Structural Controllability Recovery via the Minimum-edge Addition

Shuo Zhang! Stephen D. Wolthusen 2

Abstract— Identifying a set of inputs is a way to recover
structural controllability of a structurally uncontrollable sys-
tem, but it is meaningless if recovery needs more number of
inputs than that of actually valid ones. Given a structurally un-
controllable system with given inputs, we recover its structural
controllability. By graph-theoretical conditions of a structurally
controllable system, we add a minimum set of edges into a
digraph that represents the given system via its one maximum
matching, so that the final digraph represents a structurally
controllable system. Compared with the existing edge-addition
method, for the worst-case execution time, our minimum edge-
addition can be done in more efficient polynomial time.

I. INTRODUCTION

Efficient recovery of structural controllability is neces-
sary to enhance resilience of control systems and defend
against control hijack [1], where attackers maliciously effect
some system components to force system along with their
purposes if the current system is out of control. Although
identifying a set of inputs is a way to recover structural
controllability of structurally uncontrolable systems [2], [3],
after severe attack or failure on a structurally controllable
system, recovery might need more number of inputs, than
the actually available ones. Hence, it is no longer useful
to only identify a set of inputs in order to still structurally
control the residual system. Clearly, it is thus essential to
concern practical constrains on inputs during the recovery of
structural control into the residual system.

Therefore, given a structurally uncontrollable linear time-
invariant (LTT) system, we efficiently recover its structural
controllability with given inputs, where the input matrix of
this given system is always fixed during recovery. Based on
graph-theoretical conditions of structural controllability [4],
[5], because the topology of LTI system can be represented
by a digraph, which is called the system network in this
paper, and the system network of a structurally controllable
system contains a set of disjoint cacti [4]. We thus add a
minimum set of edges into the system network of the given
structurally uncontrollable system, to eventually construct
a digraph spanned by disjoint cacti, which represents a
structurally controllable system. In terms of constructing
a structurally controllable system with given inputs, our
problem can be solved by the existing edge-addition scenario
[6], while it is low efficient in the worst-case execution time,
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and we are also motived to raise a minimum edge-addition
scenario with higher efficiency.

To effectively guide the edge addition and ensure that the
final digraph is spanned by disjoint cacti, given a system
network of a structurally uncontrollable system, based on a
maximum matching of it, we raise an edge-addition scenario
of two steps, which are designed to detect and remove the
dilation and inaccessible vertices [4] within this given system
network. According to this scenario, when added edges can
be reduced by the most in number, is further discussed. We
conclude that the number of added edges in the first step
is a constant value for the given system network. And the
number of added edges in the second step is various. It is thus
possible to achieve the minimum-edge addition for the given
system network. As a result, our scenario can eventually
construct a digraph spanned by a set of disjoint cacti, and the
time complexity is the same as that of identifying a maximum
matching of this system network. For our contribution, given
a structurally uncontrollable system with given inputs, let m,
n be the number of edges and vertices of the system network,
the worst-case execution time of our minimum-edge addition
to recover structural controllability is O(y/n - m), which is
more efficient than the edge-addition approach of [6], whose
worst-time execution time is O(n?).

In the following paper, section II introduces the structural
controllability of a LTI system; section III illustrates related
works; section IV constructs a set of disjoint cacti, and the
last section concludes this paper.

II. STRUCTURAL CONTROLLABILITY

According to the control theory [7], [8], a linear time-
invariant (LTT) system can be expressed by a so-called state
equation:

i(t) = Az(t) + Bu(t) (1)

where z(t) = (x1(t), z2(t),...,on ()T, 2(t) € RN is
the state vector, capturing the state of each system component
at time t. u(t) = (ui(t),ua(t),...,urr(t))T(M < N),
u(t) € RM is the input vector, holding external inputs
at time t. A € RM*N js the state matrix and shows
the interaction among N system components, while input
matrix B € RV*M shows interactions among N system
components and M inputs. A system described by equation
1 is controllable if and only if the matrix C = [B,AB,
A%B, ..., ANTIB] (C € RVN*NM) has full rank, noted by
rank(C) = N, and called the controllability rank condition.

However, exact value of non-zero entries of A, B [4]
is difficult to measure, and calculating the rank of C is



with O(2") time complexity [9]. Thus, controllability of the
structured system is concerned [10], where only poisitions
of zero and non-zero entries of A and B are concerned. If a
system’s state equation has exact value of non-zero entries,
it is called an instance of a strucutred system [11]. Lin et
al. [4] [12] defined the structural controllability below in
order to derive a completely controllable system by using
the structured system, when exact values of non-zero entries
of both input and state matrices are unknown.

Definition 1 (Structural Controllability [4]). A system
described by equation 1 is structurally controllable if and
only if there is at least one instance of it satisfying the
controllability rank condition.

Simultaneously, conditions of structurally controllable sys-
tem are clarified by theorem 1 below with the following
definition 2-6:

Definition 2 (System Network). Given A, B of equation
1, let G(A,B) = (V1 U Vs, E1 U E3) be a non-empty system
network, and o : {A,B} — G(A, B) be a bijection. For each

non-zero a;; € A, byq € B, there are o : a;j — (vj,v;) and
a by, — (uq,vpi, where <vj7vi; € By, (uq,vp; € Es,
{vi,vj,vp} C V1 and ug € V.

Definition 3 (Stem & Bud[4]). By definition 2, a stem in
G(A,B) is a directed path only starting from a node of V.

A bud is a directed cycle plus an arc, whose head is shared
with this cycle, and this arc is called the distinguished edge.

Definition 4 (Dilation[4]). In G(A,B) = (V1UVa, E1UE,),
S C Vi is a set of nodes, T(S) C V3 UVy is set of vertices
as tails of the arcs whose heads are in S. When G(A,B)
contains a dilation, if and only if |S| > |T'(5)|.

Definition 5 (Inaccessibility [4]). In G(A,B) = (V4 U
Va, E1 U E3), a node of Vi that can not be visited through
directed paths starting from any node of Vs is inaccessible.

Definition 6 (Cactus[4]). Let {B1, Bs,..., B} be a set of
buds, and let S, be a stem, S1 U By U Bsy,...,UB; is a
cactus if and only if the tail of the distinguished edge of
B;(1 < i <) is not the top node of Sy but the only common
node of S1UB1 U By, ...UB;_1. Besides, a stem is also a
cactus.

Theorem 1 (Structural Controllability Theorem [4], [5]
). Following statements are equivalent:

1) System described by equation 1 is structurally control-
lable.

2) G(A,B) of definition 2 contains neither inaccessible
nodes nor a dilation.

3) G(A,B) is spanned by a set of disjoint cacti.

In particular, according to [4], [5], when statement one is
satisfied, statement two can be implied by statement one, and
it can finally imply statement three. Nevertheless, statement
three can always imply both statement one and two. Thus,
we conclude corollary 1:

Corollary 1. By theorem 1, a system described by equation
1 is structurally controllable if and only if its system network
excludes inaccessible nodes and a dilation, and spanned by
a set of disjoint cacti.

A. Problem Formulation

Given a LTI system, which was structurally controllable,
but it is now structurally uncontrollable due to severe attack
or failure, and is described by a state equation 2 below:

i(t) = A'z(t) + B u(t) )

where A" € RV*N and B' € RV*M _ Particularly, matrix
B/ is fixed. Then, we recover structural controllability of
this system, and the problem is identify a matrix with
the minimum number of non-zero entries, noted by A €
RNXN 50 that the resulting system described by equation 3
below:

i(t) = (A +A")z(t) + B u(t) 3)

is structurally controllable.

By corollary 1 and definition 2, given a system network
mapped by {A' , B }, to recover structural controllability with
given inputs, our solution is to only add a minimum set of
edges into this network, to construct a set of disjoint cacti in
final system network, where any added edge is not incident
to nodes mapped by B.

III. LITERATURE REVIEW

Structural controllability recovery attracts increasing atten-
tion. Based on the grah-theoretical way to derive structrual
controllability, it can be recovered by identifying a maximum
matching [13] or a power dominating set [14] of the given
network mapped by state matrix of a structurally uncontrol-
lable system. For instance, authors of [3], [15] recover the
structural control into LTI system after single vertex removal
or addition by efficiently identifying a maximum matching of
a network mapped by residual state matrix via the bijection of
definition 2, rather than recomputing a maximum matching.
On the other hand, according to original research of [16]
[17], Alwasel et al. in [2] [18] [19] recovered structural
controllability of the Erdds-Rényi random digraph in LTI
model after removing multiple vertices by maintaining an
approximated power dominating set [14]. Similarly, Alcaraz
et al. [20] relies on the power dominating set to recover
structural controllability of general power-law and scale-free
digraphs against both edge and vertex removals. However,
these related works either recover structural controllability
against very limited failure or attack, or neglect constrains
on inputs, and all of them just identify a set of vertices that
should be directly injected by inputs.

By contrast, it is more realistic and sufficient to con-
cern constrains on inputs during the process of recovering
structural controllability, which might include the number
of inputs, or the adjacency between inputs and system
components. Literally, via a given system network, such kind
of structural controllability recovery is related to the problem



of deriving structural controllability with given inputs. Gen-
erally, it requires extra modification, such as adding edges
into the original system network. In [6], Chen et al. propose
to get structural controllability by the minimal edge addition.
Their edge-addition scenario is mainly based on the work of
[21] and [22], which obtains the structural controllability by
identifying a set of dedicated inputs and according to existing
strongly connected components of the network mapped by
the state matrix. Nevertheless, edge-addition scenario of [6]
considers some unnecessary data structures to obtain the
resulting digraph spanned by disjoint cacti. As a result,
the minimal edge addition of [6] is implemented with low
efficiency, whose time complexity is proportional to the cubic
number of vertices of the initial system network.

IV. DISIOINT CACTI CONSTRUCTION

In this section, by corollary 1, we construct a graph
spanned by disjoint cacti via adding a minimum set of edges
into our input digraph of definition 7, which is a system
network mapped by a structurally uncontrollable system.

Definition 7 (Input Digraph). Ler D = (V U U, E) be
a finite digraph excluding self loops, isolated vertices and
parallel arcs. Also, let V. = {v;]1 < i < N} and U =
{uy]1 <r < M}(M < N) be two independent vertex sets,
where each node of U has no in degree and is a tail of the
arc whose head is only a node of V. Besides, E is a set of
edges among vertices of VU U.

We add edges into (V, E) to construct a set of disjoint
cacti in the final digraph, and all nodes of U should be the
starting vertices of all stems of the constructed cacti, where
we mainly rely on the maximum matching of a digraph,
which is defined:

Definition 8 (Maximum Matching of Digraphs [23], [24]).
In digraphs, a matching is a set of arcs without common tails
and heads, and a maximum matching is a matching with the
highest cardinality. For any given vertex, it is an unmatched
node with respect to a maximum matching, if and only if
it is not the head of any arc of this maximum matching.
Otherwise, it is matched.

In general, a maximum matching can be effectively identi-
fied in polynomial time by the Hopcroft-Karp algorithm [13],
and there might be multiple maximum matchings in a same
digraph. Given a digraph with n nodes and m arcs, finding a
maximum matching of it costs O(y/n-m) steps at most [13].
In the remaining parts of this section, by theorem 1, we show
a scenario of constructing a graph spanned by disjoint cacti
in section IV-A and IV-B. Based on this scenario, in IV-C,
we confirm the minimum number of added edges into D, and
the related algorithm is shown in section IV-D eventually.

A. The first edge-addition step

From theorem 1 and corollary 1, since the finally resulting
digraph derived by adding edges into D = (V U U, E)
of definition 7 should have no dilations. We thus use the
dilation of D as the initial clue to guide our edge addition

in the beginning, and we also conclude lemma 1 to justify
the first edge-addition step, which relies on an arbitrarily
identified maximum matching of D to just sufficiently detect
the nonexistence of the dilation of D.

Lemma 1. In D = (VUU, E), let Mp be an arbitrarily
identified maximum matching of D. Then, if each vertex of V
is a matched node related to Mp, D excludes the dilation.

Proof: 1If each vertex of V is matched nodes with
respect to Mp. Then, in Mp, by definition 8 each node
of V must be a vertex as a head of an edge of Mp, whose
tail is either a node of V or U and such node can not be
an terminal of a path of Mp. Also, in Mp U U, because
the number of heads and that of tails are same, U U Mp
spans D and excludes the dilation. Besides, since any single
edge of £\ Mp added into U U Mp can not increase the
number of vertices as heads of arcs of E, while it can only
increase the number of nodes as tails of arcs of E. Otherwise,
maximality of Mp is contradicted. Therefore, there can not
be the dilation after adding all edges of E\ Mp into UUMp,
and D thus excludes the dilation. O

According to lemma 1, our first edge-addition step is
clearly to add edges among different vertices of V to
eliminate all unmatched nodes of V' with respect to Mp,
and the addition can not produce any self loops. Let E,,, be
a set of edges added into D in the first step, and |E,, | = n1.
In detail, for each edge of E, , noted by e, its head is an
unmatched node of V related to Mp, and its tail could be
either the ending node of a path of Mp U {E,, \ e}, or an
currently existing unmatched node of V' related to Mp. After
this, there is no dilation in the resulting digraph, because
Mp U E,,, is the maximum matching of (V UU,E U E,,,).
Otherwise, maximality of Mp is contradicted. Also, all
vertices of existing paths of {Mp U E,,} could be now
accessible from nodes of U.

Since the number of unmatched nodes with respect to any
maximum matching of a digraph is a constant value, n; is
thus constant according to D, and our first edge-addition step
requires a constant number of added edges.

B. The second edge-addition step

After implementing the first edge-addition step for given
D = (VUU,E) of definition 7, we now detect and
eliminate vertices of V' that are inaccessible from nodes of
U in the resulting digraph (V U U, E U E,,). To do this,
we also conclude lemma 2, which uses strongly connected
components of D to identify such inaccessible nodes and
guide following edge addition.

Lemma 2. Given D = (VUU,E) and E,,, let Mp be a
maximum matching of it. Then, digraph (V UU,E U E,,))
contains vertices of V that are inaccessible from nodes of U,
if and only if there are strongly connected components only
including one or more disjoint cycles of Mp, which exclude
nodes as heads of arcs whose tails out of them.

Proof: A strongly connected component of a digraph is
a subgraph whose any pair of vertices are connected through



at least one existing directed path.

Necessity: Within (VUU, EU E,,, ), if there are strongly
connected components that only involve one or more disjoint
cycles of Mp, and exclude nodes pointed by vertices out
of them. Obviously, vertices of these strongly connected
components can not be approached by nodes out of these
components through existing paths, so that they are inacces-
sible vertices of V' from nodes of U in (VUU,E U E,,).

Sufficiency: If (V U U,E U E,,) contains inaccessible
vertices of V' from U. After the first edge-addition step of
section IV-A according to Mp, inaccessible nodes of V' from
nodes of U in (V UU,E U E,,) are only contained by
inaccessible cycles of Mp by nodes of U. This is because
(VUU, EU E,,) has no unmatched nodes from V', where
each node of V is either in a path starting from a node of
U or in the cycle of Mp, and any cycle of Mp excludes
unmatched nodes related to Mp. Let C; be an arbitrary
inaccessible cycle of Mp from nodes of U, then, C; could
have no vertices pointed by any other vertex out of it, so that
nodes of U can not visit it through existing paths on the one
hand. On the other hand, each cycle that has nodes visiting
nodes of C; via existing path in (V UU, EU E,,) must be
inaccessible from nodes of U in (V UU, EU E,,). Further,
because D and E,,, are finite, in (VUU, EUE,,, ), if there are
strongly connected components, there must be at least one
strongly connected component, which either contains a single
cycle of Mp, or only contains disjoint cycles of Mp, whose
vertices are inaccessible from vertices vertices out of them.
Therefore, when (VUU, EUE,,, ) contains inaccessible nodes
of V from U, there are strongly connected components only
involving one or more disjoint cycles of Mp and excluding
nodes pointed by vertices out of them. O

According to lemma 2, within (VUU, EU E,,,) after the
first edge-addition step, the second edge-addition step is to
remove inaccessible nodes of V from U. Let E,, be the
set of added edges, and |E,,| = ng, which is the number
of strongly connected components only containing one or
more disjoint cycles of Mp, and excluding nodes pointed
by vertices out of them. The second edge-addition step is
as follows: for each added edges of E,,, its head should be
involved into such a strongly connected component, and its
tail can be a vertex of a path of Mp U E,,,.

Because (VUU, EUE,,,) is a finite digraph, nz is bounded
by the finite number of strongly connected components of
(VUU,EUE,,). Then, corollary 2 clarifies the correctness
of our two edge-addition steps:

Corollary 2 (Edge-addition scenario). Given D = (V' U
U, E) of definition 7, let Mp be a maximum matching of it,
E,, and E,, be two added edge sets of the first and the
second edge-addition steps by Mp. Then, after the first and
second edge addition, digraph (V UU,{E UE,,}UE,,)
could be spanned by a set of disjoint cacti, whose all stems
only start from nodes of U.

Proof: By lemma 1, after the first step, the obtained
digraph (VUU, EUE,,, ) has no dilations, and can be spanned
by MpUE,,, , which can contain disjoint paths only starting

from nodes of U and disjoint cycles of Mp. Also, adding
E,, into (VUU,E U E,,) is to ensure that nodes of all
cycles are accessible from U by lemma 2. Besides, because
any cycles of Mp is not affected by adding E,, into D,
E,,NE,, = 0. Thus, by definition 6, (VUU, EUE,,,UE,,,)
is spanned by a set of disjoint cacti, whose disjoint stems can
start from nodes of U. And the number of added edges is
ni + no. O

Next, we discuss when the number of added edges by
those two steps can be reduced.

C. The Minimum Number of Added Edges

In this section, we confirm the minimum number of added
edges by scenario summarized by corollary 2. Because the
number of unmatched nodes with respect to any maximum
matching of D = (V U U, E) of definition 7 is constant,
the minimum number of added edges only depends on the
minimum number of added edges required by the second
edge-addition step of section IV-B. Firstly, we conclude
theorem 2 to indicate how to reduce the number of added
edges by one, where few essential items are defined:

Definition 9 (Scc). Given D = (V UU, E), let Mp be a
maximum matching of D. Then, with Mp, let S.. be a set
of all strongly connected components that only include one
or more disjoint cycles of Mp, and exclude nodes as heads
of arcs whose tails are out of them in D.

Theorem 2. Given D = (VUU,E), Mp, and Scc, let
(vi,v;) be an arc of a cycle involved into an element of Scc
and vy, € V' be an unmatched node related to Mp. Then, by
edge-addition scenario of corollary 2, the total number of
added edges into D according to Mp is reduced by one, if
and only if arc {(v;, vk; exists, and v; is an unmatched node
related to a maximum matching different from Mp.

Proof: Let Mi) be a maximum matching of D, and
M/D # Mp. Since the number of edges added in the first
step is constant, we thus prove that the number of added
edges in the second step according to M,/j is less than that
according to Mp by one by lemma 2, if and only if arc
(v;, vg) exists, and v; is an unmatched node related to M'D.

Necessity: If arc (v;,v,) € E\ Mp exists, and v; is an
unmatched node related to MI,D. Then, in M,/j, a path can
exist, which starts from v, contains all vertices of a cycle of

( §

Mp that involves (v;,v;), and a path of Mp starting from
vy, together. After the first edge-addition step by M o, we
can observe that all nodes of an element of Scc involving
(vy, v;) is accessible from nodes of U, and there is no need
for extra edges to make this element of Scc accessible again
by lemma 2. Nevertheless, by M p, after the dilation removal,
such same element of Scc is still inaccessible from nodes of
U, which thus requires an edge to make nodes of it accessible
by lemma 2. Hence, the total number of added edges into D
according to M,/3 is less than that according to Mp by one.

Sufficiency: After the first edge-addition step, based on
lemma 2, if the number of added edges to remove nodes
of V that are inaccessible from U according to Ml/:, is less



than that according to Mp by one. Let Scc' be a set of all
strongly connected components that only involve one or more
disjoint cycles of M », and exclude nodes pointed by vertices
out of them after removing dilation of D. Then, because
adding edges according to any maximum matching of D in
the first edge-addition step does not influence any cycle of
this maximum matching. The number of elements of Scc is
thus more than that of Scc by one, or |Scc'| = |See| — 1.
Also, since any two maximum matchings of a same digraph
can be transformed into each other by exchanging vertices
or edges, it is possible that one element that is originally
contained by Scc should be out of Scc and Scc' later, which
requires that all nodes of a cycle of this element of Scc
should be contained into a path of MIID. By definition 9,
since each element of Scc is spanned by disjoint cycles and
has no incoming arcs from other vertices out of them in
D. For the element of Scc only involving a single cycle of
Mp, we should make its vertices be contained by a path
and without changing the number of unmatched nodes of D.
On the other hand, for the element of Scc only involving
multiple disjoint cycles of Mp, we can make any involved
single cycle’s vertices be contained by a path and without
changing the number of unmatched nodes of D, in which
other cycles of this element would be excluded by any set
like Scc, because a vertex of them has incoming edges now.
To do this, given Mp, nodes of a path of M /D are all vertices
of a cycle and a path of Mp, in which the starting vertex of
this path is noted by v, and an edge of this cycle is noted by
(v4,v;). Then, there must be (v;, ’uk; € Mb, (vg,vj) € Mp,
and v; is the starting vertex of this path of Mb. O

According to theorem 2, corollary 3 reduces the maximum
number of added edges involved into the edge-addition
scenario of corollary 2:

Corollary 3. Given D = (VUU,E), Mp, and Scc, let
Ssub € Scc, and each element of Sgyup has a vertex as the
tail of an arc whose head is an unmatched node of V related
to Mp. Then, by the scenario of corollary 2, the total number
of added edges into D according to Mp is reduced by the
most by theorem 2, if cardinality of Ssyp is maximum.

Proof: Given any element of S,,;, based on theorem
2, the number of added edges into D according to Mp can
be reduced by one. Also, because elements of S.. are not
connected, once a vertex of any element of Ss,;, can be
an unmatched node with respect to a maximum matching
different from Mp, there can be a common maximum
matching different Mp for all such vertex. Besides, since
D is a finite graph, S, C Se. is a finite strongly connected
component. Therefore, in aggregation, when cardinality of
Ssup 18 the maximum, the number of added edges by scenario
of corollary 2 is reduced by the most. O

D. Execution

According to corollary 2, theorem 2 and corollary 3, we
execute the entire process of constructing a graph spanned
by a set of disjoint cacti via adding a minimum set of edges
into D = (VUU, E) of definition 7, which is systematically

illustrated by algorithm 1. Here, Mp and S, of definition 9
are used, and let vy, € V' be any vertex not incident to edges
of Mp. Besides, let s; be an element of S.., p; be a path of
Mp, and G be an initially empty set. Also, let v, € V be
an starting node of p;, ¢; be a cycle of s;, and (v;,v;) € E
be an arc of ¢;.

Algorithm 1: Construct a digraph spanned by cacti
Input: D = (V UU, E) of definition 7, G
Output: A digraph spanned by disjoint cacti
1 Starting from each node of U, find Mp by running
the algorithm of [13] ;
2 Identify each ¢;, p; of Mp by DFS algorithm of
[25], and each vy,;
3 Add each vy, into G,
4 Identify S.. from each ¢; in D; G =GU S,
5 Identify each s; € S, for ¢; € s;, where
m € ¢;, and (v;,vi) € E\ Mp;
6 for each identified s; in line 5 do
7 | G =G\si S, =5\ s
8 Construct a path, which is

—
{ci \ (vi,v5) } U {pi U (v;, Uk;};
9 Add this path into G,

10 M,/:) =Mp\ {pi,ci};

u G =GUMp;

12 Add arcs into G from each existing zero-outdegree
node of V' to each zero-indegree node of V' until
there is no zero-indegree node of V' ;

13 Add arcs into G from any node of V' and out of S,
to each element of S.. until each element of S,
has an incoming edge;

14 return D U G;

Proof: Initially, this procedure identifies a maximum
matching Mp to detect the dilation and inaccessible nodes
of D in line 1. Particularly, Mp is identified from edges
incident to vertices of U in order to sufficiently use vertices
of U. Then, based on theorem 2 and corollary 3, line 2-4
of this algorithm identify S.. according to cycles of Mp,
and S, is added into G. By theorem 2 and corollary 3, line
5 and 6 modifies some strongly connected components of
See collected in line 5 to reduce the number of added edges
according to Mp by the most. During the modification, paths
obtained by line 8 are added into G, while those related
elements, and involved paths of Mp that start from nodes of
V' are removed from G and S... After running the line 11,
G contains disjoint paths of Mp and E\ Mp, single vertices
not incident to Mp, and remaining S.. whose all elements
have no incoming edges from nodes out of them. Clearly, in
G, all vertices of V' without indegree are unmatched nodes
related to a common maximum matching different from Mp.
Later, the first edge-addition step is executed by line 12,
which adds edges to remove all unmatched nodes of V' and
related to a common maximum matching that is different
from Mp, so that the resulting digraph has no dilation and



all paths starting from nodes of U. In the following, line
13 removes inaccessible nodes of V' from U by lemma 2.
Specifically, those inaccessible nodes are removed through
vertices of remaining elements of S.. in G. Additionally,
since G contains V' UU, and also G contains a set of disjoint
cacti by corollary 2, whose stems only start from nodes of
U. DUG is therefore spanned by disjoint cacti whose stems
starting from nodes of U.

For the worst-case execution time of this algorithm, it is
the sum of running time of each line. Identifying a maximum
matching of D costs O(y/|V UU| - |E| by algorithm [13],
and identifying cycles and paths of Mp cost O(|VUU|+|E|)
by DFS algorithm. Then, for running line 4 and 5, it requires
to visit edges whose tails are involved into identified cycles,
which thus costs O(|V||E|). Next, running the for loop of
line 6, since combining nodes of each s; and a related p;
into a path of E\ Mp costs O(1), the worst-case execution
time of this procedure is O(|E|). Later, adding edges of the
first step in line 12 requires to identify zero-indegree and
zero-outdegree nodes, which can be done in O(|V]) steps at
most. As for the second edge-addition step of line 13, since
Scc is already known, the edge addition only depends on
the existence of elements of S.., which thus costs O(|E|)
steps at most. Above all, time complexity of this algorithm
is O(y/|VUU]|-|E| for D= (VUU,E). O

Furthermore, by when the given system network D is a
sparse ER random digraph [4], the performance of our edge
addition scenario might be performed more efficiently with

the average time complexity O(|E| “log(|V U U\)) [26].

V. CONCLUSION

Given a structurally uncontrollable system, recovery of its
structural controllability can be done by various methods
and requirements. In this paper, our recovery is constrained
by inputs and time complexity, where the input matrix is
fixed. For our solution, we add a minimum set of edges into
the given system network to obtain a digraph spanned by a
set of disjoint cacti, so that the system represented by this
digraph is structurally controllable. For the time complexity
of executing our entire operations in the worst case, it is
equivalent to that of identifying a maximum matching of
the system network. In our future work, we would recover
structural controllability with given inputs by only rewiring
edges of the system network, so that the cost of recovery can
be further decreased.
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