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Abstract

How robust are economic models to the introduction of irrational agents? The

Pareto e¢ ciency of competitive equilibria is not robust: one irrational agent leads

to ine¢ ciency. But the property that rational agents cannot use their own resources

to Pareto-improve on their competitive allocation holds regardless of the number of

irrational agents. Full production e¢ ciency can be robust as well, but irrational

�rms introduce a trade-o¤ between e¢ ciency and the attainment of Pareto improve-

ments. Regarding games, we show that while existing implementation mechanisms

are sensitive to the presence of irrational agents there are robust alternatives with

attractive welfare properties.
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1 Introduction

We consider properties of economic equilibria that are �irrationality-proof,�that is, robust

to the inclusion of irrational agents. Irrational agents are simply consumers who make

errors when maximizing utility subject to a budget constraint and �rms that do not

maximize pro�ts. A property�s degree of irrationality-proofness is gauged by the number

of irrational agents who can be added to a model without overturning the property.

If just one consumer or �rm in a general equilibrium model chooses irrationally, a

competitive equilibrium need not be Pareto e¢ cient. The Pareto e¢ ciency of competitive

equilibria thus exhibits the lowest level of irrationality-proofness and its account of the

welfare advantages of a market economy must therefore be misleading. As a replacement

for Pareto e¢ ciency, we show that, regardless of the number of irrational agents, the

rational consumers and �rms cannot Pareto improve on their equilibrium allocation if

they are restricted to use only their own endowments and technologies, a property we call

�Pareto e¢ ciency for the rational agents.� Since this property prevails no matter how

many agents are irrational, it exhibits the highest level of irrationality-proofness. The

proof that competitive equilibria enjoy this property is only a tiny variant of the classical

argument that competitive allocations are in the core, but the applicability of the classical

argument to models with irrational agents does not seem to have been noticed.

More important results hold for production economies. If the rational �rms in the

aggregate have a production set that contains the production set of the irrational �rms,

and if production sets satisfy a limited constant-returns property then full production

e¢ ciency obtains. The production e¢ ciency of competitive equilibria thus displays an

intermediate degree of irrationality proofness: it can persist in the presence of some irra-

tional �rms but not if there are so many irrational �rms that the rational �rms�technology

fails to dominate that of the irrational �rms. The contrast between full e¢ ciency on the

production side and �Pareto e¢ ciency for the rational�on the consumer side supports the

folk wisdom that competitive markets root out ine¢ ciency in production while leaving

irrational households untouched. Error-prone consumers have the room to persist in their

mistakes, but markets do not grant �rms the same leeway.1 Becker (1957) argued long

1Evolutionary selection, as in Sandroni (2000) and Blume and Easley (2006), would qualify this

1



ago that an attempt by irrational �rms to racially discriminate in hiring can be made

irrelevant by competition from fully rational �rms.

Full production e¢ ciency can obtain in the presence of irrational �rms due to creative

destruction: the rational �rms drive the irrational out of business. This causal mechanism

for production e¢ ciency leads to distinctive policy conclusions. Economists have custom-

arily turned to lump-sum payments to compensate agents that would be harmed by and

therefore might block policy reforms; lump-sum payments to rational agents do not lead

to ine¢ ciency. But an irrational �rm that receives a compensation payment can make

ine¢ cient decisions and remain shielded from bankruptcy. Irrational �rms can therefore

jeopardize the long tradition, based on the second welfare theorem, of using compensa-

tion payments to design Pareto improvements. Consider the conversion of crop subsidies

into lump-sum payouts in the Common Agricultural Policy of the EU or the granting of

carbon permits to �rms to mitigate the burden of a carbon tax. Normally economists

back these policies, but the presence of irrational �rms can overturn this advice.

To see if markets are unusually robust to the addition of irrational agents, we compare

markets to games that fully implement competitive allocations. If everyone is rational,

implementation games can closely approximate the outcomes of competitive markets; in

some cases, their equilibrium outcomes can exactly coincide with the competitive equilib-

rium outcomes. But if some agents are irrational then the most well-known full imple-

mentation games can have no equilibria or have equilibria that are not Pareto e¢ cient for

the rational agents. For example, the famous Hurwicz-Maskin-Postlewaite (1995) imple-

mentation game typically has no equilibria when just a single agent is irrational: existence

of equilibrium in this game therefore fails to show even the lowest degree of irrationality-

proofness. This fragility may be one reason why the equilibria of Nash implementation

games can seem implausible. But there are alternative games where irrational agents

do less damage: we construct games whose outcomes are Pareto e¢ cient for the rational

agents at every equilibrium, regardless of how many irrational agents are present. The

�Pareto e¢ ciency for the rational�conclusion for games echoes our results for competi-

tive markets, even though the formal arguments at work in the two settings have little

conclusion. As we explain in section 3, our arguments have no evolutionary component.
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in common. The parallelism suggests that Pareto e¢ ciency for the rational will hold

widely in models with irrational agents. On the other hand, in the game setting Pareto

e¢ ciency for the rational does not imply that the rational agents will usually gain from

the presence of irrational agents, as they do in competitive equilibria.

We assume that rational agents in games best-respond to the actions taken by the

irrational agents. This approach stakes out a middle ground that avoids both the ex-

treme rationality assumption that all agents play best responses and the position that the

consequences of irrationality are so unforeseeable that rational agents must adopt actions

that are always optimal regardless of how irrational agents play. The latter approach

would amount to a dominant strategy requirement that we show leads an to impossibility

result.

In both the market and game settings, the agents in this paper make errors: consumers

who fail to solve constrained maximization problems, �rms that do not maximize pro�ts,

and players who fail to best-respond. Prominent among the sources of error are the

rules of thumb that arise when agents, out of inertia, stick to old decision rules that have

lost their validity. But irrationality does not entail unpredictability. If anything, agents

who follow rules of thumb are easy to predict. Equilibrium analysis is therefore suitable:

rational agents should be able to adjust their actions to the behavior of the irrational

agents in such a way that a pro�le of mutually consistent actions can emerge.

In our results, Pareto e¢ ciency for the rational agents illustrates the highest level

of irrationality-proofness; it holds no matter how many irrational agents are present.

Other properties of market equilibria exhibit the next best level: they hold when just a

single agent is rational. No-arbitrage conditions in �nance typically display this degree of

irrationality-proofness. If an arbitrage opportunity is present �for example, if asset prices

fail to satisfy a martingale �then every agent must be failing to exploit an opportunity

to make a risk-free pro�t and hence must be irrational.2

For some phenomena, it has long been the norm to consider the e¤ect of irrational

agents, for example, the impact of noise traders on �nancial markets (see, e.g., De Long

2The martingale property of asset prices and its link to rationality requirements originates in Samuelson
(1965); the modern approach begins with Harrison and Kreps (1979). The strong irrationality-proofness
of the property is well-known, but it is di¢ cult to document an explicit statement.
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et al. (1990)). The impact of partisan voters �agents who always vote for the same

candidate regardless of their information �on information aggregation (Feddersen and

Pesendorfer (1996)) can also be understood as an analysis of irrationality-proofness. But

general theories of the e¤ect of irrational agents have been rare. Haltiwanger and Wald-

man (1985, 1989) consider various games with the express purpose of seeing how irrational

agents a¤ect equilibrium outcomes; their results turn on whether strategic substitutes or

complements are present. Fehr and Tyran (2005) and Camerer and Fehr (2006) have

deepened this line of analysis. Sutton (1997) analyzes a class of industrial organization

games with a �one rational agent is enough�degree of irrationality-proofness, comparable

to the no-arbitrage conditions of �nance.

In contrast to the above literatures, when we consider the irrationality-proofness of

games we take the implementation point of view: we do not consider the e¤ect of irrational

agents on a speci�c game but on what games with irrational agents can in principle achieve.

Our analysis is therefore related to Eliaz (2002), which we discuss in section 4. We do

however share one feature with the above literatures: our agents are either rational or

irrational. Another way to introduce a small amount of irrationality is to let agents �

possibly all agents �be a little irrational; the quantal response equilibria of McKelvey

and Palfrey (1995) is a leading case in point.

2 Irrational consumers

The analysis of exchange economies with irrational agents is straightforward, involving

only a simple variation on Lloyd Shapley�s proof that competitive allocations lie in the

core. But this argument is the natural place to start and it shows how well-suited the

theory of the core is to models with irrational agents.

We consider a �nite set of agents I partitioned into the rational agents IR and irra-

tional agents IIR. There are L goods. Each i 2 I has a nonzero endowment of these

goods ei > 0 and a complete, transitive, and locally nonsatiated preference relation %i

whose corresponding strict preference relation is �i.3

3Local nonsatiation means that for each xi 2 RL+ and " > 0 there is a yi 2 RL+ such that yi �i xi
and



xi � yi

 < ". For vector inequalities we use the notation: x � y , xk � yk for all coordinates k,
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The rational agents behave like standard consumers. Given a price vector p � 0, a

rational agent i chooses a bundle from the budget set Bi = fxi 2 RL+ : p � xi = p � eig

that is weakly preferred to all other bundles in Bi. The irrational agents also have

preference relations but can err when making constrained optimization decisions. We

therefore assume only that an irrational agent i chooses some bundle from Bi.

An exchange equilibrium is a (p � 0; x = (xi)i2I) such that

�
P

i2I x
i �

P
i2I e

i,

� xi 2 Bi for all i 2 I,

� if i 2 IR and exi 2 Bi then xi %i exi.
The irrationality of agents need not threaten the existence of exchange equilibria, which

requires the continuity of agents�demand functions but not the rationality of preferences.

We say that a coalition of agents C can achieve (exi)i2C by exiting ifPi2C exi �Pi2C e
i,

and that an exchange equilibrium (p; x) is Pareto e¢ cient for the rational agents if there

does not exist a (exi)i2IR that IR can achieve by exiting such that exi %i xi for all i 2 IR,
and exi �i xi for some i 2 IR.
In the language of cooperative game theory, a coalition of agents �blocks�an allocation

x if the coalition can achieve an allocation by exiting that makes every i in the coalition at

least as well o¤ as at xi and at least one i in the coalition better o¤. Thus an equilibrium

(p; x) is Pareto e¢ cient for the rational agents if the rational agents cannot block x.

Feasible allocations that cannot be blocked by any coalition are in the �core.� Since the

irrational agents choose arbitrary rather than optimal bundles from their budget sets, the

allocation x of an exchange equilibrium with irrational agents will usually not be Pareto

optimal; hence x could be blocked by I and is not in the economy�s core. But the

same argument that shows that an arbitrary coalition of agents cannot block a standard

competitive equilibrium applies to the coalition of rational agents. Thus the irrational

agents, though they stand in the way of full Pareto optimality, will not lead the rational

agents to split o¤ on their own.

x > y , (x � y and x 6= y), and x� y , xk > yk for all coordinates k.
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Proposition 1 Exchange equilibria are Pareto e¢ cient for the rational agents regardless

of the number of irrational agents.

Proofs are in the appendix. Proposition 1 does not say that the coalition of rational

agents cannot achieve a Pareto improvement by manipulating its market demands to

change p and the commodity demands of the irrational agents. There could well be a bp
and a feasible allocation bx such that (i) the irrational agents demand (bxi)i2IIR at the price
vector bp and (ii) the rational agents are all strictly better o¤ with bx than at the exchange
equilibrium. See McFadden (1969).

Proposition 1 does not address whether the rational agents gain anything from their

trades with the irrational agents. Could the rational agents do equally well by themselves?

If the irrational agents have trade with nonzero value with the rational agents and the

rational agents have strictly convex preferences, there is an unambiguous answer.4

Proposition 2 If in an exchange equilibrium (p; x) the rational agents have trade with

nonzero value with the irrational agents (p(k)
P

i2IR(x
i(k)� ei(k)) 6= 0 for some good k)

and if the rational agents have strictly convex preferences, then any allocation that the

rational agents can achieve by exiting leaves at least one rational agent i worse o¤ than

at i�s equilibrium allocation.

The signi�cance of Proposition 2 lies in the contrast to games that lead to allocations

that are Pareto e¢ cient for the rational. When rational and irrational agents interact

through competitive markets, irrational agents still have something to o¤er: they allow

the rational agents to achieve welfare levels that they could not achieve on their own. We

will see in section 4 that games with irrational agents need not share this property.

The nonzero trade condition in Proposition 2 is generic: if we use a standard para-

meterization of agents�excess demand functions then, for almost every model, in each

competitive equilibrium any set of agents will have trade with nonzero value with the

remaining agents. Proposition 2 can therefore be read as a remark that competitive

equilibria cannot be fragmented; whether or not some agents are irrational, a competitive

allocation typically cannot be achieved by partitioning the set of agents into blocs who

do not trade with each other.
4Agent i has strictly convex preferences if xi %i yi, xi 6= yi, and � 2 (0; 1) imply �xi+(1��)yi �i yi.
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3 Irrational �rms

Even when Pareto e¢ ciency for the rational agents obtains, irrational consumers still cause

harm in that they obstruct full Pareto optimality. Irrational producers �for example, �rms

that stick with a backward technology or that indulge a desire to discriminate in hiring �

need not lead to any harm at all.

Let Yj be the production set of �rm j. We assume that each �rm j is capable of

inaction, 0 2 Yj. Given p, a rational �rm j chooses a pro�t-maximizing yj in Yj whereas

an irrational �rm may take any action as long as it does not go bankrupt. So the only

restriction on an irrational �rm j is that it choose a yj 2 Yj such that p � yj � 0.

We label the economy�s �nite set of �rms F , partitioned into the rational �rms FR
and irrational �rms FIR. De�ne the aggregate production set of the rational �rms, YR =P

j2FR Yj, the aggregate production set of the irrational �rms, YIR =
P

j2FIR Yj, and the

aggregate production set overall, Y = YR + YIR =
P

j2F Yj.

Let �ij � 0 be the ownership share of consumer i in �rm j where, for each �rm j,P
i2I �ij = 1. Given p and the production decisions (yj)j2F , consumer i�s pro�t income

is
P

j2F �ijp � yj, and so the budget set for agent i is now Bi = fxi 2 RL+ : p � xi =

p � ei +
P

j2F �ijp � yjg. A production equilibrium is a (p � 0, x = (xi)i2I , y = (yj)j2F)

such that

�
P

i2I x
i �

P
i2I e

i +
P

j2F yj,

� xi 2 Bi for all i 2 I,

� if i 2 IR and exi 2 Bi then xi %i exi,
� yj 2 Yj for all j 2 F ,

� if j 2 FR and eyj 2 Yj then p � yj � p � eyj,
� if j 2 FIR then p � yj � 0.

Proposition 1 �that equilibria are Pareto e¢ cient for the rational agents no matter

the number of irrational agents � extends to production equilibria. The only wrinkle

concerns the production possibilities that are available to the rational agents if they exit.
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When a rational �rm j that exits is wholly owned by rational consumers, the departing

rational agents should have access to all of Yj. But if a rational �rm j is partly owned by

irrational consumers, the irrational consumers who remain behind should not be denied

all use of j�s technology. We could let both the stayers and exiters use of all of Yj,

a legitimate solution if Yj satis�es constant returns to scale (CRS).5 But if Yj shows

decreasing returns to scale, then the stayers and exiters would collectively be capable

of productions that the uni�ed economy had not been able to produce. To avoid this

problem, we assume that, for any rational �rm j, the rational agents when they exit can

use a scaled-down version of any production available to j, where the scaling factor must

be less than or equal to the share of �rm j that the rational consumers own: for each

j 2 FR we set some nonnegative �j �
P

i2IR �ij and let the rational agents when they exit

use any production bundle that equals �jyj for some yj 2 Yj. The bound on �j prevents

a partitioned economy from producing previously unavailable bundles. One reasonable

way to proceed would be to set �j = 0 if j is at least partly owned by irrational consumers

and shows decreasing returns, �j = 1 if j is wholly owned by rational consumers, and

�j > 0 if j is partly owned by rational consumers and satis�es CRS (which in the last

case would let the rational agents use any yj 2 Yj).

To extend Proposition 1, de�ne a production equilibrium (p; x; y) to be Pareto e¢ cient

for the rational agents if there does not exist a ((exi)i2IR , (eyj)j2FR) such that exi %i xi for
each i 2 IR and with strict preference for some i 2 IR, eyj 2 Yj for each j 2 FR, and

X
i2IR

exi �X
i2IR

ei +
X
j2FR

�jeyj.
Assuming that consumer preferences satisfy the assumptions of the previous section, we

5A production set Yj satis�es CRS if � � 0 and yj 2 Yj imply �yj 2 Yj . Normally CRS has no
content: for any Yj that exhibits decreasing returns we can invent a new commodity input speci�c to
�rm j, distributed to consumers to match their ownership share in j, and a new CRS production set
Y j that coincides with Yj at the points in Y j where the coordinate of the invented good equals 1. The
behavior of the economy with these Y j will be identical to the behavior of the original economy. We
could use this trick to de�ne the productions available to departing rational agents: this is in fact the
special case in the model below where �j =

P
i2IR �ij for each rational �rm j. But both this special case

and our general model go beyond an accounting convention: since we are considering the consequences
of an actual exit, letting an exiting �rm j use a scaled-down version of Yj is a substantive assumption
about how technology can be subdivided.
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can conclude that production equilibria are Pareto e¢ cient for the rational agents, re-

gardless of the number of irrational agents (see the appendix for a proof).

The more important feature of irrational �rms is that they need not interfere with

full production e¢ ciency. To achieve production e¢ ciency, two conditions must be met.

First, the rational �rms must have technologies that are at least as advanced as the

irrational �rms: YR � YIR. If this condition were not satis�ed �if the irrational �rms

can produce some bundles that the rational �rms cannot � then the irrational �rms

could produce ine¢ ciently and still survive market competition. The second condition

is a version of constant returns to scale. In a world of decreasing-returns technologies,

pro�t-maximizing �rms can earn positive pro�ts in equilibrium. Hence one or more of

these �rms could instead operate ine¢ ciently, using its pro�ts to subsidize its ine¢ cient

production. One simple assumption (stronger than what we will impose) that would rule

out this scenario would be to suppose, in addition to YR � YIR, that YR exhibits constant

returns. Constant returns is not terribly demanding; it in e¤ect requires that all inputs

are marketed commodities.6

The assumption that we do use is weaker and folds in the requirement that YR � YIR.

If there exists a constant-returns production set bY such that YR � bY � YIR, we say that
YR constant-returns dominates YIR. The main advantage of constant-returns domination

over plain constant returns arises when there are industries where no irrational �rms

operate: in these industries, we can allow any or all of the rational �rms to exhibit

decreasing returns.

A production equilibrium (p; x; y) is production e¢ cient if there does not exist (eyj 2
Yj)j2F such that

P
j2F eyj >Pj2F yj.

Proposition 3 If YR constant-returns dominates YIR then any production equilibrium

with p � 0 is production e¢ cient, regardless of the number of irrational consumers or

�rms.

6Once again we cannot resort to the trick of rationalizing constant returns by postulating a �rm-
speci�c input for each �rm with a decreasing-returns technology. The reason however is not that we
need to consider any fractional rescalings of production sets, but interference with the requirement that
YR � YIR: if each rational �rm requires a �rm-speci�c input in order to produce, then any y in YIR that
actually produces some good and does not use any of the rational �rms�speci�c inputs cannot be in YR.
So constant returns to scale must be given its standard substantive interpretation.
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No exit of rational agents is involved in Proposition 3; production e¢ ciency obtains

despite the presence of irrational agents. If, in addition to the assumptions of Proposition

3, every consumer is rational then full Pareto e¢ ciency obtains.

The compatibility of irrational �rms and full production e¢ ciency contrasts with the

more limited e¢ ciency-for-the-rational-agents that holds on the consumer side. This diver-

gence parallels the di¤erent punishments that competitive markets mete out to irrational

producers and consumers. The consumers of market economies need not be any more

rational than their counterparts in other institutional settings; their optimization errors

only bring about a utility loss. But competitive markets can drive backward producers

out of business, putting �rms on a tighter leash.

Formally, the economies in Proposition 3 achieve production e¢ ciency instantaneously.

A more realistic picture emerges if we apply the constant returns to scale condition only

to the long run; then irrational �rms can survive for a while and are only driven slowly

from the market. Constant returns and hence constant-returns domination are question-

able when imposed on production for the near future since outputs in the near future

require inputs, such as installed capital equipment, that are not marketed commodities.

In these shorter time frames where decreasing returns prevails, ine¢ cient irrational �rms

can survive. But constant returns to scale or constant-returns domination is plausible

when imposed on production for the more distant future since all inputs should then be

purchasable. If production activities for the immediate future are separable from activi-

ties for the more distant future, and irrational �rms do not use their short-run pro�ts to

cross-subsidize long-run production, the logic of Proposition 3 will eventually apply: after

enough time passes, production e¢ ciency will obtain.

For an example of how the dynamic path to full e¢ ciency plays out, let time run from

1 to T and suppose each �rm j produces a single good at each date. Assume for each

period t that the production set of �rm j for its output at t, Yj(t), uses an input stream

that lasts for � periods. The outputs that appear before date � therefore use inputs prior

to date 1 but these inputs are not included among the economy�s L goods.7 Let the

rational �rms have technology that is at least as good as the technology of the irrational

7As always, each Yj(t) is a subset of RL.
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�rms:
P

j2FR
PT

t=1 Yj(t) �
P

j2FIR
PT

t=1 Yj(t). Because the production of outputs at

early dates requires inputs that have to be applied before date 1, the Yj(t) for t < � may

exhibit decreasing returns to scale, but suppose that the Yj(t) exhibit constant returns

to scale for t � � . Then, as t increases, the number of outputs produced under constant

returns to scale increases. The economy can proceed through time by letting a �rm j

incur debt when it begins the purchase of an input stream and then paying o¤ this debt

and distributing any pro�ts to its shareholders when the output appears � periods later,

thus ruling out cross-subsidization. In an equilibrium where the rational �rms maximize

pro�ts and all �rms must earn nonnegative pro�ts, Proposition 3 applies to all the outputs

produced under constant returns. The number of outputs whose production is e¢ cient

therefore steadily increases through time. If an in�ow of new �rms introduces more

advanced technology into some existing sectors and if these entrants do not maximize

pro�ts, then production ine¢ ciency could obtain in some sectors of the economy while

it is being driven out in the innovation-free sectors. Competitive general equilibrium

models with irrational agents can thus give a Schumpeterian account of �rm entry-exit

dynamics.

In a competitive equilibrium model that contains only rational agents, a �rm with

su¢ ciently backward technology will shut itself down. In the present model, as in the

Schumpeterian tradition, irrational �rms with backward technology �rms must be driven

out of business.8 Although the two mechanisms will often cause the same �rms to exit

they can lead to sharply di¤erent policy advice. Consider, for instance, the traditional

design of trade liberalization and deregulation policies that harm �rms that have been

protected from market competition. When �rms or consumers could be harmed by (and

might therefore obstruct) reforms, the classical welfare theorems show how to engineer

Pareto improvements using lump-sum compensation payments. But with irrational �rms,

lump-sum payments can undermine production e¢ ciency: they give irrational �rms the

leeway to take ine¢ cient actions without going bankrupt. Irrational �rms therefore

present policy-makers with a trade-o¤: Pareto improvements are possible if compensation

payments keep irrational �rms a�oat but then production e¢ ciency will be undermined.

8See Klette and Kortum (2004) and Lentz and Mortensen (2005) for modern Schumpeterian ap-
proaches.
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Either production e¢ ciency or a Pareto improvement can be achieved but not both.9

Despite the common ground with Schumpeter, the logic presented here for why the

rational and e¢ cient �rms come to predominate di¤ers from the evolutionary mechanisms

that the main Schumpeterian modeling tradition has relied on. In Proposition 3, produc-

tion e¢ ciency is achieved entirely through the price system, as the rational �rms drive

the irrational �rms from the market. In evolutionary models (e.g., Nelson and Winter

(1982) and earlier Alchian (1950) and Friedman (1953)), in contrast, the e¢ cient �rms

become more prevalent because they make larger pro�ts and grow faster.

To summarize, the theory of production e¢ ciency in this paper is distinct from both

the evolutionary and Arrow-Debreu explanations. The present account operates via the

price mechanism but does without the Arrow-Debreu assumption of universal rationality.

4 Games with irrational agents

The irrationality-proofness of e¢ ciency in competitive markets raises the question of

whether markets are distinctive in this regard. Can games do as well as markets? To com-

pare like with like, we consider games that fully implement competitive allocations and

assess the irrationality-proofness of their e¢ ciency properties. Under the assumption that

all agents are rational, the starting point of Walrasian and Nash equilibria, markets and

games that implement competitive outcomes bear a close resemblance. But di¤erences

come out when we let some agents be irrational. The typical constructions of classical

implementation theory are brittle: just one irrational agent can lead to nonexistence of

equilibria or ine¢ ciency for the rational agents. But better-performing games can be

designed.

There are many ways to de�ne equilibrium in games with irrational agents. We take

the view, discussed in the introduction, that irrational agents can be predictable, and

therefore de�ne equilibrium as a strategy pro�le such that the strategy of each rational

agent is a best response to the strategies of all other agents, whether they be rational or

irrational, just as in a Nash equilibrium of a standard game every agent best responds

9The working paper version of this article uses the example of trade liberalization to illustrate this
dilemma.
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to the strategies played by the other agents. Our de�nition of equilibrium thus stakes

out a compromise: we let some agents be irrational, avoiding the full-bore rationality

assumptions of Nash implementation, but also let rational agents best-respond to the

actions of irrational agents �the rationals do not think the irrationals as so erratic that

they must play strategies that are optimal no matter how the irrationals act. The value of

the compromise is that desirable equilibria will exist. As we will see, a dominant-strategy

approach would lead to an impossibility result.

To keep the parallels between markets and games tight, we consider mechanisms that

fully implement the outcomes that are targeted: when all agents are rational, the set of

equilibrium outcomes and the set of competitive allocations will coincide exactly, just as

all competitive equilibria lead to competitive allocations when all agents are rational.

There are again L goods, and each agent i 2 I has an endowment ei � 0 and prefer-

ences %i, de�ned over nonnegative bundles of the L goods, that are complete, transitive,
monotone, continuous, and convex.10 We �x the endowment pro�le (e1; :::; eI) through-

out, where I is the number of agents.11 If there are competitive allocations on the

boundary of agents�consumptions sets then those allocations would not be Nash imple-

mentable (Hurwicz, Maskin, and Postlewaite (HMP) (1995)). So, even in the absence

of irrational agents, there would be no game whose equilibria exactly coincide with the

competitive allocations, hampering comparison to the rest of the paper. To step around

this problem, we make an interiority assumption that each i�s indi¤erence curve through

ei does not intersect the coordinate axes.12 When agents�preferences (%i)i2I satisfy the
assumptions of this paragraph, we say that (%i)i2I (or simply the model) is admissible.
For any admissible model, an exchange equilibrium (as de�ned in section 2) exists. Let

e denote
P

i2I e
i.

A mechanism is de�ned by strategy sets Si for i 2 I and an outcome function g that

maps each strategy pro�le s = (s1; :::; sI) to a feasible allocation x = (x1; :::; xI), that is,

10The preferences %i are monotone if xi > zi implies xi �i zi, convex if � 2 [0; 1] and xi %i zi imply
�xi + (1� �)zi %i zi, and continuous if fxi 2 RL+ : xi %i zig and fxi 2 RL+ : zi %i xig are closed sets for
all zi 2 RL+.
11Equivalently, we could let e = (e1; :::; eI) vary and assume that the game designer knows e and can

use this information along with agents�strategy choices to determine allocations. We could also let e be
revealed by agents�strategy choices.
12Formally, %i satis�es interiority if, for all xi 2 RL+, xi %i ei ) xi � 0.
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a x where
P

i2I x
i � e. Given a mechanism and an admissible (%i)i2I , an equilibrium is

a pair (s = (s1; :::; sI); IR) that speci�es the strategies that all agents play and a set of

rational agents IR such that, for each i 2 IR,

gi(s) %i gi(es i; s�i) for all es i 2 Si.
So each rational i in an equilibrium (s; IR) is optimizing with si given that the other

agents play s�i.

A mechanism ((Si)i2I ; g) implements competitive allocations when the set of rational

agents is IR if, for any admissible model (%i)i2I and any allocation x,

(there is an equilibrium (s; IR) such that x = g(s)),�
(p; x) is an exchange equilibrium for (%i)i2I for some p

�
.

In words, a mechanism implements competitive allocations when IR is the set of rational

agents if, for all preference pro�les, any equilibrium outcome of the mechanism when IR
is the set of rational agents is a competitive allocation, and conversely for any competitive

allocation there is an equilibrium of the mechanism when IR is the set of rational agents

whose outcome is that allocation. Although it will turn out that competitive allocations

cannot be implemented when some agents are irrational �just as they cannot be in an

exchange economy with irrational agents � our de�nition is designed to say what the

implementation of competitive allocations would mean in such cases.

The above de�nition indicates our use of a �full�concept of implementation: the sets of

equilibrium outcomes and competitive allocations coincide when all agents are rational.

A weaker de�nition would require only that for each competitive allocation x there is

some equilibrium that reaches x but would allow other equilibria to reach noncompetitive

allocations. The �t with the competitive markets would then be looser, since competitive

equilibria always generate competitive allocations when all agents are rational. But

in addition the weaker de�nition of implementation would be too permissive. Some

games that for each competitive allocation x have an equilibrium that reaches x can also
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implement a vast set of other allocations.13

We �rst consider a speci�c mechanism, a much simpli�ed version of a mechanism in

HMP, that fully implements competitive allocations when all agents are rational. The

introduction of irrational agents into this game blocks even the existence of equilibrium.

Example 1 Each Si = f(pi; xi) 2 (RL+nf0g)�RL+ : pi �xi = pi � eig. Given the strategies

(pi; xi)i2I, let P = fp : p = pi for some ig denote the set of price vectors that the agents

announce, and let #P be the number of distinct announced price vectors. The outcome

g((pi; xi)i2I) of the mechanism is then the allocation (xi)i2I de�ned by:

1: if #P = 1 and
P

i2I x
i = e, then

xi = xi for all i 2 I,

2: if#P = 2 and there is a k such that


pk

 > kpik for i 6= k, xk � e and pi�xk = pi�ek,

then

xk = xk and xi = 0 for i 6= k,

3: if #P > 2 and there is a k such that


pk

 > kpik for i 6= k, then

xk = e and xi = 0 for i 6= k,

4: in all other cases, xi = 0 for all i 2 I.

It is easy to con�rm that the allocation of any exchange equilibrium (p; (xi)i2I) is an

equilibrium outcome of this mechanism when all agents are rational, IR = I. In the

equilibrium, each agent i names p and xi: if there are at least two agents, rules 2 and

4 imply that any unilateral deviation for an agent k can at best lead to a exk such that
p�exk = p�ek. Conversely, given an equilibrium of the mechanism, (pi; xi)i2I , rules 2, 3, and
4 imply that if two or more agents name di¤erent prices then only an agent k who names

a price vector such that


pk

 > kpik for all i 6= k will avoid the 0 bundle; since there

can be only one such k, the equilibrium must have a unanimous announcement of prices

p. And the xi must satisfy
P

i2I x
i = e since otherwise any agent would take advantage

of rule 2 to avoid the 0 bundle. Rule 2 also implies that any agent k could by deviating

achieve any exk � e such that p � exk = p � ek. Given that ek is therefore achievable, the

interiority assumption implies that each xk � 0. Since
P

i2I x
i = e, we have e� xi for

13Consider, for example, a mechanism where all agents name an allocation x; if everyone names the
same x then each i receives xi and otherwise everyone receives the 0 bundle. Any allocation is then an
equilibrium outcome when all agents are rational.
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all i, assuming that there are at least two agents. It then follows from convexity that for

any i there is no exi �i xi with p � exi = p � ei, whether exi is feasible or not (see the proof of
Proposition 4 for more detail on this point). Thus the equilibrium delivers a competitive

allocation.14

The all-rational equilibria are delicate however. If the population includes irrational

agents who choose arbitrary elements of Sk then typically there will be no equilibria. If

two or more irrational agents choose di¤erent prices and there are two or more rational

agents, then there will be no pro�le of optimizing strategies for the rational agents (just

as in the previous paragraph). If there is a single irrational agent i, still with two or more

rational agents, then unless xi and the Walrasian demands of the rational agents at pi

happen to sum to e there will be no equilibrium: there again could not be a unanimous

announcement of prices since one of the rational agents would take advantage of rule 2 to

name a di¤erent price and achieve his Walrasian demand. Existence of equilibrium thus

displays a minimal level of irrationality-proofness: if there are two rational agents then

just one irrational agent is enough to prevent there from being an equilibrium.

The irrationality proofness problem of the above example is that equilibria fail to

exist when irrational agents are present. Other mechanisms that implement competitive

allocations when all agents are rational, e.g., Jackson et al. (1994) which uses undominated

Nash equilibria, always have equilibria when irrational agents are present but fail to

achieve Pareto e¢ ciency for the rational agents.

Are there mechanisms that, when all agents are rational, fully implement competitive

allocations and, when some agents are irrational, not only have equilibria but have only

equilibria that achieve Pareto e¢ ciency for the rational agents?

As in section 2, a coalition C can achieve (xi)i2C by exiting if
P

i2C x
i �

P
i2C e

i.

Given IR, let us say that the allocation (xi)i2I is Pareto e¢ cient for the rational agents

if there is no (exi)i2IR that IR can achieve by exiting such that exi %i xi for all i 2 IR andexi �i xi for some i 2 IR. Finally, a mechanism ((Si)i2I ; g) is Pareto e¢ cient for the

14If there is a single agent then rules 1 and 4 imply that the only equilibrium allocation of the mech-
anism is e1, which is the competitive allocation. The fact that the mechanism implements competitive
allocations when all agents are rational without a restriction on the number of agents is due to our
assumption that goods can be freely disposed of.
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rational agents if, for any admissible (%i)i2I , any set of rational agents IR � I, and any
strategy pro�le for the irrational agents (si)i2IIR , there is an equilibrium (s; IR) where

the irrational agents play (si)i2IIR and, for every equilibrium (s; IR) when the irrationals

play (si)i2IIR , g(s) is Pareto e¢ cient for the rational agents. In line with our de�nition

of the implementation of competitive allocations, we require that every equilibrium, not

just one, leads to an outcome that is Pareto e¢ cient for the rational.

Proposition 4 There are mechanisms that are both Pareto e¢ cient for the rational

agents and implement competitive allocations when all agents are rational.

Thus there are games that perform reasonably well regardless of the number of irra-

tional agents and how they play. The proof of Proposition 4 designs a mechanism with

two stages of competition. The �rst stage ensures that if some or all of the irrational

agents choose strategies that are inconsistent with an outcome that is Pareto e¢ cient for

the rational then the rational agents can split o¤ on their own; they can defeat some

or all of the irrational agents in an integer game and determine a �nal allocation using

only their own resources and the resources of any irrational agents who do happen to

choose compatible strategies. A �victorious bloc�that contains all of the rational agents

thus emerges from the �rst stage. The second stage is more traditional and is similar to

the HMP mechanism. If a single agent in the victorious bloc deviates from a candidate

equilibrium the deviator can achieve only those bundles that are in a budget set de�ned

by prices that the agents in the victorious bloc simultaneously announce. Multiple de-

viations on the other hand set o¤ an unwinnable integer game where everyone but the

winner receives an undesirable bundle. As usual this device blocks outcomes that the

mechanism aims to avoid (in our case, the allocations that fail to be Pareto e¢ cient for

the rational). The integer games in the two stages thus serve opposite purposes: in the

�rst, some or all of the irrationals may well be defeated in equilibrium while in the second

there can be no winner.

The universe of possible mechanisms displays such strategic variety that one might

wonder if we can do better: are there mechanisms that implement competitive allocations

even when irrational agents are present? The answer is �no.� For suppose two models,

1 and 2, di¤er only in the preferences of the irrational agents and let each have a unique
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competitive allocation that di¤ers from the competitive allocation of the other model.

If competitive allocations were always achieved then, in either model k, for any strat-

egy pro�le that the irrational agents might play, there would be a pro�le of equilibrium

strategies for the rational agents that leads to the competitive outcome of model k. But

if, say, model 1 obtains and the irrational agents play some pro�le (si)i2IIR , it will be an

equilibrium for the rational agents to play the pro�le that they play in model 2 when the

irrational play (si)i2IIR (since the rational agents�preferences are unchanged).

Proposition 5 There is no mechanism that implements competitive allocations when

IR 6= I (i.e., some agent is irrational).

Games and competitive markets therefore share some common ground. As with

markets, games with irrational agents cannot always reach a competitive outcome but

they can achieve Pareto e¢ ciency for the rational agents. Still there is an important

di¤erence between markets and games. In the mechanisms that underlie Proposition 4,

when irrational agents do not choose strategies compatible with an e¢ cient allocation the

rational agents trump them and split o¤ on their own. In fact, the rational agents will

typically end up with bundles that in the aggregate use only their own endowments. So

in games the property of �Pareto e¢ ciency for the rational agents�does not imply that the

rational agents will gain from the presence of irrational agents. In contrast, as we saw in

section 2, in a competitive equilibrium the rational agents will generically trade with the

irrational agents and thus achieve welfare levels that they could not achieve on their own

(see Proposition 2). In this generic sense, markets can outperform full-implementation

games: they automatically use the resources of the irrational agents to make the rationals

better o¤.

If the strategic actions of irrational agents cannot be predicted, then our de�nition of

equilibrium is open to criticism. In our equilibria, each rational agent best responds to the

strategies that all other agents play, whether they are rational or irrational; implicitly, the

rational agents know how the irrational play. To accommodate unpredictable irrational

agents, we could require that each rational agent�s strategy is a best response to the other

agents�strategies, whatever set of agents turns out to be irrational and for all strategy

pro�les that the irrational agents might play. Since any agent can be irrational, this would
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require that rational agents play weakly dominant strategies. But then unfortunately

there cannot be a mechanism that is Pareto e¢ cient for the rational agents. For suppose

to the contrary that there were such a mechanism. Then, when all agents are rational

and play their dominant strategies, a core allocation would have to result: if instead an

allocation x were to occur that some coalition C could block, then when C is the set

of rational agents and the irrational agents happen to play their dominant strategies, x

would ensue and x cannot be Pareto e¢ cient for the rational (since IR = C and C can

block x). Since there is no dominant-strategy mechanism in an exchange economy setting

whose outcomes consist only of core allocations, we conclude that there is no mechanism

that is Pareto e¢ cient for the rational agents when rational agents are required to play

dominant strategies.15

Eliaz (2002), an innovative theory of implementation that allows for irrational agents,

takes a di¤erent tack and requires each rational agent to play a strategy that is optimal no

matter who is irrational and how they move. The Eliaz model avoids the roadblock that

accompanies dominant-strategy implementation by restricting the number of irrational

agents. In contrast, we placed no restrictions on the number of irrational agents in this

section or in section 2 and only minimal implicit restrictions in section 3.

We have avoided any hint of Bayesian implementation; all of our agents implicitly

have the same information. Had we permitted asymmetric information, there would have

been no hope for Pareto e¢ ciency for the rational agents. Implementation of e¢ cient

outcomes in the face of asymmetric information would require players with knowledge of

other agents�characteristics to patrol those individuals, e.g., report their characteristics

to prevent them from misrepresenting themselves. Since irrational agents might fail to

undertake patrolling strategies, they can convert a model with nonexclusive information

(no single agent has privileged information) into a model with exclusive information. In

incomplete information settings, therefore, a single irrational agent can dramatically alter

what can be implemented.16

15See Serizawa (2002) for stronger impossibility results that imply that there is no mechanism that
implements only core allocations in our setting. Earlier results of this nature reach back to the seminal
Hurwicz (1972) and include Dasgupta et al. (1979), Satterthwaite and Sonnenschein (1981), and Zhou
(1991).
16See Postlewaite and Schmeidler (1986) and Blume and Easley (1990) for the implementation conse-
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5 Conclusion

One goal of irrationality-proofness is to serve as a robustness check. For the property

of a model to be reliable, it should survive the introduction of irrational agents who do

not trade or choose strategies optimally. By recasting e¢ ciency �moving from classical

Pareto e¢ ciency to production e¢ ciency and to Pareto e¢ ciency for the rational agents �

competitive equilibria can pass the robustness test. Indeed, these alternative de�nitions

of e¢ ciency can withstand the introduction of large numbers of irrational agents. Our

conclusions are driven by the separating feature of prices: if rational consumers and �rms

face a common price vector then constrained forms of e¢ ciency will hold, even when

irrational agents are present.

Our analysis of games shows that no inevitable divide between the irrationality-

proofness of e¢ ciency in games and in competitive markets. But in contrast to markets,

the conclusion that irrational agents in a game do little harm requires a careful construc-

tion: we have to let the rational agents� strategies vary as a function of the irrational

agents� strategies and rule out asymmetric information. From the broader perspective

freed from these restriction, the irrationality-proofness of e¢ ciency is more robust for

markets than for games.

6 Appendix: Proofs

Proof of Proposition 1. Let (p; x) be the competitive equilibrium. If the rational agents

can achieve (exi)i2IR by exiting, then Pi2IR exi � P
i2IR e

i. Multiply by p to get (1)

p �
P

i2IR exi � p �Pi2IR e
i. If (exi)i2IR is a Pareto improvement for the rational agents,

then (2) exi %i xi for all i 2 IR, and (3) exh �h xh for some h 2 IR. Given the optimization
of the rational agents, (3) implies p �exh > p �eh, and, since each %i is transitive and locally
nonsatiated for each i 2 IR, (2) implies p � exi � p � ei for all i 2 IR. Sum over i 2 IR to

get p �
P

i2IR exi > p �Pi2IR e
i, contradicting (1).

Proof of Proposition 2. First observe that if (p; x) is the exchange equilibrium and (exi)i2IR
quences of exclusive information.
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satis�es X
i2IR

exi �X
i2IR

ei + '
X
i2IIR

(ei � xi) (i)

for some ' 2 R then (1) in the proof of Proposition 1 will obtain (since p�
P

i2IIR(e
i�xi) =

0). Hence if (exi)i2IR satis�es (i) then (exi)i2IR does not Pareto dominate (xi)i2IR .
If IR can achieve (exi)i2IR by exiting and exi %i xi for all i 2 IR, then Proposition 1

implies exi �i xi for all i 2 IR. Since there is a k with p(k)Pi2IR(x
i(k)� ei(k)) 6= 0, and

since p�
P

i2IR(x
i�ei) = 0, there must be a l with p(l) > 0 such that

P
i2IR(x

i(l)�ei(l)) >

0. Since any allocation (exi)i2IR achieved by exiting must satisfy Pi2IR exi � P
i2IR e

i,

we conclude that (exi)i2IR 6= (xi)i2IR and therefore exh 6= xh for some h 2 IR. By strict

convexity, if � 2 (0; 1) then �xh + (1 � �)exh �h xh . Thus (�xi + (1 � �)exi)i2IR Pareto
dominates (xi)i2IR . Since however,

X
i2IR

xi �
X
i2IR

ei +
X
i2IIR

(ei � xi), andX
i2IR

exi �
X
i2IR

ei;

we have X
i2IR

(�xi + (1� �)exi) �X
i2IR

ei + �
X
i2IIR

(ei � xi).

Since (�xi + (1� �)exi)i2IR therefore satis�es (i), we have a contradiction.
Proof of Extension of Proposition 1. Only a couple changes to the proof of Proposition

1 are needed. If the rational agents can achieve a Pareto improvement by exiting, there

exist (exi)i2IR and (eyj)j2FR , where each eyj 2 Yj, such that exi %i xi for each i 2 IR, with
strict preference for some i 2 IR, and

P
i2IR exi �Pi2IR e

i +
P

j2FR �jeyj. Since eyj 2 Yj,
pro�t maximization gives �jp � yj � �jp � eyj for each j 2 FR. Hence p �

P
i2IR exi �

p �
P

i2IR e
i + p �

P
j2FR �jyj. But optimization for the rational agents implies p � exi �

p � ei + p �
P

j2FR �ijyj for all i 2 IR, with strict inequality holding for some i 2 IR.

Summing over the rational consumers and using the fact that �j �
P

i2IR �ij gives the

contradiction p �
P

i2IR exi > p �Pi2IR e
i + p �

P
j2FR �jyj.

Proof of Proposition 3. Let (p; x; y) be an equilibrium with p � 0 and suppose it is
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not production e¢ cient. There would then exist (y0j)j2F such that
P

j2F y
0
j >

P
j2F yj.

Since p � 0, p �
P

j2F y
0
j > p �

P
j2F yj. But since the rational �rms are maximizing,

p �
P

j2FR y
0
j � p �

P
j2FR yj. Hence p �

P
j2FIR y

0
j > p �

P
j2FIR yj and so p �

P
j2FIR y

0
j > 0.

Since YR constant-returns dominates YIR there exists a constant-returns production setbY such that YR � bY � YIR. Hence there is a by 2 bY and (byj)j2FR such that Pj2FR byj =by =Pj2FIR y
0
j. So p �

P
j2FR byj > 0, and since bY satis�es constant returns, for any � > 0,

�
P

j2FR byj 2 YR. Hence for any � > 0 there exists a (eyj)j2FR , with each eyj 2 Yj, such
that p �

P
j2FR eyj = p ��Pj2FR byj = ��p �Pj2FR byj�, and so there must be a j 2 FR such

that p � eyj � 1
jFRj�

�
p �
P

j2FR byj�. Since (i) for each � > 0 there is a j 2 FR and eyj 2 Yj
satisfying this inequality, (ii) 1

jFRj

�
p �
P

j2FR byj� > 0, and (iii) there are �nitely many

�rms, there must be at least one �rm in FR that can make unboundedly great pro�ts,

contradicting the assumption that (yj)j2FR are equilibrium production decisions.

Proof of Proposition 4. We �x the admissible model throughout. The mechanism consists

of two parts. The �rst part determines if there is a �victorious coalition�. The �rst four

coordinates of a strategy si for agent i are relevant to this part: these are Ci� I which

gives i�s proposal of a coalition, a �coalition integer�ni 2 N, a price pi 2 RL+nf0g, and a

consumption bundle xi 2 RL+. Given (Ci; ni; pi; xi)i2I , C is victorious i¤ there exists (n; p)

such that (1) for each i 2 C, Ci = C, pi = p, ni = n, and p � xi = p � ei, (2) n > nk for each

k =2 C, and (3)
P

i2C x
i =

P
i2C e

i. So the agents in a victorious C must all propose C,

play a common n that defeats all outsiders in an integer game, announce a common price,

and announce consumption bundles that are individually a¤ordable and jointly feasible

using the resources of C. If there is no victorious coalition, the mechanism g assigns each

i 2 I the consumption bundle 0.

In the second part of the mechanism, which is relevant only if there is a victorious

coalition C, any agent in C can reject the bundle assigned to him in the �rst part. The

second part of each si has three components: a a or r, which indicates whether i accepts

or rejects i�s assigned bundle, an integer mi that determines the �dominant� rejection,

and the consumption wi that i proposes to receive if i�s rejection is dominant. Joining

together the two parts of a strategy, we have, for each i 2 I, Si = (2I�N�RL+nf0g�RL+)

� (fa; rg � RL+ � N) with typical element si = (Ci; ni; pi; xi; a or r; wi;mi).

22



If C is victorious and, for all i 2 C, si announces a then we say C is �unanimous�.

If there is a victorious and unanimous coalition C, then the outcome given by g is for

each i 2 C to receive the xi given by si and for each i =2 C to receive the 0 bundle. If

there is a coalition C that is victorious but not unanimous, de�ne the set of rejectors

RC = fi 2 C: i announces rg. If #RC � 2 the integer game in the second part of the

mechanism determines the dominant rejection: if there is a i 2 C such that mi > mk for

k 2 Cnfig and wi � e, then the outcome is for i to receive wi and each k 2 Infig to

receive 0. In all other cases with #RC � 2, the outcome is for each i to receive 0. If

RC = fig but p �wi 6= p � ei or wi >
P

k2C e
k (where p is the common price announcement

of the members of C), then each k 2 I receives 0. Finally we impose the following �single

deviation rule�: if RC = fig, p � wi = p � ei, and wi �
P

k2C e
k, then the outcome is that i

receives wi and each k 2 Infig receives 0.

We �x the strategies of i 2 IIR, and let nIR denote maxfni : i 2 IIRg. Let (p; xi)i2IR
be an exchange equilibrium for the society consisting solely of IR. Then (IR; nIR+1; p; xi;

a; 0; 1) is an equilibrium. For suppose some i 2 IR deviates by announcing a di¤erent

coalition, a di¤erent price, or a di¤erent coalition integer. If this deviation does not permit

there to be a victorious coalition then i would receive 0 and so the deviation would not

be undertaken. And the deviation can permit there to be a victorious coalition only if

ni > nIR + 1 and i�s coalition announcement is fig, in which case i receives either the

consumption exi = ei or exi = 0; since in either case, xi %i exi, we again conclude that it is
optimizing for i not to deviate. If on the other hand i deviates with (IR; nIR + 1; p; xi;

r; wi;mi) then i receives either 0 (if p �wi 6= p �ei or wi >
P

k2IR e
k) or, given the de�nition

of an exchange equilibrium, a wi with xi %i wi. Thus for any strategy pro�le for the

irrational agents, there is an equilibrium where the irrational agents play that pro�le.

Furthermore, given Proposition 1 and the fact that (p; xi)i2IR is an exchange equilibrium

for IR, the equilibrium outcome is Pareto e¢ cient for the rational agents. In the case

where IIR = ?, for any exchange equilibrium (p; x), the outcome of the above equilibrium

is the competitive allocation x.

It remains to show that any equilibrium outcome is Pareto e¢ cient for the rational

agents and is the competitive allocation when IIR = ?. Let x be an arbitrary equilibrium
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outcome. Since Pareto e¢ ciency for the rational agents holds vacuously if IR = ?, we

suppose that IR 6= ?. Since any agent i can receive ei by announcing (fig; ni; pi; ei;

a; 0; 1), where ni > nk for all k 2 Infig, there must be exactly one victorious coalition C

and IR must be a subset of C. For the remainder of the proof, let p be the price vector

announced by C. If #IR � 2, then C must be unanimous since otherwise the agents in C

play an integer game with no equilibrium �each i 2 IR would have to announce a ni such

that ni > nk for all k 2 Cnfig. Continuing with the case where C is victorious (and hence

unanimous) and #IR � 2, the single deviation rule implies, for i 2 IR, that xi must be

a %i-maximum on fwi 2 RL+ : p � wi = p � ei; wi �
P

k2C e
kg. Given the monotonicity of

%i, p � 0. Given interiority, the outcome for IR � C, (xi)i2IR , is strictly greater than

0 in every coordinate; therefore, since #IR � 2,
P

k2C e
k � xi for i 2 IR. There must

therefore be a " > 0 such that any wi with kxi � wik < " and p � wi = p � ei satis�es

wi �
P

k2C e
k and hence xi %i wi. The convexity of %i then implies that if exi %i xi

then p � exi � p � ei. For if there were a exi 2 RL+ with exi %i xi and p � exi < p � ei then by
convexity xi = �exi + (1� �)xi %i xi for any � 2 (0; 1); and so by choosing � su¢ ciently
small and since p � 0, we can �nd a wi � xi with kxi � wik < " and p � wi = p � ei,

which by monotonicity satis�es wi �i xi and hence wi �i xi. So exi %i xi ) p � exi � p � ei.
But exi �i xi and p � exi = p � ei cannot occur: if it did then exi �i xi %i ei and interiority
give exi � 0 and so, by continuity, for any � 2 (0; 1) su¢ ciently near 1, �exi �i xi and
p � �exi < p � ei. Hence, for i 2 IR, xi is %i-maximizing on fwi 2 RL+ : p � wi = p � eig.
We can then apply the proof of Proposition 1, using the price p announced by all k 2 C,

to conclude that the equilibrium satis�es Pareto e¢ ciency for the rational agents. In

the case where C is victorious and #IR = 1, the agent i 2 IR must receive an outcome

xi %i ei since i could receive ei by announcing (fig; ni; pi; ei; a; 0; 1), where ni > nk for all
k 2 Infig (as at the beginning of the paragraph). Hence the equilibrium again satis�es

Pareto e¢ ciency for the rational agents. Finally, notice that if IIR = ? then C = I.

Since, furthermore, the outcome xi is %i-maximizing on fwi 2 RL+ : p � wi = p � eig for

each i 2 I, (p; x) must be an exchange equilibrium. So, when IIR = ?, the outcome x

of any equilibrium is the allocation of an exchange equilibrium.

Proof of Proposition 5. In the text.
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