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We investigate the influence of Meissner screening and trapped magnetic flux 

on magnetization dynamics for a Ni80Fe20 film sandwiched between two thick Nb 

layers (100 nm) using broadband (5-20 GHz) ferromagnetic resonance (FMR) 

spectroscopy. Below the superconducting transition Tc of Nb, significant zero-

frequency line broadening (5-6 mT) and DC resonance field shift (50 mT) to a low 

field are both observed if the Nb thickness is comparable to the London penetration 

depth of Nb films (≥ 100 nm). We attribute the observed peculiar behaviors to the 

increased incoherent precession near the Ni80Fe20/Nb interfaces and the effectively 



2 

 

focused magnetic flux in the middle Ni80Fe20 caused by strong Meissner screening 

and (defect-)trapped flux of the thick adjacent Nb layers. This explanation is 

supported by static magnetic properties of the samples and comparison with FMR 

data on thick Nb/Ni80Fe20 bilayers. Great care should therefore be taken in the 

analysis of FMR response in ferromagnetic Josephson structures with thick 

superconductors, a fundamental property for high-frequency device applications of 

spin-polarized supercurrents. 

 

I. INTRODUCTION 

          In the past two decades, a ferromagnetic Josephson junction (FJJ) comprising two 

superconductors (SCs) separated by a ferromagnet (FM) has been of interest and 

developed extensively because of its unconventional physical properties [1-3] and 

potential applications in cryogenic computing technologies [4-10]. Very recent 

experimental work has demonstrated that nanotextured FJJs integrated with standard 

single flux quantum neural systems form a new class of neuromorphic technologies that 

have spiking energies of less than 10-18 J, operation frequencies up to 100 GHz, and 

nanoscale plasticity [11]. In particular for an emergent field of superconducting 

spintronics [8-10], it has been recently established that the presence of a spatially varying 

magnetization M(x) at SC/FM interfaces can generate spin-polarized triplet supercurrents 

via spin mixing and spin rotation processes into the FM [12-14].  Interestingly, almost a 

decade ago, theoretical studies [15,16] suggested a time-varying magnetization M(t) of 

the FM as a reciprocal equivalent to M(x) for the generation of spin-polarized triplet 

supercurrents in a diffusive metallic FJJ [15] and also in a FM/NM/SC structure (NM: 

normal metal) [9]. 
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          However, subsequent ferromagnetic resonance (FMR) studies on Nb/Ni80Fe20 

bilayers [17,18] and Nb/Ni80Fe20/Nb trilayers [19] have shown that spin angular 

momentum transfer in such structures is predominantly mediated by quasiparticles (QPs) 

for the superconducting state and thus largely suppressed at a lower temperature T by the 

development of singlet superconductivity and the freeze-out of available QP states 

[17,20,21]. This is likely because the magnitude of M(t) inhomogeneity or non-

collinearity, parameterized by the magnetization precession angle θM, is too small (a few 

degrees at 10-20 GHz) [17-19] to yield the measurable effect of M(t)-induced triplet 

supercurrents [15,16]. Another recent experiment, on the other hand, has reported that for 

Ni80Fe20 films sandwiched between rather thick Nb layers (100 nm) [22], the DC 

resonance field shifts remarkably to a low field below the superconducting transition 

temperature Tc, interpreted as possible evidence for field-like spin-transfer torque (STT) 

induced by spin-triplet supercurrents.  

          According to the STT theory for metallic magnetic heterostructures [23-25], the 

anti-damping STT is expected to be much larger (an order of magnitude) than the field-

like STT due to the rapid dephasing of transverse spins in the FM [25]. It is thus of 

fundamental importance to test whether the effect of the anti-damping torque (relevant to 

the Gilbert damping change Δ[α]) is consistent with that of the field-like torque 

(associated with the resonance field shift Δ[µ0Hres]) in the superconducting state. 

Furthermore, knowledge about how magnetization dynamics of the FM changes by 

Meissner screening and magnetic flux pinning [26,27], especially in contact with thick 

SC layers, is highly desirable for the successful implementation of FMR functionality in 

FJJ-based superconducting spintronics [8-10]. Note that the triplet proximity channel 

which is required to carry spin angular momentum depends on the strength of the 
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underlying singlet superconductivity and thus thicker superconducting electrodes are 

favorable for the generation of higher density superconducting spin currents in FJJs [8-

10, 12-14]. 

          Here, we focus on thick Nb/Ni80Fe20/Nb trilayers where the Nb thickness tNb is 

comparable to the London penetration depth 𝜆L of Nb films (≥ 100 nm) [28] and so there 

exists a non-negligible effect of Meissner screening on the local (DC/RF) magnetic field 

experienced by the middle Ni80Fe20 layer. Through broad-band (5-20 GHz) FMR 

measurements on such trilayers, we identify that the anomalous zero-frequency line 

broadening µ0ΔH0 and the significant Δ[µ0Hres] to a low field both appear below Tc. 

Importantly, the effect of Δ[µ0Hres] is found to be 1-2 orders of magnitude larger than that 

of Δ[α], which is incompatible with the STT theory [23-25]. We explain these peculiar 

behaviors in terms of locally perturbed magnetization precession of the middle Ni80Fe20 

layer under spatially inhomogeneous magnetic fields caused by the strong Meissner effect 

and the magnetic flux pinning [26,27] of the thick adjacent Nb layers. Static magnetic 

properties of the samples and comparison with FMR data on thick Nb/Ni80Fe20 bilayers 

consistently support our explanation. 

 

II. EXPERIMENTAL DETAILS 

          Polycrystalline Nb/Ni80Fe20/Nb trilayers and Nb/Ni80Fe20 bilayers are deposited on 

thermally oxidized Si substrates with lateral dimensions of 5 mm × 5 mm using DC 

magnetron sputtering in an ultra-high vacuum chamber. The Nb (Ni80Fe20) thickness tNb 

(tPy) of 100 (15) nm is chosen to allow comparison with the recent FMR study on similar 

sample structures [22]. Details of the sample growth and Tc characterization are described 

elsewhere [19].  
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          We measure the FMR response of the sample attached on a broadband coplanar 

waveguide with either DC field or RF pulse modulation [19]; to obtain each FMR 

spectrum, the absorbed microwave (MW) power by the sample is measured while 

sweeping the external static magnetic field µ0H at the fixed MW frequency f of 5 to 20 

GHz. Note that for all FMR measurements, the MW power is set to 10 dBm where the 

actual MW power absorbed in the sample is a few mW that has no effect on Tc of the Nb 

layer [19]. At the beginning of each measurement, we apply a large in-plane µ0H (0.5 T) 

to fully magnetize the Ni80Fe20 layer, after which the field is reduced to the range of FMR. 

Once the f-dependent FMR measurements (from high- to low-f) finish, the field is 

returned to zero to cool the system down further for a lower T measurement. We employ 

a vector field cryostat from Cryogenic Ltd that can apply a 1.2 T magnetic field in any 

direction over a T range of 2−300 K. Some FMR measurements are conducted on the 

same samples using a different Helium flow cryostat from Oxford Instruments to test for 

reproducibility.  

          Magnetization properties of the same samples used for FMR measurements are 

characterized using a Quantum Design Magnetic Property Measurement System at T 

varying between 2 and 300 K. For all FMR and magnetization measurements, µ0H is 

applied parallel to the film plane; a careful alignment of the film plane with respect to 

µ0H is made to minimize any unintentional out-of-plane component of µ0H.  

 

III. RESULTS AND DISCUSSION 

A. Temperature dependence of ferromagnetic resonance at different frequencies 

Let us first consider the T evolution of FMR spectra for the Nb(100 

nm)/Ni80Fe20(15 nm)/Nb(100 nm) trilayer. Figure 1(a) shows typical FMR data obtained 

http://www.cryogenic.co.uk/
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at the two different f of 10 and 20 GHz, from 80 K down to 2 K. Note that all the FMR 

data presented are well fitted with the field derivative of symmetric and antisymmetric 

Lorentzian functions [29]. This enables us to accurately determine the FMR linewidth 

µ0ΔH (linked to the Gilbert damping α) and the resonance field µ0Hres (associated with 

the saturation magnetization µ0Ms). Overall T dependences of µ0ΔH and µ0Hres for various 

f are summarized in Figs. 1(b) and 1(c), respectively. In the normal state (T > Tc), µ0ΔH 

and µ0Hres are both almost independent of T. However, on entering the superconducting 

state (T < Tc), µ0ΔH broadens largely down to 4 K followed a slight fall at a lower T and 

µ0Hres shifts significantly to a low field; these effects are more pronounced for a lower f. 

This superconducting state FMR response is quite different from observed in the 

relatively thin Nb/Ni80Fe20/Nb samples (tNb ≤ 60 nm << 𝜆L) where Δ[µ0Hres] is less than 

2% (at f = 20 GHz) and µ0ΔH narrows monotonically below Tc [19], implying that the 

tNb-dependent superconductivity itself is responsible for the difference between them.   

 

B. Significant zero-frequency line broadening and resonance field shift below Tc 

          For a quantitative analysis, we extract the Gilbert(-type) damping constant 𝛼 from 

the linear scaling of µ0ΔH with f at a fixed T [Fig. 2(a)]; 𝜇0∆𝐻(𝑓) = 𝜇0∆𝐻0 +
4𝜋𝛼𝑓

√3𝛾
 [30]. 

Here 𝜇0∆𝐻0  is the zero-frequency line broadening due to long-range magnetic 

inhomogeneities in the FM [31] and 𝛾 is the gyromagnetic ratio (1.84 × 1011 T-1 s-1) [32]. 

In the formula, we exclude other extrinsic broadening effects such as two-magnon 

scattering [33,34] and Mosaicity broadening [34,35] as these have non-linear f and weak 

T dependences. The extracted 𝛼 [Fig. 2(b)] progressively decreases deep into the 

superconducting state (T < Tc), which can be explained by the suppressed outflow of spin 

currents from the precessing Ni80Fe20 due to the development of singlet superconductivity 
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in the adjacent Nb layers. This agrees with theoretical studies for proximity-coupled 

metallic FM/SC systems [18] and also with previous experiments [17, 19-21].  

          In contrast, an anomalous 𝜇0∆𝐻0  [inset of Fig. 2(b)] appears for the thick 

Nb/Ni80Fe20/Nb sample (tNb = 100 nm) below Tc and it reaches 5-6 mT at 2 K, 

approximately an order of magnitude stronger than that in the relatively thin 

Nb/Ni80Fe20/Nb samples (tNb ≤ 60 nm << 𝜆L) [19]. This implies that when tNb is 

comparable to 𝜆L [28], the coupled superconducting Nb layers perturb locally 

magnetization precession of the Ni80Fe20 layer and cause the incoherent precession near 

the Ni80Fe20/Nb interfaces.  

          The influence of superconductivity on 𝜇0𝐻𝑟𝑒𝑠(𝑓)  can be described using the 

modified Kittel formula [36]: 𝑓 =
𝛾

2𝜋
√[𝜇0(𝐻𝑟𝑒𝑠 + 𝐻𝑠ℎ𝑖𝑓𝑡

𝑆𝐶 +𝑀𝑒𝑓𝑓) ∙ 𝜇0(𝐻𝑟𝑒𝑠 + 𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶 )], 

where 𝜇0𝑀𝑒𝑓𝑓  is the effective saturation magnetization and 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶  is the correction 

term that describes the superconductivity-induced resonance field shift. In Fig. 2(c), we 

fit the 𝜇0𝐻𝑟𝑒𝑠(𝑓) data obtained at different (constant) T using the Kittel formulas with 

and without the presence of 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶  for comparison. When 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡

𝑆𝐶 ≠ 0, all the data 

are well fitted [Fig. 2(c)] and the estimated values of  𝜇0𝑀𝑒𝑓𝑓 are in the range of 835-850 

mT [Fig 2(d)], which are similar to those obtained from static magnetometry 

measurements (Sec. C). By contrast, when 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶 = 0, fitting the data gets worse at a 

lower T particularly for a lower f [Fig. 2(c)] and gives the anomalously increased 𝜇0𝑀𝑒𝑓𝑓 

below Tc [Fig. 2(d)]. This points to that there exist an internal source of DC magnetic 

flux/field to the middle Ni80Fe20, accompanied by the onset of superconductivity in the 

Nb layers.  

          Notably, the extracted 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶  of 30-50 mT [inset of Fig. 2(d)] is found to be 1-2 

orders of magnitude larger than the FMR damping decrease of 0.0005-0.0045 for the 
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superconducting state [Fig. 2(b)], corresponding to the 𝜇0∆𝐻 suppression of 0.4-3.5 mT 

at 20 GHz (in the dimension of effective field). Since this result is inconsistent with the 

STT theory [23-25] described above, it is natural to consider an alternative explanation, 

more relevant to the superconductivity-modified magnetization dynamics. The most 

common feature of SC films is the presence of Meissner screening and magnetic flux 

pinning [26, 27].  

 

C. Static magnetic properties below Tc 

          To support our explanation of the FMR result, we perform static magnetometry 

measurements on the same samples (used for FMR measurements) across Tc. Figure 3(a) 

first shows the magnetization versus T plots for the Nb(100 nm)/Ni80Fe20(15 nm)/Nb(100 

nm) trilayer and the Nb(100 nm)/Ni80Fe20(15 nm) bilayer. FMR data of the bilayer and 

their comparison with the trilayer will be presented below (Sec. D). Above Tc of the Nb, 

the total magnetization Mtotal of the sample is given solely by the ferromagnetic Ni80Fe20 

layer, which is expected to increase weakly with decreasing T (far below TCurie) as 1 −

𝐵 ∙ 𝑇
3

2  according to Bloch’s law [37]. Here 𝐵  is the Bloch constant or spin-wave 

parameter. A fair fit (black solid line) to the data [inset of Fig. 3(a)] is obtained with a 

reasonable 𝐵 of 1.25 (1.26) × 10−5 K−3/2 for the trilayer (bilayer), which is very close to 

the estimated value (𝐵 = 1.23 × 10−5 K−3/2) for bulk Ni80Fe20 [38]. On the other hand, 

below Tc, the Nb layers with type-II SC magnetization can contribute to Mtotal (of the 

sample) in addition to the ferromagnetic Ni80Fe20 - indicative of this is an abrupt change 

in Mtotal (under the field cooling) when Tc is crossed.  

          The Mtotal versus in-plane µ0H curves across Tc are presented in Figs. 3(b) and 3(c) 

for the trilayer and the bilayer, respectively. Assuming that the superconducting state 
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Mtotal(µ0H) is a superposition of ferromagnetic Ni80Fe20 and Nb (type-II SC) 

magnetizations, one can separate the Nb magnetization MNb(µ0H) by taking the difference 

between the Mtotal(µ0H) curves above and below Tc. We then get the characteristic type-II 

behavior in initial curves [insets of Figs. 3(b) and 3(c)]. The linear diamagnetic response 

to µ0H (Meissner screening) is visible for a small field range (≤ 0.2 Tesla). After reaching 

an extremum at the lower critical field µ0Hc1, the absolute magnetization drops as 

magnetic flux starts to penetrate the Nb until reaching the upper critical field µ0Hc2 (a few 

Tesla for Nb films) [19,39]. 

           It is notable that magnetic flux pinning at defects in the SC can be inferred from 

the hysteresis behaviors, which emerge when µ0H > µ0Hc1. The hysteresis area and the 

remaining magnetization at zero external field, quantifying the amount of flux pinning, 

are both expected to be much larger for thicker SCs where more defect sites and stronger 

Meissner screening co-exist [26,27]. The consistent behaviors seen in the MNb(µ0H) 

curves [insets of Figs. 3(b) and 3(c)] clarify that the non-negligible (defect-)trapped 

magnetic flux is present in the thick Nb samples.  

          In fact, the anomalous FMR response observed in the thick Nb/Ni80Fe20/Nb trilayer 

below Tc (Sec. B) can be explained if we consider that the trapped magnetic flux at defects 

randomly distributed in the neighboring Nb layers serves as the internal source of 

additional magnetic field to the middle Ni80Fe20 under the external DC resonance field.    

 

D. Comparison with bilayers 

          To further support our explanation, let us now discuss the FMR results (Fig. 4) 

taken from the Nb(100 nm)/Ni80Fe20(15 nm) bilayer where overall flux pinning (of the 

sample) is weaker compared to the trilayer (Sec. C). Figures 4(a)-4(c) show that for the 
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bilayer, the change of FMR spectra, i.e. µ0ΔH and µ0Hres, as function of T below Tc is 

indeed weaker than for the trilayer. Note that what µ0ΔH tends to increase at a lower T 

[Fig. 4(b)] means is the occurrence of superconductivity-induced line broadening, as 

discussed below.   

          For better understanding and quantitative comparison, we plot the T dependences 

of 𝛼, µ0H0, 𝜇0𝑀𝑒𝑓𝑓 , and 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶  values in Figs. 4(d) and 4(e), extracted from the f-

dependent FMR data (see Appendix for details). It is worth noting that the quantitative 

change of 𝛼 reduction (or spin-pumping damping) across Tc [Fig. 4(d)] is approximately 

twice weaker relative to the trilayer [Fig. 2(b)], which is in accordance with spin pumping 

through a single Nb/Ni80Fe20 interface [17,18] and thereby a single spin-blocking effect 

of the Nb layer [17-21].  

          Perhaps, the most noteworthy aspect of the bilayer data is that even though the 

resonance field shift is very small [< |0.5|  mT, inset of Fig. 4(e)], as in the previous 

experiment [16], there still exists the anomalous increase of 𝜇0𝐻0 at a lower T [+2 mT at 

3.3 K, inset of Fig. 4(d)] that is approximately 3 times smaller than the trilayer [inset of 

Fig. 2(b)]; but large enough to compensate the FMR linewidth suppression [−2.5 mT at 

3.3 K at 20 GHz, Fig. 4(d)] resulting from the aforementioned spin-blocking effect [17-

21]. It in turn makes the T dependence of total linewidth nontrivial [Fig. 4(b)], 

highlighting that broad-band FMR measurements are of utmost importance for proper 

interpretation of the experimental results.  

          The bilayer result suggests that the FMR linewidth change is more sensitive than 

the resonance field shift to the local flux pinning and so the f-dependent linewidth analysis 

may be useful to isolate somehow the genuine spin-triplet proximity effect [8-10] from 

other extrinsic phenomena [40, 41] being driven in FM/SC interfaces, a key ingredient 
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for developing superconducting spintronics.  

 

IV. CONCLUSIONS 

          How Meissner screening and (defect-)trapped magnetic flux affect magnetization 

dynamics in thick Nb/Ni80Fe20/Nb trilayers is investigated by using broadband FMR 

spectroscopy. We find that when tNb is comparable to 𝜆L of Nb films, anomalous µ0ΔH0 

and significant Δ[µ0Hres] to a low field both appear below Tc. Notably, the effect of 

Δ[µ0Hres] is found to be much greater than that of Δ[α] in the superconducting state, which 

is incompatible with the STT theory. We consider the superconductivity-modified 

magnetization dynamics as an alternative explanation for the FMR data, which is 

convincingly supported by static magnetic properties of the samples and comparison with 

FMR data on thick Nb/Ni80Fe20 bilayers. Our results suggest that careful consideration 

should be made when analyzing FMR data in FJJs with thick SCs. Proper selection of SC 

properties provides a pathway to dynamically access the spin-polarized supercurrents in 

SC/FM proximity-coupled systems [8-10] for their potentials in high-frequency device 

applications. 
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APPENDIX A: ANALYSIS OF FREQUENCY DEPENDENCE OF 

FERROMAGNETIC RESONANCE SPECTRA FOR THE BILAER 

          Using the same approach as for the trilayer (Sec. B), we extract the T dependences 

of 𝛼, µ0H0, 𝜇0𝑀𝑒𝑓𝑓, and 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶  values [presented in Figs. 4(d) and 4(e)] from the f-
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dependent FMR data acquired on the thick Nb(100 nm)/Ni80Fe20(15 nm) bilayer (Fig. 5). 

Note that there exists the visible increase of µ0H0 (zero-frequency intercept) at a lower T 

[Fig. 5(a)] even though the resonance field shift is tiny [Fig. 5(b)].  

 

APPENDIX B: DISCUSSION OF MEISSNER SCREENING EFFET 

ON MAGNETIC DOMAIN STRUCTURE 

       It was previously reported that for disk-patterned Al(150 nm)/Ni(50 nm) samples of 

submicron size in zero external field [42], Meissner screening of ferromagnetic domain’s 

stray fields by the adjacent Al layer can cause a spatial re-distribution of magnetic 

domains and its T dependence is connected with the screening capability of the Al. Even 

if this mechanism would, in principle, increase magnetization inhomogeneity below Tc, 

it is unclear that this could be used to explain our results, where continuous samples are 

used in FMR study under application of a large external field (30-400 mT). In this vein, 

it is of interest to systematically investigate how the superconducting state FMR response 

is altered by changing the type of FM (having a different strength of stray fields) in 

FM/SC bilayer and SC/FM/SC trilayer structures. 
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FIGURE CAPTIONS 

FIG. 1. (a) Typical FMR spectra for the thick Nb(100 nm)/Ni80Fe20(15 nm)/Nb(100 nm) 

trilayer obtained at the two different frequencies f of 10 and 20 GHz, from 80 K down to 

2 K. The yellow (blue) background represents the normal (superconducting) state of Nb. 

Temperature T dependence of the FMR linewidth µ0ΔH (b) and the resonance magnetic 

field µ0Hres (c) for the Nb/ Ni80Fe2/Nb trilayer. The inset shows the normalized resistance 

R/RN versus T plot for the trilyaer. Note that at f = 5 GHz in (b), FMR signals become 

unmeasurable when T < 8 K as the amplitude of the resonance field shift to a low field 

goes beyond the typical resonance field (~33 mT) in the normal state. It is also noteworthy 

that in (b), the peak point is determined by two competing effects of 1) Meissner screening 

and flux pinning and 2) spin-blocking behavior (see main text for details). 

 

FIG. 2. (a) FMR linewidth µ0ΔH as a function of microwave frequency for the Nb(100 

nm)/Ni80Fe20(15 nm)/Nb(100 nm) trilayer at various temperatures T. The solid lines are 

linear fits to deduce the Gilbert damping constant α and the zero-frequency line 

broadening 𝜇0∆𝐻0. (b) Deduced values of α and 𝜇0∆𝐻0 (inset) as a function of T. (c) 

Microwave frequency versus resonance field µ0Hres. The solid lines are fits to extract the 

effective saturation magnetization of the Ni80Fe20 layer using the modified Kittel formulas 

with (left) and without (right) the correction term 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶 . (d) Extracted 𝜇0𝑀𝑒𝑓𝑓 values 

(of the Ni80Fe20) versus T with and without the presence of 𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶 (𝑇) (inset).  
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FIG. 3. (a) Total magnetization Mtotal versus temperature T plots for the Nb(100 

nm)/Ni80Fe20(15 nm)/Nb(100 nm) trilayer and the Nb(100 nm)/Ni80Fe20(15 nm) bilayer. 

Mtotal(T) is attained while decreasing T at the fixed/applied magnetic field µ0H of 8 mT, 

which is far less than the lower critical field µ0Hc1 of Nb layers. The Mtotal versus (in-

plane) magnetic field µ0H curves, taken above and below the superconducting transition 

Tc for the Nb/Ni80Fe20/Nb trilayer (b) and the Ni80Fe20/Nb bilayer (c). The diamagnetic 

background signal from the quartz sample holder is subtracted. Each inset shows the 

isolated Nb magnetization MNb(µ0H) by taking the difference between the Mtotal(µ0H) 

curves above and below Tc. The arrow in the inset is a guide to the eyes for the initial 

curve. 

 

FIG. 4. (a) Representative FMR spectra for the thick Nb(100 nm)/Ni80Fe20(15 nm) bilayer 

obtained at the fixed frequency f of 10 GHz, from 80 K down to 2 K. The yellow (blue) 

background represents the normal (superconducting) state of Nb. Temperature T 

dependence of the FMR linewidth µ0ΔH (b) and the resonance magnetic field µ0Hres (c) 

for the Nb/ Ni80Fe2 bilayer. The inset exhibits the normalized resistance R/RN versus T 

plot for bilayer (d) Estimated values of α and 𝜇0∆𝐻0  (inset) as a function of T.  (e) 

Extracted 𝜇0𝑀𝑒𝑓𝑓  values (of the Ni80Fe20) versus T with and without the presence of 

𝜇0𝐻𝑠ℎ𝑖𝑓𝑡
𝑆𝐶 (𝑇) (inset). Relevant details are presented in Appendix A. 

 

FIG. 5. Data equivalent to Figs. 2(a) and 2(c) but for the Nb(100 nm)/Ni80Fe20(15 nm) 

bilayer. 
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