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Abstract

This paper considers robust inference in threshold regression models when the practi-

tioners do not know whether at the threshold point the true specification has a kink or a

jump, nesting previous works that assume either continuity or discontinuity at the thresh-

old. We find that the parameter values under the kink restriction are irregular points of

the Hessian matrix, destroying the asymptotic normality and inducing the cube-root con-

vergence rate for the threshold estimate. However, we are able to obtain the same asymp-

totic distribution as Hansen (2000) for the quasi-likelihood ratio statistic for the unknown

threshold. We propose to construct confidence intervals for the threshold by bootstrap test

inversion. Finite sample performances of the proposed procedures are examined through

Monte Carlo simulations and an economic empirical application is given.
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1 INTRODUCTION

This paper examines robust inference in threshold models without a priori knowledge on

whether the model is continuous or not at the threshold point. Since their introduction,

threshold models have gained a lot of attention in econometrics, statistics and other fields, see

Tong (1990) and Hansen (2000) among others. In the time series context, their popularity is

due to the fact that they are capable of explaining nonlinear features present in many data such

as chaos, cycles, irreversibility among others. In addition they have proved to have superior

forecast performance in times of recession, see Tiao and Tsay (1994).

We nest previous works that assume either continuity or discontinuity at the threshold point

and develop robust inference methods on the parameters of the model, which are valid under

both specifications. The previous literature has explicitly assumed that either the threshold

regression model has a kink or it is discontinuous at the threshold point. For instance, Chan

(1993) and Hansen (2000) have focused on inference when the model is discontinuous at the

threshold point, whereas Chan and Tsay (1998) , Hansen (2017) and Feder (1975a) have focused

on inference in kink models. However, there is no a priori reason to believe that the model is

or is not continuous.

We make an interesting finding that the estimator of the threshold parameter converges

at the rate of n1/3 if the model is continuous but the true restriction is not imposed in the

estimation procedure. This is in clear contrast to the n1/2 rate, which was first obtained by

Feder (1975a) and in the time series context by Chan and Tsay (1998) by imposing the (true)

constraint of a kink in its estimation. Furthermore, we show that the unconstrained estimator

of the slope parameters is asymptotically independent of the estimator of the threshold point.

The asymptotic independence also holds under the jump models of Chan (1993) or Hansen

(2000) but not under the constrained estimation of Feder’s (1975) or Chan and Tsay’s (1998)

kink models. These findings are interesting and new, when compared to standard results in

regression models, where it is known that the consequence of not using the (true) restric-

tions is inefficiency but otherwise the asymptotic distribution is still Gaussian and the rate of

convergence is the same.

Our preceding discussion motivates us to develop a robust inference in the threshold regres-

sion model. To that end, we first show that a quasi-likelihood ratio statistic for the threshold

parameter has the same asymptotic distribution up to a scale constant that depends on whether
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the true regression model has a kink or a jump. Second, we present an estimator for the scale

factor based on the ratio of two kernel estimators. The consistency of this estimator is standard

under the jump model but non-standard under the kink model because both its numerator and

denominator converge to zero in probability. However, we prove that, similar to L’Hopital rule,

the ratio of the two degenerating terms still converges in probability to the correct scale factor

under the interesting requirement that higher-order kernels should not be used.

The last goal of this paper is to present valid bootstrap schemes as the asymptotic critical

values appear to be a poor approximation to the finite-sample ones, as documented by Hansen

(2000) and also in our Section 5. In addition, the validity of the bootstrap is of theoretical

interest and it has not been established even under Hansen’s (2000) shrinking jump design.

The interest stems from two sets of findings in the literature regarding the failure of bootstrap

for non-standard estimators: firstly with cube-root estimators such as the maximum score es-

timator, and secondly with super-consistent estimators such as the estimator of autoregressive

coefficients of unit root processes and the threshold estimator under Chan’s (1993) model, see

Abrevaya and Huang (2005), Seijo and Sen (2011) and Yu (2014), just to name a few. Further-

more, we propose bootstrap test inversion confidence interval for the threshold, also known as

the grid bootstrap in Hansen (1999), to enhance the finite-sample coverage probability.

A small Monte Carlo study reports good finite-sample performance of our bootstrap pro-

cedure for inference on the threshold location and the empirical application applies our robust

inferential method to time series data on real GDP growth and debt-to-GDP ratio of a number

of countries. Numerous works had fitted jump threshold models to a variety of datasets, see

e.g. Caner, Grennes, and Koehler-Geib (2010), Cecchetti, Mohanty, and Zampolli (2011), and

Lee et al. (2017), while Hansen (2017) had fitted kink threshold model to the US time series

data. As there is little guidance from economic theory on suitability of jump or kink models,

we advocate the use of our robust inference, and find substantial heterogeneity across countries

in not just the estimated model parameters but also in the presence and location of threshold

effect.

In Section 2 we introduce the model and present a set of regularity assumptions and de-

scribe how to estimate the parameters of the model. Section 3 then develops robust inferential

methods for model parameters that are valid under both continuous and discontinuous set-

tings, despite the slower rate of convergence for the estimate of the threshold under the kink

specification. We then present in Section 4 a bootstrap algorithm for inference on the model
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parameters, establishing their validity. Section 5 presents the results of a small Monte Carlo

study, followed by Section 6, which contains the empirical application. Section 7 concludes.

This paper has an appendix that contains some of the proofs and an online supplement that

presents the remaining proofs, technical lemmas, and more numerical results for Section 5.

2 MODEL AND ESTIMATORS

We shall consider the following threshold regression model

yt = β′xt + δ′xt1 {qt > γ}+ εt, (1)

where 1 {·} denotes the indicator function and xt is a k-dimensional vector of regressors. The

parameter γ is referred to as a threshold point, taking values in a compact parameter space

Γ, which is a subset of the interior on the domain of the threshold variable qt. It is worth

mentioning that all our results hold true also when qt = t, which is the case with structural

break models. However, we have opted not to include this scenario for the sake of clarity and

notational simplicity.

We assume that qt is an element of the regressor vector xt and denote

xt =
(
1, x′t2, qt

)′
; δ =

(
δ1, δ

′
2, δ3

)′
, (2)

where δ is partitioned to match the dimensionality of xt. Also we shall abbreviate 1t (γ) =

1 {qt > γ} and xt (γ) = (x′t, x
′
t1t (γ))′, so that we can write (1) as

yt = β′xt + δ11t (γ) + δ′2xt21t (γ) + δ3qt1t (γ) + εt (3)

= α′xt (γ) + εt, where α = (β′, δ′)′.

Before stating some regularity assumptions on the model, we need to introduce some ex-

tra notation. Let f (·) denote the density function of qt, which we assume to exist, and

σ2 (γ) = E
(
ε2
t | qt = γ

)
, the conditional variance function of error term, while σ2 = E(ε2

t )

denotes the unconditional variance. Denote k × k matrices D (γ) = E (xtx
′
t|qt = γ), V (γ) =

E
(
xtx
′
tε

2
t |qt = γ

)
and let D = D (γ0) and V = V (γ0). As usual the “0” subscript on a pa-

rameter indicates its true unknown value. Finally, let M = E(xtx
′
t) and Ω = E(xtx

′
tε

2
t ) with

xt = xt (γ0).
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Assumption Z. Let {xt, εt}t∈Z be a strictly stationary, ergodic sequence of random variables

such that their ρ-mixing coefficients satisfy
∑∞

m=1 ρ
1/2
m < ∞ and E (εt|Ft−1) = 0, where Ft

is the filtration up to time t. Furthermore, M,Ω > 0, E ‖xt‖4 < ∞, E ‖xtεt‖4 < ∞ and

E |εt|4+η <∞ for some η > 0.

Assumption Q. The functions f (γ), V (γ) and D (γ) are continuous at γ = γ0. For all γ ∈ Γ,

the functions f (γ), E
(
xtx
′
t1 {qt ≤ γ}

)
and E (xt2x

′
t2|qt = γ) are positive and continuous, and

the functions f (γ), E
(
|xt|4|qt = γ

)
and E

(
|xtεt|4|qt = γ

)
are bounded by some C <∞.

Assumptions Z and Q are commonly imposed on the distribution of {xt, εt}, see e.g. Hansen

(2000), so his comments apply here. As discussed therein, the self-exciting threshold autore-

gressive model of Tong (1990) satisfies Assumption Z. The condition for E (xt2x
′
t2|qt = γ) is

written in terms of xt2 as the other elements in xt are fixed given qt = γ. While we allow condi-

tional heteroscedasticity of a general form, Assumption Q requires continuity of the conditional

variance function σ2(·) at γ0.

2.1 Estimators

We estimate θ0 = (α′0, γ0)′ by the (non-linear) least squares estimator (LSE), that is,

θ̂ =
(
α̂′, γ̂

)′
:= argmin

θ∈Θ
Sn (θ) , (4)

where Θ = (Λ,Γ) is a compact set in R2k+1 and

Sn (θ) :=
1

n

n∑
t=1

(
yt − α′xt (γ)

)2
, (5)

which is a step function in γ at qt’s. For its computation, we shall employ a step-wise algorithm.

To that end, one could employ the grid search algorithm on Γn = Γ ∩ {q1, ..., qn} to find γ̂.

Define the concentrated sum of squared residuals

Ŝn (γ) :=
1

n

n∑
t=1

(
yt − α̂′ (γ)xt (γ)

)2
, (6)

where

α̂ (γ) := argmin
α∈Λ

1

n

n∑
t=1

(
yt − α′xt (γ)

)2
(7)
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is the LSE of α for a given γ. Then, our estimator of α is α̂ := α̂ (γ̂) with

γ̂ := argmin
γ∈Γn

Ŝn (γ) . (8)

This is the unconstrained LSE and for comparison we also describe the continuity constrained

least squares estimator (CLSE), which minimizes (5) under Assumption C in the next section,

θ̃ =
(
α̃′, γ̃

)′
:= argmin

θ∈Θ:δ1+δ3γ=0;δ2=0
Sn (θ) . (9)

This estimator was considered by Feder (1975a) and later by Chan and Tsay (1998) or Hansen

(2017), who have established the asymptotic normality of θ̃ with the standard squared root

consistency.

3 Robust Confidence Regions

This section presents our main results, namely how to perform robust inference in threshold

models and in particular on the location of the threshold point. We begin with developing

inference methods for the regression coefficients α0 and the unknown threshold γ0 based on

the LSE θ̂ when the true regression model has a kink. Then, they are compared with other

inference methods that are developed under different sampling schemes such as Hansen (2000).

In particular, we show that a judicious choice of statistics enables us to perform a robust

inference in the sense that the same critical values can be employed for inference whether the

model has a kink or a jump. That is, we do not need to know whether the model has a kink

or a jump to make inference for the parameters α0 and γ0. As mentioned in the introduction

the motivation comes from the rather surprising results given in Proposition 1 and Theorem 1

below.

First we state the kink model in terms of assumption.

Assumption C. Assume that δ30 6= 0 and

δ10 + δ30γ0 = 0; δ20 = 0. (10)

Under Assumption C the model (3) is written as

yt = x′tβ0 + δ30(qt − γ0)1t (γ0) + εt. (11)
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Feder (1975), Chan and Tsay (1998), and Hansen (2017) considered the estimation of the

model (11) along with an auxiliary condition of δ30 6= 0 to ensure the identification of the

change-point γ0. This is a model with a kink.

Then, the next proposition establishes the consistency and rates of convergence of the LSE

θ̂ defined in (4) under Assumption C.

Proposition 1. Under Assumptions C, Z and Q, we have that

α̂− α0 = Op
(
n−1/2

)
and γ̂ − γ0 = Op

(
n−1/3

)
.

The results of Proposition 1 are surprising because the convergence rate of γ̂ is slower than

that of the CLSE γ̃, which is known to be n−1/2 as shown in the aforementioned works. That

is, using the true restriction on the parameters leads to a faster rate of convergence of the

estimator of γ0, not just reducing its asymptotic variance as is often the case.

Next we present the asymptotic distribution of θ̂.

Theorem 1. Let Assumptions C, Z and Q hold and B1 (·) and B2 (·) be two independent

standard Brownian motions. Define W (g) := B1 (−g)1 {g < 0}+B2 (g)1 {g > 0}. Then,

n1/2(α̂− α0)
d−→ N

(
0,M−1ΩM−1

)
n1/3(γ̂ − γ0)

d−→ argmax
g∈R

(
2δ30

√
σ2 (γ0) f (γ0)

3
W
(
g3
)

+
δ2

30

3
f (γ0) |g|3

)
,

where the two limit distributions are independent of each other.

The asymptotic independence is a consequence of the different convergence rates between

the two sets of estimators α̂ and γ̂ by similar arguments as in Chan (1993), albeit the rate for

γ̂ being slower than that for α̂ in our case. The asymptotic independence does not hold for

the CLSE γ̃ and α̃, which converge at the same rate as mentioned above and they are jointly

asymptotically normal with a non-diagonal variance-covariance matrix.

Theorem 1 suggests that Gonzalo and Wolf’s (2005) subsampling procedure would be cor-

rect if they had used the normalization n1/3 instead of the incorrect one n1/2. On the other

hand, it is worth mentioning that Seo and Linton (2007) considered the smoothed least squares

estimator for the same setup. The convergence rate for their smoothed least squares estimator

for γ was slower than our cube-root rate under their assumptions for the smoothing parameter.
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Remark 1. We now present a heuristic discussion to illustrate why the constrained and uncon-

strained estimators of γ0 have different rates of convergence and the unconstrained estimator

belongs to the cube-root class explored by Kim and Pollard (1990) for the i.i.d. data and Seo

and Otsu (2018) for more general setups. For simplicity of illustration, we begin with a sim-

plified model, where xt = (1, qt)
′, δ = (δ1, δ3)′, β is fixed at β0 = 0, and thus θ = (δ′, γ)′. In

addition we shall assume γ0 = 0 and thus δ10 = 0 by (10) without loss of generality since we

can always rename the variable qt − γ0 as qt. It is well known that the rates of convergence

of an M-estimator is governed by the local behavior of its criterion function around the true

value provided that the estimator is consistent. Then the convergence rate of LSE θ̂ =
(
δ̂′, γ̂

)′
is determined by the stochastic expansion of

Sn(θ)− Sn(θ0) (12)

=
1

n

n∑
t=1

(δ30qt1t (0)− (δ1 + δ3qt)1t (γ))2 +
2

n

n∑
t=1

εt (δ30qt1t (0)− (δ1 + δ3qt) 1t (γ)) ,

in small neighborhoods of δ = δ0 and γ = γ0 = 0. Consider γ > 0. The case of γ < 0 is

handled similarly. Then, as 1t (0) = 1t (γ) + 1 {0 < qt ≤ γ} and 1t (γ)1 {0 < qt ≤ γ} = 0,

E (δ30qt1t (0)− (δ1 + δ3qt)1t (γ))2

= E (δ1 + (δ3 − δ30) qt)
2 1t (γ) + E (δ30qt)

2 1 {0 < qt ≤ γ}

∼ ‖δ − δ0‖2 + γ3,

because for some positive constant c,

E
[
q2
t 1 {0 < qt ≤ γ}

]
=

∫ γ

0
q2f (q) dq ∼ c

3
|γ|3 (13)

due to Assumption Q. This cubic approximation at γ = γ0 is non-standard and invalidates the

asymptotic normality of γ̂, which builds on the quadratic approximation.1 Similarly,

var

(
1

n

n∑
t=1

εt (δ30qt1t (0)− (δ1 + δ3qt)1t (γ))

)
∼ ‖δ − δ0‖2 + |γ|3

n
. (14)

1This also shows that the asymptotic variance formula U−1V U−1 in Gonzalo and Wolf’s (2005) Theorem

A.1 and Remark A.1 is not properly defined due to the degeneracy of U , where U is the second derivative matrix

of the expected criterion function that is evaluated under the continuity restriction.
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Thus, the last two displayed expressions in (13) and (14) suggest that

δ̂ − δ0 = Op

(
n−1/2

)
and γ̂ = Op

(
n−1/3

)
,

as these rates of convergence balance the speeds at which the bias and standard deviation of

Sn (θ)− Sn (θ0) converge to zero. In comparison, the CLSE
(
δ̃3, γ̃

)′
is governed by

Sn(θ)− Sn(θ0)

=
1

n

n∑
t=1

(δ30qt1t (0)− δ3 (qt − γ)1t (γ))2 +
2

n

n∑
t=1

εt (δ30qt1t (0)− δ3 (qt − γ)1t (γ)) ,

due to the continuity constraint (10), for which we observe the quadratic expansion

E (δ30qt1t (0)− δ3 (qt − γ)1t (γ))2 ∼ |δ3 − δ30|2 + γ2

var

(
2

n

n∑
t=1

εt (δ30qt1t (0)− δ3 (qt − γ)1t (γ))

)
∼ |δ3 − δ30|2 + |γ|2

n
.

This yields that

δ̃3 − δ30 = Op

(
n−1/2

)
and γ̃ = Op

(
n−1/2

)
,

which coincides with the rates of convergence that both Feder (1975a, b) and Chan and Tsay

(1998) obtained.

An intuitive explanation for the preceding Proposition, Theorem and Remark is to appeal

to “misspecification”. Although the unconstrained model (1) encompasses both continuous

and discontinuous models, the estimated regression function is almost surely discontinuous,

since the probability that the LSE θ̂ fulfills the continuity restriction is zero.

3.1 Inference on the Regression Coefficient α

Theorem 1 in Section 3.1, Lemma A.12 of Hansen (2000) and Theorem 2 of Chan (1993) report

the same asymptotic distribution for α̂, namely N
(
0,M−1ΩM−1

)
, which is asymptotically

independent of γ̂. Thus, the inference for α0 is uniform under any widely used sampling

scheme with strongly identified γ0, provided that the respective sample moments

M̂ =
1

n

n∑
t=1

xt (γ̂)xt (γ̂)′ ; Ω̂ =
1

n

n∑
t=1

xt (γ̂)xt (γ̂)′ ε̂2
t ,
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where ε̂t = yt − xt (γ̂)′ α̂, are consistent under each data generating process. This is the case

due to the uniform law of large numbers, which only requires consistency of γ̂.

It is worthwhile to mention that this “oracle” property of α̂ does not hold true for the

CLSE α̃, whose asymptotic distribution is affected by that of γ̃, as was first noticed and shown

by Feder (1975a) and later extended to time series data by Chan and Tsay (1998).

3.2 Inference on the Threshold γ

The main purpose of this section is to develop a method to construct confidence regions for γ0

that are valid regardless of whether the regression model has a kink or a jump at the true value

of γ0. Conventionally, inference on γ has been done after assuming either that the model has

a kink or that it has a jump, i.e. the practitioner chooses between jump or kink models before

estimating the threshold point. More specifically, if we decide that the model has a jump, then

one follows e.g. Hansen (2000), whereas if one has chosen the kink model then one needs to

employ the asymptotic normal inference as in Feder (1975a) and others. One of our findings

is that Hansen (2000) results are not valid if the model had a kink and likewise Feder’s results

are not valid if the model had a jump.

Thus, this section develops robust confidence regions that are valid regardless which of the

two models is the true specification. To ease reference, we recall Hansen’s (2000) diminishing

jump specification:

Assumption J. For some 0 < ϕ < 1/2 and d 6= 0, δ0 = d · n−ϕ and d′V d and d′Dd are

positive for all n.

When ϕ is greater than or equal to 1/2, δ0 is too small to consistently estimate γ0, and

such case is excluded. And we suppress the dependence of δ0 on the sample size n to simplify

the notation.

To develop robust confidence sets, we need to find a statistic whose asymptotic distribution

is invariant to the true parameter value, that is, a statistic whose asymptotic distribution does

not change suddenly under Assumption C. We begin by introducing a Gaussian quasi-likelihood

ratio statistic based on the unconstrained model (1). Specifically, let

QLRn = n
Ŝn (γ0)− Ŝn (γ̂)

Ŝn (γ̂)
,
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where Ŝn (γ) is defined in (6).

We now derive the following asymptotic distribution for QLRn, which contrasts with the

asymptotic distribution obtained by Hansen (2000) under Assumption J.

Proposition 2. Suppose that Assumptions C, Z and Q hold. Then, as n→∞,

QLRn
d−→ ζ max

g∈R
(2W (g)− |g|) ,

where

ζ =
σ2 (γ0)

σ2
.

In comparison, we recall Hansen’s (2000) results that

QLRn
d−→ ξmax

g∈R
(2W (g)− |g|) , (15)

where

ξ =
E
(

(x′tdεt)
2 |qt = γ0

)
σ2E

(
(x′td)2 |qt = γ0

) ,
and that the distribution function of maxg∈R (2W (g)− |g|) is given by F (z) =

(
1− e−z/2

)2
.

The results of our Proposition 2 and that in (15) indicate that the only difference between

the limit distributions of QLRn under the kink and jump specifications is the scaling factor.

This is the case despite the fact the estimator γ̂ exhibits different rates of convergence across

the two settings.

Next, we propose an estimator of the unknown scaling of QLRn that converges in proba-

bility to ξ under Assumption J, while it converges to ζ under Assumption C, thus adapting

to the unknown true scaling in each situation. We begin with a natural estimator of ξ, which

is a ratio of two Nadaraya-Watson estimators of the conditional expectations. That is,

ξ̂ =

1
n

∑n
t=1

(
δ̂′xt

)2
ε̂2
tK
(
qt−γ̂
a

)
Sn
(
θ̂
)

1
n

∑n
t=1

(
δ̂′xt

)2
K
(
qt−γ̂
a

) , (16)

where K (·) and a are, respectively, the kernel function and bandwidth parameter and ε̂t’s are

the least squares residuals. The consistency of ξ̂ to ξ is standard, as argued in Hansen (2000).

However, it is not trivial to establish that ξ̂
p−→ ζ when the true model has a kink at

γ0 because both numerator and denominator degenerates asymptotically in Assumption C. It

turns out that we need to impose some unconventional restrictions on the kernel function K

and the bandwidth a. Specifically, we assume
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Assumption K. Assume the following for K (·) and a.

K1 K (·) is symmetric and κ` =
∫∞
−∞ u

`K (u) du < C for ` ≤ 4 and κ2 6= 0.

K2 K (·) is twice continuously differentiable with the first derivative K ′ (·) and for all u such

that |w/u| ≤ C as w → 0 K ′ (u+ w) /K ′ (u)→ 1.

K3 K (u) =
∫
φ (v) eivudv , where the characteristic function φ (v) satisfies that vφ (v) is

integrable.

K4 a−3n−1 + a→ 0 as n→∞.

It is clear that the Epanechnikov and the Gaussian kernel functions satisfy K1, K2 and

K3. One important observation is that K1 rules out higher-order kernels by assuming κ2 6= 0.

The consequence of dropping the assumption that κ2 6= 0 is discussed in detail in Remark 2

that follows the next proposition.

Proposition 3. Suppose Assumptions Z, Q and K hold true. Then, under Assumption C

ξ̂
P→ ζ,

while ξ̂
P→ ξ under Assumption J.

Remark 2. We now comment on the consequence of dropping the assumption that κ2 6= 0.

If we allowed for higher-order kernels, that is κ2 = 0 and κ3 = 0 but κ4 6= 0, ξ̂ would not be

consistent. Indeed, Proposition 3 and Lemma 2 in the Appendix indicate that, without loss of

generality for γ0 = 0 and σ2 = 1, ξ̂ converges in probability to

∂2

∂q2
f (q) g0 (q) |q=0

∂2

∂q2
f (q) g∗0 (q) |q=0

,

where gr (q) = E
(
xrt2ε

2
t | qt = q

)
and g∗r (q) = E (xrt2 | qt = q). This is the case because dropping

in K1 the assumption of κ2 6= 0 and letting κ2 = κ3 = 0, the numerator in (16) will be

κ4δ
2
3a

4 ∂
2

∂q2
(f (0) g0 (0)) (1 + op (1)) ,

whereas the denominator in (16) becomes

κ4δ
2
3a

4 ∂
2

∂q2
(f (0) g∗0 (0)) (1 + op (1)) .
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So that, unless E(ε2
t | qt = γ0) = E(ε2

t ), we obtain that (similar to the L’Hopital rule):

ξ̂
P→

∂2

∂q2
f (q) g0 (q) |q=0

∂2

∂q2
f (q) g∗0 (q) |q=0

=

∂2

∂q2

(
f (q)E

[
ε2
t | qt = q

])
|q=0

∂2

∂q2
f (q) |q=0

6= ζ,

and hence ξ̂ would not be a consistent estimator of the scale factor ζ.

We can construct the 100s percent confidence set of γ0 by

Γ̂s =
{
γ ∈ Γ : ξ̂−1QLRn (γ) ≤ F−1 (s)

}
.

As we have already argued, this confidence set is valid under both scenarios, as the next

theorem shows.

Theorem 2. Let Assumption K, Z and Q hold true and suppose that either Assumption C

or J hold. Then, for any s ∈ (0, 1),

P{γ0 ∈ Γ̂s} → s.

4 BOOTSTRAP

This section develops a bootstrap-based test inversion confidence interval for the unknown

threshold parameter γ0, which is valid under Assumption C as well as under Assumption J.

We do not discuss the bootstrap for α0 in detail but note that the bootstrap for the linear

regression can be employed,2 see e.g. Shao and Tu (1995), since we can treat γ̂ as γ0 for the

inference on α0 due to the arguments leading to the asymptotic independence between α̂ and

γ̂.

We propose using the bootstrap test inversion method, also known as the grid bootstrap,

of Dümbgen (1991) to build confidence intervals for the parameter γ, see also Carpenter (1999)

and Hansen (1999). Such a test inversion bootstrap confidence interval (BCI) is known to have

certain optimality properties as in e.g. Brown, Casella and Hwang (1995) from the Bayesian

2This excludes the case where γ0 is not strongly identified in the sense that δ0 = d · n−ϕ with ϕ ≥ 1/2. This

case has not been explored except when d = 0, see e.g. Hansen (1996) and it is an interesting future research

area.
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Figure 1: 90% asymptotic and grid bootstrap confidence intervals, n = 100, γ0 = 2

perspective. Mikusheva (2007) showed that test inversion BCI attains correct coverage proba-

bility uniformly over the parameter space for the sum of coefficients in autoregressive models,

despite the behavior of the estimator not being uniform over the parameter space.

For a given confidence level s, one can exploit the duality between hypothesis testing and

confidence interval by inverting tests to obtain a confidence region

Γ̂∗s =
{
γ ∈ Γ : ξ̂ (γ)−1QLRn (γ) ≤ F ∗n (s|γ)

}
,

where F ∗n (s|γ) is the bootstrap estimate of the sth quantile of the statistic ξ̂ (γ)−1QLRn (γ)

when γ0 = γ. In other words, it denotes the bootstrap critical value of level (1− s) testing for

H0 : γ0 = γ. In practice, one would estimate F ∗n (s|γ) over a grid of γ′s and use some smoothing

method such as linear interpolation or kernel averaging to obtain a smoothed bootstrap quantile

function over a range of γ. The region Γ̂∗s is known as s-level grid bootstrap confidence interval

(BCI) of γ in the terminology of Hansen (1999).

Figure 1 illustrates how this confidence interval can be obtained in practice. The QLRn (γ)

line is the linear interpolation of the rescaled QLRn (γ) statistic over a grid of γ of 50 points.

The ACV line is the asymptotic critical value of Hansen (2000). The true value of γ0 was

2. We estimated bootstrap quantile function (described in the sequel) at 17 grid points and

present the interpolated line. The vertical arrow at the intersections between QLRn (γ) and

14



ACV yield the asymptotic confidence interval (ACI), while the vertical broken arrows indicate

grid BCI based on the bootstrap.

Now, we describe the bootstrap procedure for the grid bootstrap. We repeat the following

procedure for each values of γj ∈ {γ1, ..., γg}.

4.1 Bootstrap Algorithm for each γj

STEP 1 Obtain LSE (α̂′, γ̂)′ by minimizing (5) and compute the LSE residuals

ε̂t = yt − α̂′xt (γ̂) , t = 1, ..., n.

STEP 2 Generate {ηt}nt=1 as i.i.d. zero mean random variables with unit variance and finite

fourth moments, and compute

y∗t = α̂′xt (γj) + ε̂tηt, t = 1, ..., n.

STEP 3 Obtain the least squares estimate using {y∗t }nt=1 and {xt}nt=1,

θ̂∗ = argmin
θ

S∗n (θ) :=
1

n

n∑
t=1

(
y∗t − xt (γ)′ α

)2
. (17)

STEP 4 Compute the bootstrap analogues of QLRn and ξ̂ as

QLR∗n = n
Ŝ∗n (γj)− Ŝ∗n (γ̂∗)

Ŝ∗n (γ̂∗)
,

and

ξ̂∗ =

∑n
t=1(δ̂∗′xt)

2ε̂∗2t K
(
qt−γ̂∗
a

)
Sn(θ̂∗)

∑n
t=1(δ̂∗′xt)2K

(
qt−γ̂∗
a

) , (18)

where Ŝ∗n (γ) is defined analogously as Ŝn (γ) in (6) by replacing yt with y∗t .

STEP 5 Compute the bootstrap 100s-th quantile F ∗n (s|γj) from the empirical distribution

of ξ̂∗−1QLR∗n by repeating STEP 2-4.

Next, we derive the convergences of the bootstrap LSE α̂∗ and γ̂∗ for both continuous and

discontinuous setups and show the consistency of the bootstrap statistic ξ̂∗. These results then
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yield the validity of the bootstrap test inversion confidence set following the same arguments

in the proof of Theorem 2.

As usual, the superscript “∗” indicates the bootstrap quantities and convergences of boot-

strap statistics conditional on the original data. As in Shao and Tu (1995), the notation “
d∗−→,

in Probability” signifies the the convergence in Probability of the random distribution func-

tions of the bootstrap statistics in terms of the uniform metric and A∗n = op∗ (1) means that

A∗n
d∗−→ 0, in Probability.

Theorem 3. Suppose that Assumptions Z and Q hold true.

(a) Under Assumption C, α̂∗ and γ̂∗ are asymptotically independent and (in probability)

n1/2(α̂∗ − α̂)
d∗−→ N

(
0,M−1ΩM−1

)
,

n1/3(γ̂∗ − γ0)
d∗−→ arg max

g∈R

(
2δ30

√
σ2 (γ0)

3
f (γ0)W

(
g3
)

+
δ2

30

3
f (γ0) |g|3

)
.

(b) Under Assumption J, α̂∗ and γ̂∗ are asymptotically independent and (in probability)

n1/2(α̂∗ − α̂)
d∗−→ N

(
0,M−1ΩM−1

)
,

n1−2ϕ(γ̂∗ − γ0)
d∗−→ 2d′V d

(d′Dd)2 f (γ0)
arg max

g∈R
(2W (g)− |g|) .

Our results can be compared with those already obtained in the literature regarding the

validity of bootstrap for non-standard estimators. First, our consistency result seems to con-

tradict Seijo and Sen’s (2011) result on the inconsistency of a residual-based bootstrap and

the nonparametric bootstrap (with i.i.d. data) for the case where ϕ = 0, see also Yu (2014).

The reason behind such contradictory conclusions lies in the observation that our setup differs

from theirs in an important and vital way: they consider the case of a fixed size of the break

whereas we consider the situation that δ0 = d ·n−ϕ decreases with the sample size. Thus, their

limiting distribution depends on the whole conditional distribution of εtηtd
′xt given qt = γ0 in

a complicated manner, whereas ours contains only an unknown scaling factor.

It is worth mentioning that the centering term for γ̂∗ is γ0, which reflects the fact that our

resampling scheme imposes the hypothesized true value for the unknown threshold. This is

important for the validity of our bootstrap since we do not impose the continuity restriction

in our bootstrap resampling. By imposing the null value, our resampling scheme builds on
√
n-consistent estimates.
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Next, the consistency of ξ̂∗ is established in the following proposition.

Proposition 4. Suppose Assumptions Z, Q and K hold and either of Assumption J or As-

sumption C holds true. Then,

ξ̂∗ − ξ̂ = op∗ (1) .

A direct consequence of Theorem 3 and Proposition 4 is the following theorem.

Theorem 4. Now, suppose either Assumption J or Assumption C hold true in addition to

Assumptions Z, Q and K. Then, (in probability)

ξ̂∗−1QLR∗n
d∗−→ max

g∈R
(2W (g)− |g|) .

5 Monte Carlo Experiment

We generate data based on the following 3 specifications, with settings A and B being jump

models akin to that considered in Hansen (2000, Section 4.2) and setting C representing the

kink case.

A : yt = 2 + 3xt + δxt1 {qt > γ0}+ εt,

B : yt = 2 + 3qt + δqt1 {qt > γ0}+ εt,

C : yt = 2 + 3qt + δ(qt − γ0)1 {qt > γ0}+ εt.

The main difference in our data generating process from that of Hansen (2000) is the condi-

tional heteroscedasticity in εt: we set εt = |qt|et where {et}t≥1 and {qt}t≥1 were generated as

mutually independent and i.i.d. normal random variables with unit variance. This leads to

conditional heteroscedasticity of the form E(ε2
t |qt) = q2

t , in contrast to Hansen (2000) where

εt was generated from N(0, 1). In setting A, we generated xt as i.i.d. draws from N(2, 1), in-

dependent of {et}t≥1 and {qt}t≥1, while setting Eqt = 2. We generate {et}t≥1 and {qt}t≥1 the

same for setting B. For both settings A and B, we try γ0 = 2 and 2.674, which correspond to

the median and third quartile of qt, respectively. In setting C, we set γ0 = 0 and try Eqt = 0 or

−0.674 so that the threshold corresponds to the median or the third quartile of qt, respectively.

For the grid Γn used in estimation of γ0, we discarded 10% of extreme values of realized qt and

used n/2 number of equidistant points.
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Table 1: Monte Carlo size of test H0 : γ = γ0 and coverage probability of confidence intervals

of γ0, model A: qt 6= xt, δ = n−ϕ
√

10/4

Size Coverage Probability

γ0 median of qt(2) γ0 median of qt(2) third quart. of qt(2.674)

ϕ s\n 100 250 500 ζ\n 100 250 500 100 250 500

1/4 Asym 0.01 0.095 0.059 0.044 0.9 0.733 0.770 0.774 0.811 0.834 0.844

0.05 0.195 0.153 0.130 0.95 0.818 0.832 0.857 0.870 0.895 0.914

0.1 0.290 0.242 0.200 0.99 0.916 0.938 0.950 0.953 0.971 0.980

B/rap 0.01 0.003 0.015 0.009 0.9 0.756 0.810 0.840 0.783 0.826 0.852

0.05 0.052 0.055 0.037 0.95 0.833 0.880 0.910 0.859 0.892 0.915

0.1 0.106 0.095 0.083 0.99 0.928 0.959 0.969 0.935 0.965 0.980

1/8 Asym 0.01 0.068 0.037 0.029 0.9 0.79 0.837 0.897 0.817 0.835 0.872

0.05 0.164 0.092 0.077 0.95 0.856 0.898 0.923 0.873 0.91 0.914

0.1 0.214 0.15 0.129 0.99 0.933 0.961 0.975 0.949 0.964 0.972

B/rap 0.01 0.006 0.009 0.008 0.9 0.791 0.846 0.881 0.792 0.827 0.871

0.05 0.046 0.052 0.049 0.95 0.858 0.907 0.93 0.859 0.9 0.917

0.1 0.099 0.095 0.105 0.99 0.936 0.968 0.98 0.938 0.963 0.972

Note: Size results for test of H0 : γ = γ0 with nominal size s based on Hansen (2000)’s asymptotic distribution

(Asym), and our bootstrap (B/rap). Coverage probability results for γ0 with asymptotic confidence interval

based on Hansen (2000) and our grid bootstrap confidence interval, with nominal confidence level ζ. δ =

n−1/4
√

10/4 = 0.25, 0.1988, 0.1672, δ = n−1/8
√

10/4 = 0.4446, 0.3965, 0.3636 for n = 100, 250, 500
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We investigate finite-sample performance of testing and confidence regions for γ given in

Sections 3 and 4. We first compare the Monte Carlo size of tests for the correct location of the

threshold, based on the asymptotic theory of Hansen (2000) which covers diminishing jump

models, and our bootstrap method. We then investigate coverage probabilities of confidence

intervals, constructed from either the asymptotic theory of Hansen (2000), or test-inversion

based on our bootstrap. Our method has the virtue of robustness across different settings, and

the objective is to see how it works across the jump settings of A and B and the kink setting of

C. In A and B, we try two sets of δ with ϕ = 1/4, 1/8: δ = n−1/4
√

10/4 = 0.25, 0.1988, 0.1672,

and δ = n−1/8
√

10/4 = 0.4446, 0.3965, 0.3636 for n = 100, 250, 500 reflecting Assumption J. In

setting C, δ is fixed at δ = 2 in line with Assumption C.3 For the estimate ξ̂ of the scale factor

for the QLRn statistic, Epanechnikov kernel and minimum-MSE bandwidth choice, given in

Härdle and Linton (1994), were deployed.

Columns 4-6 of Tables 1-3 present Monte Carlo size of test of H0 : γ = γ0 when γ0 is

the median of qt for nominal sizes s = 0.1, 0.05, 0.01 for the three settings. We carried out

10,000 iterations, with one bootstrap per iteration, using the warp-speed method of Giacomini,

Politis and White (2013). Using the asymptotic critical values delivers poor Monte Carlo sizes

in settings A and B with substantial over-sizing, which is more severe in setting B. In contrast,

the bootstrap test produces sizes that are close to the nominal ones, apart from n = 100 in

B, for both ϕ. For the asymptotic test, the size results are somewhat better when ϕ = 1/8

compared to ϕ = 1/4 in settings A and B, although the over-sizing remains severe even for

ϕ = 1/8 in setting B as shown in Table 2. For the kink setting C, asymptotic test based on

Hansen’s (2000) results produces sizes that become very small with increasing n, while the

bootstrap test leads to good size results for n = 250, 500.

Columns 8-10 of Tables 1-3 report the coverage probabilities of confidence intervals for γ0

in the three settings, when γ0 is the median of qt, and columns 11-13 present the case when

γ0 is the third quartile of qt, for confidence levels ζ = 0.9, 0.95, 0.99. Results are based on

1,000 iterations and in each iteration, we generated bootstrap quantile plots by interpolat-

ing bootstrap quantiles obtained at 10 equidistant points of the realized support of qt from

399 bootstraps, and found intersections with the sample QLRn plot formed by interpolating

between n/2 number of equidistant points after discarding 10% of extreme values of realized

qt.

3Note that δ = 0.25, 2 were the smallest and the largest values of δ tried in Hansen (2000), respectively.
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Table 2: Monte Carlo size of test H0 : γ = γ0 and coverage probability of confidence intervals

of γ0, model B: qt = xt, δ = n−ϕ
√

10/4

Size Coverage Probability

γ0 median of qt(2) γ0 median of qt(2) third quart. of qt(2.674)

ϕ s\n 100 250 500 ζ\n 100 250 500 100 250 500

1/4 Asym 0.01 0.185 0.145 0.155 0.9 0.608 0.612 0.658 0.740 0.730 0.725

0.05 0.344 0.293 0.268 0.95 0.687 0.707 0.742 0.813 0.817 0.827

0.1 0.437 0.379 0.365 0.99 0.831 0.851 0.859 0.905 0.924 0.926

B/rap 0.01 0.022 0.013 0.021 0.9 0.770 0.836 0.866 0.868 0.882 0.878

0.05 0.101 0.066 0.071 0.95 0.853 0.894 0.924 0.932 0.943 0.943

0.1 0.203 0.126 0.133 0.99 0.946 0.972 0.982 0.975 0.984 0.980

1/8 Asym 0.01 0.155 0.098 0.079 0.9 0.661 0.72 0.786 0.771 0.779 0.791

0.05 0.285 0.207 0.158 0.95 0.745 0.802 0.852 0.852 0.844 0.855

0.1 0.368 0.275 0.224 0.99 0.86 0.886 0.921 0.925 0.941 0.938

B/rap 0.01 0.029 0.009 0.017 0.9 0.797 0.871 0.904 0.886 0.891 0.888

0.05 0.093 0.073 0.065 0.95 0.878 0.917 0.945 0.936 0.946 0.943

0.1 0.171 0.113 0.109 0.99 0.95 0.981 0.99 0.984 0.984 0.98

Note: Size results for test of H0 : γ = γ0 with nominal size s based on Hansen (2000)’s asymptotic distribution

(Asym), and our bootstrap (B/rap). Coverage probability results for γ0 with asymptotic confidence interval

based on Hansen (2000) and our grid bootstrap confidence interval, with nominal confidence level ζ. δ =

n−1/4
√

10/4 = 0.25, 0.1988, 0.1672, δ = n−1/8
√

10/4 = 0.4446, 0.3965, 0.3636 for n = 100, 250, 500.
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In settings A and B reported in Tables 1 and 2, the coverage probability results are better

when γ0 is the third quartile of qt for both methods when ϕ = 1/4. For ϕ = 1/8, this

is still the case, with the exception of bootstrap coverage probabilities in setting A, which

are similar between the two values of γ0. In setting A as shown in Table 1, the asymptotic

and bootstrap methods perform similarly, reporting lower-than-nominal coverage probabilities

which improve with larger n. In setting B, the bootstrap method delivers substantially better

coverage probabilities than the asymptotic confidence intervals based on Hansen (2000), which

remain substantially lower than the nominal level even for n = 500 for ϕ = 1/4. Such under-

coverage of asymptotic confidence intervals for small δ = 0.25 was also reported in Hansen’s

(2000) Table 2, for homoskedastic error case. The coverage probability results are better when

ϕ = 1/8 compared to ϕ = 1/4 for both methods in setting B, especially so for asymptotic

confidence intervals. In Hansen’s (2000) Table 2, coverage probability was also good for δ = 0.5.

In setting C reported in Table 3, the asymptotic coverage probabilities becomes close to 1

for all values of ζ for n = 250, 500, while bootstrap coverage probabilities are satisfactory for

n = 250, 500. The bootstrap coverage probability is better when γ0 is the third quartile of qt

compared to when it is the median.4

6 EMPIRICAL APPLICATION: GROWTH AND DEBT

The so-called Reinhart-Rogoff hypothesis postulates that above some threshold (90% being

their estimate of this threshold), higher debt-to-GDP ratio is associated with lower GDP

growth rate. There have been numerous studies that utilize the threshold regression models to

assess this hypothesis, including Hansen (2017) who fitted a kink model to a time series of US

annual data, see Hansen (2017) for references on earlier studies which fitted jump models to

various data sets. As there is little guidance from economic theory on the choice between kink

and jump models in this setting, we advocate the use of our robust inference on the threshold

and slope parameters of the model.

Hansen (2017) had fitted a kink model to US annual data on real GDP growth rate in year

4In Table 4 in Online Appendix, we report Monte Carlo size and coverage probability results for γ when

ϕ = 0 with δ fixed at
√

10/4 = 0.7906 and 0.25 in setting A (qt 6= xt) with homoscedastic error. Fixed jump

setup is not covered by Hansen (2000) or our bootstrap of Section 4, but nonetheless we investigate how the

two methods perform in this setting for completeness.
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Table 3: Monte Carlo size of test H0 : γ = γ0 and coverage probability of confidence intervals

of γ0, model C, kink, δ = 2

Size Coverage Probability

γ0 median of qt γ0 median of qt third quart. of qt

s\n 100 250 500 ζ\n 100 250 500 100 250 500

C Asym 0.01 0.123 0.028 0.005 0.9 0.802 0.946 0.975 0.749 0.925 0.972

0.05 0.168 0.043 0.015 0.95 0.84 0.965 0.983 0.784 0.945 0.98

0.1 0.200 0.056 0.024 0.99 0.892 0.982 0.992 0.852 0.966 0.99

B/rap 0.01 0.027 0.014 0.012 0.9 0.768 0.854 0.805 0.828 0.894 0.877

0.05 0.091 0.054 0.052 0.95 0.817 0.918 0.889 0.88 0.949 0.943

0.1 0.153 0.108 0.104 0.99 0.905 0.979 0.975 0.954 0.981 0.984

Note: Size results for test of H0 : γ = γ0 with nominal size s based on Hansen (2000)’s asymptotic distribu-

tion(Asym), and our bootstrap(B/rap). Coverage probability results for γ0 with asymptotic confidence interval

based on Hansen (2000) and our grid bootstrap confidence interval, with nominal confidence level ζ. When γ0

is median, qt ∼ N(0, 1). When γ0 is third quartile, qt ∼ N(−0.674, 1) and γ0 = 0.

t (yt) and debt-to-GDP ratio from the previous year (qt) for the period spanning 1792-2009

(n = 218), and estimated the threshold to be 43.8%, while the slope parameters of qt were

not significant. Before fitting the jump model to this data, we first tested for the presence of

threshold effect using the testing procedure of Hansen (1996) with 1,000 bootstrap replications,

and obtained p-value of 0.047, rejecting the null hypothesis of no threshold effect. This is in

contrast to the p-value of 0.15 obtained by Hansen’s (2017) test for presence of threshold effect

when imposing the kink model. Hansen (2017) had remained inconclusive on the presence of

kink threshold effect, since the bootstrap method used there did not account for the time series

nature of data and the high p-value could have been due to modest power of the test.

The fitted jump model is given by:

ŷt =


4.82
(0.87)

− 0.052
(0.16)

yt−1 − 0.114
(0.049)

qt, if qt ≤ 17.2

2.78
(0.74)

+ 0.49
(0.082)

yt−1 − 0.017
(0.012)

qt, if qt > 17.2

The sizes of the two regimes were 99 (below 17.2%) and 109 (above 17.2%). We obtained

grid bootstrap confidence intervals for γ0 to be (10.5, 39) for 95% confidence level and (10.8,

38.6) for 90%, based on 399 bootstrap iterations. Bootstrap quantiles were obtained at 38 grid

points, which included γ̂, γ̃ and equidistant points on the realized support of qt after discarding
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Figure 2: 90% grid bootstrap confidence interval for the US

7.5% of the largest and smallest values of qt in the sample.5 We find the points of intersection

between the linearly interpolated bootstrap quantile line and the linear interpolation of sample

QLRn(γ) test statistics for H0 : γ0 = γj at grid points γj consisting of 73 equidistant points

and γ̂, γ̃, as shown in Figure 2 for 90% confidence level.

As the estimated threshold under the jump model is noticeably small at 17.2%, our esti-

mated jump model which suggests insignificance of effect of qt on yt above the threshold does

not necessarily contradict the Reinhart-Rogoff hypothesis. To see if this could be an indication

of presence of further threshold points, we applied Hansen (1996)’s testing procedure for pres-

ence of threshold effect on the lower and upper subsamples with 1000 bootstraps and obtained

p-values of 0.025 and 0.016, respectively. Hence, we conclude that the US time series data

should be fitted to a threshold regression model with multiple threshold points.

To see if such conclusion holds across different countries, we proceeded by first applying

Hansen (1996)’s test for the presence of threshold effect on Reinhart and Rogoff’s (2010) data

for countries with relatively long time spans without missing observations. For Australia(n =

5There is currently no theoretical guide to the choice of the trimming parameter. Our choice of trimming

out 7.5% was guided by Sweden’s estimated γ̃ being the 12-th percentile of the qt in the data. Sensitivity check

on changing choices of the trimming value is recommended.
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107) and the UK(n = 178), the p-values with 1000 bootstraps were 0.795 and 0.98 so we

conclude that there is no threshold effect for these countries in the relationship between the

GDP growth and the debt-to-GDP ratio.

For data from Sweden for the period 1881-2009 (n = 129), the p-value for Hansen (1996)’s

test of presence of threshold effect with 1000 bootstraps for the whole sample is 0.048, while

for the lower and upper regimes, divided by γ̂, they were 0.979 and 0.131, respectively. The

estimated jump model is:

ŷt =


1.12
(2.17)

− 0.2
(0.24)

yt−1 + 0.13
(0.11)

qt, if qt ≤ 21.3

1.86
(0.58)

+ 0.48
(0.11)

yt−1 − 0.004
(0.0082)

qt, if qt > 21.3

with the lower regime having 61 observations and upper regime containing 68. The coefficient

of debt-to-GDP ratio is not statistically significant.

The grid bootstrap confidence intervals for γ0 were (15.3, ∞) and (16.4, ∞) for 95% and

90% confidence levels. Shown in Figures 3 are linear interpolation of 90% bootstrap quantiles

at 27 grid points with 399 bootstraps and linear interpolation of QLR test statistic at each of

54 grid points.

We conclude that there is substantial heterogeneity across countries in the relationship be-

tween the GDP growth and the debt-to-GDP ratio, not only in the values of model parameters,

but also in the type of models that are suitable.

7 CONCLUSION

This paper has developed unified inferential procedures for the threshold regression model.

The unconstrained least squares estimator of the regression coefficient α turns out to enjoy

a useful oracle property, which enables the standard asymptotic normal inference as in the

linear regression model. On the other hand, we provide a judiciously constructed statistic,

with which one can make inference of the unknown threshold without knowing the continuity

of the threshold regression model. Asymptotically valid bootstrap inference is also proposed

and shown to improve the finite sample performance of the asymptotic procedure.

An interesting future research area is extension to the nonparametric setting. For instance,

see Card et al. (2008) and Pan (2015), who use the regression discontinuity methods 6 to

6Pan (2015, p.378) and a referee emphasize that this setting is not identical to the conventional regression
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Figure 3: 90% grid bootstrap confidence interval for Sweden

test for the tipping phenomenon in racial segregation and gender segregation, respectively, or

Landais (2014), who recommends testing for the location of the change-point as a validity

check for the regression discontinuity design, even when the change-point is suggested by the

institutional knowledge.
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A PROOFS OF MAIN THEOREMS

Let us introduce some notation first. In what follows C,C1,... denote generic positive finite

constants, which may vary from line to line or expression to expression. Recall that xt =

(1, x′t2, qt)
′ , xt1 = (1, x′t2)′, and 1t (b) = 1 {qt > b}, and introduce 1t (a; b) = 1 {a < qt < b}.

Finally, we abbreviate ψ − ψ0 by ψ for any parameter ψ.

All the technical lemmas are given in the online supplement to this paper.

A.1 Proof of Proposition 1

Without loss of generality we assume that γ̂ ≥ γ0 and γ0 = 0, so that δ10 = 0 and δ20 = 0

under Assumption C. By definition, we have that

Sn (θ)− Sn (θ0) =
1

n

n∑
t=1

{(
yt − α′xt (γ)

)2 − ε2
t

}
=

1

n

n∑
t=1

{(
β
′
xt + δ

′
xt1t (γ) + δ′0xt1t (0; γ) + εt

)2
− ε2

t

}
.

By standard algebra and denoting υ = β + δ,

β
′
xt + δ

′
xt 1t (γ) + δ′0xt1t (0; γ)

= υ′xt1t (γ) +
(
β + δ0

)′
xt1t (0; γ) + β

′
xt1t (−∞; 0) ,

which implies, because of the orthogonality of the terms on the right of the last displayed

expression, that

Sn (θ)− Sn (θ0) = An1 (θ) + An2 (θ) + An3 (θ) + Bn1 (θ) + Bn2 (θ) + Bn3 (θ) ,
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where

An1 (θ) = υ′
1

n

n∑
t=1

xtx
′
t1t (γ) υ; An2 (θ) = β

′ 1

n

n∑
t=1

xtx
′
t1t (−∞; 0)β

An3 (θ) =
(
β + δ0

)′ 1

n

n∑
t=1

xtx
′
t1t (0; γ)

(
β + δ0

)
Bn1 (θ) = υ′

2

n

n∑
t=1

xtεt1t (γ) ; Bn2 (θ) = β
′ 2

n

n∑
t=1

xtεt1t (−∞; 0)

Bn3 (θ) =
(
β + δ0

)′ 2

n

n∑
t=1

xtεt 1t (0; γ) .

Consistency. It suffices to show that for any ε > 0, η > 0, there is n0 such that for all

n > n0, Pr
{∥∥∥θ̂ − θ0

∥∥∥ > η
}
< ε, which is implied by

Pr

{
inf
‖θ‖>η

3∑
`=1

E (An` (θ)) + Dn` (θ) ≤ 0

}
< ε, (19)

where Dn` (θ) = Bn` (θ) + (An` (θ)− E (An` (θ))) for ` = 1, 2, 3.

First
∥∥θ∥∥ > η implies that either (i) ‖γ‖ > η/3 and

∥∥β∥∥ ≤ η/3, or (ii)
∥∥β∥∥ > η/3 or

‖υ‖ > η/3. When ( ii) holds true, it is clear that

inf
‖υ‖>η/3

E (An1 (θ)) > Cη2 or inf
‖β‖>η/3

E (An2 (θ)) > Cη2 (20)

whereas when (i) holds true, we have that

inf
‖γ‖>η/3,‖β‖≤η/3

E

(
1

n

n∑
t=1

(
x′t
(
β̄ + δ0

))2
1t (0; γ)

)
> Cη3, (21)

because Assumption Q implies that E (xtx
′
t1t (γ)), E (xtx

′
t1t (−∞; 0)) and E (xtx

′
t1t (0; γ)) are

positive definite matrices uniformly in γ > η and
∣∣∣∣β̄ + δ0

∣∣∣∣ > η/3 if
∥∥β∥∥ ≤ η/3 because we

can always choose η such that |δ0| ≥ 2η/3. We have that

C1 ≤
EAn3 (θ)

(τ1, τ ′2)E (xt1x′t11t (0; γ)) (τ1, τ ′2)′ + τ2
3E
(
q2
t 1t (0; γ)

) ≤ C2, (22)

where τ = (β0 − β) + δ0. The motivation for the last displayed inequality comes from the fact

that , say, implies that E {xtx′t1t (γ1; γ2)} is a strictly positive and finite definite matrix which
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implies that for any vector a′ = (a′1, a2),

C−1 ≤ a′E {xtx′t1t (γ1; γ2)} a
a′1E {xt1x′t11t (γ1; γ2)} a1 + a2

2E
(
q2
t 1t (γ1; γ2)

) ≤ C.
So, (20) and (21) imply that

inf
‖θ‖>η

3∑
`=1

E (An` (θ)) > Cη3. (23)

On the other hand, Lemma 1 and the uniform law of large numbers, respectively, imply

that

sup
‖θ‖>η

‖Bn` (θ)‖ = Op

(
n−1/2

)
` = 1, 2, 3; sup

γ1,γ2
‖ Fn (γ1; γ2)‖ = op (1) ,

where Fn (γ1; γ2) = 1
n

∑n
t=1 (xtx

′
t1t (γ1; γ2)− E (xtx

′
t1t (γ1; γ2))), and hence

sup
‖θ‖>η/3

∥∥∥∥∥
3∑
`=1

Dn` (θ)

∥∥∥∥∥ = op (1) . (24)

Thus θ̂ − θ0 = op (1) because the left side of (19) is bounded by

Pr

 inf
‖θ‖>η

3∑
`=1

E (An` (θ)) ≤ sup
‖θ‖>η/3

∥∥∥∥∥
3∑
`=1

Dn` (θ)

∥∥∥∥∥
→ 0,

using (23) and (24).

Convergence Rate. We shall show next that for any ε > 0 there exist C > 0, η > 0, n0

such that for n > n0 we have that

Pr

 inf
C

n1/2
<‖υ‖,‖β‖<η; C

n1/3
<‖γ‖<η

3∑
`=1

E (An` (θ)) + Dn` (θ) ≤ 0

 < ε. (25)

Since Pr {Xn + Yn < 0} ≤ Pr {Xn < 0}+Pr {Yn < 0} for any sequenceXn and Yn and infx {f (x) + g (x)} ≥
infx f (x) + infx g (x) for any functions f and g, it suffices to show that for each ` = 1, 2, 3

Pr

 inf
C

n1/2
<‖υ‖,‖β‖<η; C

n1/3
<‖γ‖<η

E (An` (θ)) /2 + (An` (θ)− E (An` (θ))) ≤ 0

 < ε (26)
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Pr

 inf
C

n1/2
<‖υ‖,‖β‖<η; C

n1/3
<‖γ‖<η

E (An` (θ)) /2 + Bn` (θ) ≤ 0

 < ε. (27)

To that end, we shall first examine

Pr

{
inf

Ξj(υ);Ξj(β);Ξk(γ)
E (An` (θ)) /2 + Bn` (θ) ≤ 0

}
, ` = 1, 2, 3,

where

Ξj (ψ) =

{
ψ :

C

n1/2
2j−1 <

∥∥ψ∥∥ < C

n1/2
2j
}

; j = 1, ..., log2

η

C
n1/2

Ξk (γ) =

{
γ :

C

n1/3
2k−1 < γ <

C

n1/3
2k
}

; k = 1, ..., log2

η

C
n1/3. (28)

Recall that we have assumed that γ ≥ 0, as the case γ ≤ 0 follows similarly.

First by standard arguments,

Pr

{
inf

Ξj(υ);Ξk(γ)
E (An1 (θ)) /2 + Bn1 (θ) ≤ 0

}
≤ Pr

{
inf

Ξj(υ)
‖υ‖λmin

(
Extx

′
t1t (0)

)
≤ sup

Ξk(γ)

∥∥∥∥∥ 4

n1/2

n∑
t=1

xtεt1t (γ)

∥∥∥∥∥
}

≤ Pr

{
C2j−2 ≤ sup

{γ:‖γ‖<η}

∥∥∥∥∥ 1

n1/2

n∑
t=1

xtεt1t (γ)

∥∥∥∥∥
}

(29)

≤ C−12−j+2η1/2

by Lemma 1 and the Markov’s inequality. Observe that the latter inequality is independent

of Ξk (γ). Since
∑∞

j=1 2−j <∞, the probability in (27) can be made arbitrary small for large

C or small η, thus satisfying the condition (27). (26) follows similarly as is the case for ` = 2

and thus it is omitted.

We next examine (26) and (27) for ` = 3. Observing (22) and the arguments that follow,

defining

Ãn3 (θ) = τ2E
(
q2
t 1t (0; γ)

)
; B̃n3 (θ) = τ

2

n

n∑
t=1

qtεt1t (0; γ) ,

it suffices to show (26) and (27) for Ãn3 (θ) and B̃n3 (θ). To that end, because τ > C1 as
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|δ30| > C1 > 0, we obtain, since Eq2
t 1t (0; η) ≥ C1η

3

Pr

{
inf

Ξj(υ);Ξk(γ)
E
(
Ãn3 (θ) /2

)
+ B̃n3 (θ) ≤ 0

}
≤ Pr

{
inf

Ξk(γ)
‖τ0‖E

(
q2
t 1t (0; γ)

)
≤ sup

Ξk(γ)

∥∥∥∥∥ 4

n

n∑
t=1

qtεt1t (0; γ)

∥∥∥∥∥
}

≤ Pr

{
C

n
23(k−2) ≤ sup

Ξk(γ)

∥∥∥∥∥ 1

n

n∑
t=1

qtεt1t (0; γ)

∥∥∥∥∥
}

(30)

≤ C−12−3k/2,

by Lemma 1 and Markov’s inequality. Notice that this bound is independent of Ξj (υ). But by

summability of 2−3k/2, we conclude that (27) holds true for ` = 3 by choosing C large enough.

We now conclude the proof after we note that the left side of (25) is bounded by

Pr

{
max
j,k

inf
Ξj(υ);Ξj(β);Ξk(γ)

3∑
`=1

{EAn` (θ) + Bn` (θ)} ≤ 0

}

≤ C−1

log2
η
C
n1/2∑

j=1

2−2j +

log2
η
C
n1/3∑

k=1

2−3k/2

 < ε

using (29)− (30). �

A.2 Proof of Theorem 1

Because the “argmin” is a continuous mapping, see Kim and Pollard (1990), and the

convergence rates of α̂ and γ̂ are obtained in Proposition 1, it suffices to examine the weak

limit of

Gn (h, g) = n

(
Sn
(
α0 +

h

n1/2
, γ0 +

g

n1/3

)
− Sn (α0, γ0)

)
=

n∑
t=1

{(
εt −

h′

n1/2
xt

( g

n1/3

)
− δ30qt1t

(
0;

g

n1/3

))2

− ε2
t

}

over ‖h‖ , |g| ≤ C, where we assume γ0 = 0 as before for notational convenience and reparametrize

h =
√
n (α− α0) and g = n1/3 (γ − γ0) . First, due to the uniform law of large numbers it fol-
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lows that

sup
|g|≤C

∣∣∣∣∣ 1n
n∑
t=1

{
xt

( g

n1/3

)
x′t

( g

n1/3

)
− xtx

′
t

}∣∣∣∣∣ = op (1)

whereas Lemma 1 and the expansion of E
{
xt

(
g

n1/3

)
qt1t

(
0; g

n1/3

)}
as in (32) imply that

sup
|g|≤C

∣∣∣∣∣ 1√
n

n∑
t=1

{
xt

( g

n1/3

)
qt1t

(
0;

g

n1/3

)}∣∣∣∣∣ = Op

(
n−1/6

)
sup
|g|≤C

∣∣∣∣∣ 1√
n

n∑
t=1

(
xt

( g

n1/3

)
− xt

)
εt

∣∣∣∣∣ = Op

(
n−1/6

)
.

Therefore

sup
‖h‖,|g|≤C

∣∣∣Gn (h, g)− G̃n (h, g)
∣∣∣ = op (1) , (31)

where

G̃n (h, g) =

{
h′

1

n

n∑
t=1

xtx
′
th− h′

2

n1/2

n∑
t=1

xtεt

}

+δ30

{
δ30

n∑
t=1

q2
t 1t

(
0;

g

n1/3

)
− 2

n∑
t=1

qtεt1t

(
0;

g

n1/3

)}
= : G̃1

n (h) + G̃2
n (g) .

The consequence of (31) is then that the minimizer of Gn (h, g) is asymptotically equivalent to

that of G̃n (h, g). Thus, it suffices to show the weak convergence of G̃1
n (h) and G̃2

n (g) and that

h̃ =: arg min
h∈R

G̃1
n (h) ; g̃ := argmin

g∈R
G̃2
n (g)

are Op (1). The convergence of G̃1
n (h) and its minimization is straightforward since it is a

quadratic function of h.

Next, the first term of G̃2
n (g) converges to 3−1δ2

30f (0) |g|3 uniformly in probability because

Lemma 1, i.e. (49), implies the uniform law of large numbers and the Taylor series expansion

up to the third order yields

nEq2
t 1t

(
0;

g

n1/3

)
= n

∫ g

n1/3

0
q2f (q) dq = n

2f
(

g̃
n1/3

)
3!

( g

n1/3

)3
→ 3−1f (0) g3, (32)
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where g̃ ∈ (0, g). When g < 0, it follows similarly as in this case the derivative should be

multiplied by −1, so that the limit becomes 3−1f (0) |g|3.

The second term in the definition of G̃2
n (g) , that is −2

∑n
t=1 qtεt1t

(
0; g

n1/3

)
converges

weakly to 2δ30

√
3−1f (0)σ2

ε (0)W
(
g3
)
. To see this note that Lemma 1, i.e. (48), yields the

tightness of the process as explained in Remark 3. For the finite dimensional convergence, we

can verify the conditions for martingale difference sequence CLT (e.g. Hall and Heyde’s (1980)

Theorem 3.2). In particular, we need to show that for unt =
√
nqtεt1t

(
0; g

n1/3

)
,

(i) n−1/2 max
1≤t≤n

|unt|
p−→ 0

(ii)
1

n

n∑
t=1

u2
nt

p−→ 1

3
E(ε2

t |qt = 0)f(0)g3

For (i), note that En−2 maxt |unt|4 ≤ n−1E |unt|4 = nEq4
t ε

4
t1t

(
0; g

n1/3

)
→ 0 as n → ∞. For

(ii), apply the same argument for the first term in G̃2
n (g) and an expansion similar to that in

(32). We now characterize the covariance kernel. To that end, we note that if g1 and g2 have

different signs then the cross product becomes zero and for g2 > g1 > 0, similarly as with (32),

we have that

nE
(
ε2
t (qt − γ0)2 1

{ g1

n1/3
< qt <

g2

n1/3

})
=
f (γ0)

3
σ2
ε (γ0)

(
g3

2 − g3
1

)
+ o (1) .

The cases for g1 > g2 > 0 or g2 < g1 < 0 are similar and thus omitted.

Finally, the covariance between n−1/2
∑n

t=1 xtεt and
∑n

t=1 qtεt1t
(
0; g/n1/3

)
vanishes for

the same reasoning, yielding the independence between h̃ and g̃ and thus the asymptotic

independence between α̂ and the threshold estimator γ̂. �

A.3 Proof of Proposition 2

Due to the asymptotic independence between α̂ and γ̂ in Theorem 1, see (31) in its proof,

we have that

n (Sn (α̂ (γ0) ; γ0)− Sn (α̂; γ̂)) = n (Sn (α0; γ0)− Sn (α0; γ̂)) + op (1) ,
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which corresponds to ming G̃2
n (g) in the proof of Theorem 1 due to the reparameterization

g = n1/3 (γ − γ0). It also shows that

min
g

G̃2
n (g)

d−→ f (γ0) min
g∈R

(
2δ30

√
3−1f (γ0)σ2

ε (γ0)W
(
g3
)

+ 3−1δ2
30f (γ0) |g|3

)
.

Finally, the desired result follows from applying the change of variables g3 = 3φσ2
ε (γ0) /δ2

30f (γ0)

because of the distributional equivalence W
(
a2g
)

=d aW (g) (and W (s) =d −W (s)) and the

fact that minx g (x) = −maxx−g (x) for any function g. �

A.4 Proof of Theorem 2

It is known that the distribution function of maxg∈R (2W (g)− |g|) is F , as in Hansen

(2000). Thus, under Assumption C, Propositions 2 and 3 yield the conclusion, while under

Assumption J, Theorem 2 of Hansen (2000) verified the conclusion. �

A.5 Proof of Theorem 3

Recalling our definition of α̂∗ and γ̂∗ in (17), we begin by showing their consistency and

rate of convergence, which is given in Proposition 5.

We now discuss the asymptotic distribution of the bootstrap estimators. We begin with

part (a). We assume γ0 = 0 to simplify notation. Because the “arg max” is continuous as

mentioned in Theorem 2, it suffices to examine the weak limit of

G∗n (h, g) = n

(
S∗n
(
α̃+

h

n1/2
,
g

n1/3

)
− S∗n (α̃, 0)

)
=

n∑
t=1

{(
h′

n1/2
xt

( g

n1/3

)
+ δ̃′qt1t

(
0;

g

n1/3

)
+ ε∗t

)2

− ε∗2t

}
,

where ‖h‖ , |g| ≤ C.

First, recall that δ̃1 = Op
(
n−1/2

)
and δ̃2 = Op

(
n−1/2

)
under Assumption C and note that
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Lemma 1 and Lemma 4 imply that, uniformly in ‖h‖ , |g| < C,

1

n

n∑
t=1

{
xt

( g

n1/3

)
x′t

( g

n1/3

)
− xtx

′
t

}
= Op

(
n−1/3

)
1

n1/2

n∑
t=1

{
xt

( g

n1/3

)
qt1t

(
0;

g

n1/3

)}
= Op

(
n−1/6

)

E∗

∥∥∥∥∥ 1

n1/2

n∑
t=1

(
xt

( g

n1/3

)
− xt

)
ε∗t

∥∥∥∥∥
2

= Op

(
n−1/3

)
.

Thus, the latter implies that

E∗ sup
h,g∈R

∣∣∣G∗n (h, g)− G̃∗n (h, g)
∣∣∣ = Op

(
n−1/6

)
, (33)

where

G̃∗n (h, g) =

{
h′

1

n

n∑
t=1

xtx
′
th+ h′

1

n1/2

n∑
t=1

xtε
∗
t

}

+δ̃3

{
δ̃3

n∑
t=1

q2
t 1t

(
0;

g

n1/3

)
+

n∑
t=1

qtε
∗
t1t

(
0;

g

n1/3

)}
= : G̃∗1n (h) + G̃∗2n (g) .

The consequence of (33) is then that the minimizer of G∗n (h, g) is asymptotically equivalent to

that of G̃∗n (h, g). Thus, it suffices to show the weak convergence of G̃∗1n (h) and G̃∗2n (g) and

that

h̃ =: arg max
h∈R

G̃∗1n (h) ; g̃ =: arg max
g∈R

G̃∗2n (g)

are Op∗ (1). The convergence of G̃
∗
1n (h) and its minimization follows by standard arguments

as it is a quadratic function of h so that it suffices to examine G̃∗2n (g) and it minimum.

Turning to the second term in the definition of G̃∗2n (g) , we show that it converges to

2δ30

√
3−1f (0)σ2

ε (0)W
(
g3
)

weakly (in probability). To this end, note that Lemma 4’s, and

the Remark 4 that follows, yields the tightness of the process as explained in Remark 3. For

the finite dimensional convergence, it follows by standard arguments as

E∗

(
n∑
t=1

qtε
∗
t1t

(
0;

g

n1/3

))2

=
n∑
t=1

q2
t ε̂

2
t1t

(
0;

g

n1/3

)
which converges in probability to 3−1f (0)σ2

ε (0) g3 and the Lindeberg’s condition follows easily.

Part (b) is also proved similarly and thus omitted for the sake of space. �
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A.6 Proof of Theorem 4

This is a direct consequence of Theorem 3 and Proposition 4 and the same arguments as

the proof of Theorem 2. �
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Online Supplement to “Robust Inference in Threshold Regres-
sion Models”

by Javier Hidalgo, Jungyoon Lee, and Myung Hwan Seo

This supplement contains more numerical results for Section 5 and the re-

maining proofs of main theorems and supporting lemmas.

B-1 Table 4 for Monte Carlo study in Section 5

Table 4: Monte Carlo size of test H0 : γ = γ0 and coverage probability of confidence intervals

of γ0, model A: qt 6= xt, homoscedastic error, ϕ = 0

Size Coverage Probability

γ0 median of qt(2) γ0 median of qt(2) third quart. of qt(2.674)

δ s\n 100 250 500 ζ\n 100 250 500 100 250 500
√

10/4 Asym 0.01 0.0033 0.0032 0.002 0.9 0.969 0.976 0.971 0.969 0.979 0.975

(=0.7906) 0.05 0.0133 0.0109 0.0093 0.95 0.987 0.988 0.987 0.98 0.991 0.986

0.1 0.0266 0.0219 0.0203 0.99 0.999 0.998 0.998 0.998 0.999 0.997

B/rap 0.01 0.0104 0.0173 0.0114 0.9 0.837 0.859 0.836 0.839 0.848 0.843

0.05 0.0691 0.0713 0.0674 0.95 0.87 0.901 0.868 0.87 0.883 0.875

0.1 0.1353 0.1358 0.1276 0.99 0.935 0.936 0.925 0.926 0.933 0.928

0.25 Asym 0.01 0.016 0.0074 0.0075 0.9 0.88 0.909 0.93 0.879 0.925 0.931

0.05 0.0599 0.0402 0.0322 0.95 0.938 0.95 0.972 0.927 0.958 0.961

0.1 0.1102 0.076 0.0648 0.99 0.985 0.992 0.993 0.982 0.994 0.984

B/rap 0.01 0.0146 0.0075 0.0121 0.9 0.873 0.876 0.894 0.851 0.896 0.897

0.05 0.0585 0.0518 0.0563 0.95 0.934 0.93 0.939 0.916 0.949 0.943

0.1 0.1123 0.1024 0.1117 0.99 0.984 0.986 0.992 0.975 0.987 0.981

Size results for test of H0 : γ = γ0 with nominal size s based on Hansen (2000)’s asymptotic

distribution(Asym), and bootstrap(B/rap). Coverage probability results for γ0 with asymptotic

confidence interval based on Hansen (2000) and grid bootstrap confidence interval, with nominal

confidence level ζ.

In Table 4, we report Monte Carlo size and coverage probability results for γ when ϕ = 0

with δ fixed at
√

10/4 = 0.7906 and 0.25 in setting A (qt 6= xt) with homoscedastic error.

A-1



In Table 2 of Hansen (2000), Monte Carlo coverage probability of his asymptotic confidence

interval is reported in a similar setup. He found that coverage rates increase with larger δ

and larger n, significantly above the nominal rate. Similar results are reported for Hansen’s

asymptotic method in our Table 4: for δ = 0.7906, under-sizing of test H0 : γ = γ0 and

over-coverage of confidence intervals for γ are severe for all n. For δ = 0.25, the under-sizing

and over-coverage become an issue for larger n = 250, 500. On the other hand, our bootstrap

method for the case δ = 0.7906 led to some over-sizing and severe under-coverage for all n. For

δ = 0.25, results were more satisfactory, with the Monte Carlo size being close to the nominal

size for all n, and the coverage probability approaching the nominal level with larger n.

B-2 Proofs of Propositions 3 and 4 and Proposition 5

B-2.1 Proof of Proposition 3

Recalling our notation in (2) and that δ1 + δ3γ0 = 0 and δ2 = 0 under Assumption C, we

then have that

δ̂′xt =
(
δ̂1 − δ1

)
+ δ̂′2x2t +

(
δ̂3 − δ3

)
qt + δ3 (qt − γ0) . (34)

Because we can rename qt− γ0 as qt, we shall assume without loss of generality that γ0 = 0 so

that δ1 = 0.

Consider the case where γ̂ > 0. The proof when γ̂ < 0 is analogous and thus it is omitted.

By construction, we have that

ε̂t = εt +
(
β̂ − β

)′
xt +

(
δ̂ − δ

)′
xt1t (γ̂) + δ3qt1t (0; γ̂) .

Because (δ1, δ
′
2) = 0 and β̂ − β = Op

(
n−1/2

)
, δ̂ − δ = Op

(
n−1/2

)
and γ̂ = Op

(
n−1/3

)
, we

obtain that

ε̂2
t = ε2

t +Op
(
n−1

)
+ (δ3qt)

2 1t (0; γ̂) + 2δ3εtqt1t (0; γ̂)

+Op

(
n−1/2

)
εtxt (1 + 1t (γ̂)) + 2δ3 ‖xt‖ qt1t (0; γ̂)Op

(
n−1/2

)
= ε2

t +Op

(
n−1/2

)
‖xt‖ εt + 2δ3εtqt1t (0; γ̂) + ‖xt‖Op

(
n−2/3

)
. (35)

Now (34) implies that
(
δ̂′xt

)2
= δ2

3q
2
t +Op

(
n−1/2

)
δ3 ‖xt‖ qt+Op

(
n−1

)
. So, by Lemma 2 and 3

and by the standard arguments using na3 →∞, we conclude that the behaviour of numerator
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of (16) is that of

1

na3

n∑
t=1

δ2
3q

2
t ε

2
tK

(
qt − γ̂
a

)
= κ2δ

2
3a

2σ2 (0) f (0) (1 + op (1))

when κ2 6= 0, that is we do not assume higher-order kernels. Observe that g0 (q) in Lemma 2

corresponds to σ2 (q). More specifically, the contribution due to other terms in (35) are indeed

negligible by Lemma 3.

Similarly, the leading term in the denominator in (16) is

1

na3

n∑
t=1

(
δ̂′xt

)2
K

(
qt − γ̂
a

)
= κ2δ

2
3a

2f (0) (1 + op (1)) .

So, the convergence in (16) follows from the last two displayed expressions. Finally, it is

standard to show that Sn(θ̂)− σ2 = op (1). This completes the proof of the proposition. �

B-2.2 Proof of Proposition 4

As before we assume γ0 = 0. We show this proposition under Assumption C and the

case with Assumption J is similar and thus omitted. Let γ̂∗ > 0. The case when γ̂∗ < 0 is

analogous and thus omitted. We shall examine the behaviour of the numerator of (18), that

of its denominator being similarly handled. By construction,

ε̂∗t = ε∗t +
(
β̂∗ − β̃

)′
xt +

(
δ̂∗ − δ̃

)′
xt1t (γ̂∗) +

(
δ̃1 + δ̃3qt

)
1t (0; γ̂∗) .

Recall that when the constraint given in (10) holds true δ̃2 and δ̃1 are both Op
(
n−1/2

)
. On

the other hand Proposition 5 yields that β̂∗ − β̃ = Op∗
(
n−1/2

)
, δ̂∗ − δ̃ = Op∗

(
n−1/2

)
and

γ̂∗ = Op∗
(
n−1/3

)
. Then,

(
δ̂∗′xt

)2
= δ̃′2x2

t + Op∗
(
n−1/2

)
δ̃′xtqt + Op∗

(
n−1

)
. And, proceeding

as we did in the proof of Proposition 3, we easily deduce that

ε̂∗2t = ε∗2t +Op∗
(
n−1/2

)
xtε
∗
t + 2δ̃3ε

∗
t qt1t (0; γ̂∗) + xtOp∗

(
n−2/3

)
. (36)

By obvious arguments and those in (70), it suffices to examine the behaviour of

1

na

n∑
t=1

(
δ̃′xt

)2
ε∗2t K

(
qt − γ̂∗

a

)
.
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Now, because δ̃2 and δ̃1 are both Op
(
n−1/2

)
when (10) holds true the behaviour of the last

displayed expression is governed by

1

na

n∑
t=1

δ̃2
3q

2
t ε
∗2
t K

(
qt − γ̂∗

a

)
which is κ2δ

2
30a

2E∗
[
ε∗2t | qt = γ0

]
f (0) (1 + op∗ (1)) by Lemma 5 when κ2 6= 0, that is we do

not assume higher-order kernels. Notice that, by standard results, the contribution due to

other terms in (36) are indeed negligible by Lemma 6.

Likewise the denominator in (18), is

1

na

n∑
t=1

(
δ̃′xt

)2
K

(
qt − γ̂∗

a

)
= κ2δ

2
30a

2f (0) (1 + op∗ (1)) .

So, the convergence in (18) follows from the last two displayed expressions. Finally, it is

standard that Sn(θ̂∗)− σ2 = op∗ (1). This completes the proof of the proposition. �

B-2.3 Convergence Rate of Bootstrap Estimator

Proposition 5. Suppose that Assumptions Z and Q hold. Then,

(a) Under Assumption C,

α̂∗ − α̂ = Op∗
(
n−1/2

)
and γ̂∗ − γ0 = Op∗

(
n−1/3

)
.

(b) Under Assumption J,

α̂∗ − α̂ = Op∗
(
n−1/2

)
and γ̂∗ − γ0 = Op∗

(
n2ϕ−1

)
.

Proof of Proposition 5 Assuming without loss of generality that γ ≥ γ̂ = γ0 and abbrevi-

ating ψ̂ − ψ by ψ for any parameter ψ, proceeding as in Proposition 1, we obtain that

S∗n (θ)− S∗n
(
θ̂
)

=
1

n

n∑
t=1

{(
β
′
xt + δ

′
xt1t (γ) + δ̂′xt1t (γ̂; γ) + ε∗t

)2
− ε∗2t

}
= Ân1 (θ) + Ân2 (θ) + Ân3 (θ) + B∗n1 (θ) + B∗n2 (θ) + B∗n3 (θ) ,
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where

Ân1 (θ) = υ′Mx
n (γ) υ; Ân2 (θ) = β

′
Mx
n (−∞; γ̂)β

Ân3 (θ) =
(
β + δ̂

)′
Mx
n (γ̂; γ)

(
β + δ̂

)
B∗n1 (θ) = υ′

2

n

n∑
t=1

xtε
∗
t1t (γ) ; B∗n2 (θ) = β

′ 2

n

n∑
t=1

xtε
∗
t1t (−∞; γ̂)

B∗n3 (θ) =
(
β + δ̂

)′ 2

n

n∑
t=1

xtε
∗
t1t (γ̂; γ) ,

where, in what follows, for a generic sequence {zt}t∈Z we employ the notation M z
n (γ) =

1
n

∑n
t=1 ztz

′
t1t (γ) and M z

n (γ1; γ2) = 1
n

∑n
t=1 ztz

′
t1t (γ1; γ2). It is also worth recalling that for n

large enough 0 < supγ∈Γ ‖Mx
n (γ)‖ = Hn and 0 < supγ1<γ2 ‖M

x
n (γ1; γ2)‖ = Hn, where in what

follows Hn denotes a sequence of strictly positive Op (1) random variables. Finally as we have in

the proof of Proposition 1, because E (xtx
′
t1t (γ)) and E (xtx

′
t1t (0; γ)) are strictly finite positive

definite matrices, Mx
n (−∞; γ)−E (xtx

′
t1t (−∞; γ)) = Op

(
n−1/2

)
andMx

n (γ)−E (xtx
′
t1t (γ)) =

Op
(
n−1/2

)
uniformly in γ ∈ Γ, we have that

C1Hn ≤
Ân2 (θ)(

β1, β
′
2

)
Mx1
n (−∞; 0)

(
β1, β

′
2

)′
+ β

2
3M

q
n1t (−∞; 0)

≤ C2Hn

C1Hn ≤
Ân3 (θ)

(τ1, τ ′2)Mx1
n (0; γ) (τ1, τ ′2)′ + τ2

3M
q
n (0; γ)

≤ C2Hn, (37)

where τ =
(
β̂ − β

)
+ δ̂. The motivation is that we employ in the proof of Proposition 1, after

observing that Proposition 1 implies that γ̂ − γ0 = Op
(
n−1/3

)
and Lemma 1 that uniformly

in γ1 < γ2 ∈ Γ,

Mx
n (γ1; γ2)− Extx′t 1t (γ1; γ2) = Op

(
n−1/2

)
together with the fact that Mx

n (−∞; γ̂) = Mx
n (−∞; γ0) +Mx

n (γ0; γ̂).

Consistency. We begin with part (a). Arguing as in the proof of Proposition 1, it suffices

to show that

Pr ∗

{
inf
‖θ‖>η

3∑
`=1

Ân` (θ) + B∗n` (θ) ≤ 0

}
≤ εHn. (38)

First, when
∥∥θ∥∥ > η, it implies that either (i) ‖γ‖ > η/2 or (ii)

∥∥β∥∥ , ‖υ‖ > η/2. When
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(ii) holds true, it is clear that

inf
‖υ‖>η/2

Ân` (θ) > η2Hn ` = 1, 2 (39)

whereas when (i) holds true, we obtain that

inf
‖γ‖>η/2

Mx
n (γ̂; γ) > ηHn, (40)

because E (xtx
′
t1t (γ)) and E (xtx

′
t1t (0; γ)) are strictly positive definite matrices, since say

E (xtx
′
t1t (0; γ))−E (xtx

′
t1t (0; η/4)) is a positive definite matrix when ‖γ‖ > η/2, Mx

n (γ̂; γ) =

E (xtx
′
t1t (0; γ)) (1 + op (1)) and Ân` (θ) − E (An` (θ)) = op (1). Recall that E (a′xt1t (0; η)) >

ηminq∈(0,η) f (q)E (a′xt). So, (39) and (40) implies that

inf
‖θ‖>η

3∑
`=1

Ân` (θ) > η2Hn. (41)

On the other hand, Lemma 4 implies that

E∗

(
sup
γ

∥∥∥∥∥ 1

n1/2

n∑
t=1

xtε
∗
t1t (γ)

∥∥∥∥∥
)2

+ E∗

(
sup
γ

∥∥∥∥∥ 1

n1/2

n∑
t=1

xtε
∗
t1t (−∞; γ)

∥∥∥∥∥
)2

= Hn, (42)

so that

E∗ sup
‖θ‖>η/2

‖B∗n` (θ)‖ = n−1/2Hn ` = 1, 2, 3. (43)

Thus (41) and (43) yields that θ̂∗ − θ̂ = op∗ (1) because the left side of (38) is bounded by

Pr ∗

 inf
‖θ‖>η

3∑
`=1

Ân` (θ) ≤ sup
‖θ‖>η

∥∥∥∥∥
3∑
`=1

B∗n` (θ)

∥∥∥∥∥


and then Markov’s inequality. This concludes the consistency proof.

Convergence rate. To that end, we shall show that for some C > 0 large enough and

ε > 0,

Pr ∗

 inf
C

n1/2
<‖υ‖;‖β‖<η; C

n1/3
<‖γ‖<η

3∑
`=1

Ân` (θ) + B∗n` (θ) ≤ 0

 < εHn. (44)

To that end, we shall first examine

Pr ∗

{
inf

Ξj(υ);Ξj(β);Ξk(γ)

3∑
`=1

Ân` (θ) + B∗n` (θ) ≤ 0

}
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where for some j = 1, ..., log2
η
Cn

1/2 and k = 1, ..., log2
η
Cn

1/3, and Ξj (υ) and Ξk (γ) are defined

similarly to (28). Recall that we have assumed that γ ≥ 0 since when γ ≤ 0 the proof follows

similarly.

Now Lemma 4 implies that

Pr ∗
{

inf
Ξj(υ);Ξj(β);Ξk(γ)

Ân1 (θ) + B∗n1 (θ) ≤ 0

}
≤ Pr ∗

{
inf

Ξj(υ);Ξj(β)
‖υ‖ ‖Mx

n (γ)‖ ≤ sup
Ξk(γ)

∥∥∥∥∥ 2

n1/2

n∑
t=1

xtε
∗
t1t (γ)

∥∥∥∥∥
}

≤ Pr ∗

{
‖Mx

n (γ)‖C2j−1 ≤ sup
{γ:‖γ‖<η}

∥∥∥∥∥ 1

n1/2

n∑
t=1

xtε
∗
t1t (γ)

∥∥∥∥∥
}

(45)

≤ C−12−2jHn.

Observe that the bound in (45) is independent of k, i.e. the set Ξk (γ). Defining

Ãn2 (θ) =
(
β1, β

′
2

)
Mx
n (−∞; 0)

(
β1, β

′
2

)′
B̃∗n2 (θ) =

(
β1, β

′
2

) 2

n

n∑
t=1

xt1ε
∗
t1t (−∞; γ) ,

(37) yields that

Pr ∗
{

inf
Ξj(υ);Ξk(γ)

Ã∗n2 (θ) + B̃∗n2 (θ) ≤ 0

}
≤ Pr ∗

{
inf

Ξj(υ)

∥∥∥(β1, β
′
2

)∥∥∥Mx1
n (−∞; 0) ≤ sup

Ξk(γ)

∥∥∥∥∥ 2

n

n∑
t=1

xt1ε
∗
t1t (−∞; γ)

∥∥∥∥∥
}

≤ Pr ∗

{
‖Mx1

n (−∞; 0)‖C2j−1 ≤ sup
{γ:‖γ‖<η}

∥∥∥∥∥ 1

n1/2

n∑
t=1

xt1ε
∗
t1t (−∞; γ)

∥∥∥∥∥
}

(46)

≤ C−12−2jHn,

by Lemma 4, which once again the bound is independent of k.

Next, define

Ãn3 (θ) = τ̂2q2
t 1t (0; γ) ; B̃∗n3 (θ) = τ̂

2

n

n∑
t=1

qtε
∗
t1t (0; γ) ,
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then, because τ̂ = Hn + C1,

Pr ∗
{

inf
Ξj(υ);Ξk(γ)

Ãn3 (θ) + τ̂ B̃∗n3 (θ) ≤ 0

}
≤ Pr ∗

{
inf

Ξj(υ)
‖τ̂‖ 1

n

n∑
t=1

q2
t 1t (0; γ) ≤ sup

Ξk(γ)

∥∥∥B̃∗n3 (θ) /τ0

∥∥∥}

≤ Pr ∗

{
C

n
23(k−1) ≤ sup

Ξk(γ)

∥∥∥B̃∗n3 (θ) /τ̂
∥∥∥} (47)

≤ C−12−3k/2Hn,

by Lemma 4 and Markov’s inequality. Observe that the latter displayed bound is independent

of j, i.e. the set Ξj (υ).

So, the left side of (44) is bounded by

Pr ∗

{
max
j,k

inf
Ξj(υ);Ξk(γ)

3∑
`=1

Ân` (θ) + B∗n` (θ) ≤ 0

}

≤ C−1

log2
η
C
n1/2∑

j=1

2−2j +

log2
η
C
n1/3∑

k=1

2−3k/2

 < εHn.

using (45)− (47). This concludes the proof of part (a).

The proof of part (b) is similarly handled after obvious changes, so it is omitted. �

B-3 AUXILIARY LEMMAS

We begin with a set of maximal inequalities, which play a central role in deriving convergence

rates and tightness of various empirical processes. For j = 1 or 2, let

Jn
(
γ, γ′

)
=

1

n1/2

n∑
t=1

εtxt1t
(
γ; γ′

)
J1n

(
γ, γ′

)
=

1

n1/2

n∑
t=1

εt |qt − γ|j 1t
(
γ; γ′

)
J2n (γ) =

1

n1/2

n∑
t=1

{
|qt − γ0|j 1t (γ0; γ)− E |qt − γ0|j 1t (γ0; γ)

}
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and for some sequence {zt}nt=1,

J3n (γ) =
1

n1/2

n∑
t=1

(zt1t (γ0; γ)− Ezt1t (γ0; γ)) .

Lemma 1. Suppose Assumptions Z and Q hold for the sequence {xt, εt}nt=1. In addition, for

J3n (γ) , assume that {zt, qt}nt=1 be a sequence of strictly stationary, ergodic, and ρ -mixing with∑∞
m=1 ρ

1/2
m < ∞, E |zt|4 < ∞ and, for all γ ∈ Γ, E

(
|zt|4 |qt = γ

)
< C < ∞. Then, there

exists n0 <∞ such that for all γ′ in a neighbourhood of γ0 and for all n > n0 and ε ≥ n−1
0 ,

(a) E sup
γ′<γ<γ′+ε

∣∣Jn (γ′, γ)∣∣ ≤ Cε1/2

(b) E sup
γ′<γ<γ′+ε

∣∣J1n

(
γ′, γ

)∣∣ ≤ Cε1/2
(
ε+

∣∣γ0 − γ′
∣∣)j (48)

(c) E sup
γ0<γ<γ0+ε

|J2n (γ)| ≤ Cεj+1/2 (49)

(d) E sup
γ0<γ<γ0+ε

|J3n (γ)| ≤ Cε1/2, (50)

where j = 1 or 2.

Proof. Part (a) proceeds as in Hansen’s (2000) Lemma A.3, so it is omitted.

Next part (b). This is almost identical to that of Hansen’s (2000) Lemma A.3 once ob-

serving that if |γ1 − γ′| ≤ ε and |γ2 − γ′| ≤ ε and ht(γ1, γ2) = |εt(qt − γ0)j |1t(γ1, γ2), then the

bound in his Lemma A.1 (12) should be updated to

Ehri (γ1, γ2) ≤ C
∫ γ2

γ1

|q − γ0|jr dq ≤ C|γ1 − γ2|εjr1 ,

where C <∞ and ε1 = (ε+ |γ0 − γ′|), since E (|εrt | |qt) and the density f (q) of qt are bounded

around qt = γ0. Hansen’s bound in (13) should be changed to |γ1 − γ2|εjr1 for the same

reason. Then, these new bounds imply that the bounds (15) and (16) in his Lemma A.3 and

the bounds (18) and (20) in the proof of his Lemma A.2 should change to |γ1 − γ2|2 ε4j1 and

n−1 |γ1 − γ2| ε4j1 + |γ1 − γ2|2 ε4j1 , respectively, to yield the desired bound in (48).

Part (c). For notational simplicity we assume that γ0 = 0. Let γk = k/n, for k = 1, ...,m,

where m = [εn] + 1. By triangle inequality,

sup
γ0<γ<γ0+ε

|J2n (γ)| ≤ max
k=1,...,m−1

|J2n (γk)|+ max
k=1,...,m

sup
γk−1≤γ≤γk

|J2n (γ)− J2n (γk−1)| . (51)
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Now because f (·) is continuous differentiable at γ0, standard algebra yields that

E |qt|j 1t (γk−1; γk) ≤ Cγjk/n. (52)

Next, using (52)

sup
γk−1≤γ≤γk

∣∣∣∣∣ 1

n1/2

n∑
t=1

|qt|j 1t (γk−1; γ)

∣∣∣∣∣
≤ (J2n (γk)− J2n (γk−1)) + n1/2E |qt|j 1t (γk−1; γk)

= (J2n (γk)− J2n (γk−1)) + Cγjk/n
1/2.

Thus, using the inequality
(
supj=1,...,` |cj |

)4 ≤∑`
j=1 |cj |

4, we conclude that second term on

the right of (51) has absolute moment bounded by(
m∑
k=1

E |J2n (γk)− J2n (γk−1)|4
)1/4

+ Cγjm/n
1/2. (53)

However, from Lemma 3.6 of Peligrad (1982), for any k > i,

E |J2n (γk)− J2n (γi)|4 ≤ C
(
n−1E |qt|4j 1t (γi; γk) +

(
E |qt|2j 1t (γi; γk)

)2
)

.

So, using again (52) and that m = [εn] + 1 and n−1 < ε, we conclude that the first moment of

the second term on the right of (51) is Cεj+1/2.

Next the first moment of the first term on the right of (51) is also bounded by Cεj+1/2 by

Billingsley’s (1968) Theorem 12.2 using the last displayed inequality.

Finally part (d). This is similar to that of (49). It is sufficient to note that, with J3n (γ),

the bounds in (52) and (53) change to C/n1/2 and Cε2, respectively. This yields the results as

n−1 < ε.

Remark 3. One of the consequences of the previous lemma (a) and (b), which allows the

maximal inequality to hold for any γ′ in a neighbourhood of γ0, is that

nE sup
g1<g<g1+ε

|Jn (γ0 + g/rn)− Jn (γ0 + g1/rn)| ≤ C (ε+ g1) ε1/2,

which can be made small by choosing small ε and rn →∞. This is used to verify the stochastic

equicontinuity of the rescaled and reparameterized empirical processes in the proof of Theorem

1.
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The following two lemmas are used in the proof of Proposition 3. Before we state our next

lemma, we need to introduce some notation. In what follows

gr (q) = E
(
xrt2ε

2
t | qt = q

)
; g∗r (q) = E (xrt2 | qt = q)

hr,k (q) =

4−k∑
j=0

ajκj+k
∂j

∂qj
(f (q) gr (q)) , k ≤ 4 (54)

h∗r,k (q) =

4−k∑
j=0

ajκj+k
∂j

∂qj
(f (q) g∗r (q)) , k ≤ 4.

Note that we have implicitly assumed that gr (q) and f (q) have four continuous derivatives.

Also, without loss of generality, we assume γ0 = 0 and xt2 is a scalar to ease notation.

Lemma 2. Under K1,K2 and K4, we have that for integers 0 ≤ `, r ≤ 4,

1

na1+`

n∑
t=1

ε2
tx
r
t2q

`
tK

(
qt − γ̂
a

)
− hr,` (0) = op (1)

1

na1+`

n∑
t=1

xrt2q
`
tK

(
qt − γ̂
a

)
− h∗r,` (0) = op (1) . (55)

Proof. First, observe that we are using the normalization
(
na1+`

)−1
instead of the standard

(na)−1. This is due to the factor q`t . We shall consider only the first equality in (55), the second

one being similarly handled. Now abbreviating Kt (γ) = K
( qt−γ

a

)
, we have that standard

kernel arguments imply

1

na1+`

n∑
t=1

ε2
tx
r
t2q

`
tKt (0)− hr,` (0) = Op

(
(na)−1/2

)
+ o

(
a4−`

)
.

So, to complete the proof of the lemma, it suffices to show that

1

na1+`

n∑
t=1

ε2
tx
r
t2q

`
t {Kt (γ̂)−Kt (0)} = op (1) . (56)

Proposition 1 implies that there exists C such that Pr
{
|γ̂| > Cn−1/3

}
≤ η, for any η > 0.

So, we only need to show that (56) holds true when |γ̂| ≤ Cn−1/3. In that case, we have that
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the left side of (56) is bounded by

sup
|γ|≤Cn−1/3

∣∣∣∣∣ 1

na1+`

n∑
t=1

ε2
tx
r
t2q

`
t {Kt (γ)−Kt (0)}

∣∣∣∣∣
≤ sup

|γ|≤Cn−1/3

∣∣∣∣∣ 1

na1+`

n∑
t=1

ε2
tx
r
t2q

`
t {Kt (γ)−Kt (0)}1

(
|qt| < a1/2

)∣∣∣∣∣ (57)

+ sup
|γ|≤Cn−1/3

∣∣∣∣∣ 1

na1+`

n∑
t=1

ε2
tx
r
t2q

`
t {Kt (γ)−Kt (0)}1

(
|qt| ≥ a1/2

)∣∣∣∣∣ .
The expectation of second term on the right of (57) is bounded by

C1

na

n∑
t=1

E

(
ε2
t |xt2|

r
∣∣∣qt
a

∣∣∣`K (qt
a

)
1
(
|qt| ≥ a1/2

))
≤ C1

a

∫
q

∣∣∣q
a

∣∣∣` gr (q) f (q)K
(q
a

)
1
(
|qt| ≥ a1/2

)
dq

= C1

∫
|q|≥a−1/2

|q|` gr (aq) f (aq)K (q) dq

= o
(
a2−`/4

)
,

because by K1, κ` < C1, for ` ≤ 4.

For some 0 < ψ < 1, the first term on the right of (57) is bounded by

C

n1/3
sup

|γ|≤Cn−1/3

∣∣∣∣∣ 1

na2

n∑
t=1

ε2
t |xt2|

r
∣∣∣qt
a

∣∣∣`K ′(qt − ψγ
a

)
1
(
|qt| < a1/2

)∣∣∣∣∣
≤ C

n1/3

∣∣∣∣∣ 1

na2

n∑
t=1

ε2
t |xt2|

r
∣∣∣qt
a

∣∣∣`K ′ (qt
a

)
1
(
a3/2 < |qt| < a1/2

)∣∣∣∣∣ (58)

+
C

n1/3
sup

|γ|≤Cn−1/3

∣∣∣∣∣ 1

na2

n∑
t=1

ε2
t |xt2|

r
∣∣∣qt
a

∣∣∣`K ′(qt − φγ
a

)
1
(
|qt| < a3/2

)∣∣∣∣∣
because K4 implies that γ = o (a) when |γ| ≤ Cn−1/3, and hence if a3/2 < |qt| < a1/2 we

have
∣∣∣K ′ ( qt−φγa

)
/K ′

( qt
a

)∣∣∣ ≤ C1 by K2. But, it is well known that the first moment of the

first term on the right of (58) is bounded, whereas that of the second term on the right is also

bounded because E
∣∣ qt
a

∣∣` 1 (|qt| < a3/2
)
< a(`+3)/2 and∣∣∣∣K ′(qt − φγa

)
−K ′t (0)

∣∣∣∣1(|qt| < a3/2
)
≤ Ca1/2. (59)
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So, the expectation of the first term on the right of (57) is O
(
n−1/3

)
. This concludes the

proof of the lemma.

Lemma 3. Under K1−K4, we have that for integers 0 ≤ r, ` ≤ 4,

1

na

n∑
t=1

xrt2q
`
tKt (γ̂) εt = op

(
a`n1/2

)
. (60)

Proof. To simplify the notation, we assume that r = 0. The left side of (60) is

1

na

n∑
t=1

q`t {Kt (γ̂)−Kt (0)} εt +
1

na

n∑
t=1

q`tKt (0) εt.

The second term is easily shown to beOp
(
n−1/2a`−1/2

)
. Next the first term of the last displayed

expression is

1

na

n∑
t=1

q`t {Kt (γ̂)−Kt (0)} εt1
(
|qt| < aζ

)
(61)

+
1

na

n∑
t=1

q`t {Kt (γ̂)−Kt (0)} εt1
(
|qt| ≥ aζ

)
,

where ζ = 1− 2/`, if ` > 2, and ζ < 1 if ` ≤ 2. The second term of (61) is

a`
1

na

n∑
t=1

(qt
a

)`
{Kt (γ̂)−Kt (0)} εt1

(
|qt| ≥ aζ

)
,

whose first absolute moment is bounded by

a`−1

∫
|q|≥aζ

(q
a

)`
K
(q
a

)
fq (q) dq ≤ C1a

`

∫
|q|≥aζ−1

q`K (q) fq (aq) dq = o
(
a`
)

because by K1, κ4 <∞. So to complete the proof we need to examine the first term of (61),

which using the characteristic function of the kernel function is∫
φ (av)

(
eivγ̂ − 1

){ 1

n

n∑
t=1

q`tεte
ivqt1

(
|qt| < aζ

)}
dv.

But its clear that the last displayed expression is bounded by

γ̂

∫
v |φ (av)|

∣∣∣∣∣ 1n
n∑
t=1

q`tεte
ivqt1

(
|qt| < aζ

)∣∣∣∣∣ dv = Op

(
a`ζn−1/2γ̂

)∫
v |φ (av)| dv

= Op

(
a`
(
na3
)−4/3

n1/2
)

A-13



using that ζ = 1 − 2/`, if ` ≥ 2 and ζ < 1 when 0 ≤ ` < 2, γ̂ = Op
(
n−1/3

)
and K4 . This

concludes the proof of the lemma.

We now extend the maximal inequalities in Lemma 1 to its bootstrap analogues. Define

J∗n (γ, γ′) and J∗1n (γ, γ′) by replacing εt in Jn and J1n with êtηt, that is

J∗n
(
γ, γ′

)
=

1

n1/2

n∑
t=1

xt1t
(
γ, γ′

)
êtηt

J∗1n
(
γ, γ′

)
=

1

n1/2

n∑
t=1

|qt − γ|j 1t
(
γ; γ′

)
êtηt,

and recall that Hn denotes a sequence of positive Op (1) random variables.

Lemma 4. Under Assumption Z, we have that for all ε, ς > 0, there exists ζ > 0 such that

Pr ∗

{
sup

γ′<γ<γ′+ε

∣∣J∗n (γ′, γ)∣∣ > ε

}
≤ ζςHn, (62)

Pr ∗

{
sup

γ′<γ<γ′+ε

∣∣J∗1n (γ′, γ)∣∣ > Cε1/2
(
ε+

∣∣γ0 − γ′
∣∣)j} ≤ ζςHn. (63)

Proof. We shall assume for notational simplicity that γ0 < γ̂, and that γj = γ1 + ζ
mj and

nζ/2 < m < nζ, as n can be chosen such that nζ > 1. By definition,

J∗n (γk, γj) =
1

n1/2

n∑
t=1

xtεt1t (γj ; γk) ηt

+
1

n1/2

n∑
t=1

xtx
′
t1t (γj ; γk) ηt

(
β̂ − β

)
+

1

n1/2

n∑
t=1

xtx
′
t1t (γ0)1t (γj ; γk) ηt

(
δ̂ − δ

)
+

1

n1/2

n∑
t=1

xtx
′
t1t (γ0; γ̂)1t (γj ; γk) ηtδ̂.

Now by standard inequalities and that ηt ∼ iid (0, 1) with a finite fourth moments, the
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fourth (bootstrap) moment of the right side of last displayed equation is bounded by∣∣∣∣∣ 1n
n∑
t=1

‖xt‖2 ε2
t1t (γj ; γk)

∣∣∣∣∣
2

+
∥∥∥β̂ − β∥∥∥4

∣∣∣∣∣ 1n
n∑
t=1

‖xt‖4 1t (γj ; γk)

∣∣∣∣∣
2

+
∥∥∥δ̂ − δ∥∥∥4

∣∣∣∣∣ 1n
n∑
t=1

‖xt‖4 1t (γj ; γk)1t (γ0)

∣∣∣∣∣
2

(64)

+
∥∥∥δ̂∥∥∥4

∣∣∣∣∣ 1n
n∑
t=1

‖xt‖4 1t (γj ; γk)1t (γ0; γ̂)

∣∣∣∣∣
2

.

Because for fixed ζ > 0, there exists n0 such that for n > n0, Cn−1 < ζ, the expectation of

the first term of (64) is bounded by

C

[
(k − j) ζm +

(
(k − j) ζm

n

)1/2
]2

≤ C (k − j)2 ζ2
m,

arguing similarly as in Hansen’s (2000) Lemma A.3 and ζm = ζ/m.

Next, recalling that γ̂ = γ0+D/n1/3, because 1 (γj < qt < γk)1 (γ0 < qt < γ̂) ≤ 1 (γj < qt < γk),

the expectation of the fourth term of (64) is bounded by∣∣∣E {‖xt‖4 1t (γj ; γk)
}∣∣∣2 +

∣∣∣∣∣ 1n
n∑
t=1

{
‖xt‖4 1t (γj ; γk)− E

{
‖xt‖4 1t (γj ; γk)

}}∣∣∣∣∣
2

≤ C (k − j)2 ζ2
m.

Finally, the second and third terms of (64) are

Hn
1

n3

n∑
t=1

E
(
‖xt‖8 1t (γj ; γk)

)
= Hn (k − j)2 ζ2

m.

From here we now conclude that (62) holds true, so is the lemma proceeding as in Hansen’s

(2000) Lemma A.3 and in particular his expressions (20)−(22) because if a sequence of random

variables has finite first moments, it implies that it is Op (1). The proof of (63) proceeds

similarly and thus omitted.

Remark 4. One of the consequences of the previous lemma is that

nE∗ sup
g1<g<g1+ε

|J∗n (γ0 + g/rn)− J∗n (γ0 + g1/rn)| = (ε+ g1) ε1/2Hn,

which can be made small by choosing small ε and rn →∞.
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Lemma 5. Under K1,K2 and K4 , we have that for integers 0 ≤ `, r ≤ 4,

1

na1+`

n∑
t=1

ε∗2t x
r
t2q

`
tK

(
qt − γ̂∗

a

)
− hr,` (0) = op∗ (1)

1

na1+`

n∑
t=1

xrt2q
`
tK

(
qt − γ̂∗

a

)
− h∗r,` (0) = op∗ (1) . (65)

Proof. We shall consider only the first equality in (65), the second one being similarly handled.

Now standard kernel arguments imply

1

na1+`

n∑
t=1

ε∗2t x
r
t2q

`
tKt (0)− hr,` (0) = Op∗

(
(na)−1/2

)
+ op

(
a4−`

)
.

So, to complete the proof of the lemma, it suffices to show that

1

na1+`

n∑
t=1

ε∗2t x
r
t2q

`
t {Kt (γ̂∗)−Kt (0)} = op∗ (1) . (66)

Proposition 5 implies that there exists C > 0 such that Pr∗
{
|γ̂∗| > Cn−1/3

}
≤ Hn. So, we

only need to show that (56) holds true when |γ̂∗| ≤ Cn−1/3, so that we have that the left side

of (66) is bounded by

sup
|γ|≤Cn−1/3

∣∣∣∣∣ 1

na1+`

n∑
t=1

ε∗2t x
r
t2q

`
t {Kt (γ)−Kt (0)}

∣∣∣∣∣
≤ sup

|γ|≤Cn−1/3

∣∣∣∣∣ 1

na1+`

n∑
t=1

ε∗2t x
r
t2q

`
t {Kt (γ)−Kt (0)}1

(
|qt| < a1/2

)∣∣∣∣∣ (67)

+ sup
|γ|≤Cn−1/3

∣∣∣∣∣ 1

na1+`

n∑
t=1

ε∗2t x
r
t2q

`
t {Kt (γ)−Kt (0)}1

(
|qt| ≥ a1/2

)∣∣∣∣∣ .
The expectation of second term on the right of (67) is bounded by

C1

na

n∑
t=1

E∗
(
ε∗2t |xt2|

r
∣∣∣qt
a

∣∣∣`K (qt
a

)
1
(
|qt| ≥ a1/2

))

=
C1

na

n∑
t=1

|xt2|r
∣∣∣qt
a

∣∣∣`K (qt
a

)
1
(
|qt| ≥ a1/2

) 1

n

n∑
s=1

ε̂2
t

=
C1

na

n∑
t=1

|xt2|r
∣∣∣qt
a

∣∣∣`K (qt
a

)
1
(
|qt| ≥ a1/2

)
Hn,
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where C1 denotes a generic positive finite constant. Now,

E
1

na

n∑
t=1

|xt2|r
∣∣∣qt
a

∣∣∣`K (qt
a

)
1
(
|qt| ≥ a1/2

)
= o

(
a2−`/4

)
proceeding as we did in Lemma 2. So, we conclude that right of (67) is o

(
a2−`/4)Hn.

For some 0 < ψ < 1, the first term on the right of (67) is bounded by

C1

n1/3
sup

|γ|≤Cn−1/3

∣∣∣∣∣ 1

na2

n∑
t=1

ε∗2t |xt2|
r
∣∣∣qt
a

∣∣∣`K ′(qt − ψγ
a

)
1
(
|qt| < a1/2

)∣∣∣∣∣
≤ C1

n1/3

∣∣∣∣∣ 1

na2

n∑
t=1

ε∗2t |xt2|
r
∣∣∣qt
a

∣∣∣`K ′ (qt
a

)
1
(
a3/2 < |qt| < a1/2

)∣∣∣∣∣ (68)

+
C1

n1/3
sup

|γ|≤Cn−1/3

∣∣∣∣∣ 1

na2

n∑
t=1

ε∗2t |xt2|
r
∣∣∣qt
a

∣∣∣`K ′(qt − φγ
a

)
1
(
|qt| < a3/2

)∣∣∣∣∣
because K4 implies that γ = o (a) when |γ| ≤ Cn−1/3, and hence

∣∣∣K ′ ( qt−φγa

)
/K ′

( qt
a

)∣∣∣ ≤ C1

by K2 if a3/2 < |qt| < a1/2. But, it is well known that the first moment of the first term on the

right of (68) is bounded, whereas that of the second term on the right is also bounded because

E
∣∣ qt
a

∣∣` 1 (|qt| < a3/2
)
< a(`+3)/2 and (59). So, the expectation of the first term on the right of

(67) is Op
(
n−1/3

)
. This concludes the proof of the lemma.

Lemma 6. Under K1−K4, we have that for integers 0 ≤ r, ` ≤ 4,

1

na

n∑
t=1

xrt2q
`
tKt (γ̂∗) ε∗t = op∗

(
a`n1/2

)
. (69)

Proof. To simplify the notation, we assume that r = 0. The left side of (69) is

1

na

n∑
t=1

q`t {Kt (γ̂∗)−Kt (0)} ε∗t +
1

na

n∑
t=1

q`tKt (0) ε∗t .

The second term is easily shown to be Op∗
(
n−1/2a`−1/2

)
, whereas the first term is

1

na

n∑
t=1

q`t {Kt (γ̂∗)−Kt (0)} ε∗t1
(
|qt| < aζ

)
(70)

+
1

na

n∑
t=1

q`t {Kt (γ̂∗)−Kt (0)} ε∗t1
(
|qt| ≥ aζ

)
,
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where ζ = 1− 2/` if ` > 2 and ζ < 1 if ` ≤ 2. The second term of (70) is

a`
1

na

n∑
t=1

(qt
a

)`
{Kt (γ̂∗)−Kt (0)} ε∗t1

(
|qt| ≥ aζ

)
,

whose first absolute bootstrap moment is

a`
1

na

n∑
t=1

∣∣∣qt
a

∣∣∣` |Kt (γ̂∗)−Kt (0)|1
(
|qt| ≥ aζ

) 1

n

n∑
s=1

|ε̂s|

a`
1

na

n∑
t=1

∣∣∣qt
a

∣∣∣` |Kt (γ̂∗)−Kt (0)|1
(
|qt| ≥ aζ

)
Hn.

Now, proceed as in Lemma 5 to conclude that second term of (70) is Op∗
(
a`
)
. So, to complete

the proof we need to examine the first term of (70) which, as we did with the first term of

(61), is ∫
φ (av)

(
eivγ̂

∗ − 1
){ 1

n

n∑
t=1

q`tε
∗
t e
ivqt1

(
|qt| < aζ

)}
dv.

But it is clear that the last displayed expression is bounded by

γ̂∗
∫
v |φ (av)|

∣∣∣∣∣ 1n
n∑
t=1

q`tε
∗
t e
ivqt1

(
|qt| < aζ

)∣∣∣∣∣ dv = Op∗
(
a`ζn−1/2γ̂∗

)∫
v |φ (av)| dv

= Op∗
(
a`
(
na3
)−4/3

n1/2
)

using K4 and that ζ = 1− 2/` if ` ≥ 2 and ζ < 1 when 0 ≤ ` < 2, γ̂∗ = Op∗
(
n−1/3

)
and that

by standard arguments, it yields

E∗

∣∣∣∣∣ 1n
n∑
t=1

q`tε
∗
t e
ivqt1

(
|qt| < aζ

)∣∣∣∣∣
2

= Op

(
a2`ζn−1

)
.

This concludes the proof of the lemma.
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