.u., then 100 Sturmians would suffice, if the maximum expected electron

energy is larger than 1 a.u., then N must be increased accordingly.
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Figure 3.6: Density of eigenvalues with fixed N and varying κ. [41]

Changing the scope of the energy density does not just depend on the size

of the basis. In the same way that κ also influences the size of the box, it also

has an effect on the positive eigenvalues of the system as shown in figure 3.6.

3.3.2 Calculations Involving Sturmian Functions

When it comes to considering the problem of hydrogen subject to a linearly

polarised laser pulse with frequency ω and phase φ in three dimensions within

the velocity gauge, we must solve the Schrödinger equation

i
∂

∂t
Ψ(r, t) =

(
− 1

2
∇2 − 1

r
− iA(t) · ∇

)
Ψ(r, t). (3.20)
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We use a ‘sine squared pulse’

A(t) = A(t)ez = A0 sin(ωt+ φ) sin2

(
ωt

2N

)
ez (3.21)

within the dipole approximation, where 0 < t < τ and τ = 2Nπ/ω is the pulse

duration defined in terms of the number of cycles N and the frequency of the

pulse ω. Unless stated otherwise, the phase, φ, is set to 0.

Within the velocity gauge, the Sturmian functions produce an extremely

sparse Hamiltonian. The interaction blocks are 2-banded and the field free

blocks are 3-banded which, in total, yields a 7-banded Hamiltonian.

Using equation (3.18) to replace Ψ in equation (3.20), the matrix elements

of the Hamiltonian and the overlap matrix are analytical [41]. Note that due to

the selections rules associated with linearly polarised light, the wave function

Ψ is defined only in terms of a sum over n and l since m is constant. The

diagonal block elements of the overlap matrix are:

(S)ln,n = 1 (3.22)

(S)ln−1,n = −1

2

√
(n+ 2l)(n− 1)

(n+ l)(n+ l − 1)
(3.23)

(S)ln+1,n = −1

2

√
n(n+ 2l + 1)

(n+ l)(n+ l + 1)
. (3.24)

The elements of diagonal blocks of the Hamiltonian are:

59



3.3. BASIS METHODS

(H)ln,n =
κ2

2
− κ

n+ l
(3.25)

(H)ln−1,n =
κ2

4

√
(n+ 2l)(n− 1)

(n+ l)(n+ l − 1)
(3.26)

(H)ln−1,n =
κ2

4

√
n(n+ 2l + 1)

(n+ l)(n+ l + 1)
. (3.27)

The off-diagonal blocks require the resolution of the integral

〈Sκn′,l′Yl′,m′| − iA(t) · ∇|Sκn,lYl,m〉 =− iA(t)

√
4π

3
κ(n′ − n)

× 〈Sκn′,l′|Sκn,l〉 〈l′,m′|Y1,0|l,m〉 .
(3.28)

After some calculations we arrive at the matrix elements for the interaction

blocks of the Hamiltonian:

(H0)
l−1,l
n,n = − iA(t)l

2
√

(2l − 1)(2l + 1)

√
(n+ 2l)(n+ 2l − 1)

(n+ l)(n+ l − 1)
(3.29)

(H0)
l−1,l
n+2,n =

iA(t)l

2
√

(2l − 1)(2l + 1)

√
n(n+ 1)

(n+ l)(n+ l + 1)
(3.30)

(H0)
l+1,l
n,n =

iA(t)(l + 1)

2
√

(2l + 1)(2l + 3)

√
(n+ 2l + 1)(n+ 2l + 2)

(n+ l)(n+ l + 1)
(3.31)

(H0)
l+1,l
n−2,n = − iA(t)(l + 1)

2
√

(2l + 1)(2l + 3)

√
(n− 1)(n− 2)

(n+ l)(n+ l − 1)
. (3.32)

With the matrix elements at hand, the results shown in figure 3.7 were obtai-

ned in previous work by propagating equation (3.20) using the Arnoldi time

propagator [73] in the atomic basis (the eigenstates of H0) to avoid dealing

with the overlap matrix for Sturmians.
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Figure 3.7: The energy distribution in logarithmic scale for the simulation
of ground state hydrogen subject to an 8 cycle linearly polarised field with
intensity I = 1014 W/cm2 and frequency ω = 0.7 (a.u.) involving 8 angular
momenta, 250 Sturmian functions per angular momentum with κ = 0.3. Note
the ATI peaks at 0.9 and 1.6 a.u.

While more complicated, analytic expressions for the elements of the Ha-

miltonian in elliptically polarised fields can be derived when using Sturmian

functions, too. Figure 3.8 below shows the energy distribution for comparable

parameters to the case above, but for a circularly polarised laser field and cal-

culated using the Crank-Nicolson time propagation method to be described in

subsection 3.6.1, the electromagnetic field is defined as

A(t) = (−Ax sin(ωt+ φ)ex + Ay cos(ωt+ φ)ey) sin2

(
ωt

2N

)
(3.33)

for 0 < t < 2Nπ/ω = τ .
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Figure 3.8: The energy cross section for the simulation of ground state hydro-
gen subject to an 8 cycle circularly polarised field with intensities Ix = Iy =
1014W/cm2 and frequency ω = 0.7 (a.u.) involving 8 angular momenta, 250
Sturmian functions per angular momentum with κ = 0.3

3.3.3 B-Spline Basis

The Sturmians as a basis are rather restricted to the hydrogen atom. To treat

a general atom we use an alternative basis called the B-Spline basis [6]. Instead

of equation (3.18), we have

Ψ(r, t) =
∑
n,l,m

an,l,m(t)
Bn(r)

r
Yl,m(θ, φ) (3.34)

where Bn(r) are B-splines.

The first and most obvious difference between B-Splines and the Sturmi-

ans is that the B-Splines are calculated within a well-defined box or interval,

I = [a, b], rather than relying on a dilation parameter and the number of

functions in the basis to define the range that Sturmian functions can accu-

rately represent. The size of the box is an important attribute to consider,

choosing a box too small will incur artificial reflections of ionised electrons on
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the edge of the box. Choosing the box too large will unnecessarily impede

the length of a calculation by increasing the the number of B-spline functions

needed to represent the box sufficiently. So, much like the overarching problem

with Sturmian functions, the use of B-splines also requires the user to choose

the least number of functions to speed up the calculations without affecting the

convergence of observables. Within the subject of laser physics, we may define

the size of the box based on the ponderomotive energy (defined in Chapter 2)

of the ionised electrons which, in turn, is defined by parameters of the laser.

A basis of B-spline functions is defined over an interval I = [a, b]. I is then

divided into l subintervals by defining l + 1 breakpoints ξj in strict ascending

order

a = ξ1 < ξ2 < ... < ξl+1 = b. (3.35)

Associated with the interior breakpoints is a second set of non-negative

integers νj, i.e. j = 2, 3, ..., l. These integers define the degree of continuity

Cνj−1, the continuity condition, at the breakpoints in the interval. A continuity

condition C−1 would define no continuity at the breakpoint. At the edges of

the interval, ξ1 = a and ξl+1 = b, we impose C−1.

Finally we must define a sequence of knots t1 ≤ t2 ≤ ... ≤ tm where

m ≥ l+1. Each B-spline is a piecewise polynomial function of degree, or order,

k defined over the interval [ti, ti+k]. The multiplicity of the knot sequence is

defined at each breakpoint. Given multiplicity µj = k−νj, we have µj knots at

the breakpoint ξj. Thus, the knot sequence defines the continuity condition at

each breakpoint. As stated beforehand, we require no continuity at the edges

of the box, we are only interested in the region [a, b] and so we impose µ1 = k

and µl+1 = k. In most cases, it is beneficial to produce maximal continuity,
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Ck−2, at the interior breakpoints, and so for j = 2, 3, ..., l, the multiplicity at

each breakpoint will be µj = 1.

3.3.4 Computing a Basis of B-splines

Figure 3.9: Recursive evaluation of B-splines up to order k = 3, relative to the
knot sequence {0, 1, 2, 3, 4, 5} [6].

Grid mesh points between breakpoints may be arbitrarily chosen because

each B-spline in the basis is computed iteratively at a point x in the interval

[ti, ti + k]. We may exploit the fact that B-splines are piecewise polynomial

functions by selecting the mesh points to coincide with the abscissae of the

Gaussian Quadrature, enabling extremely fast and exact integration.
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Given the definition of a B-spline of order k = 1

B1
i (x) = 1, ti ≤ x < ti+1 and B1

i (x) = 0, otherwise, (3.36)

we may recursively compute the value of Bk
i (x) of arbitrary order k using the

recurrence relation [27]

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x). (3.37)

Figure 3.9 displays graphically how equation (3.37) computes higher and higher

orders of B-spline (up to order k = 3 in the example). The value of B1
3(x0) in

the lowest panel of figure 3.9 is defined using equation (3.36) with t3 = 2 and

t4 = 3. Equation (3.37) is then used to produce the points shown in the middle

panel of figure 3.9. The B-spline B1
3(x0) appears in the recursive formulae for

B2
2(x0) and B2

3(x0) and so the values of two separate B-splines are defined. The

values B2
2(x0) and B2

3(x0) then produce the points shown in the topmost panel

for third order B-splines. Note that the fully formed picture of the B-splines

shown in figure 3.9 are built up by considering many points along the entire

interval [a, b] = [0, 5].

3.4 The Hydrogen Atom

We can compute the ‘atomic’ basis for the hydrogen atom by computing the

eigenvalues and eigenvectors of the field free Hamiltonian within a box and to

use them as a basis. We initially represent the full wave function as a linear

combination of spherical harmonics and B-splines, in much the same way as

the Sturmian representation
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Ψ(r) =
∑
k,l,m

ck,l,m
Bk(r)

r
Yl,m(θ, φ). (3.38)

The function un,l(r) is the solution to the reduced radial equation:

(
− 1

2

d2

dr2
+
l(l + 1)

2r2
− 1

r

)
un,l(r) = En,lun,l(r). (3.39)

From equation (3.38) we have un,l(r) =
∑N

k=1 a
n,l
i Bk(r) yielding the system

Hl
0 · a = ES · a (3.40)

where a contains the coefficients in equation (3.38).

The elements of the field free Hamiltonian and overlap matrices are

[Hl
0]i,j =− 1

2

∫ b

a

Bi(r)
d2

dr2
Bj(r)dr

+
l(l + 1)

2

∫ b

a

Bi(r)Bj(r)

r2
dr −

∫ b

a

Bi(r)Bj(r)

r
dr

(3.41)

and

[S]i,j =

∫ b

a

Bi(r)Bj(r)dr, (3.42)

respectively. We can glean from the fact that Bk
i (x) is non-zero in the interval

[ti, ti+k] that integrals involving B-splines are non-zero if and only if |i−j| < k.

Hence, the Hamiltonian and the overlap matrix are both 2k − 1 banded.

Table 3.1 exhibits the eigenvalues computed by solving the generalised ei-

gensystem in equation (3.40) using a basis of B-splines of order 9.

Table 3.2 highlights the accuracy of the B-spline basis when computing

lower bound states for each orbital angular momentum. Choosing a finer mesh
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close to the nucleus and a more sparse mesh at greater distances is conducive

to higher accuracy when computing the bound states [78], [74].

Table 3.1: Eigenvalues computed by solving equation (3.40) using a basis 400
B-splines of order 9 in a box of size 400 a.u.

Table 3.2: Magnitude of the difference between the values of the true eigenva-
lues and those computed in figure 3.2.

3.5 The Argon Atom

For atoms with more complicated systems than that of hydrogen, where more

than one electron exists, it is necessary to make approximations to reduce the

complexity of the system. The approximation made is called the Single Active

Electron (SAE) approximation. The premise behind the SAE approximation

is simple: the laser field is assumed to only interact with one electron in

the system. The approximation is effective when the probability of the other

electrons within the system becoming excited or even ionised is negligible. The

approximation is particularly well suited to the noble gases where the dominant
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3.5. THE ARGON ATOM

method of multiphoton ionisation is single electron sequential excitation [76].

For problems involving argon, to be shown in later chapters, this is an excellent

choice of approximation.

In order to model argon within the SAE, it is necessary to take care when

considering the ion-electron interactions close to the core. Muller [62] pro-

vides a broadly used pseudopotential that recovers the eigenenergies for the

bound states of argon through the solution of the following time independent

Schrödinger equation (TISE)

[
− 1

2
∇2 + V0(r) +W0(r)

]
Ψ(r) = EΨ(r) (3.43)

where V0(r) and W0(r) are given in [62] as

V0(r) = −1 + Ae−Br + (17− A)e−Cr

r
(3.44)

where the constants A = 3.4, B = 1 and C = 3.682 are chosen to reproduce

the configuration averages of the binding energies of the singly excited states

[60] and

W0(r) = F

[(
Rx −R
G

)5

−
(
Rx −R
G

)4]
(3.45)

where F = 2.5, Rx = 3, R = 0.5 and G = 2.01785. V0(r) also reproduces

the K-shell, L-shell and 3s ionisation potentials correctly as well as exhibiting

the correct asymptotic behaviour. Thus, V0(r) is an excellent approximation

to the electron-ion interaction excluding exchange, as long as core excitations

are absent, however, due to the deep potential well supporting inner shells, we

cannot use V0(r) as such.

To obtain a potential suitable for a simulation of argon in the single active

approximation, Muller [62] made use of the fact that the first radial node of the
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p wave and the second node of the s wave nearly coincide. Muller imposes a

hard-core boundary condition at R = 0.5 (Ψ(r) = 0 for 0 < r < R). This hard-

core boundary only induces a small distortion of these waves and eliminates

the K-shells and the L-shells. The d wave penetrates near this boundary and is

sensitive to these small distortions. In order to deal with these defects, Muller

includes a soft repulsive core W0(r). Beyond Rx = 3, the eigenfunctions in the

well W0(r) + V0(r) are identical to those in only V0(r) and together they yield

the exact representation of the 3p energy.

One final thing to note is that only low angular momenta penetrate signifi-

cantly below the Rx threshold. For all l ≥ 3, the eigenfunctions remain purely

hydrogenic. V0(r) +W (r) is known as the Muller effective potential for argon.

3.6 Time Propagation

3.6.1 Crank-Nicolson

The time dependent wave function is represented, for example, as a linear

combination of B-spline functions and spherical harmonics

Ψ(r) =
∑
k,l,m

ck,l,m(t)
Bk(r)

r
Yl,m(θ, φ). (3.46)

Substituting this form of the wave function into the time-dependent Schrödin-

ger equation, we obtain a system of coupled differential equations

iS · ċ(t) = (H0 + D(t)) · c(t) (3.47)

where D(t) contains the time-dependent part of the Hamiltonian and S is the

block diagonal overlap matrix. We choose to keep the time interaction part
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D(t) general in this section since we shall use a mix of dipole and non-dipole

time dependent components in the Hamiltonian within this thesis.

Approximating ċ(t) and c(t) with

ċ(t) =
c(t+ δt

2
)− c(t− δt

2
)

∂t
(3.48)

and

c(t) =
c(t+ δt

2
) + c(t− δt

2
)

2
(3.49)

we arrive at the implicit Crank-Nicolson propagation scheme correct to order

δt2:

(
S+

iδt

2
(H0+D(t))

)
·c
(
t+

δt

2

)
=

(
S− iδt

2
(H0+D(t))

)
·c
(
t− δt

2

)
. (3.50)

3.6.2 Preconditioner

A preconditioner may be applied to the above system in order to simplify

the original problem into something more manageable when using iterative

methods. For example, one may require many passes through some iterative

algorithm, but with a preconditioner, the number of passes should be signifi-

cantly reduced depending on the complexity of the preconditioning applied.

For ease, allow c(t+ δt) = x, c(t) = b and

A = S +
iδt

2
H0, (3.51)

the time-independent part of the system and let
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B = −iδt
2

D(t). (3.52)

We may recast equation (3.50) as

(A−B)x = (Ā+B)b. (3.53)

The objective of the preconditioner is to then approximate (A−B)−1 and the

one selected for the results shown later in this section is:

M =

[ norder∑
n=0

(A−1B)n
]
A−1 (3.54)

where norder is the order of the preconditioner. Then

M(A−B)x = M(Ā+B)b (3.55)

reduces to

(
I− (A−1B)norder+1

)
x =

[ norder∑
n=0

(A−1B)n
]
A−1(Ā+B)b. (3.56)

Finally, let both Ã = I−(A−1B)norder+1 and b̃ =

[∑norder
n=0 (A−1B)n

]
A−1(Ā+

B)b and we have the preconditioned system Ãx = b̃ ready to be solved for x

using the Biconjugate Gradient Stabilised method (BiCGSTAB) routine.

We now move to describe the algorithm we chose to use for all the time

propagation of the TDSE presented within this thesis. We found for the pro-

blems we consider, that the BiCGSTAB with preconditioning [82] provided

efficient resolution of systems of equations of the form:
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Ax = b (3.57)

where the vectors x,b ∈ Cn and A is an n× n matrix with elements Aij ∈ C

∀i, j ∈ {1, 2, ..., n}. The time taken to invert the matrix A grows like O(n3),

and non-dipole terms fill the system A further and thus we look to iterative

methods to approximate x without the need to directly invert the system.

In 1992, H. A. Van der Vorst developed the BiCGSTAB [82] as an impro-

vement upon the numerically unstable Biconjugate Gradient method (BiCG)

[32]. In order to describe the algorithm, it is necessary to cover some back-

ground material on the subject of Krylov subspaces.

3.6.3 Krylov Subspaces

The approximate solutions xk to the system shown in equation (3.57) that

Krylov subspace methods produce are

xk ∈ x0 +Kk(r0, A), k = 1, 2, ... (3.58)

where k is the dimension of the Krylov subspace, x0 is the initial candidate for

the solution to the system and r0 = b− Ax0, the initial residue. The Krylov

subspace is defined as follows:

Kk(r0, A) = {φ(A)r0|φ ∈ Pk−1} (3.59)

with

Pn = {φ(λ) ≡ σ0 + σ1λ+ ...+ σnλ
n|σ0, σ1, ..., σn ∈ Cn}. (3.60)

That is, the Krylov subspace Kk(r0, A) = span{r0, Ar0, ..., A
k−1r0}. Note that

72



3.6. TIME PROPAGATION

we may express the residual vector rk corresponding to the kth iteration of the

solution xk in terms of a polynomial Pk(A):

rk = b− Axk = Pk(A)rk (3.61)

where

Pk ∈ Pk, Pk(0) = 1. (3.62)

The idea is to choose a polynomial Pk at each step to minimise the norm of

the residual vector rk.

3.6.4 BiCGSTAB

The BiCGSTAB algorithm improves upon the erratic convergence of rk =

Pk(A)r0 to zero by introducing a second polynomialQk to act upon the residues

like so:

rk = Qk(A)Pk(A)r0 (3.63)

with

Qk(A) = (I− ω1A)(I− ω2A) · · · (I− ωkA). (3.64)

The choice of ωi being crucial to minimising the norm of the residue at the kth

iteration. We are now ready to introduce the BiCGSTAB algorithm:

Initialisation.

1. Choose γ > 0 to select the precision of the iterative procedure;
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2. Choose an initial candidate solution x0 to the system;

3. Calculate r0 = b− Ax0;

4. Choose arbitrary vector r̂0 such that (r̂0, r0) 6= 0;

5. ρ0 = α = ω0 = 1;

6. p0 = v0 = 0.

Iterative procedure.

do i = 1, 2, ...

• ρi = (r̂0, ri−1);

• β = ρiα
ρi−1ωi−1

;

• pi = ri−1 + β(pi−1 − ωi−1vi−1);

• vi = Api;

• α = ρi
(r̂0,vi)

;

• s = ri−1 − αvi;

• t = As;

• ωi = (t,s)
(t,t)

;

• xi = xi + αpi + ωis;

• if ||r|| < γ then quit the procedure and take xi to be the solution to the

system;

• else ri = s− ωit
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end do

Note that to reduce the number of iterations through the BiCGSTAB rou-

tine, we initially set the order of the preconditioner to 1 but allow the order to

vary from time step to time step. The order of the preconditioner is increased

by one in time step n+ 1 if the BiCGSTAB routine is used more than once in

time step n and reduced by one if the BiCGSTAB routine is not used all. This

can occur when the preconditioning is enough to produce r0 in the initialisation

part of the BiCGSTAB algorithm small enough to not warrant the iterative

procedure which would normally follow. Varying the order of preconditioner

allows us to use larger time steps and results in a moderate increase in the

speed of computation for large calculations.
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Chapter 4

The Propensity Rule

4.1 Introduction

If the frequency of the external laser field is varying slowly we can calculate the

ionisation rate from the static field ionisation rate. In this so called adiabatic

limit (which corresponds to the Keldysh parameter γ � 1) for circularly po-

larised radiation, the ionisation rate is equal to the static field value since the

electric field is constant in magnitude while rotating. C. Z. Bisgaard and L.

B. Madsen [15] derived formulae for the ionisation rates for static and slowly

varying fields for hydrogen. Using the asymptotic form of the wave function

of hydrogen within a Coulomb field, they showed that the ionisation rate for

a static field from any initial state (n, l,m) of hydrogen to be

ωion =
|B|2

2|m||m|!
1

κ
2
κ
−1

(
2κ3

E0

) 2
κ
−|m|−1

e
− 2κ3

3E0 , (4.1)

where

B2 = D22l + 1

2

(l + |m|)!
(l − |m|)!

(4.2)

and D is a normalisation constant coming from the asymptotic form of the

radial Coulomb wave function for hydrogen which only depends on n and l

but not m. The parameter κ =
√

2Ip, where Ip is the binding energy and E0

is the amplitude of the electric field. This formula and its low frequency limit
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can be generalised to other atoms such as argon in the single active electron

approximation using effective values for n and l and is called the ADK for-

mula after its creators. It is clear from this formula that the ionisation rate is

therefore independent of the sign of m in the initial state. The dependence is

only on |m| in the adiabatic limit [15]. The question then arises - what if γ

increases and the adiabatic assumption breaks down, is there is a propensity

to ionise depending on the sign of m? In other words will a circularly polarised

field deplete bound states that co-rotate with respect to the field more so than

the bound states counter-rotating with the field? Initial studies by Gadja and

Piraux in 1994 [35] partially addressed this question, where the two authors

considered the initial 2p hydrogen state under the effect of a circularly pola-

rised sine square pulse, while varying both the laser intensity and the initial

azimuthal quantum number between m = −1,m = 0 and m = 1. In this case,

the binding energy of 2p hydrogen is Ip = 0.125 a.u. and the frequency of

the pulse was ω = 0.25 a.u. They were able to provide numerical evidence of

the propensity rule which states that as the electric field increases in strength,

electrons rotating counter (2p m = −1) to the field were ionised at a greater

rate than those rotating with the field (2p m = 1).

Barth and Smirnova, in a series of papers, examined the question as to

whether there exists a propensity rule in general [10]. They produced an

analytic semi-classical theory to describe the ionisation rate for electrons with

initial states counter-rotating and co-rotating within a circularly polarised field

in the non-adiabatic regime γ ≈ 1 and in fact for any γ. They derived formulae,

for short range potentials, that state there is a propensity to ionise from an

initial state counter-rotating with the field. There is tentative experimental

evidence to back up Barth and Smirnova’s conclusion by Herath et al [40],

however the experiment is very difficult to perform cleanly. Furthermore, first

77



4.1. INTRODUCTION

order Coulomb corrections to Barth and Smirnova’s theory for long range

fields, given by Kaushal and Smirnova in [51], lessened the degree to which

counter-rotating electrons ionised preferentially over co-rotating ones.

Recently Bauer et al [13] performed ab initio calculations and found that

for certain conditions in hydrogen, the propensity rule does not hold. When

moving from the multiphoton regime to the over the barrier ionisation (OBI)

regime, the co-rotating electrons ionised more readily, contradicting the ana-

lytical theory by Barth, Smirnova and Kaushal ([10],[9] and [51]).

In this chapter we set out to explore the range of validity of the semi-

classical theory of Barth and Smirnova based on of the theory of Perelomov,

Popov and Terentev (PPT) [65] by performing a direct numerical integration

of the TDSE with the inclusion of the full Coulomb potential. We consider

the ionisation of the 3p of argon from initial states m = 1 and m = −1 for a

range of frequencies and intensities in a 6 cycle pulse. The work by Barth and

Smirnova assumed a continuous sinusoidal field, whilst we use a finite pulse

but the measured quantities should otherwise be directly comparable.

Since the papers outlined so far in this introduction, Barth and Lein nu-

merically solved the TDSE in 2 dimensions for neon subject to a circularly

polarised electric field [8]. The ionisation probabilities from initial states 2p−

and 2p+ neon exhibited the same propensity rule predicted in Barth’s earlier

work with Smirnova in [9] and [10].

In addition to this, Lui and Barth investigated this propensity rule in nitric

oxide subject to a circularly polarised electric field [56]. They argue that the

ionisation rate from co-rotating and counter-rotating electrons, with respect

to the electric field, should be the same as in the atomic picture. Furthermore,

they state the propensity rule for ionisation rates is the same as the atomic case

considered in [9] and [10] for any system with at least cylindrical symmetry.
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By solving the TDSE within the single active electron approximation using a

grid based Crank-Nicolson method, the pair provide ionisation ratios of the

ionisation probabilities for nitric oxide subject to a 3 cycle circularly polarised

electric field. Figure 2 in [56] shows good agreement between the analytical

theory in [9] and [10] and the ionisation ratio of initial state co-rotating and

counter-rotating nitric oxide after the numerical solution of the TDSE.

Kaushal and Smirnova have published three companion papers in August

2018 ([48], [49], [50]) that follow on from their 2013 paper [51] which first

introduced long range Coulomb corrections to the ionisation rates based on

PPT theory given by Barth and Smirnova in [9] and [10]. All three papers

focus on non-adiabatic effects in the tunnelling regime using the analytic R-

matrix method to include the effect of the core. The first paper [48] has a focus

on the interplay of the two momentum kicks associated with the Coulomb

potential. The first momentum shift is the addition momentum accrued by

the laser field during the additional time interval the Coulomb correction gives

to the ionisation time and the second is due to the electron-core interaction

under the barrier [48].

The first paper goes further than [51] by the ionisation for higher (l,m)

pairs. Specifically, the pair study the ionisation rates for p, d and f orbitals

for |m| ≤ 1, 2 and 3, respectively. The ionisation rate is shown to not only be

dependent on the direction of rotation of the initial state with respect to the

field. It becomes clear that as l increases, the nature of the orbital structure

defines the ionisation rate, too. Initial states associated with orbitals that have

no contribution in the plane of the circularly polarised electric field become the

least likely candidates for ionisation, while initial states with orbitals that have

large contributions to the plane of polarisation are ionised much more readily

(see figure 1 and 2 of [48]). The ionisation ratios from initial states with oppo-

79



4.2. DERIVATION OF THE IONISATION RATE IN THE PPT THEORY
OF BARTH AND SMIRNOVA

site signs of m for different atoms are calculated, each with a separate focus on

p-, d- and f -orbitals. Unlike the previous work published, the ionisation ratio

decreases slowly and smoothly with increasing electric field strength and fixed

wavelength. The counter-rotating electrons still always remain more likely to

be ionised than their co-rotating cousins [48].

The second of the three papers derive the quantum orbits and classical

trajectories within the ionisation process using the ARM method, however,

Kaushal and Smirnova provide an approximate ionisation ratio for ionisation

yields of counter- to co-rotating electrons for γ � 1 with the Coulomb cor-

rection [49]. This approximate ratio agrees relatively well with the full ARM

calculation, with a discrepancy of at most 8% for |m| = 3 in Ytterbium III.

The third and final paper in the series is concerned with spin polarisation in

the non-adiabatic tunnelling regime, but also provides an approximate formula

for the ionisation rate from a specific (l,m) pair. One of the dependencies on

the initial state comes from orbital-specific Coulomb correction which is given

as a prefactor [50]. Table 1 in [48] provides this prefactor up to and including

the f -orbital.

4.2 Derivation of the Ionisation Rate in the

PPT Theory of Barth and Smirnova

The adiabatic picture assumes that the barrier seen by the electron is ‘static’

in the sense that the electron does not feel the oscillations of the low frequency

field when tunnelling. This assumption can be made because the tunnelling

is said to happen ‘faster’ than the oscillations of the field. Experimentally

however, the Keldysh parameter of a pulse is typically seen to fall in the

region γ ≈ 1, corresponding to the non-adiabatic regime. This regime assumes

80



4.2. DERIVATION OF THE IONISATION RATE IN THE PPT THEORY
OF BARTH AND SMIRNOVA

the barrier is no longer static ‘during’ the time the electron tunnels and so the

field’s time dependence upon the barrier plays a role [10].

Within the non-adiabatic tunnelling regime for short range potentials, the

ratio of ionisation from 3p+ and 3p− (m = 1 and m = −1 for right circularly

polarised light, respectively) argon orbitals has been answered analytically by

Barth and Smirnova [10], [9] using the PPT theory [65], [66] in circularly

polarised light.

The advantage of using PPT theory over the more widely used SFA is that

PPT theory is gauge invariant whilst the SFA is certainly not. For short range

potentials, the SFA will also predict the same ionisation rates for p+ and p−

orbitals [12]. We know already there is clear numerical evidence from Gajda

and Piraux [35] discussed above and also experimental results by Herath et al

[40] in direct contradiction to what the SFA would predict.

Below we sketch the derivation of Barth and Smirnova to give a flavour of

the complex analytic calculations involved at arriving at the final result for the

ionisation rate, but we refer the reader to the original papers for the detailed

derivation.

The fields defined in the literature by Barth and Smirnova are

E± = E0[cos(ωt)êx ± sin(ωt)êy] (4.3)

and

A± = −A0[sin(ωt)êx ∓ cos(ωt)êy], (4.4)

where + and − refer to right and left circularly polarised light, respectively

and A0 = E0/ω. We shall restrict our equations to right circularly polarised

light.
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They assume the electron ionisation is described by the TDSE in the SAE

approximation and dipole approximation

i
∂

∂t
Ψ(r, t) =

[
− 1

2
∇2 + V (r) + r · E(t)

]
Ψ(r, t) (4.5)

where V (r) is the effective, short range potential.

The exact solution to equation (4.5) can be represented using the time

dependent Green’s function of the electron for motion in a circularly polarised

field with V (r) = 0:

G(r, t, r′, ti) =
θ(t− ti)

(2π)3

∫
dkeiv(t)·r−iv(ti)·r

′
e
− i

2

∫ t
ti
v(τ)2dτ

(4.6)

where

v(t) = k + A(t) (4.7)

is the instantaneous electron velocity and k is the final momentum at the

detector [9]. The solutions to equation (4.5) with V (r) = 0 are the Volkov

states. The exact solution with the inclusion of a short range potential V (r)

is then the following

Ψ(r, t) =

∫
dr′G(r, t, r′, t0)Ψ(r′, t0)−

i

∫ t

t0

dti

∫
dr′G(r, t, r′, ti)V (r′)Ψ(r′, ti).

(4.8)

This first term on the right hand side of equation (4.8) spreads out with

respect to time and so does not contribute to the flux and falls off proportional

to 1/
√
t. So, at infinity, this term does not affect the ionisation rate.

We assume we can neglect the difference between the bound orbital for the
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free atom ϕl,m(r′)eiIpti and the wave function Ψ(r′, ti) for short range potentials

[65]. The same assumption cannot be made for the Coulomb potentials, but

corrections can be applied (see [51]). Thus, using the field free TDSE, Barth

and Smirnova replace the term V (r′)Ψ(r′, ti) by

V (r′)ϕl,m(r′)eiIpti =
1

2
(∇2

r′ − 2Ip)ϕl,m(r′)eiIpti . (4.9)

Barth and Smirnova assume the field is turned on at time t0 → −∞ adiabati-

cally and rewrite equation (4.5) as

Ψ(r, t) =
i

(2π)
3
2

∫ t

−∞
dtie

iIpti

∫
dkeiv(t)·re

− i
2

∫ t
ti
v2(τ)dτ

φl,m(v(ti)) (4.10)

where

φl,m(v(t)) =
1

2
[v2(t) + 2Ip]ϕ̃l,m(v(t)) (4.11)

and

ϕ̃l,m(k) =
1

(2π)
3
2

∫
dre−ik·rϕl,m(r) (4.12)

is the momentum space representation of the wave function. By converting to

cylindrical coordinates, (kρ, θ, kz), the exponential factors of equation (4.10)

shown in equations (4.4) and (4.7) are represented as

iv(t) · r = if(kρ, θ, φ, t)ρ+ ikzz, (4.13)

and
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− i
2

∫ t

ti

v(τ)2dτ = − i
2

(k2 + A0)
2(t− ti)− ik · [ξ(t)− ξ(ti)], (4.14)

where

f(kρ, θ, φ, t) = kρ cos(θ − φ)− A0 sin(ωt− φ) (4.15)

and

ξ(t) = E(t)/ω2. (4.16)

Now we sketch the derivation of the time averaged ionisation rate from the

solution of equation (4.10). The time averaged ionisation rate is equal to the

time averaged radial flux at the infinity ρ→∞

ω(E0, ω) = lim
ρ→∞

J(ρ, t). (4.17)

Equation (4.17) is calculated by evaluating the integral

J(ρ, t) = ρ

∫ ∞
−∞

dz

∫ 2π

0

dφjρ(ρ, φ, z, t), (4.18)

where

jρ(r, t) =
i

2

(
Ψ(r, t)

∂

∂ρ
Ψ∗(r, t)−Ψ∗(r, t)

∂

∂ρ
Ψ(r, t)

)
. (4.19)

is the radial component of the current of the wave function.

From this point onward, we shall outline the important steps leading to

the main result given in [9] by making frequent references to equations within

the paper by Barth and Smirnova.
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To deal with the z-component of the integral in equation (4.18), Barth and

Smirnova represent equation (4.19) as a product of integrals over k involving

the temporally periodic function

F (k, t) = φl,m(v(t))eik·ξ(t). (4.20)

This function is then expanded into the Fourier series

F (k, t) =
∞∑

n=−∞

Fn(k, ω)e−inωt (4.21)

with coefficients

Fn(k, ω) =
1

2π

∫ π

−π
d(ωt)F±(k, t)einωt. (4.22)

Note that the quantity

|Fn±(k, ω)|2k=kn (4.23)

is the general formula for the probability of the n-photon process at k = kn.

Equation (4.17) is simplified by using equations (22) and (24) in [9] and the

integration over z takes place. The integration over φ is handled in appendix

A of [9]. The limit of the radial flux at infinity is given by equation (29) in [9].

The residue method is then applied and equation (32) in [9] yields the radial

flux at infinity as a summation from n = n0 to ∞, where n0 is the minimum

number of photons required for ionisation.

By time averaging over one laser cycle, Barth and Smirnova use equation

(32) in [9] in equation (4.17) to represent the final formula for the ionisation

rate as a summation over multiphoton channels:
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ω(E0, ω) =
∞∑

n≥n0

ωn(E0, ω), (4.24)

where

ωn(E0, ω) = 2π

∫
dkδ

(
k2

2
− k2n

2

)
|Fn(k, ω)|2. (4.25)

In order to evaluate equation (4.25), the saddle point method is employed

to calculate the quantity given in equation (4.23). The first instance of the

dependence of the ionisation rate on the sign m for circular pulses is given in

equations (73) and (74) in [9] in the factor |eimφv(ti)|2k=kn within the evaluated

expression for equation (4.23). The function φv(ti) is the tunnelling momentum

angle and is complex for m 6= 0 which results in |eimφv(ti)|2k=kn 6= 1.

The full formulae for the ionisation rates for s, p0 and p± orbitals are given

in equations (76 - 78) in [9]. These formulae are very complicated and still

require integration over kz to evaluate in full. These equations are simplified

further by approximating the integrands by Taylor series in kz up to second

order yielding equations (88 - 90) in [9] where equation (90) describes the

ionisation rate for p± orbitals.

Equations (88 - 90) in [9] are expressed as summations over n−photon

processes where n ≥ n0. To achieve a simple formula for the ionisation rate,

the summation over n is replaced with an integration over the variable

ζ =
2n0

n
− 1 ∈ (−1, 1]. (4.26)

For ω � Ip, the saddle point method is applied to the integration over ζ,

where ζ = ζ0 is the unique maximum of the exponent in equations (88-90)

in [9] and the resulting final formula for l = 1 initial states, the crowning
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achievement of Barth and Smirnova, becomes:

ωp±(E0, ω) = |Cκ1|2Ip
E0

2(2Ip)
3
2

hp±(γ)e
− 2(2Ip)

3
2

3E0
g(γ)

(4.27)

where

g(γ) =
3ζ0

γ2(1− ζ20 )

√
(1 + γ2)(ζ20/γ

2 + 1) (4.28)

does not depend on orbitals and where

hp±(γ) = hs(γ)
3(1 + γ2)

2(1− ζ20 )

(√
ζ20/γ

2 + 1

1 + γ2
− ζ0
γ

sgn(m)

)2

(4.29)

with hs(γ) dependent on γ and ζ0

hs(γ) = (1− ζ0)

√
(1 + γ2)(1− ζ20 )

(1 + ζ20/γ
2)(1 + ζ20 + 2ζ20/γ

2)
. (4.30)

For a given γ, ζ0 is a solution to the transcendental equation

arctanh

(√
ζ20 + γ2

1 + γ2

)
=

1

1− ζ0

√
ζ20 + γ2

1 + γ2
. (4.31)

The constant |Cκ,1|2 in equation (4.27) comes from the normalisation constant

of the wave function in coordinate space asymptotically far away from the core

which is in general of the form

ϕl,m = Cκ,lκ
3
2
e−κr

κr
Yl,m(θ, φ). (4.32)

The dependence of the ionisation rate on the sign of m is clearly displayed

in the factor hp±(γ) in equation (4.27). Note, that g(γ) ≈ 1− γ2/15 for γ � 1

and so in the adiabatic limit γ → 0, the exponential in equation (4.27) reduces

to the exponential for the ionisation rate found within ADK theory [15] with
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its hydrogenic form given in equation (4.1).

Finally, the simplified asymptotic ratios of the ionisation rates for counter-

and co-rotating rates for right circularly polarised light are

ωp−(E0, ω)

ωp+(E0, ω)
≈ 1 +

4γ

3
+

8γ2

9
> 1 (γ � 1), (4.33)

ωp−(E0, ω)

ωp+(E0, ω)
≈ (2 log γ)2 > 1 (γ � 1). (4.34)

Hence, the probability for a counter-rotating electron to ionise is always

larger than the probability to ionise from a co-rotating electron with respect

to the field within PPT theory.

4.3 The Propensity Rule in the Over the

Barrier Ionisation Regime

An initial attempt was made by Bauer et al [13] to examine the range of validity

of Barth and Smirnova’s theory. They considered the three initial 2p states

of hydrogen, namely, m = −1, 0, 1. However, because of the low ionisation

potential for the hydrogen 2p states, Bauer et al were only able to explore a

limited region of the parameter space, in particular the over the barrier regime.

Nevertheless, they found that for certain circular field parameters, the pr-

opensity to ionise from initial state counter-rotating electrons as opposed to

initial state co-rotating electrons can flip when considering the multiphoton

and over the barrier or barrier suppression ionisation regime (BSI).

By solving the TDSE directly using a basis of Sturmian functions, Bauer

et al were able to identify that for a fixed wavelength of 800 nm, an increase

in field intensity produced a flip in the propensity rule. Specifically, this inver-
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sion of the rule was found at intensities below 1013W/cm2 where the counter

rotating electron was in fact less likely to ionise than its co-rotating cousin.

There was also clear evidence of a large degree of excitation occurring before

the strong-field ionisation, indicating that one must include these excited sta-

tes in the theoretical description of the process if one is to understand the

process from a theoretical standpoint - something that Barth and Smirnova

did not include in their calculations when employing PPT theory to study the

propensity rule.

Bauer et al acknowledge that their numerical calculations are not a direct

comparison with the work done by Barth and Smirnova [9]. In order to directly

compare with Barth and Smirnova it is necessary to produce a numerical study

of the non-adiabatic regime where γ ≈ 1 and E ≤ EBSI , where EBSI is the

point at which the total combined potential of the Coulomb potential and the

laser lies below the binding energy of the electron ([77], [4], [31]). The threshold

for the electric field strength at which the BSI regime becomes dominant is at

EBSI =
I2p
4Z

. (4.35)

The non-adiabatic regime is able to be specified by its lower and upper

limits, Imin = 4ω2I2p where γ = 1 and Imax = IBSI = 2E2
BSI (peak intensity is

two times the electric field amplitude squared in the case of circularly polarised

light). So, if Imax < Imin then no non-adiabatic tunnelling ionisation occurs.

With fixed frequency and variable intensity, in this case it is possible to go

directly from the multiphoton regime to the BSI [5]. For the binding energy

of 2p hydrogen, one would need a pulse with frequency ω < ωlim = 0.0078a.u.

A frequency this low would prove very tricky to model faithfully with current

computational power.

89



4.4. ARGON IN CIRCULARLY POLARISED LIGHT

Hence to explore the validity of Barth and Smirnova’s theory we need to

work with a different atom, namely a noble gas, and we choose to work with

argon.

4.4 Argon in Circularly Polarised Light

The binding energy of the 3p ground state of argon (0.5821 a.u.) in the single

electron approximation is much larger than that of 2p hydrogen (0.125 a.u.)

discussed in the previous section. The main drawback in using hydrogen to

model interactions in the non-adiabatic tunnelling regime was that the fre-

quency of the laser driving the interaction had be ω ≤ 0.0078a.u. [13]. This

would lead to a huge number of (l,m) pairs to be required in a calculation for

convergence and extremely large radial box sizes to quell significant reflecti-

ons. Argon’s 3p state increases the frequency limit to ω ≤ 0.0785166a.u. such

that Imin ≤ Imax. This fact alone makes the non-adiabatic tunnelling regime

much more accessible with current computational power. It is important to

note that on top of the requirement we place on the frequency of the pulse, it

is also necessary that the field’s electric amplitude falls below the BSI regime

limit. For the case of 3p argon, this limit is IBSI ≤ 5.03722 × 1014W/cm2.

With all of this mind, we shall focus our efforts in this section to exploring the

ionisation probability and rate of co- and counter-rotating electrons of ground

state argon subject to laser pulses where parameters fall around γ ≈ 1. In the

case of circularly polarised light, the Keldysh parameter is defined as such

γ =
ω
√

2Ip√
I
2

(4.36)

since the peak intensity I = 2E2
0 , due to the fact I = 2 < E2 > alongside the
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definition of the electric field in equation 4.3.

4.4.1 TDSE Calculations for Argon

We investigate ground state argon subject to the circularly polarised vector

potential given by equation (3.33). A right circularly polarised pulse propaga-

ting along the z-axis implies that 3p, m = 1 co-rotates with the laser and that

3p, m = −1 rotates against the laser. Thus, we shall denote the two ground

states of argon as 3p+ and 3p−, respectively.

We used the Muller Potential described in Chapter 3 (see equations (3.43)

to (3.45)) to represent the electron’s motion in argon and we expanded the

wave function in a basis of B-splines and spherical harmonics including all al-

lowed values of m. We used the Crank-Nicolson method to integrate the resul-

tant coupled time dependent equations together with the bi-conjugate gradient

method also described in Chapter 3 (see equation (3.50)). For the following

calculations, the time step remained fixed at δt = 0.1 a.u. for all frequen-

cies. The minimum angular momentum number also remains fixed at lmin = 0

throughout all calculations presented in this chapter, since the selection rules

for 3p− and 3p+ are the same. The maximum angular momentum number does

vary depending on the frequency: for ω = 0.0569 we have lmax = 80; ω = 0.06

and ω = 0.07 required lmax = 60; ω = 0.08 required lmax = 56; ω = 0.09

required lmax = 48 and all remaining frequencies used lmax = 40. The size

of the box for each frequency also varied, the case of ω = 0.0569 used the

largest box at rmax = 1100 a.u.; ω = 0.06 and ω = 0.07 required rmax = 1000

for convergence; ω = 0.08, 0.09 and 0.1 required rmax = 800, 700 and 500, re-

spectively; ω = 0.11 and 0.12 used a box size of rmax = 400; ω = 0.13 − 0.17

were calculated using a box of size rmax = 250 and all remaining frequencies

used a box size of rmax = 200 for convergence.
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The following calculations were performed over 6 cycles for a fixed peak

intensity of I = 2.64541 × 1014W/cm2. This intensity has been chosen speci-

fically so that γ = 1 when the wavelength of the pulse is 800 nm, the lowest

frequency we consider in these tests. As we increase the frequency of the pulse,

the Keldysh parameter strictly increases.

We look at three predictions of Barth and Smirnova theory, namely the

ionisation probability versus frequency, the ionisation probability versus in-

tensity and the ionisation yield versus energy. They present calculations for

krypton, which has a very similar ionisation potential to argon at 0.5 a.u. Their

formulae only depend on the field strength, the frequency and the ionisation

potential.

4.4.2 Ionisation Probabilities Versus Frequency

Figure 4.1 shows their results. They clearly show that the ionisation rate is

larger for the counter-rotating electron and it increases monotonically with

frequency.

Figure 4.2 displays our calculations for the ionisation probability after a 6

cycle right circularly polarised pulse has been switched off for varying frequen-

cies, ranging from ω = 0.0569−0.3 a.u. To compute the ionisation probability

after the pulse, we first calculate the eigenvalues and eigenfunctions of the

atomic Hamiltonian H0 in the B-spline basis and convert the wave function to

the atomic basis as follows:

al,m(τ) =
(
EB-spline
l

)T
Scl,m(τ). (4.37)

In equation (4.37) we have denoted the overlap matrix of the B-spline functi-

ons as S, the matrix of eigenvectors for the B-spline atomic Hamiltonian for
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Figure 4.1: Ionisation rate versus frequency for counter and co-rotating ground
state 4p krypton subject to right circularly polarised light with E0 = 0.06 a.u.
(peak intensity I = 2.52648× 1014W/cm2) computed using equations (4.27) -
(4.31) with Cκ,l = 1 in equation (4.32) [10].

Figure 4.2: Ionisation probability versus frequency for the 3p, m = 1 and 3p,
m = −1 initial states of argon subject to a right circularly polarised pulse
over 6 cycles for fixed peak intensity I = 2.64541× 1014W/cm2 calculated by
propagating the TDSE directly with Crank-Nicolson.
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Figure 4.3: Ionisation rate versus frequency for counter and co-rotating ground
state 3p argon subject to right circularly polarised light with peak intensity
I = 2.64541×1014W/cm2 computed using equations (4.27) - (4.31) with Cκ,l =
1 in equation (4.32).

a given l as EB-spline
l and the vectors of coefficients for a specific (l,m) pair of

the wave function at the end of the pulse as cl,m(τ) and al,m(τ) in the B-spline

and atomic basis, respectively. Note that EB-spline
l has as its columns the eigen-

vectors of H0. At this stage we sum the magnitude squared of the coefficients

(denoted by an,l,m(τ)) of each l,m pair of al,m over the total number of bound

states and subtract the total from 1 to achieve the ionisation probability:

Pion = 1−
∑
l,m

nbound∑
n=1

|an,l,m(τ)|2. (4.38)

We can clearly see evidence that the propensity rule holds true up until

ω = 0.19 a.u., at which point the ionisation probability for the counter-rotating

electron briefly becomes lower than its co-rotating counterpart before peaking

at ω = 0.24 a.u. Around ω = 0.265 a.u. the propensity rule flips again and

we even see evidence that ionisation from 3p+ begins to increase significantly

more than from 3p−.

Figure 4.4 presents the ratio of the ionisation probability from 3p− over
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3p+ ground state argon. Interestingly, this ratio increases up to approximately

4 until γ = 2 and then drops precipitously to ω
p−
+ (E0, ω)/ ω

p+
+ (E0, ω) ≈ 1 for

0.19 < ω < 0.2 a.u. There is a second peak in the ratio at ω = 0.24, followed

by a second steep fall in the ratio, such that ω
p−
+ (E0, ω)/ω

p+
+ (E0, ω) ≈ 0.5 for

the final few frequencies we consider.

Figure 4.4: The ratio of the probability to ionise from 3p− over 3p+ ground
state argon versus frequency when subject to a right circularly polarised pulse
over 6 cycles for fixed peak intensity I = 2.64541 × 1014W/cm2 computed by
directly propagating the TDSE with the Crank-Nicolson method.

Barth and Smirnova use PPT theory to paint a different picture as to what

should occur with a short-range potential (see figure 4.1). They found that

the ground state krypton counter-rotating electron (Ip = 0.5 a.u.), 4p−, was

ionised at far greater rate relative to 4p+ ground state krypton than we see

when directly solving the TDSE for argon, which has a similar ground state

binding potential of Ip = 0.5821 a.u.. PPT theory [10] seemingly predicts the

ratio to continue to rise, whereas our findings suggest that the opposite is true

as ω and in turn, γ, increase past a certain threshold.

In order to achieve a more direct comparison with the ionisation rate pre-

dicted by PPT theory in [10], we used equations (4.27) - (4.31) to calculate the

behaviour of 3p argon in right circularly polarised light shown in figure 4.3 using
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the same peak intensity as figure 4.2. To calculate the ionisation rates for 3p ar-

gon, the parameters in equations (4.27) - (4.31) were Ip = 0.5821 a.u., Cκ,l = 1,

E0 = 0.06139 a.u. (corresponding to peak intensity I = 2.64541×1014W/cm2)

and the quantity ζ0 in equation (4.31) was solved with Newton-Raphson. We

restricted the frequency range to the same range as shown in figure 4.2 (0.0569

- 0.3 a.u.) and it is clear the formulae given in [10] breakdown in the multipho-

ton regime considerably. The ionisation rate of the counter-rotating electron

becomes larger by a factor of approximately 19 at ω = 0.3 a.u., however, relati-

vely good agreement with numerical results is found within the non-adiabatic

tunnelling regime γ ≈ 1.

A shortfall of solving the TDSE directly using numerical methods is that

we are comparing an ionisation probability in figure 4.2 to an ionisation rate in

figures 4.1 and 4.3. Figure 4.5 displays the ionisation probabilities of 3p argon

for the same parameters as in figure 4.2 except for the number of cycles has

been reduced from 6 to 4. The results in figure 4.5 corroborate the fact that the

propensity does indeed breakdown after a certain value of γ. Shortening the

length of the pulse only changed the relationship between the counter-rotating

and co-rotating ionisation probabilities to a small degree about ω ≈ 0.2. About

this point, the ionisation probability of the counter-rotating electron dips below

that of the co-rotating electron in figure 4.2 but does not do the same in figure

4.5. Aside from that fact, there is no appreciable difference between the two

calculations.

Our findings do have more in common with the prediction given in [51]

whereby first order long-range Coulomb corrections are added to PPT theory

using analytical R-matrix theory to re-evaluate the propensity. The addition

of a long-range correction has a significant effect on the ratio ω
p−
+ /ω

p+
+ , showing

a dampening of the ratio from a peak of over 7 using PPT alone to just under
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4. The ratio begins to decrease after about 6eV (ω ≈ 0.22 a.u.), a feature seen

in argon in figure 4.4 after ω = 0.12 a.u. It is worth noting the binding energy

(Ip = 0.79248 a.u.) for the neon atom considered in figure 4.6 is higher than

that of ground state argon.

Figure 4.5: Ionisation probability versus frequency for the 3p, m = 1 and 3p,
m = −1 initial states of argon subject to a right circularly polarised pulse
over 4 cycles for fixed peak intensity I = 2.64541× 1014W/cm2 calculated by
propagating the TDSE directly with Crank-Nicolson.
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Figure 4.6: Ionisation rate ratio from p− and p+ orbitals versus frequency
for a neon atom subject to a right circularly polarised pulse with intesity
I = 1.6× 1015W/cm2. The red, solid line was produced using the PPT theory
and short range potential shown in [10] and the blue, dashed line is the outcome
of employing the analytical R-matrix (ARM) method [51].

4.4.3 Ionisation Probability Versus Intensity

Barth and Smirnova then look at the ionisation rate versus intensity and found

similar behaviour to that of ionisation rate versus frequency in displayed figure

4.7 that is presented in log-log scale [10]. It is clear that as the intensity incre-

ases from 0.2− 2× 1014W/cm2, the counter-rotating electron is preferentially

ionised over the co-rotating electron.
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Figure 4.7: Ionisation rate versus intensity (W/cm2) for counter and co-
rotating ground state 4p krypton for 800 nm right circularly polarised light
[10]. Note that these results do not include a Coulomb correction and are only
results of equation (4.27).

Figure 4.8: Ionisation probability versus peak intensity (W/cm2) of ground
state 3p argon for counter and co-rotating electrons subject to 6 cycle, right
circularly polarised light with wavelength 800 nm computed by propagating
the TDSE with the Crank-Nicolson method.
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We see the same phenomena when directly solving the TDSE. There is a

substantial increase in the probability to ionise from a counter-rotating initial

state for the majority of the plot. There are points at which the counter-

rotating electron is ten times more likely to ionise over the co-rotating electron.

At 2× 1013W/cm2, however, the ionisation probability between the two initial

states becomes equal. At this stage, we are in the multiphoton ionisation

regime and Barth and Smirnova’s theory does not appear to agree with our

results.

4.4.4 Ionisation Yield Versus Energy

We show in figure 4.9 the yield versus energy as calculated by Barth and

Smirnova [10]. We have calculated the ionisation yield by calculating the

probability of ionising with energy Ei by projecting the wave function onto

the field free continuum states of energy Ei (denoted as ψEi(r))

dP

dE
(Ei) = | 〈ψEi(r)|Ψ(r, τ)〉 |2. (4.39)

We approximate the continuum using discrete states and carry out the pro-

jection in the atomic basis

dP

dE
(Ei) =

dP

dE

(
Ei−1 + Ei + Ei+1 + Ei+2

4

)
(4.40)

=
| 〈ψEi(r)|Ψ(r, τ)〉 |2

Ei+1 − Ei−1
+
| 〈ψEi+1

(r)|Ψ(r, τ)〉 |2

Ei+2 − Ei
(4.41)

which simplifies to

dP

dE

(
Ei−1 + Ei + Ei+1 + Ei+2

4

)
=
∑
l,m

|aEi,l,m(τ)|2

Ei+1 − Ei−1
+
|aEi+1,l,m(τ)|2

Ei+2 − Ei
(4.42)
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where aEi,l,m(τ) represent atomic wave function coefficients corresponding to

the continuum state with energy Ei > 0. This procedure assures that the

ψEi(r) are correctly energy normalised.

We shall cover a second method to produce the ionisation yield involving

projection onto ingoing Coulomb wave functions in subsection 5.3.3.

The spectra displayed in figure 4.10 exhibits one similarity and one diffe-

rence with the predictions given by Barth and Smirnova [10]. We find that

the peaks of the spectra exist at a point larger than Up, in agreement with

figure 4.9 [10]. The argument for this shift in the peaks of the spectra is due

to the fact that the initial velocity of tunnelled electrons is non-zero and con-

tributes in a significant way to the energy spectra. In the adiabatic limit, the

initial velocity after ionisation is zero and so the peak kinetic energy occurs at

precisely Up for a circularly polarised pulse.

PPT predicts the point at which there is an equal number of electrons

ionised from p+ and p− occurs at final kinetic energy E0
kin = Ip + Up. This

corresponds to the point at which there is no transverse momentum in either

co- or counter-rotating orbital. Clearly, this is not the case when directly

solving the TDSE. We find the point at which an equal number of electrons

are ionised occurs at an energy lower than E0
kin.

4.4.5 Excitation and Ground State Probabilities

One quality of laser-atom interactions that PPT theory does not account for

is the probability to excite, but not ionise, the initial state. Bauer et al [13]

performed a number of calculations with 2p hydrogen subject to an 800 nm 10

cycle, right circularly polarised laser field with varying intensities. With these

parameters, hydrogen enters the BSI regime from the multiphoton regime at

I = 1.1× 1012W/cm2. Significant excitation occurs in the multiphoton regime
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Figure 4.9: Photoelectron energy distribution at the detector for counter and
co-rotating ground state 4p krypton subject to 800 nm right circularly polarised
light with E0 = 0.06 a.u. (I = 2.52648×1014W/cm2) produced using equation
19 in [10].

Figure 4.10: Energy spectra for photoelectrons emitted after ground state
argon was subject to a right circularly polarised 800 nm 6 cycle laser pulse
with peak intensity I = 2.64541 × 1014W/cm2. Note that the peak in the
spectra for circularly polarised light should occurs at E = Up, but there is an
error in the definition of Up in [10]. The results shown here are comparable
with figure 4.9 when this error is accounted for.
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for 2p+ (2p,m = 1), however it peaks at almost exactly the point at which over

the barrier ionisation should become the dominant mechanism for ionisation

at 1.1 × 1012W/cm2. By directly solving the TDSE for hydrogen, the degree

of excitation was available to Bauer et al [13]. The counter-rotating electronic

state 2p− has consistently lower excitation probability relative to 2p+ (see the

red line in figures 4.11 and 4.12) up until I = 6× 1013W/cm2 where they both

seem to settle at the same excitation probability of around 0.2, even as intensity

increases to up to 2× 1015W/cm2. Surprisingly, there is significant excitation

at these intensities which can be justified by assuming these excitations happen

near the end of the pulse where the intensity is diminished.

A calculation involving 2p hydrogen in the non-adiabatic regime is unrea-

listic with current computational memory constraints, but 3p argon allows us

to explore the excitation probability in the non-adiabatic regime quite com-

fortably. We calculate the probability to remain in the initial state by taking

the magnitude squared of the coefficient in the atomic basis representation of

the initial state

Pinitial = |ainitialn,l,m (τ)|2 (4.43)

and we calculate the total excitation by

Pexci = 1− Pion − Pinitial (4.44)

where Pion is described in equation (4.38). Our results for excitation probability

versus frequency are displayed in figure 4.13.

At γ ≈ 1, there are insignificant levels of excitation for both counter- and

co-rotating electrons. In fact the probability for excitation remains almost

zero until ω = 0.12 a.u. which corresponds to γ ≈ 1.4 for both counter

and co-rotating electrons. As frequency increases, however, a large disparity
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Figure 4.11: Probability of ionisation (blue solid lines with solid circles), exci-
tation (red dashed lines with solid squares) and ground state probability (black
dotted line with open circles) obtained by numerically propagating the TDSE
for 2p− hydrogen subject to a 10 cycle 800 nm right circularly polarised pulse
[13].

between the excitation probability in counter and co-rotating initial state argon

emerges. This suggests that multiphoton transitions become manifest at an

earlier γ for the counter-rotating ground state electron. This pattern continues

as ω increases and we clearly see the excitation probability remains much larger

for 3p− than 3p+. Significant excitation only begins to occur at ω = 0.26 for

the co-rotating electron, which corresponds to γ ≈ 4.57 and starts to exhibit

the same oscillatory behaviour of the excitation probability that the counter-

rotating electron undergoes.

The most striking feature of the plot shown in figure 4.13 is the oscillatory

behaviour of the excitation probability for the counter-rotating electron as the

frequency varies. These peaks occur at ω = 0.16 (γ = 2.812), ω = 0.193

(γ = 3.392) and ω = 0.24 (γ = 4.218). The position of these peaks match
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Figure 4.12: Probability of ionisation (blue solid lines with solid circles), exci-
tation (red dashed lines with solid squares) and ground state probability (black
dotted line with open circles) obtained by numerically propagating the TDSE
for 2p+ hydrogen subject to a 10 cycle 800 nm right circularly polarised pulse
[13].

Figure 4.13: Excitation probability versus frequency for 3p− and 3p+ ground
state argon subject to a right circularly polarised 800 nm, 6 cycle pulse with
fixed peak intensity I = 2.6451 × 1014W/cm2 computed by propagating the
TDSE with the Crank-Nicolson method.
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the position of the troughs for the counter-rotating electron’s probability to

remain in the initial state if we look to figure 4.14.

If we compare the position of the peaks in excitation for 3p− argon to the

ionisation probability in figure 4.2, we see that there is a dip in ionisation

probability for ω = 0.16 and ω = 0.193. In order to investigate this feature,

we calculate the individual populations of the excited states at the end of the

pulse at the frequencies where these peaks occur i.e. |an,l,m(τ)|2 where an,l,m(τ)

is the coefficient of atomic state (n, l,m) in the atomic basis.

For ω = 0.16, the majority of the excited states are f , m = 3 states which

correspond to 4 photon absorptions from 3p− after Stark shifting is taken into

account. None of the excited states comprised more than 1% of the total wave

function when taken individually. In order to ionise from 3p− at ω = 0.16,

5 photon absorptions are required. The case of ω = 0.193 is similar in that

we see 3 photon absorptions excite a broad set of d, m = 2 states and again,

none comprised over 1% of the total wave function. 4 photon transitions are

required for ionisation.

The final peak at ω = 0.24 is different in that there is a coincident peak

in the ionisation probability in figure 4.2. Upon analysing the wave function,

the only significant excitation occurs in the 4p, m = 1 state which requires 2

photon transitions to reach from initial state 3p argon. Interestingly, all 3 cases

only excite the highest m state possible for a particular l. The 4p, m = 1 state

accounts for approximately 10% of the total wave function, which is virtually

all of the excitation probability. The fact that only one state has been excited

and there is a coincident peak in ionisation suggests a resonance occurs for

this frequency between 4p, m = 1 and the continuum. Figure 4.15 displays

the rise in the population of the 4p, m = 1 state as frequency increase from

ω = 0.23− 0.3.
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Figure 4.14: Initial state probabilty for 3p− and 3p+ ground state argon versus
frequency when subject to a right circularly polarised 800 nm, 6 cycle pulse
with fixed peak intensity I = 2.6451 × 1014W/cm2 computed by propagating
the TDSE with the Crank-Nicolson method along with equation (4.43).

Figure 4.15: Excitation probability to state 4p, m = 1 from 3p− ground state
argon versus frequency when subject to a right circularly polarised 800 nm, 6
cycle pulse with fixed peak intensity I = 2.6451×1014W/cm2. This figure was
computed by evaluating |a4,1,1(τ)|2, the coefficient of 4p, m = 1 in the atomic
representation of the wave function at the end of the pulse.
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4.5 Conclusion

From figures 4.2 and 4.4 it is clear that the propensity rule for counter-rotating

electrons with respect to the circularly polarised field holds true for frequen-

cies that place the interaction within the non-adiabatic regime (up to about

γ = 2). This qualitatively corroborates the theoretical findings given by Barth

and Smirnova in [10] and [9], as well findings by Kaushal and Smirnova [51]

in that first order long-range Coulomb corrections added to PPT theory serve

to diminish the ratio ω
p−
+ /ω

p+
+ . The long-range corrections provide a physical

picture of the change in the ratio consistent with the results computed using

the direct numerical integration TDSE performed in this chapter. However it

is clear that approximating the effect of the Coulomb field in PPT theory does

not lead to correct quantitative agreement with the TDSE and presumably

experiment. As soon as significant excitation occurs at ω = 0.12, PPT theory

is less able to reliably predict the ionisation ratio of counter- and co-rotating

electrons. PPT theory does not take into account excitation in the atomic

system where as the TDSE does. In relation to experimental data on the pro-

pensity rule in argon presented by Herath et al [40], the maximum ionisation

ratio computed through the direct numerical integration of TDSE falls just at

the edge of the large error bars given by Herath et al. They consider a less

intense pulse, but find the ratio to be anywhere between 4 and 10.

As the frequency leaves the non-adiabatic tunnelling regime and enters the

multiphoton ionisation regime, the analytic theory and the propensity rule

break down and we see that around ω = 0.19− 0.2 and ω = 0.265− 0.3, and

possibly beyond that point, the co-rotating electron is preferentially ionised

over the counter-rotating electron.

An interesting conclusion we can draw from the results presented in this
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chapter, is that for all frequencies considered, there is always a larger probabi-

lity to excite initial state argon from a counter-rotating m state. Co-rotating

electrons have very little chance to excite up until around ω = 0.25 where we

see significant excitation begin to occur. Counter-rotating electrons exhibit

oscillatory behaviour when plotting excitation probability against frequency

(see figure 4.13). The populated states are the result of integer photon ab-

sorptions from the initial state in the highest m value available to the angular

momentum number they inhabit. The reason why this behaviour is not seen

in the co-rotating electron and why the only peak in excitation at ω = 0.28

in figure 4.13 does not align with the peak in excitation at ω = 0.24 for the

counter-rotating electron is not clear. This could be an aim for future research.
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Chapter 5

Transverse Electron Momentum

Distributions in the Tunnelling and

Over The Barrier Regimes

5.1 Introduction

Delone and Krainov predicted a Gaussian shape for the momentum distributi-

ons of photoelectrons transverse and perpendicular to the plane of polarisation

of a laser field with linear or elliptical polarisation within the tunnelling re-

gime in the strong field approximation (SFA) without Coulomb correction [29].

Since then, a great deal of experimental and numerical work has been done to

check the formulae provided by Delone and Krainov. Experiments performed

by Arissian et al [3] in argon using 800− 1400 nm circularly polarised light in

the non-adiabatic ionisation regime concluded that the theory provided good

agreement with their results. Excitation by circularly polarised light inhibits

recollision with the parent-ion after ionisation and thus, the momentum dis-

tribution perpendicular to the plane of polarisation is predominantly a result

of the tunnelling process.

However, the theory given in [29] was shown not to be a good predictor of

momentum distributions in linearly polarised light for helium, neon and argon

by Rudenko et al [72]. The momentum distributions perpendicular to the
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plane of polarisation of the laser field were shown to exhibit a cusp-like shape

about the origin (p⊥ = 0), indicating a large influence with the parent-ion after

ionisation. Of particular interest is the case of argon, where the parameters

used in the experiment place the interaction in the tunnelling regime. The

predicted shape of the transverse momentum electron distribution (TEMD) in

the SFA without Coulomb correction is Gaussian, in stark contrast to what is

observed.

Ivanov further explored TEMDs for ground state hydrogen in [42] through

the direct solution of the TDSE. The calculations presented in [42] were con-

fined to the tunnelling regime to directly compare with Delone and Krainov

[29]. Ivanov varied the polarisation of the pulse from linear to circular with a

number of intermediary ellipticities and found the cusp-like shape observed by

Rudenko et al [72] in calculations involving linearly or close to linearly polari-

sed light. As the ellipticity was increased, the Gaussian shape predicted by the

SFA without Coulomb correction appeared in the TEMDs. Ivanov concluded

that the reason for the change in shape of the TEMD for ground state hyd-

rogen was due to the distribution of the angular momentum number l of the

resulting photoelectrons. Linear fields were shown to produce photoelectrons

with relatively low angular momentum compared to that of the photoelectrons

resulting from interactions with circular fields. This was deemed important to

the behaviour at p⊥ = 0 because of the singularity at E = 0 in the continuum

Coulomb wave function. Wave packets containing photoelectrons with distri-

butions concentrated at low angular momentum accentuate the effect of this

singularity in the form of a cusp about the origin of the TEMD.

Experimental and numerical studies were performed by Ivanov et al [45]

in argon and neon across ionisation regimes and different polarisations of laser

fields. The calculations involving argon were in the tunnelling regime and the

111



5.2. BACKGROUND

TEMDs displayed the same behaviour as ground state hydrogen in [42] when

polarisation was varied. Agreement with Delone and Krainov [29] was found in

interactions involving a high degree of ellipticity, but the cusp appeared once

more when linearly polarised light was used. Neon, however, was subjected

to fields in the over the barrier ionisation (OBI) regime. The TEMDs in this

case were shown to be insensitive to the polarisation of the laser field and

the cusp remained intact as ellipticity increased. The reasoning provided for

this was that for interactions in the OBI regime, the angular momentum for

photoelectrons is low, similar to that of linearly polarised light in the tunnelling

regime for ground state hydrogen in [42].

We investigated the range of validity of the SFA without Coulomb cor-

rection and made comparisons with experimental work from Rudenko [72] and

the theoretical results from [42] and [45] to understand the role of the interplay

between the parent-ion and the electron in the TEMDs after ionisation with

respect to ellipticity, ionisation regime and the initial state of the atom. By

computing the momentum distribution perpendicular to the plane of polari-

sation, we are able to isolate the role of the parent-ion after ionisation. The

TEMDs in Ivanov’s work do not distinguish between the different m states of

initial state argon. We present the TEMDs for 1s and 2p hydrogen in the tun-

nelling ionisation and OBI regimes and for 3p argon in the tunnelling regime,

for different values of m when p orbitals are considered, to explore the effects

of the Coulomb field on the electron after ionisation.

5.2 Background

Delone and Krainov [29] used the tunnelling approximation within the SFA

without Coulomb correction [2] (the quasi-static limit of PPT theory that was
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discussed in Chapter 4) to calculate the analytical expression for the longi-

tudinal and transverse ionisation rates, i.e. parallel and perpendicular to the

polarisation plane,

W (p||) ∝ exp

(
− 1

3
p2||ω

2

(
2Ip
I

) 3
2
)

(5.1)

W (p⊥) ∝ exp

(
− p2⊥

(
2Ip
I

) 1
2
)

(5.2)

where Ip represents the ionisation potential for the target atom and I, the

peak intensity and ω the frequency. An extension to this theory for elliptically

polarised light has been given in [69]:

W (p⊥) ∝ exp

(
− p2⊥

(
2Ip(1 + ε2)

I

) 1
2
)

(5.3)

where ε is the degree of ellipiticity. It is important to note that these formulae

are Gaussian in shape about the origin and initial experiments, as mentioned

above, gave reasonably good agreement between the predictions they offered

and experiment for both linear and circularly polarised fields.

With the introduction of the ‘reaction microscope’ [28], much higher reso-

lution experiments (δp = 0.02 a.u.) were able to be performed, along with the

ability to detect the momentum of electrons and ions in all directions. Shortly

after this breakthrough, many papers were published where disparities bet-

ween the theory above and the experimental results were highlighted. They

found, for linear polarisation, a double peak for the longitudinal momentum

distribution centred at zero and a cusp-like shape at the origin for the momen-

tum distribution transverse to the field in contradiction to the SFA without

Coulomb correction [61] [72].

Figure 5.1 shows the pronounced cusp at the origin for helium, neon and
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Figure 5.1: Rudenko et al ’s [72] transverse momentum distributions for sin-
gle ionisation of He (a), Ne (b) and Ar (c) by 25fs laser pulses. Note that
1PW/cm2 = 1015W/cm2.

argon subject to a linearly polarised pulse in the tunnelling regime. This is

completely at odds with the predictions given by equation (5.3) where the Cou-

lomb interaction is ignored after ionisation. Rudenko et al performed classical

trajectory Monte-Carlo simulations, modified for tunnelling (CTMC-T), with

and without the Coulomb potential included, as well as an SFA calculation

with a Coulomb-Volkov final state. The inclusion of the Coulomb potential

saw a cusp appear, which can be explained by considering the fact the electron

continuum wavefunction has a singularity at zero momentum. This singularity

arises from the exponential term e
Zπ
pr as p→ 0 in the definition of the ingoing

continuum Coulomb wave function in equation (B.2) of Appendix B. This term

is dominant for small p and produces asymptotic behaviour about p = 0. This

singularity is also present in the Coulomb-Volkov state where the cusp is also

seen. Excluding the Coulomb potential in the CTMC-T calculation returns

the transverse momentum electron distribution (TEMD) to the Gaussian curve
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predicted above. Rudenko et al were keen to stress that only low energy elec-

trons are affected by the singularity of the continuum wavefunction, that is to

say, electrons that have low momentum in both longitudinal and transverse

directions. Finally, the cusp-like structure is unlikely to be explained through

‘Coulomb-focusing’ because this is known to be suppressed for pulses with too

few cycles [16].

Figure 5.2: The TEMD for neon shown in 5.1 panel (b) where electrons with
momentum 2

√
Up have been removed [72].

There is a change in slope in each of the panels of figure 5.1 for higher

momenta, however this change is most pronounced through neon in panel

(b). The reason for this change of slope can be explained in figure 5.2. By

omitting electrons with longitudinal momentum less than 2
√
Up from their

TEMD, corresponding to the maximum drift momentum that the laser field

can classically impart onto the electron, the resulting plot overlays with the
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change in slope. This implies that the change in slope is caused by a significant

amount of rescattering. Recall that rescattered electrons can accrue energies

as high as 10Up if it back scatters at an angle of 180◦ off the parent-ion.

Electron rescattering is included within the CTMC-T calculations, but the

amount of rescattering is underestimated when compared with what is found

in the experimental data.

Analogous cusp-like features have been seen before in another context,

specficially ion-atom collisions. Burgdörfer (see [18] and [17]) explored the

question of the cusp-like structure in the transverse electron momentum dis-

tributions about zero for helium and hydrogen when colliding with neutral

targets (transverse in this context is perpendicular to the beam of projectile

hydrogen or helium atoms). Burgdörfer shows that the cusp is strongly depen-

dent on the initial state of the atom. Figures 5.3 and 5.4 show that for certain

states of helium, there is a clear cusp and for 2p0 there is a clear reversal of

this structure: an inverted cusp. The states in which a cusp appears are those

where the initial state, (n, l,m), has the property that l+m is even. The cusp

inverts for odd l + m as seen in figure 5.4. The Coulomb wave normalisation

factor is defined as

|N(v)|2 = exp(πZ/v)|Γ(1− iZ/v)|2, (5.4)

where Z is the charge and has a singularity at v → 0 which was shown to give

rise to the cusp in ion-atom collisions [17], similar to what is seen in Rudenko

et al ’s work [72] in electron-laser interactions. We show later that an inverted

cusp also manifests itself in the context of laser-atom interactions.
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Figure 5.3: Cusp is manifest in the electron loss to continuum (ELC) for
various states of He+ colliding with H a velocity 10 a.u. [18].
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Figure 5.4: The ELC for He+(2p0) colliding with hydrogen (solid line), helium
(dashed line) and argon (dashed and dotted line) [18].

There is a marked change in electron momenta transverse to the field when

considering differing degrees of ellipticity in the tunnelling regime. Ivanov [42]

showed that hydrogen returns to follow the smooth Gaussian shape described

in equation (5.3) as the ellipticity increases, while decreasing the ellipticity

forms a cusp once more. Ivanov plotted the squared norms of |Ψl|2 to express

the idea that as one increases the ellipticity of the pulse, the likelihood of

finding the electron populating low lying angular momenta decreases. Ivanov

reasoned that for higher angular momentum population densities, the electron
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is less likely to be found near the parent-ion and in turn, less affected by the

Coulomb force. This was evidenced by the removal of the first ten angular

momenta which resulted in the TEMD to become Gaussian. This is what we

would expect to see when we consider the importance of the interaction bet-

ween the Coulomb force and low energy electrons that Rudenko [72] emphasises

is integral to the formation of the cusp at the origin.

Ivanov agreed that the origin of the cusp was indeed due to the behaviour

of the continuum Coulomb wave function, however, argued that this ignored

the dynamics of the ionisation process [43]. Ivanov proposes the cusp arises

from behaviour of the projection of the final wave function onto the continuum

Coulomb wave function about p⊥ = 0, the momentum perpendicular to the

direction of the electric component of the laser field. In particular, Ivanov

demonstrates that the first derivative of the transverse electron momentum

distributionW (p⊥) is discontinuous with respect to p⊥ at the origin. Therefore,

if the final wave function at the end of the pulse is dominated by low energy

continuum states, then this discontinuity becomes pronounced [43].

The TEMD of neon in the OBI regime subject to linearly and circularly

polarised light has been demonstrated to retain the cusp about the origin when

moving to circular polarisation in the most recent paper by Ivanov et al on

this topic [45]. Again, when scrutinising the density of the angular momenta,

even circularly polarised light in the OBI regime will only populate the lower l

states because fewer photon absorptions are required for ionisation. Thus, the

electron is more exposed to Coulombic effects.
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5.3 Theory and Numerical Method

To calculate the transverse momentum electron distribution for hydrogen and

argon subject to an electromagnetic field, it is necessary to first of all calculate

the wave function at the end of the pulse. We do this by solving the TDSE

through direct numerical integration as described in Chapter 3. After compu-

ting the final wave function, we project onto ingoing Coulomb wave functions

to compute the final state momentum distribution. Finally, to compute the

TEMD, we integrate over the plane of polarisation to isolate the momentum

distribution of photoelectrons perpendicular to the field.

5.3.1 Hydrogen

For hydrogen, we solve the time dependent Schrödinger equation within the

velocity gauge

i
∂

∂t
Ψ(r, t) =

(
H0 + A · p̂

)
Ψ(r, t) (5.5)

and define A within the dipole approximation using

A(t) =
A0√
1 + ε2

f(t)
(
− sin(ωt+ φ)êx + ε cos(ωt+ φ)êy

)
, (5.6)

defined as non-zero for 0 < t < 2Nπ/ω = τ with the function, f(t) =

sin2(ωt/2N), defined as a sine squared envelope function over N cycles and

ε being the measure of ellipticity of the pulse. If ε = 0, the pulse is linearly

polarised and if ε = 1, the pulse is circularly polarised.

When dealing with hydrogen, we can represent the wave function in terms

of Sturmian functions as described in Chapter 3:
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Ψ(r, t) =
∑
n,l,m

cn,l,m(t)
Sκn,l(r)

r
Yl,m(r̂). (5.7)

The Hamiltonian for equation (5.5) is tridiagonal in the atomic interaction

blocks and bidiagonal in the blocks pertaining to the laser interaction. The-

refore, there is at most 7 non-zero elements per row in the Hamiltonian which

reduces the load on memory constraints substantially. Another advantage to

using Sturmian functions is that the projection onto ingoing Coulomb functi-

ons is analytical, reducing the time expended in the calculation of the TEMD

substantially. This shall be covered in detail in subsection 5.3.3.

Substituting equation (5.7) into the time dependent Schrödinger equations

yields a coupled system of first order differential equations to solve at each

time step solved using Crank-Nicolson, with preconditioning, of the form

Ax = B. (5.8)

This equation is solved for x using the BiCGSTAB routine descibed in Chapter

3.

The direct solution of the TDSE yields a very accurate description of the

wave function after an interaction with an electromagnetic field. This allows

us to draw conclusions from tunnelling ionisation and OBI regimes for different

initial states of hydrogen.

5.3.2 Argon

To compute the wave function at the end of the pulse in argon, we solve the

following TDSE within the single active electron approximation

i
∂

∂t
Ψ(r, t) =

(
H0 + A · p̂

)
Ψ(r, t) (5.9)
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where

H0 = −1

2
∇2 + V0(r) +W0(r) (5.10)

with the effective potential for argon V0(r) +W0(r), the Muller potential [62],

as described in Chapter 3.

The Hamiltonian matrix elements are only analytical for the Sturmian

functions when considering hydrogenic problems. Argon requires an effective

potential to correctly represent the behaviour near the core. In particular,

the first 3 angular momenta are represented by the Muller potential and so

numerical integration is required to evaluate the Hamiltonian matrix elements

in the Sturmian basis. Instead, the basis we chose to model argon with are the

B-spline functions since the elements of H0 for B-splines are not analytical,

therefore any potential can be used in conjunction with the B-spline functions.

As stated in Chapter 3, numerical integration with the B-spline basis is very

fast since the mesh points used to construct the B-splines can be chosen to

coincide with the abscissae of the Gaussian Quadrature.

The Muller potential [62] places a hard-core boundary condition at R = 0.5

a.u. which means that the linear dependencies of the Sturmian functions in

equations (3.22) - (3.24) would no longer apply. Therefore, all integrations in-

volving Sturmians would have to be performed numerically and the tridiagonal

nature of the Sturmian functions would no longer hold.

The wave function then takes the form

Ψ(r, t) =
∑
k,l,m

ck,l,m(t)
Bk(r)

r
Yl,m(r̂). (5.11)

Equation (5.11) is substituted into equation (5.9) to produce a system of cou-

pled first order differential equations as we did for the Sturmian functions.
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The resulting system is then solved using the Crank-Nicolson method with

preconditioning and the BiCGSTAB algorithm.

5.3.3 Calculating the TEMD

To compare with the predictions of Delone and Krainov [29] with respect to

the momentum distribution of photoelectrons along the axis perpendicular to

the elliptical field polarisation plane given in equation (5.2), it is necessary

to project the final wave function at the end of the pulse onto the ingoing

scattering wave ψ−p (r) to produce the ionisation amplitude, a(p), at momentum

p

a(p) = 〈ψ−p (r)|Ψ(r, τ)〉 . (5.12)

With this quantity at hand, to calculate the momentum distribution along the

z-axis or the TEMD, we integrate over the x − y plane in momentum space

with pz = p⊥:

W (pz) =

∫ ∫
|a(p)|2dpxdpy. (5.13)

The ingoing scattering states can be represented in terms of the Sturmian

functions in the form shown below:

ψ−,∗p (r) =
∑
n,l,m

an,l(p)
Sκn,l(r)

r
Y ∗l,m(r̂)Yl,m(p̂). (5.14)

Note that this expresses the conjugate form of the ingoing scattering state,

the representation of equation (B.1) in the Sturmian basis. The Sturmian

functions are closely related to the hydrogenic radial wave functions and as

such, one of the advantages in using the Sturmian basis is that there are a
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large number of analytical results to draw from. In this instance, we may

express the coefficient an,l(p) in an analytic way, skipping altogether the need

to project hydrogenic continuum wave functions onto the final wave function

after the pulse has stopped. The coefficients are known to take the form

an,l(p) =
(−1)n−1

2l + 1

√
2nκ

π
(4lκ)(4iκp)l

√
(n− l − 1)!

(n+ l)!

×
Γ[l + 1− iZ

p
]

(κ2 + p2)l+1
exp

Z

κ

(
π

2
− 2θ

)
×P l+1

n−l−1

(
cos(2θ);

−Z
κ
,
−Z
κ

)
(5.15)

where θ = arctan(p/κ). The derivation of equation (5.15) is covered in detail

in Appendix B. The functions P γ
n (x; a, b) are the Pollaczek polynomials (see

[7]) which satisfy the recurrence relation

(n+ 1)P γ
n+1(x; a, b) = 2[(n+ γ + a)x+ b]P γ

n (x; a, b)− (n+ 2γ − 1)P γ
n−1(x; a, b)

(5.16)

for n > 0 and P γ
0 (x, a, b) = 1 and P γ

1 (x, a, b) = 2[(γ + a)x+ b). The Pollaczek

polynomials also have the generating function

∞∑
n=0

P γ
n (x, a, b)tn = (1− teiθ)−γ+iw(θ)(1− te−iθ)−γ−iw(θ) (5.17)

where x ∈ [−1, 1], x = cos(θ), w(θ) = (a cos(θ) + b)/ sin(θ). Two other

interesting properties of the Pollaczek polynomials are that for a = b = 0,

they reduce to the Legendre polynomials and that they are orthogonal when

the conditions a ≥ |b| and γ > 0 are satisfied.

Substituting equation (5.14) into equation (5.12) and integrating with
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Ψ(r, τ) given in equation (5.7) and using the analytical coefficients in equation

(5.15), we are able to write the ionisation amplitude like so

a(p) =
∑
l,m

[∑
n′,n

an,l(p)cn′,l,m(τ)

∫ ∞
0

Sκn′,l(r)S
κ
n,l(r)dr

]
Yl,m(p̂) (5.18)

where we make use of the property

∫ ∞
0

Sκn′,l(r)S
κ
n,l(r) = 0, |n′ − n| > 1 (5.19)

to restrict the inner sum to n− 1 ≤ n′ ≤ n+ 1 and the integrals

∫ ∞
0

Sκn′,l(r)S
κ
n,l(r) |n′ − n| ≤ 1 (5.20)

are all known analytical functions of κ, n and l, which helps to speed up the

calculation further still.

We then transform to cylindrical coordinates in momentum space so that

for p2ρ = p2x + p2y and θ = arctan(pρ/pz). On substituting into equation (5.13)

and integrating over φ, which reduces the double sum to a single sum over m

due to a factor of δm,m′ , we finally have:

∫ ∫
|a(p)|2dpxdpy =

∫ ∑
l,l′,m

I∗l′,m(p)Il,m(p)Pl′,m(cos(θ))Pl,m(cos(θ))pρdpρ

(5.21)

where

Il,m(p) =
∑
n′,n

an,l(p)cn′,l,m(τ)

∫ ∞
0

Sκn′,l(r)S
κ
n,l(r)dr (5.22)

is an entirely analytical quantity provided the coefficients cn,l,m(τ) have been
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calculated beforehand. The integral in equation (5.21) is calculated for each

pz by fixing pz and integrating over pρ numerically.

The calculation of the TEMDs for argon adds an additional level of com-

putational complexity. The first few angular momenta of the wave function for

argon are unable to be represented in terms of Sturmian functions and so, it

is necessary to use B-spline functions to represent the wave function instead.

The projection onto the ingoing Coulomb functions is not analytical for the

B-spline functions and so equation (5.15) cannot be used to skip this integra-

tion. Denoting the number of points considered in our integration along pρ as

Npρ , amounts to having to perform Npρ × Nl
2
∗ (Nl + 1) (the total number of

(l,m) pairs considered) integrations per p⊥ along the transverse direction.

Switching to the B-spline basis changes the way we compute the quantity

Il,m(p). We instead project the final wave function onto an ingoing Coulomb

wave function defined as

ψ−,∗p (r) =
1
√
p

∞∑
l=0

l∑
m=−l

(−i)leiδlφlE(r)Y ∗l,m(r̂)Yl,m(p̂) (5.23)

where δl = arg(Γ[l+1−iZ/p]) is the Coulomb phase shift in the lth partial wave

and φlE(r) is the energy normalised radial Coulomb function which is computed

using the algorithm in [64]. Substituting equation (5.23) into equation (5.12)

we can compute equation (5.13) and we get Il,m(p) given by

Il,m(p) =
(−i)leiδl√

k

∫ rmax

0

φlE(r)
N∑
k=1

ck,l,m(τ)Bk(r)dr (5.24)

where N is the total number of B-splines we use to represent each (l,m) pair.

From this point, we can simply perform the integration in equation (5.21).

Both representations for the wave functions as described above were used

to compute TEMDs in hydrogen as a check, but for argon, we only used B-
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splines. Note that we neglected the non-Coulomb behaviour of the first few

partial waves in argon by projecting solely on Coulomb functions. We have

found this to have negligible effect on the energy distribution at the end of the

pulse when comparing the projection of the final wave function onto ingoing

Coulomb wave functions and through the pseudo state method outlined in

equation (4.42).

The energy and the angle resolved spectrum associated with the wave

function Ψ(r, τ) can be calculated by projecting onto the ingoing Coloumb

wave function of momentum p like so

∂P

∂E∂Ωk

(E, θk, φk) = | 〈ψ−p (r)|Ψ(r, τ)〉 |2. (5.25)

5.4 Results

To study the effect on the dynamics of electrons in the transverse direction

as we move from linear to circular light in both the tunnelling regime and

the OBI regime, we initially focus on hydrogen. It is critical to be able to

distinguish which ionisation regime a specific interaction lies in order to con-

textualise the electron behaviour. The parameter in equation (4.35) defines the

point at which over the barrier ionisation becomes dominant. Ivanov defines

the parameter EOBI slightly differently due to the definition of the circularly

polarised field in [45] being such that I = E2
0 rather than I = 2E2

0 given here.

If E0 < EOBI and the Keldysh parameter is such that γ < 1 then adiabatic

tunnelling is the dominant mechanism for ionisation. If γ ≈ 1 with E0 < EOBI

then non-adiabatic tunnelling takes over and finally, if E0 > EOBI we find

ourselves in the OBI regime.

Ivanov moves from the tunnelling regime to the OBI regime by considering
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argon and neon, respectively. Argon in the 3p state requires a peak intensity

of IOBI = 9.9× 1014W/cm2 while neon requires just IOBI = 1.1× 1013W/cm2.

The choice of intensities that Ivanov et al employ for both atoms leaves γ ≈ 0.7

[45].

The point at which over the barrier ionisation becomes dominant for 1s

hydrogen is IOBI ≈ 2.74 × 1014W/cm2, whereas for 2p hydrogen, the peak

intensity required to enter the OBI regime is a mere IOBI ≈ 1.1× 1012W/cm2.

By choosing peak intensity I = 1014W/cm2 we are able to scrutinise both

regimes with relative ease while keeping the laser parameters fixed.

We vary the ellipticity of the pulse but choose the duration and wavelength

of the laser to be fixed at 4 cycles and 800 nm to compare with results by Ivanov

in [42] and [45]. The Keldysh parameter for 1s and 2p hydrogen subject to

these conditions is γ ≈ 1.5 and γ ≈ 0.75, respectively.

Convergence was achieved with 400 Bsplines, 50 total angular momenta

(lmax = 49 for 1s hydrogen, lmax = 50 for 2p hydrogen) and a time step

of δt = 0.05 a.u. in all cases for hydrogen. A total number of 50 angular

momenta amounts to 1275 (l,m) pairs or the sum of the first 50 integers.

5.4.1 Atomic Hydrogen in the Tunnelling Regime

To consider the two different regimes, tunnelling and OBI, we calculate the

TEMD from 1s and 2p initial state hydrogen, respectively. We shall also

distinguish between m = 0 and m = 1 for 2p hydrogen (m = 1 and m = −1

are symmetric).

To investigate the dampening of the cusp in the tunnelling regime as a

function of ellipticity, we calculated TEMDs for ε = 0, 0.25, 0.5, 0.75 and 1.

The purple TEMD in figure 5.5 exhibits the cusp-like feature about p⊥ = 0 for

the linear polarisation case that Rudenko et al [72] also observed in helium,
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neon and argon for linear pulses in the tunnelling regime. Another feature

that is similar to figure 5.1 is the change in slope at 0.25 a.u. attributed to

rescattering after omitting electrons with momentum below 2
√
Up. We see the

cusp and a very slight change in slope persist when moving to ε = 0.25.

When increasing the ellipticity to ε = 0.5, the cusp is barely visible and a

semblence of a Gaussian curve begins to emerge, signalling the point at which

we may say the SFA without Coulomb correction [29] is a good predictor of

electron behaviour in the transverse direction. By the time we reach ε = 0.75

and the fully circular case, the Gaussian shape consistent with the formulae

given by Delone and Krainov [29] and Popov [69] within the strong field ap-

proximation is clearly shown. The change in slope seen in linearly polarised

light is not present in the TEMD for circularly polarised light suggesting neg-

ligible electron-ion rescattering which is expected from a circular field. It is

then evident that the SFA without Coulomb correction breaks down in the

tunnelling regime for linearly polarised light.

Figure 5.5: (Colour online) TEMD after the initial ground state was subjected
to a 4 cycle 800 nm pulse with peak intensity 1014W/cm2. A cusp can be
seen in ε = 0 and 0.25, this cusp evolves into a Gaussian curve as we move to
circular polarisation.

The cusp can be explained when we consider the distribution of the angular

129



5.4. RESULTS

momentum number l as we move from linear to circular polarisation in con-

junction with the fact that the normalisation constant of the continuum wave

function in Coulomb field has a singularity about p = 0. If one observes a large

proportion of low energy photoelectrons after the pulse, then this singularity

becomes very apparent in the form of a cusp in the TEMD as pz or p⊥ → 0.

Figure (5.6) displays one reason for the breakdown of the cusp after ground

state hydrogen was subjected to a linearly and circularly polarised field by

taking the square norm of the wave packet for each l over the states in the

continuum after converting to the atomic basis

|Ψ(r, t)l|2 =
∑
−l≤m≤l

∑
k

|ak,l,m(τ)|2 (5.26)

where ak,l,m(τ) are the coefficients of the wave function in the atomic basis

defined in subsection 4.4.5 of Chapter 4.

The ionised electron for linearly polarised light (figure 5.6a) is most likely to

populate angular momenta in the range 0 < l < 15 with a peak at l = 7. The

circular case shows a shift upward for the continuum wave function to be most

densely populated around l = 18 lending further credence to the theory that

the cusp is based on the preponderance of low l and low energy photoelectrons

described in [42].
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(a) Linearly polarised light

(b) Circularly polarised light

Figure 5.6: The density of l states in the continuum after initial state 1s hyd-
rogen was subject to a 4 cycle, 800 nm pulse with peak intensity 1014W/cm2.
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(a) Linearly polarised light

(b) Circularly polarised light

Figure 5.7: The density of (l,m) states in the continuum after initial state
1s hydrogen was subject to a 4 cycle, 800 nm pulse with peak intensity
1014W/cm2. The numbering down the scale on the right of the density plot
represents descending powers of 10. All density plots of (l,m) states in this
chapter have this in common.
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The distribution of m states is also different depending on the polarisation

of the light source. Since the propagation direction of our field is along the z-

axis, the linear field has different selection rules than the conventional l→ l±1,

m → m when a photon is absorbed. Instead the selection rule is l → l ± 1,

m → m ± 1. By plotting the distribution of (l,m) continuum states in figure

5.7, we can see a very evenly spread population density between the m states,

something we would expect from a linearly polarised pulse. On the other hand,

for circularly polarised light there is a very clear propensity for the positive

m states to be populated. This would of course be the opposite should the

direction of the circular field reverses. Populating higher m states in larger

proportions than lower m states serves to push the electron further still from

the parent-ion after ionisation has occurred reducing the effect of the Coulomb

force.

5.4.2 Over the Barrier Ionisation Regime

To investigate the OBI regime, we alter the initial state of our system. Spe-

cifically we chose the initial states 2p, m = 0 and 2p, m = 1. The minimum

peak intensity required in the OBI regime for a 4 cycle, 800 nm pulse and

considering the Ip = 0.125 a.u. in these cases is IOBI = 1.1× 1012W/cm2. The

intensity we selected for our calculations was much higher at I = 1014W/cm2,

placing the interactions squarely within the OBI regime.

We look to compare with the results given by Ivanov et al [45] for neon in

the OBI regime subject to a 4 cycle 800 nm pulse with I = 2 × 1014W/cm2.

Figure 5.8 displays Ivanov et al ’s TEMD from [45] for metastable Ne* subject

to the linearly polarised pulse, we see there is reasonably good agreement with

experiment and a cusp at the origin in line with findings by Rudenko [72].

Figure 5.9 shows the TEMD for Ne* subject to the circularly polarised
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Figure 5.8: Metastable Ne* subject to subject to a linearly polarised 4 cycle
800 nm pulse with I = 2 × 1014W/cm2. The points are experimental values
[45].

pulse. The experimental values are offset towards p⊥ > 0 while the calculated

values from the TDSE are symmetric about the origin. A cusp is also clearly

seen in the circularly polarised case for the OBI regime. It is important to

be aware in the following discussion that Ivanov et al sum over the initial m

states and do not present TEMDs for individual initial m states. We shall

present results for 2p, m = 1 hydrogen and 2p, m = 0 separately.

Figure 5.10 displays the cusp about pz or p⊥ = 0 for both types of pulse.

We observed a slight change in slope for the TEMD attributed to the linear

pulse in line with findings from Rudenko et al suggesting that rescattering

is also present in the OBI regime for linear polarisation (shown in purple

in figure 5.10). Again, there is little evidence of rescattering in the TEMD

corresponding to the circular pulse (shown in green in figure 5.10). Fewer

photon absorptions to ionise is indicated in the distribution of continuum l

states (figure 5.11). There is a higher probability of finding the electron in s and

p states after being exposed to linear light, however, the distributions between
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Figure 5.9: Metastable Ne* subject to subject to a circularly polarised 4 cycle
800 nm pulse with I = 2 × 1014W/cm2. The points are experimental values
[45].

Figure 5.10: The TEMDs of initial state 2p, m = 1 hydrogen after being
subjected to a 4 cycle, 800 nm pulse with peak intensity 1014W/cm2. Both
linear (purple line) and circular (green line) light caused a cusp-like structure
in the subsequent transverse momentum distributions for the ionised electrons.
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the two types of pulse are largely the same. Both are densely populated in

the lower l states, and thus are likely to be found closer to the parent-ion

where the attractive Coulomb force remains a dominant feature, presenting

a complete breakdown of the SFA without Coulomb correction to describe

transverse electron dynamics in the OBI regime.

If we compare our findings in figure 5.10 with those of Ivanov et al in figures

5.8 and 5.9, we see good qualitative agreement between metastable Ne* and

2p hydrogen in the OBI regime.

Figure 5.12a tells a similar story to figure 5.7 in that the density of conti-

nuum (l,m) states is evenly spread over m for linear polarisation. The diffe-

rence between the two figures however is seen in figures 5.7b and 5.12b. The

majority of the density of continuum (l,m) states are almost exclusively found

in (l, l) and (l, l − 2) states for the tunnelling regime. Interestingly, in the

OBI regime, there is a much greater spread of m states that are significantly

populated per l.
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(a) Linearly polarised light

(b) Circularly polarised light

Figure 5.11: The density of l states in the continuum after initial state 2p,
m = 1 hydrogen was subject to a 4 cycle, 800 nm pulse with peak intensity
1014W/cm2.
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(a) Linearly polarised light

(b) Circularly polarised light

Figure 5.12: The density of (l,m) states in the continuum after initial state
2p, m = 1 hydrogen was subject to a 4 cycle, 800 nm pulse with peak intensity
1014W/cm2.
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5.4.3 The Inverted Cusp

Figure 5.13: The TEMDs of initial state 2p, m = 0 hydrogen after being
subjected to a 4 cycle, 800 nm pulse with peak intensity 1014W/cm2. All
ellipticities exhibit the feature of an inverted cusp at the origin.

We next change the initial state to 2p, m = 0 hydrogen. In this case we find

an inverted cusp for the TEMD for all ellipticities as seen in figure 5.13. This

is analogous to what Burgdörfer found in [17] for ion-atom collisions where

the initial state has odd parity, i.e. l +m is odd. The selection rules for both

linear and circular pulses from 2p, m = 0 exclude any states where the parity

of (l,m) is even. The relevance of this becomes clear when one plots |Yl,m|2 for

(l,m) odd and (l,m) even. Figure 5.14 shows the regions electrons can inhabit,

figure 5.14a shows that the x − y plane is able to be accessed by electrons in

the (l,m) = (0, 0) state. For states in (l,m) = (1, 0), however, the value of

Y1,0(
π
2
, φ) in the x − y plane (where z = 0) is 0, and so no electrons can be

found with momentum pz = 0 when the initial state has odd parity and has

the selection rules l → l ± 1, m → m ± 1. Plotting any |Yl,m|2 for (l,m) odd

will show that the function reduces to zero at any point on the x− y plane.

Since Ivanov et al did not perform separate TEMDs for Ne* in the OBI

regime, the effect of choosing an initial state with odd parity was masked
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behind the large cusp-like features in the TEMDs for the initial states with

even parity in figures 5.8 and 5.9.

The linear TEMD in figure 5.13 has two clear changes in slope. This can

be explained by the rescattering theory given by Rudenko et al [72] that has

been seen in 1s and 2p, m = 0 TEMDs for linear polarisation in the figures 5.5

and 5.10, however in this instance it suggests there are multiple rescatterings

occurring. We see the same rescattering to a lesser extent in the case of

ε = 0.25, meaning that there rescattering occurs regardless of whether your

initial state is 1s or 2p. Again, when we reach ε = 0.5, 0.75 and 1, there is no

evidence of a change in slope that can be attributed to rescattering.

We can see that there is zero chance for an electron to be found with

zero transverse momentum in all cases, which corroborates the fact that the

parity of the initial state dictates the behaviour of low transverse momentum

electrons in a very distinct manner: the complete inversion of the cusp at zero

transverse momentum in the OBI regime.

The density plots of the l and (l,m) states (figures 5.15 and 5.16, respecti-

vely) are very similar to that of 2p, m = 1. Both types of pulse only incur

population in low l states and the (l,m) density plot for the circular pulse

(figure 5.16b) features a higher spread of m states that are populated per l

than the initial state of 1s populated in figure 5.7b. It is important to note

that we are in the OBI regime here and that we should expect to see effects

of the Coulomb potential due to the preponderance of low l electrons in the

continuum. There will be a comparison between initial state argon with odd

and even parity to determine the effect that the Coulomb force has on the

TEMD in the tunnelling regime.
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(a) |Y0,0|2

(b) |Y1,0|2

Figure 5.14: Plots of |Yl,m|2 showing the regions electrons are able to exist in
for (l,m) states (0, 0) and (1, 0).
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(a) Linearly polarised light

(b) Circularly polarised light

Figure 5.15: The density of l states in the continuum after initial state 2p,
m = 0 hydrogen was subject to a 4 cycle, 800 nm pulse with peak intensity
1014W/cm2.
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(a) Linearly polarised light

(b) Circularly polarised light

Figure 5.16: The density of (l,m) states in the continuum after initial state
2p, m = 0 hydrogen was subject to a 4 cycle, 800 nm pulse with peak intensity
1014W/cm2.
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5.5 Argon in the Tunnelling Regime

Ivanov et al [45] produced results both experimental and numerical to suggest

that this cusp extends to argon and neon. They showed the persistence of the

cusp in neon but dampening of the cusp in argon in figure 5.18 as the ellipticity

of their respective fields increased, exactly what was seen for hydrogen in

the same regimes. Interestingly, however, the experimental results did not

overlay with the numerical results. In fact they observed good agreement

for calculations involving linear fields seen in figures 5.17 and 5.8, but gradual

divergence between experimental and numerical results in both neon and argon

as the ellipticity increased. The experimental TEMDs displayed much broader

distributions and even a small amount of asymmetry about the origin.

We chose to examine the behaviour of electron momentum transverse to

the field in 3p, m = 0 and 3p, m = 1 argon. This leaves us with one initial state

with even parity and the other with odd parity, allowing us to directly compare

with the behaviour shown in hydrogen in the tunnelling and OBI regimes and

Figure 5.17: Ground state 3p argon subject to subject to a linearly polarised
4 cycle 800 nm pulse with I = 4.8× 1014W/cm2. The points are experimental
values [45].
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Figure 5.18: Ground state 3p argon subject to subject to a circularly polarised
4 cycle 800 nm pulse with I = 4.8× 1014W/cm2. The points are experimental
values [45].

to disentangle the information given by Ivanov et al in figures 5.17 and 5.18

where the contribution from individual m values are hidden. Note, that in

the dipole approximation and single active electron (SAE) approximation, the

selection rules for argon mirror that of hydrogen.

Within the SAE and knowing that the binding potential of ground state

argon is Ip = 0.5821 a.u., we must select the peak intensity of our field to be

I < IOBI ≈ 3 × 1015W/cm2. And so, the peak intensity for a 4 cycle, 800

nm laser pulse was chosen to be I = 4.8× 1014W/cm2, in line with [45] in the

figures above. For full convergence, we required 80 angular momenta and 900

B-splines over a 600 a.u. box. We could not achieve convergence using the

parameters described in the argon calculations by Ivanov [45].

For initial state 3p, m = 1 ground state argon subject to a laser pulse

in the tunnelling regime, we should expect to see similar behaviour to what

we observed in 1s hydrogen in figure 5.5 and in [42]. To a large degree, we
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5.5. ARGON IN THE TUNNELLING REGIME

do see the same effect on the dampening of the cusp as we move to circular

polarisation in argon. The purple line in figure 5.19 displays the cusp at the

origin, exactly like in 1s hydrogen.

The circular polarisation case of 3p, m = 1 argon, however, has a steeper

Gaussian TEMD than that of 1s hydrogen subject to circular polarisation.

This indicates that the ratio of total ionisation in argon subject to linear

polarisation to argon subject circular polarisation is much smaller than the

same ratio in 1s hydrogen where the linear TEMD dwarfs the circular TEMD.

This can be attributed to the fact that the selected peak intensity of the laser in

the case of argon is closer to the OBI regime than for 1s hydrogen, specifically,

a factor of 6 compared to a factor of 22.

We then consider the case of odd parity initial state argon and uncover

the hidden features of the TEMDs shown by Ivanov et al in figures 5.17 and

5.18 [45]. Figure 5.20 shows the TEMDs for linear and circular polarisation

for 3p, m = 0 argon subject to the same laser parameters described above.

Both of the TEMDs exhibit an inverted cusp at the origin which was to be

expected when we consider figure 5.14b, however, there is a significantly smaller

amount of ionisation occurring in the circular polarisation case than in the

linear polarisation case. This appears to be symptomatic of interactions within

the adiabatic tunnelling regime. When compared to figure 5.13, the TEMDs for

odd parity initial state hydrogen in the OBI regime, there is in fact an increase

in the ionisation probability as we move from linear to circular polarisation,

the opposite to what we find in the tunnelling regime.

Both cases of initial state argon that we consider, when subject to linear

polarisation, have the distinctive changes in slope that can be attributed to

rescattering, in line with what we see in linear and close to linear polarisation

in hydrogen.
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Figure 5.19: The TEMDs of initial state 3p, m = 1 argon after being subjected
to a 4 cycle, 800 nm pulse with peak intensity 4.8×1014W/cm2. A cusp appears
in the linear case (purple line) and a Gaussian is seen in the circular case (green
line).

Figure 5.20: The TEMDs of initial state 3p, m = 0 argon after being subjected
to a 4 cycle, 800 nm pulse with peak intensity 4.8× 1014W/cm2. An inverted
cusp appears in both linear and circular polarisation.

For 3p argon subject to circular polarisation, we see that the distribution of

population of the angular momentum number l in the continuum is extremely

skewed to the higher end of the spectrum.

We find a significant population of the photoelectrons in the region l = 40−

70 in figures 5.21 and 5.23 and a large spread of m states for the l = 55−70 in
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Figure 5.21: The distribution of the angular momentum number population
of photoelectrons for 3p, m = 1 argon subject to circularly polarised light.

Figure 5.22: The distribution of the (l,m) states of photoelectrons for 3p,
m = 1 argon subject to circularly polarised light.

figures 5.22 and 5.24. This describes a different picture to that of 1s hydrogen

subject to circular light in figure 5.7b, where we observe a very concentrated

distribution of m states per l.

148



5.6. CONCLUSION

Figure 5.23: The distribution of the angular momentum number population
of photoelectrons for 3p, m = 0 argon subject to circularly polarised light.

Figure 5.24: The distribution of the (l,m) states of photoelectrons for 3p,
m = 0 argon subject to circularly polarised light.

5.6 Conclusion

In the case of linearly polarised light, there was a clear breakdown of the

formulae of Delone and Krainov [2] in both hydrogen and argon within the

tunnelling regime for system’s with even parity initial states which corroborates

the findings presented in [72] and [42]. Increasing the ellipticity for even parity

initial states, the TEMDs become Gaussian in shape in line with what the SFA

without Coulomb correction predicts.
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The majority of photoelectrons are to be found in low angular momen-

tum states for systems in the tunnelling regime subject to linearly polarised

light and for any ellipticity in the OBI regime. This corroborates with the

hypothesis given by Ivanov [42] that when we find a large preponderance of

photoelectrons with low angular momenta, the singularity in the Coulomb con-

tinuum wave function becomes pronounced in the form of a cusp at the origin

of the TEMD. Moving from linear to circular light in the tunnelling regime,

we find the distribution of angular momenta shift upward which serves to dull

the singularity in the Coulomb continuum wave function and form a Gaussian

TEMD.

In all systems that were subject to exactly or nearly linearly polarised light

in hydrogen and argon, there was evidence of a change in the slope of the

TEMD, highlighting that rescattering occurs independently of whether the

initial state has odd or even parity and whether the system lies within the

OBI or tunnelling regime.

Ivanov et al [45] presented interesting results in the tunnelling ionisation

and OBI regime for metastable neon and argon, respectively. However, they

did not separate the initial states by m value. Instead the TEMDs presented

by Ivanov et al were calculated using a superposition of initial states over the

m values for a given l. When analysing the atomic structure in more detail

by examining the ionisation from initial states with different magnetic quan-

tum numbers, we found new features for the first time in TEMD calculations.

For initial states with odd parity, there was a clear inversion of the cusp-like

behaviour and instead we found no zero momentum electrons transverse to

the electric field. The transition selection rules for electrons in the cases we

considered in this chapter are completely unable to access electronic states

that permit zero momenta in the transverse direction, a feature hidden by the
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superposition of initial states given in [45]. In order for ionised electrons to

access these states from an odd parity initial state, the electric field would re-

quire parameters that necessitate non-dipole effects, where different selection

rules permit transitions from odd to even parity states.

151



Chapter 6

Momentum Distributions for

Hydrogen Subject to Long

Wavelength Intense Fields

6.1 Introduction

Up to now we have focussed on parameter ranges where the dipole approxi-

mation is valid. The approximation is sometimes based on the fact that the

wavelength of the laser field is very large when compared with the size of the

target atom and thus, the vector potential A(t) is taken to be spatially homo-

genous. Hence, it is to be expected that this approximation would breakdown

as the wavelength of the driving field decreases to the point that it becomes

comparable to the size of our atom. However the breakdown of the dipole

approximation is also known to occur when the wavelength of a high inten-

sity laser becomes sufficiently long. The parameter range where the dipole

approximation is valid is shown in figure 2.1.

Ludwig et al [57] have investigated the long wavelength breakdown of the

dipole approximation. They state that the limit of the dipole approximation

for long wavelength is reached when the magnetic field induced amplitude of

a free electron’s motion, in the frame where the electron on average is at rest,

becomes 1 a.u. or Up/2ωc = 1. For 1s hydrogen subject to an 800 nm pulse,
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magnetic field effects would be incurred if the field intensity were to reach

5 × 1015W/cm2. Chelkowski et al [19] have performed a grid based TDSE

calculation for 1s hydrogen to study these non-dipole effects at 800 nm up

to I = 7 × 1014W/cm2, a considerably lower intensity than 5 × 1015W/cm2

given in [57]. The Coulomb potential was replaced by a regularised Coulomb

potential and a small shift in momentum along the propagation direction was

observed for linearly polarised light [19].

Ludwig et al present an experimental study on non-dipole linear polari-

sation in the mid infra-red range with intensities that breach this limit of

Up/2ωc = 1 a.u. or I ≥ 8ω3c alongside simulations performed using classical

trajectory Monte Carlo with a semi-classical two step model.

Figure 6.1: The photoelectron momentum distributions measured and calcu-
lated by Ludwig et al [57] for xenon and helium.

Figure 6.1 shows the breakdown of the dipole approximation in experiment

and simulation for laser-atom interactions involving xenon and helium. Panel

(a) displays the experimental photoelectron momentum distribution of xenon

subject to a 3.4µm pulse linearly polarised in the x-direction with intensities

3× 1013W/cm2 and 6× 1013W/cm2. In the lower panel of (a), the distribution
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of momentum along pz (the propagation direction of the beam and perpendi-

cular to the polarisation plane) is offset. This is also seen to be the case in

simulations about pz = 0 in panel (b) and is not manifest when the magnetic

component of the field is neglected in panel (c) and when the intensity is too

low in panel (d) for helium in an 800 nm laser field.

The offset occurs in the direction opposite to the direction of propagation

of the beam. Ludwig et al [57] reasoned that this occurs with linear polari-

sation because the electron is pushed along the propagation direction and is

then pulled backwards by the Coulomb potential, towards the parent-ion as

it is moved up and down past the ion by the electric field ([53], [22]). The

effects of Coulomb focussing are less pronounced for longer wavelength laser

fields. Also, in circular polarisation, the effects of the Coulomb field are di-

minished considerably due to the electron being very unlikely to be involved

in recollisions which contributes to the effects of Coulomb focussing in linear

polarisation [21]. Experimentally, Smeenk et al [80], show that there is a shift

in photoelectron momentum along the direction of propagation in circularly

polarised light. In a recent paper by Daněk et al [26], the dependence between

the momentum shift along the propagation direction from positive to negative

and the ellipticity of the field is studied experimentally and also theoretically

using classical trajectory Monte Carlo simulations.

In this chapter, the TDSE is solved directly for a linearly polarised field

including non-dipole terms in the Hamiltonian in order to explore whether

these additional dynamics include the effects on the momentum distributions

shown in figure 6.1. However, due to the complexity of the resultant TDSE,

several approximations are necessary in order to make the calculations possible.

Hence the results shown are exploratory in nature.
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6.2 Formulation of the Hamiltonian in the

Weakly Relativistic Regime

For numerical simulations in which the laser field parameters fall just outside

the dipole oasis, specifically near the relativistic break down of the dipole

approximation, retardation effects must be considered when formulating the

Hamiltonian of the system.

Using a linearly polarised pulse in the x-direction propagating along the

z-axis, we define the vector potential of the electromagnetic field as:

A(r, t) = A(t′)ex (6.1)

where t′ = t− αz. The Hamiltonian becomes

H =
1

2
p2 + V + A(t′)px +

1

2
A2(t′). (6.2)

The TDSE corresponding to this pulse is too expensive computationally,

in particular when dealing with the term A(t′)px and so, Dondera and Bachau

introduce the following simple approximation [30] to the potential:

A(t− αz) ≈ A(t)− αȦ(t)z = A(t) + αF (t)z (6.3)

where F (t) ≡ −Ȧ(t) and α = 1/c is the fine structure constant. Note that this

approximation of the potential relies on the parameters of the electromagnetic

field and will not produce satisfactory results for frequencies that become to

high, specifically for αω > 1 a.u. or ω > 3.73 keV.

The Hamiltonian in equation (6.2) is now approximated by the following
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H ≈ 1

2
p2 + V + A(t)pz + αF (t)zpx + αA(t)F (t)z, (6.4)

where the term 1
2
A2(t) and all terms over and including α2 have been omitted.

We then rewrite equation (6.4) as:

H ≈ Hat +HDA +H(1)
RET +H(2)

RET ≡ H̃, (6.5)

where Hat = 1
2
p2 + V , HDA = A(t)px, H(1)

RET = αF (t)zpx and H(2)
RET =

αF (t)A(t)z.

6.2.1 Matrix Elements of the Non-Dipole Part of the

Hamiltonian

We represent the wave function in terms of B-spline functions (see equation

(3.38)). The Hamiltonian has bandwidth 2k − 1 where k is the order of the

B-spline since for |i− j| ≥ k we have

∫ ∞
0

Bi(r)Bj(r)dr = 0. (6.6)

This is especially desirable for non-dipole calculations because memory is a

finite resource and to propagate in the atomic basis, for instance, would signi-

ficantly reduce the size of the calculation that could be performed as opposed

to using the B-spline basis.

[
H0

] l,l
m,m

i,j

=
−1

2

[
Bkini,j

]
− l(l + 1)

2

[
Bangi,j

]
−
[
BCouli,j

]
(6.7)

[
HDA

] l−1,l
m−1,m

i,j

= −iA(t)

√
(l +m)(l +m− 1)

(2l + 1)(2l − 1)

[
B∂xi,j (l)

]
, (6.8)
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[
HDA

] l−1,l
m+1,m

i,j

= iA(t)

√
(l −m)(l −m− 1)

(2l + 1)(2l − 1)

[
B∂xi,j (l)

]
, (6.9)

where

[
Bkini,j

]
=

〈
Bi

r

∣∣∣∣ d2dr2
∣∣∣∣Bj

r

〉
=

∫ rmax

0

BiB
′′
j dr, (6.10)

[
Bangi,j

]
=

〈
Bi

r

∣∣∣∣ 1

r2

∣∣∣∣Bj

r

〉
=

∫ rmax

0

BiBj

r2
dr, (6.11)

[
BCouli,j

]
=

〈
Bi

r

∣∣∣∣ 1

r

∣∣∣∣Bj

r

〉
=

∫ rmax

0

BiBj

r
dr (6.12)

and

[
B∂xi,j (k)

]
=

〈
Bi

r

∣∣∣∣
∣∣∣∣∣rB

′
j + kBj

r2

〉
=

∫ rmax

0

BiB
′

jdr + k

∫ rmax

0

BiBj

r
dr (6.13)

which comes from the ∂
∂x

which appears in any part of the Hamiltonian invol-

ving p.

H0 and HDA are the usual terms for the atomic and interaction parts of

the Hamiltonian subject to the dipole approximation. The matrix elements

for the extra terms of the Hamiltonian that arise from taking t′ = t− αz will

be laid out below.

First of all, the matrix elements for the correction H(1)
RET originating from

A · p in the Hamiltonian are as follows:
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[
H(1)
RET

] l−2,l
m−1,m

i,j

= −iα
2
F (t)

[
B∂x,zi,j (l)

]

×

√
(l +m)(l +m− 1)

((2l + 1)(2l − 1)

√
(l +m− 2)(l −m)

(2l − 1)(2l − 3)

(6.14)

[
H(1)
RET

] l,l
m−1,m

i,j

= −iα
2
F (t)

[
B∂x,zi,j (l)

]

×

√
(l +m)(l +m− 1)

((2l + 1)(2l − 1)

√
(l +m− 1)(l −m+ 1)

(2l + 1)(2l − 1)

(6.15)

[
H(1)
RET

] l−2,l
m+1,m

i,j

=
iα

2
F (t)

[
B∂x,zi,j (l)

]

×

√
(l −m)(l −m− 1)

(2l + 1)(2l − 1)

√
(l +m)(l −m− 2)

(2l − 1)(2l − 3)

(6.16)

[
H(1)
RET

] l,l
m+1,m

i,j

=
iα

2
F (t)

[
B∂x,zi,j (l)

]

×

√
(l −m)(l −m− 1)

((2l + 1)(2l − 1)

√
(l +m+ 1)(l −m− 1)

(2l + 1)(2l − 1)

(6.17)

where

[
B∂x,zi,j (k)

]
=

〈
Bi

r

∣∣∣∣ r
∣∣∣∣∣rB

′
j + kBj

r2

〉
=

∫ rmax

0

BiB
′

jrdr + k

∫ rmax

0

BiBjdr.

(6.18)

The second non-dipole correction, H(2)
RET , due to the 1

2
A2 term in the velocity

gauge, is:

[
H(2)
RET

]l−1,l
m,m

i,j

= αF (t)A(t)

[
Bri,j
]√

(l +m)(l +m− 1

(2l + 1)(2l − 1)
. (6.19)
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There is one more piece of notation left to clear up:

[
Bri,j
]

=

〈
Bi

r

∣∣∣∣ r ∣∣∣∣Bj

r

〉
=

∫ rmax

0

BiBjrdr. (6.20)

6.3 Ionisation by Long Wavelength Lasers

The formula that determines when non-dipole effects from the magnetic com-

ponent v × B arise comes from considering the figure ‘8’ motion of a free

charged particle in a plane wave field in figure 6.2. At low intensity, the parti-

cle follows a straight line of amplitude α0 through interaction with a linearly

polarised electric field. If the amplitude in the direction of propagation of the

plane wave field reaches 1 a.u. then the dipole approximation is no longer

valid. This occurs at

β0 =
Up
2ωc

= 1 a.u. (6.21)

which, when rearranged, gives

I = 8ω3c. (6.22)

Thus, by fixing the intensity and increasing the wavelength of the field suffi-

ciently, non-dipole effects from the magnetic field component along the propa-

gation direction will arise.

6.3.1 Envelope Approximation

We first drop the term pertaining to the second order contribution from A ·p,

H(1)
RET , since it has been shown to be dominated by H(2)

RET [34].
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Figure 6.2: A free electron’s motion in a plane wave field traces out a figure of 8
in a frame of reference where the electron is at rest on average. The amplitude
α0 is in the direction of the electric, while the amplitude β0 is the motion in
the direction of propagation of the plane wave field [54]. When β0 reaches 1
a.u. then the long wavelength failure of the dipole approximation may occur
(figure taken from [71]).

Special consideration is given in this section of the Hamiltonian to terms re-

lating to two-photon transitions given in equation (6.19) when striking an elec-

tron with a laser with a long wavelength and with intensities that would place

it within the non-dipole regime. The term involves the product of F (t)A(t),

meaning it oscillates at twice the rate of the other terms in the Hamiltonian. It

was quickly realised that leaving this term in the form it is given in the equati-

ons referenced above, requires extremely small time steps. In order to remedy

this problem, it was necessary to employ what it is known as the envelope

approximation to this term [79].

It is argued in a paper by Simonsen et al [79] that one can use a time average

of the induced motion along the motion of propagation to approximate the non-

dipole contributions to a high degree within the context of high intensity and

high frequency lasers. Thus, it is interesting to investigate the effectiveness of

this approximation within the context of high intensity, low frequency lasers.

Starting with the reduced Hamiltonian from in equation (6.4)
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H = Hat +HDA − αzA(t)A′(t) (6.23)

where F (t) = −A′(t), Simonsen et al first convert to what is known as the

propagation gauge [33] which is achieved by performing a series of unitary

gauge transformations of the form

Ψn = UnΨn−1 = eiαnΨn−1 (6.24)

where

αn(ωt− k · r) = an
c2

ω

∫ ωt−k·r

−∞

(
−A(η)

c

)2n

dη (6.25)

with the an real transformation weights given by

an =
n−1∑
i=1

aian−i =

(
2n

n

)
1

4n(2n− 1)
. (6.26)

Each gauge transformation is then defined recursively as

Hn = UnHn−1U
†
n + iU̇nU

†
n (6.27)

however, for the purposes of the approximation defined in [79], it is only ne-

cessary to take the first order transformation of the propagation gauge.

With the Hamiltonian defined as it is in equation (6.23), Simonsen et al

take

U = exp

(
− iα

2
zA2(t)

)
(6.28)

resulting in the new Hamiltonian
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HPG = UHU † + iU̇U †

= Hat + A(t)px +
α

2
A2(t)pz

(6.29)

where

A(t) = A0 sin(ωt+ φ)f 2(t) (6.30)

f(t) = sin2

(
πt

τ

)
(6.31)

for 0 < t < 2Nπ/ω = τ .

The first interaction is simply the dipole interaction term in the velocity gauge,

while the other interaction term describes a non-negative force in the direction

of propagation which mimics a non-zero displacement pulse [44]. This field in

this term, A2(t) can be rewritten as

A2(t) =
1

2
A2

0f
2(t)(1− cos(2(ωt+ φ))

=
1

2
A2

0[f
2(t)− f 2(t) cos(2(ωt+ φ))]

(6.32)

so that when this is substituted back into the Hamiltonian given by equation

(6.29), it becomes:

HPG = Hat + A(t)px

+
α

4
A2

0f
2(t)pz

− α

4
A2

0f
2(t) cos(2(ωt+ φ))pz.

(6.33)
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The principle idea behind the envelope approximation is that one can neglect

the second non-dipole term in the propagation gauge Hamiltonian. This can be

justified because the first term involving just the envelope function f(t) imparts

a net momentum transfer to the particle in the direction of propagation, while

the other non-dipole term oscillates quickly about this mean net transfer. Since

these oscillations are superimposed on a net shift over a comparatively slow

time scale, their contribution is expected to vanish. This is true when f 2(t)

varies slowly compared to π/ω [79].

When disregarding this term, the envelope approximation in the propaga-

tion gauge is

Henv
PG = Hat + A(t)px +

α

4
A2

0f
2(t)pz. (6.34)

Moving back to the velocity gauge by applying the inverse operation subject

to the envelope approximation

Ψ = exp

(
i
αA2

0

4
zf 2(t)

)
ΨPG (6.35)

leaves the envelope approximated velocity gauge Hamiltonian as

Henv = Hat +HDA −
α

2
A2

0zf(t)f ′(t). (6.36)

The approximation constitutes a time averaging over the carrier wave in

the non-dipole operator [79].

6.4 Non-Dipole Results

In this section, for computational simplicity, the pulse is defined with a cosine

squared envelope rather than sine squared
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A(t) = A0 sin(ωt+ φ) cos2
(
ωt

2N

)
− Nπ

ω
< t <

Nπ

ω
(6.37)

where N is the number of cycles of the pulse. Since the envelope has changed,

the time dependent factor in the final summand of equation (6.36) becomes

f(t)f ′(t) = −2π

τ
cos3

(
πt

τ

)
sin

(
πt

τ

)
. (6.38)

We begin by calculating the momentum along the propagation direction

for the example given in [57], however, we use hydrogen instead of helium (see

figure 6.1 panel (d)). We subject ground state hydrogen to an 800 nm, 2 cycle

linearly polarised laser with intensity 1.4 × 1014W/cm2 with and without the

non-dipole term in equation (6.36). The parameters for this calculation are

relatively manageable given the intensity: lmax = 32, rmax = 350 a.u., δt = 0.05

a.u. and 350 B-splines. The parameters were varied to test for convergence.

Ostensibly, a calculation involving only 33 total angular momenta is relatively

small, however, the inclusion of non-dipole components in the Hamiltonian

necessitates all (l,m) pairs to be considered. The total number of (l,m) pairs

for this calculation is 332 = 1089.

Figure 6.3 displays the momentum of photoelectrons along the propagation

axis (the z-axis). These are calculated as described in subsection 5.3.3 of the

previous chapter. We see there is a tiny shift in momentum towards negative

z, that is pz < 0, but the peak of the momentum distribution is still found at

pz = 0.

We attempted to obtain converged results for intensities that would see a

clear indication of non-dipole effects at 800 nm, however, with large intensity

comes large photoelectron energies. This means that the number of B-splines
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Figure 6.3: A comparison of the momentum distribution along z of 1s hydrogen
with the dipole approximation in place and with the effect of the addition
of non-dipole components. The pulse was linearly polarised with intensity
I = 1.4× 1014W/cm2 with ω = 0.0569 a.u. and lasted for 2 cycles.

required to represent a calculation at 800 nm becomes unrealistic. To address

this issue, we reduce the intensity to 5 × 1013W/cm2 and increase the wave-

length of the pulse to 2.5 microns. A reduction in intensity brings with it a

reduction in the number of high energy ionisation events. The B-spline basis

of size N can faithfully reproduce energies up to [6]

EN =
N2π2

2r2max
. (6.39)

If we reduce the window of energies we expect photoelectrons to have for a

given calculation, we can reduce the number of B-splines dramatically.

With this in mind, the parameters required for convergence for a 2.5 micron

laser for 2 cycles with intensity 5× 1013W/cm2 are lmax = 80, δt = 0.025 a.u.,

rmax = 1000 a.u. and 1000 B-splines. To emphasise the size of a calculation

like this, the total number of (l,m) pairs in this calculation is 812 = 6561.

Again, these parameters were tested for convergence.

Figure 6.4 displays a comparison between the TEMD for the dipole ap-
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Figure 6.4: A comparison between the TEMD with the dipole approximation
in place and the TEMD with the non-dipole envelope approximation. Ground
state hydrogen was subject to a linearly polarised 2 cycle pulse of wavelength
2500 nm and intensity 5× 1013W/cm2.

proximation and the TEMD which pertains to the addition of the non-dipole

envelope approximation component to the Hamiltonian. The TEMD for the

dipole approximation is symmetric about the origin pz = 0, while the TEMD

for the non-dipole calculation is skewed quite clearly towards pz < 0. This

corroborates the findings by Ludwig et al [57] for xenon at 3×1013W/cm2 and

6 × 1013W/cm2 but for 3.4 microns. Interestingly, the experimental results

by Ludwig et al [57] and the results shown in figure 6.4 exhibit non-dipole

effects below the point at which we should expect them to occur according

to Reiss [71]. For 3.4 microns, non-dipole effects are predicted to occur at

I = 9 × 1013W/cm2 and for 2.5 microns, non-dipole effects are predicted to

occur at I = 2.3× 1014W/cm2. In experiment and through the direct solution

of the TDSE, non-dipole effects become manifest between at intensities 2− 3

times lower than what is predicted.

Panel (a) in figure 6.1 displays the transverse momentum distribution for

photoelectrons for the aforementioned laser parameters. There is a small off-

set, for both intensities considered, towards pz < 0, against the direction of
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Figure 6.5: A closer look at the TEMD for 1s hydrogen subject to a 2 cycle,
2.5 micron linearly polarised pulse with intensity 5 × 1013W/cm2. The black
dashed line corresponds to the origin, the red line corresponds to the maximum
calculated point of the TEMD.

propagation. Figure 6.5 shows the same small offset against the direction of

propagation for the direct solution of the TDSE of ground state hydrogen.

The black line corresponds to the origin, the point at which, within the dipole

approximation, the TEMD should be symmetric. The red line shows where

the TEMD is actually at a maximum according to our calculations - a tiny

offset against the direction of propagation, corroborating the results in [57]

and accentuating the photoelectron’s interaction with the core at the end of

the pulse.

We note, that in figure 6.4 the TEMD for the dipole approximation boasts

a slightly higher peak. This seems to come from a very minute difference in

the cross section at low energy (see figure 6.6). The non-dipole cross section

falls slightly under the dipole for low energy, however, beyond this point both

cross sections are equal - even in log scale.
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Figure 6.6: The low energy region of the distribution of photoelectron energies
for both the dipole and non-dipole calculation in 1s hydrogen subject to a 2
cycle 2.5 micron linearly polarised laser with intensity I = 5× 1013W/cm2.

6.5 Conclusion

We decided to focus on long wavelength laser-atom interactions in linear po-

larisation with moderate intensity to compare with the experimental results

by Ludwig et al [57] which showed that there is a shift in the momentum

distribution of photoelectrons against the propagation direction of the laser.

With the inclusion of the non-dipole envelope approximation component to the

Hamiltonian, we found good agreement with their results. Figure 6.4 shows

that for 1s hydrogen subject to a 2 cycle, 2.5µm linearly polarised laser with

intensity 5 × 1013W/cm2 that there is a significant tilt in photoelectron mo-

mentum against the propagation direction of the laser. A shift in the peak of

the momentum distribution along pz was found in figure 6.5, corroborating the

findings of Ludwig et al [57] that the Coulomb potential influences the motion

of the photoelectron after the pulse.

Figure 6.3 showed a small tilt towards pz < 0 for 1s hydrogen subject to a

2 cycle 800 nm linearly polarised pulse with intensity 1.4× 1014W/cm2. This

comes from the fact that the envelope approximation is always non-zero no
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matter the parameters of the laser field and will affect the observables at the

end of the pulse, even if the effect is very slight. No shift in the peak of the

momentum distribution in pz was observed which is in good agreement with

the rightmost panel of figure 6.1.

It is important to note that these results are exploratory and that the

envelope approximation permitted these calculations due to the impact it has

on the size of the time step we could choose. It would be interesting to use

the full non-dipole Hamiltonian in equation (6.2) to investigate the results in

this chapter with and without the envelope approximation. Through tests with

the full Hamiltonian, we have found the time step required becomes very small

since the term A(t)F (t) in equations (6.19) and (6.19) oscillates twice as fast

the dipole term and the term F (t) in equations (6.14) to (6.17) oscillates out

of phase with the dipole term.
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Chapter 7

Conclusion and Outlook

In this thesis we examined a number of effects arising with atoms in intense

laser fields. We presented a comparison between the PPT theory of Barth

and Smirnova [10], [9] and our direct numerical integration of the TDSE to

explore the preferential ionisation of counter-rotating electrons over co-rotating

electrons relative to a circularly polarised field, the so-called propensity rule.

We found qualitative agreement with the results of Barth and Smirnova for

the non-adiabatic tunnelling regime where E0 < EBSI and γ ≈ 1, [51], in

particular when they added long-range Coulomb corrections to their theory

[51]. However, outside of this parameter region, we found that their theory

did not agree with the TDSE results and that in some cases, the propensity rule

broke down. There was a reversal in the propensity rule for certain values of

ω and we anticipate that the co-rotating case will continue to be preferentially

ionised for ω > 0.3 (the highest value of ω to be used). We also observed a

large degree of excitation in the counter-rotating case, accompanied by highly

oscillatory behaviour with respect to increasing frequency of the laser field.

The co-rotating case only saw significant excitation at the high end of the

range of frequencies we considered.

We evaluated the electron momentum distribution for hydrogen and ar-

gon for linear and elliptically polarised fields in various parameter regimes.

Focussing on the transverse electron momentum distribution (TEMD) in the

tunnelling and BSI regimes we found that that the SFA without Coulomb
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correction is not sufficient to describe electron dynamics when significant in-

teraction with the ion-core is present during the pulse. For linearly polarised

fields within the tunnelling regime a cusp-like shape appears at the origin while

the SFA without Coulomb correction predicts a smooth Gaussian TEMD. In

addition, a shoulder in the TEMD indicates that rescattering and the Cou-

lomb potential play a crucial role. We find such shoulders in the computed

TEMDs for ellipticity up to ε = 0.25. The cusp is seen for cases within the

tunnelling regime up for ε = 0.5 in hydrogen and is observed in ground state

argon for linear light. The cusp transforms into a Gaussian as the ellipticity

increases towards circular polarisation. For the case of odd parity l+m initial

state atoms, we showed that the cusp in the TEMD is inverted. For TEMDs

produced from odd parity initial states, this inversion of the cusp at the ori-

gin is independent of ionisation regime since it is manifest in 2p hydrogen in

the BSI regime and is also present in the tunnelling regime for ground state

argon. Within the BSI regime for 2p hydrogen we see a cusp at the origin for

all ellipticities. This means that the SFA without Coulomb correction is not

applicable to the transverse momentum dynamics of laser-atom interactions in

this regime.

We have performed exploratory calculations in the non-dipole regime for

the TEMD for hydrogen. The parameters required for convergence for low

frequency, high intensity pulses are very computationally expensive. Ground

state hydrogen subject to an 800 nm pulse with intensity above 1015W/cm2

requires upwards of 100 angular momenta and very large box sizes. We made

some reasonable approximations to the non-dipole terms in the TDSE, inclu-

ding the envelope approximation, and our calculated TEMD shows an asym-

metry in the distribution about the origin, agreeing with recent experiments.

We propose some future directions for the work contained in this thesis.
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For the propensity rule, it would be interesting to make a direct quantitative

comparison with the work of Barth and Smirnova. This would require using

longer flat top pulses to calculate the ionisation rate over a cycle. In the

non-dipole case, it would be interesting to investigate the accuracy of the

envelope approximation and other approximations we used by calculating the

TEMD without approximations to the TDSE. This would require significant

computational resources but should be feasible. Finally, an interesting question

to answer would be how much the inverted cusp in the TEMD is affected when

non-dipole components are considered. Non-dipole components would allow

odd parity initial states to access even parity states and pz = 0 should, in

theory, be possible for electrons subject to such pulses.
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Appendix A: Momentum Space

Representation of the Coulomb

Potential

Momentum Space Schrödinger Equation

The time independent Schrödinger equation in position space is well known as

−1

2
∇2Ψ(r) + V (r)Ψ(r) = EΨ(r) (A.1)

where V (r) is the attractive Coulomb potential. The momentum space repre-

sentation of equation (A.1) is

(
p2

2
− E

)
Φ(p) +

1

(2π)
3
2

∫
d3p′U(p− p′)Φ(p′) = 0 (A.2)

where Φ(p) and U(p) are the Fourier transforms of the position space repre-

sentations of the wave function and Coulomb potential, respectively. U(p) can

be shown to be [55]

U(p) = −2
1
2Z√
π

1

p2
. (A.3)
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MOMENTUM SPACE SCHRÖDINGER EQUATION

Substituting equation (A.3) into equation (A.2) produces the following equa-

tion for the time independent momentum space Schrödinger equation (TIMSE)

(
p2

2
− E

)
Φ(p) =

Z

(2π)3

∫
d3p′Φ(p′)V(p′ − p) (A.4)

where

V(p′ − p) =
4π

|p′ − p|2
(A.5)

is the kernel of the Coulomb potential in momentum space. Details of the

solution to equation (A.2) are given in [81] and [14].

This is the crux of the problem when solving the TIMSE or the time depen-

dent momentum space Schrödinger equation (TDMSE) and must be approxi-

mated. One way to approximate equation (A.5) is to represent it in terms of

symmetric separable potentials supporting N bound states of atomic hydrogen

V(p′ − p) ≈ V(p′,p) =
N∑
n=1

v∗n(p′)vn(p). (A.6)

Two methods to generate these separable potentials are presented in [36].

One method is the solution of the system

Φ + AV = 0 (A.7)

for V which introduces some arbitrariness in the definition of vn. We devised

a second method which sees the kernel represented in terms of Gegenbauer

polynomials, the Fourier transforms of Sturmian functions, and spherical har-

monics. We shall cover the mathematics behind the second method in this

appendix.

We start by writing
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1

|p′ − p|2
=

1

p2
1

1− 2ρx+ ρ2
(A.8)

where x = cos θ (the angle between p′ and p) and ρ = |p′/p|. From equation

2 in [20] we can rewrite equation (A.8) as

1

p2
1

1− 2ρx+ ρ2
=

Γ(µ)eiπ(µ−
1
2
)

p2
√
π(1− ρ2)( 12−µ)

∞∑
l=0

(l+µ)Q
1
2
−µ

l+µ− 1
2

(
1 + ρ2

2ρ

)
Cµ
l (x) (A.9)

where Qµl is a Legendre function of the second kind and Cµ
l is a Gegenbauer

polynomial. By setting µ = 1/2 and noting C
1
2
l (x) = Pl(x), this simplifies to

1

p2
1

1− 2ρx+ ρ2
=

1

p2ρ

∞∑
l=0

Q0
l

(
p2 + p′2

2pp′

)
Pl(cos θ). (A.10)

Equation 11 in [63] allows us to recast Q0
l in terms of Gegenbauer polyno-

mials and along with the fact that

Pl(cos θ) =
4π

2l + 1

l∑
m=−l

Y ∗l,m(p̂)Yl,m(p̂′) (A.11)

then V(p′,p) becomes

V(p′,p) =
∞∑
l=0

∞∑
n=0

Nn,lv
∗
n,l(p)vn,l(p

′)
l∑

m=−l

Y ∗l,m(p̂)Yl,m(p̂′) (A.12)

to match equation 23 in [36] where

vn,l(p) =
1

p

(
2qp

q2 + p2

)l+1

C l+1
n

(
q2 − p2

q2 + p2

)
(A.13)

and the coefficient Nn,l is given by
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Nn,l = π[Γ(l + 1)]2
22l+2(2l + 1)

Γ(n+ 2l + 2)
(n!). (A.14)

In fact, vn,l(p) is nothing other than the Coulomb Sturmian function in

momentum space. By performing a Fourier transform on the function vn,l(p),

we obtain the Coulomb Sturmian function in position space up to a normali-

sation factor. It is clear by this stage, that the free parameter q determines

the range of the potential in momentum space.

This decomposition of the Coulomb kernel, equation (A.12), serves as a

starting point for solving the TDMSE. Of course in practice, equation (A.12)

would be truncated to include as many states that one would desire or that

could be handled.
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Appendix B: Derivation of the

Coefficients of the Continuum

Coulomb Functions in the Sturmian

Basis

The following was produced in correspondence with Professor Bernard Piraux

of Université Catholique de Louvain [68].

The Derivation of the Coefficients of the

Continuum Coulomb Functions in the

Sturmian Basis

The ingoing Coulomb continuum function is written as

ψ−p (r) =
∑
l,m

4π

2l + 1
R−l (pr)Yl,m(p̂)Y ∗l,m(r̂) (B.1)

with
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COULOMB FUNCTIONS IN THE STURMIAN BASIS

R−l (pr) = (−1)l(2π)
3
2 e

Zπ
2p

Γ(l + 1− iZ/p)
(2l)!

(2ipr)leipr

× 1F1(l + 1− iZ/p; 2l + 2;−2ipr)

(B.2)

where 1F1(a; b; z) are the confluent hypergeometric functions of the first kind

and that

∫
ψ−,∗p′ (r)ψ−p (r)dr = δ(p′ − p). (B.3)

We may write the Sturmian functions in terms of the confluent hypergeo-

metric functions of the first kind (in Chapter 3 we define them in terms of the

associated Laguerre polynomials)

Sκn,l(r) =
1

(2l + 1)!

√
4κ3

n

(n+ l)!

n− l − 1)!
e−κr(2κ)lrl+1

1F1(l + 1− n; 2l + 2; 2κr).

(B.4)

We define the coefficients aν,l(p) as follows

ψ−,∗p (r) =
∑
l,m

∑
ν

aν,l(p)
Sκν,l(r)

r
Yl,m(p̂)Y ∗l,m(r̂). (B.5)

Using equation (B.1), we can calculate the coefficients aν,l(p) by performing
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aν,l(p) =
4π

2l + 1

ν

κ

∫ ∞
0

drSκν,l(r)R
−,∗
l (pr)

=
4π

2l + 1

ν

κ

1

(2l + 1)!

√
4κ3

ν

(ν + l)!

(ν − l − 1)!
(2κ)l(−2ip)l(2π)

−3
2 e

Zπ
2p

1

(2l)!

× Γ(l + 1− iZ/p)
∫ ∞
0

dr

(
e−(κ−ip)rr2l+1

1F1(l + 1− ν; 2l + 2; 2κr)

× 1F1(l + 1− iZ/p; 2l + 2;−2ipr)

)
=

√
2νκ

π

2

[(2l + 1)!]2

√
(ν + 1)!

(ν − l − 1)!
(−4iκp)le

Zπ
2p

× Γ(l + 1− iZ/p)
∫ ∞
0

dr

(
(e(κ−ip)rr2l+1

1F1(l + 1− ν; 2l + 2; 2κr)

× 1F1(l + l − iZ/k; 2l + 2;−2ipr)

)
.

(B.6)

Letting x = 2κr and using the following identity in [39] (G.R. 7.622.1) we

have

I =

∫ ∞
0

dr

(
e−(κ−ip)rr2l+1

1F1(l + 1− ν; 2l + 2; 2κr)

)
× 1F1(l + 1− iZ/p; 2l + 2;−2ipr)

=

(
1

2κ

)2l+2 ∫ ∞
0

dx

(
e−

1
2
(1−ip/κ)xx2l+1

1F1(l + 1− ν; 2l + 2;x)

× 1F1(l + 1− iZ/p; 2l + 2; ipx/κ)

)
=

(
1

2κ

)2l+2

(2l + 1)!

[
−
(

1

2
+
ip

2κ

)]ν−l−1[
1

2
+
ip

2κ

] iZ
p
−l−1[

1

2
− ip

2κ

]−ν− iZ
p

× 2F1

(
l + 1− ν, l + 1− iZ

p
; 2l + 2l;

−ip/κ
(1
2

+ ip
2κ

)2

)
.

(B.7)
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If we let λ = −ip/κ, then we can recast equation (B.7) as

I =

(
1

2κ

)2l+2

4l+1(−1)ν−l−1(1− λ)−(2l+2)

[
1− λ
1 + λ

]ν+ iZ
p

× (2l + 1)!2F1

(
l + 1− ν, l + 1− iZ

p
; 2l + 2;

−4λ

(1− λ)2

)
.

(B.8)

We also have

[
1 + λ

1− λ

] iZ
p

=

[
1 + ip/κ

1− ip/κ

] iZ
p

=

[
(1 + p2/κ2)ei arctan(p/κ)

(1 + p2/κ2)e−i arctan(p/κ)

] iZ
p

= e−
Z
p
arctan

(
p
κ

)
.

(B.9)

Hence, we finally obtain

aν,l(p) =

(
2

κ

)2l+ 3
2
√
ν

π

1

(2l + 1)!

√
(ν + l)!

(ν − l − 1)!
(−1)ν−1(iκp)l

× e
Zπ
2p Γ(l + 1− iZ/p)(1− λ)−(2l+2)

[
1− λ
1 + λ

]ν
e
−2Z
p

arctan
(
p
κ

)
× 2F1

(
l + l − ν, l + 1− iZ

p
; ; 2l + 2;

−4λ

(1− λ)2

)
.

(B.10)

We now look to expand the radial Coulomb function in terms of Sturmian

functions:

R−,∗l (pr) =
∑
ν

ãν,l(p)
Sκν,l(r)

r
(B.11)

where

aν,l(p) =
4π

2l + 1
ãν,l(p). (B.12)
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It is useful for computational purposes to express ãν,l in terms of the Pollaczek

polynomials [7]. In expressing these coefficients in terms of Pollaczek polyno-

mials, we are able to use a recurrence relation in the Pollaczek polynomials to

recursively calculate successive coefficients in equation (B.11). The definition

of the Pollaczek polynomial in terms of 2F1 is as follows:

P λ
n (x; a, b) =

1

n!
(2λ)ne

inθ
2F1(−n, λ+ it; 2λ; 1− e−2iθ) (B.13)

where (c)n is the Pochhammer function defined as follows:

(c)n = c(c+ 1)(c+ 2)...(c+ n− 1) =
(c+ n− 1)!

(c− 1)!
. (B.14)

We also define

t = (ax+ b)(1− x2)
−1
2 (B.15)

and

x = cos(θ). (B.16)

Let us write

θ = arctan

(
p

κ

)
. (B.17)

Therefore, we can write

e2iθ =
(κ+ ip)2

κ2 + p2
(B.18)

and we also have

−4λ

(1− λ)2
=

4ipκ

(κ+ ip)2
=

4ipκ(κ− ip)2

(κ2 + p2)2
. (B.19)
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This is useful because from equation (B.18)

(1− e−4iθ) = (1− e−2iθ)(1 + e−2iθ)

= [(1− cos(2θ)) + i sin(2θ)][(1 + cos(2θ))− i sin(2θ)]

=

[
2p2

κ2 + p2
+

2ipκ

κ2 + p2

][
2κ2

κ2 + p2
− 2ipκ

κ2 + p2

]
=

4ipκ(κ− ip)2

(κ2 + p2)2
.

(B.20)

which is equivalent to equation (B.19).

We can find the value of t by looking at equations (B.10) and (B.13):

t = −Z
p

=
a+ cos(2θ) + b√

1− cos2(2θ)

=
a cos(2θ) + b

sin(2θ)

=
a(κ2 − p2) + b(κ2 + p2)

2κp

=
κ2(a+ b) + p2(a− b)

2κp
.

(B.21)

Comparing coefficients in κ and p, we can deduce that

a− b = 0 (B.22)

and

a = b =
−Z
p
. (B.23)

In addition, we recast n in terms of ν

n = ν − (l + 1) (B.24)

(2λ)n =
(l + ν)!

(2l + 1)!
(B.25)
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and

e2inθ = e2i(ν−l−1)θ. (B.26)

From these manipulations, we are able to represent 2F1 with in terms of Pol-

laczek polynomials:

2F1(l + 1− ν, l + 1− iZ/p; 2l + 2; 1− e−4iθ)

=
(2l + 1)!(ν − l − 1)!

(l + ν)!
e−2i(ν−l−1)θP l+1

ν−l−1

(
cos(2θ);

−Z
p
,
−Z
p

)
.

(B.27)

Finally, using

(1− λ)−(2l+2)

(
1− λ
1 + λ

)ν+ iZ
p

=
e−iθ(2l+2)

(κ2 + p2)l+1
e2iνθe−2

Z
p
θκ2l+2 (B.28)

with equation (B.12), we finally obtain

aν,l(p) =
(−1)ν−1

2l + 1

√
2νκ

π
(4lκ)(4iκp)l

√
(ν − l − 1)!

(ν + l)!

× Γ(l + 1− iZ/p)
(κ2 + p2)l+1

e
Z
p

(
π
2
−2θ
)
P l+1
ν−l−1

(
cos(2θ);

−Z
κ

;
−Z
κ

)
.

(B.29)
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