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Abstract

This thesis concerns the study of the Bredon cohomological and geometric

dimensions of a discrete group G with respect to a family F of subgroups of

G. With that purpose, we focus on building finite-dimensional models for

EF (G). The cases of the family Fin of finite subgroups of a group and the

family VC of virtually cyclic subgroups of a group have been widely studied

and many tools have been developed to relate the classifying spaces for VC

with those for Fin.

Given a discrete group G and an ascending chain F0 ⊆ F1 ⊆ . . . ⊆

Fn ⊆ . . . of families of subgroups of G, we provide a recursive methodology

to build models for EFr (G) and give certain conditions under which the

models obtained are finite-dimensional. We provide upper bounds for both

the Bredon cohomological and geometric dimensions of G with respect to

the families (Fr)r∈N utilising the classifying spaces obtained.

We consider then the families Hr of virtually polycyclic subgroups of

Hirsch length less than or equal to r, for r ∈ N. We apply the results

obtained for chains of families of subgroups to the chain H0 ⊆ H1 ⊆ . . . for

an arbitrary virtually polycyclic group G, proving that the corresponding

Bredon dimensions are both bounded above by h(G) + r, where h(G) is the

Hirsch length of G.

Finally, we give similar results for the same chain of families of subgroups

and an arbitrary locally virtually polycyclic group as the ambient group,

obtaining in this case the upper bound h(G) + r + 1.
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Chapter 0

Introduction

Given a group G, we say that a non-empty collection F of subgroups of G

is a family if it is closed under conjugation and taking subgroups. In this

configuration, a G-CW-complex X is a model for EFG or a classifying space

for the family F if for each subgroup H ≤ G, the set of points of X that H

fixes is contractible if H ∈ F and empty otherwise.

A universal property holds for such spaces, meaning that if X is a model

for EFG and Y is any G-CW-complex with stabilizers in F, there is a G-

map f : Y → X unique up to homotopy. In other words, a model for EFG

is a terminal object in the homotopy category of G-CW-complexes with

stabilizers in F. As such, their existence is guaranteed for any group and

family of subgroups [Lüc05]. Given their universal existence, the interest

lies in determining the least possible dimension of a model for EFG, i.e. the

Bredon geometric dimension of G with respect to the family F, denoted by

gdFG.

Homological methods facilitate the study of such dimensions. In the case

of G-CW-complexes with stabilisers in a family F, the Bredon cohomology

of groups is the most suitable tool. Glen Bredon introduced this homol-

ogy theory in [Bre67] for finite groups and Wolfgang Lück extended it for

arbitrary groups and families of subgroups in [Lüc89].
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The spaces EG = EFG, known as universal space for proper actions,

for the family F = Fin of finite subgroups and EG = EFG for the family

F = VC of virtually cyclic subgroups have been widely studied given their

appearance as the geometric objects in the Baum-Connes and Farrell-Jones

conjectures, respectively. For a first introduction into the subject see, for

example, the survey [Lüc05].

In the case of Fin, explicit constructions of the respective models arise

in a natural way from the geometrical origin, interpretation or properties of

many classes of groups. For VC, however, building such spaces has proven

more challenging. As such, methodologies that could help obtain the desired

models using known classifying spaces for the family of finite subgroups and

other related families have been developed.

Such methodologies made the construction of classifying spaces for fami-

lies of subgroups other than Fin and VC reachable. For example, in [NP16],

the authors build 3-dimensional classifying spaces for the family of virtu-

ally nilpotent subgroups of any abelian-by-infinite cyclic groups. Another

example more aligned with Fin and VC can be found in [CCMNP17], where

(n+ r)-dimensional models for EFrG, where G is finitely generated abelian

and Fr is the family of subgroups of torsion-free rank less than or equal to

r, are constructed in a recursive manner.

Let F0 ⊆ F1 ⊆ . . . ⊆ Fn ⊆ . . . be an ascending chain of families of

subgroups of a discrete group G. Under certain conditions, it is possible to

build classifying spaces for all the families in the chain recursively, utilis-

ing those for F0 and other families that will be introduced throughout the

process. The aim of this thesis is to provide such methodology and use it

to give upper bounds for the respective Bredon dimensions. We then apply

this construction process to families of virtually polycyclic subgroups.
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Structure of the thesis

In Chapter 1, we present CW-complexes and their equivariant counterparts:

G-CW-complexes. We also introduce some operations with such spaces that

will be used throughout the thesis and the conditions under which the re-

sulting spaces are also (G-)CW-complexes. These operations are quotients,

products, joins, push-outs and, in particular, mapping cones and mapping

and double mapping cylinders. Finally, we give the definition and some basic

properties and examples of families of subgroups and classifying spaces.

In Chapter 2, we introduce the orbit category OFG and Bredon modules

as functors from said category to the category of abelian groups. We also

give a basic overview of free and projective objects of the category of Bredon

modules, as they are key for defining Bredon Cohomology (Chapter 2) and

describing its relation to classifying spaces (Chapter 3).

In Chapter 3, apart from specifying some results about the aforemen-

tioned relation, we define the Bredon cohomological and geometric dimen-

sions of a group G with respect to a family of subgroups F, cdFG and gdFG,

respectively.

In Chapter 4, we compile and extend a list of results that, given related

families and groups, connect their respective classifying spaces, Bredon co-

homology groups and Bredon dimensions. The particular cases we look into

are: a family and its restriction to a subgroup of the ambient group, fami-

lies that are related by a functor, unions of families, pairs of families F ⊆ G

such that the set G\F admits certain structure and families of subgroups of

a direct union of groups and their restrictions to the groups appearing in

the direct union.

The main contribution of this thesis is Chapter 5. Given an ascending

chain (Fr)r∈N of families of subgroups of a discrete group and provided that

the chain has certain properties, we develop a methodology based on the

results in Chapter 4 to build models for EFr (G) recursively. We find upper
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bounds for the Bredon dimensions with respect to Fr depending on those

with respect to Fr−1 and other related families. In the case that there are

finite-dimensional classifying spaces for the family F0 for the ambient group

and some of its subgroups, we list some further conditions that will ensure

that the models we build have also finite dimension.

Finally, in Chapter 6, we apply the results in the previous chapter to

the chain (Fr)r∈N of families of subgroups, where H ∈ Fr if and only if H

is virtually polycyclic and its Hirsch length is smaller than or equal to r.

We consider two different classes of groups for the ambient group: virtually

polycyclic groups and locally virtually polycyclic groups.
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Chapter 1

Classifying Spaces for

families of subgroups

Contents

1 CW-complexes . . . . . . . . . . . . . . . . . . . . 12

2 G-CW-Complexes . . . . . . . . . . . . . . . . . . 21

3 Families of subgroups . . . . . . . . . . . . . . . . 29

4 Classifying spaces . . . . . . . . . . . . . . . . . . 31

1 CW-complexes

In [Whi49], J.H.C. Whitehead introduced CW-complexes as a class of topo-

logical spaces that could play the role of simplicial complexes in Homotopy

Theory and would allow the field to be studied from a different perspective.

The results we will present in this section can be found, in most of the cases,

in the aformentioned publication. Given the nature of their first appearance,

their description and study in [Whi49] is based on their desired properties.

For a more constructive view of CW-complexes, we introduce them as in

modern publications such as [Hat01] and relate those results and definitions

12



to the ones found in the original source.

Definition 1.1. Let X and Y be topological spaces. Let f : A → Y be a

continuous map, where A ⊂ X is a subspace. Then, the attaching space or

adjunction space for f is

X ∪f Y = (X t Y )/ ∼,

where ∼ is the equivalence relation generated by f(a) ∼ a for all a ∈ A.

Definition 1.2. A non-empty topological space X is a CW-complex if it

admits a filtration X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆ X such that:

(i) X0 is a non-empty discrete set of points (0-cells).

(ii) For each n ≥ 1, Xn can be obtained by attaching n-cells enα to Xn−1

via maps φα : Sn−1 → Xn−1.

(iii) X =
⋃
nX

n and the topology in X coincides with the weak topology

associated to such filtration.

Under these conditions, Xn will be called n-skeleton of X.

According to Definition 1.1, the condition (ii) in the definition of CW-

complex means that Xn is the quotient space of the disjoint union of Xn−1

with a collection of n-discs under the identification x ∼ φα(x) for x ∈ ∂Dn
α,

i.e. Xn =
(
Xn−1

⊔
αD

n
α

)
/ ∼ where ∼ is the equivalence relation generated

by x ∼ φα(x) for x ∈ ∂Dn
α. The n-cell enα is the homeomorphic image of

Dn
α \ ∂Dn

α.

Definition 1.3. If X = Xn for some n, then X is finite-dimensional, in

which case we will say that its dimension is dim(X) = min{n ∈ N |X =

Xn}. If there is no such n, then dim(X) =∞.

Definition 1.4. A CW-complex X is called finite if it has only finitely

many cells.
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Example 1.5. The n-sphere is a CW-complex. For example, if we take one

0-cell e0 and one n-cell en with constant attaching map Sn−1 → e0, then

Sn = Xn.

Example 1.6. R is a CW-complex. Let X0 = Z and for each i ∈ Z attach

to X0 a 1-cell e1
i via the map φi : S0 = {0, 1} → Z defined by φi(0) = i and

φi(1) = i+ 1 to obtain X1. Then, X1 = R.

More generally, Rn is a CW-complex.

Example 1.7. Let Γ = (V,E) be a graph with vertices V and edges E.

Take as the 0-cells the vertices, X0 =
⋃
v∈V e

0
v, and for each edge {u, v} ∈ E

attach to X0 a 1-cell e1
{u,v} via the map φ{u,v} : S0 = {0, 1} → X0 defined

by φ{u,v}(0) = u and φ{u,v}(1) = v to obtain X1. Then, Γ = X1 is a

CW-complex.

Example 1.8. The torus T is a CW-complex. A filtration fitting the defi-

nition would be the following:

Take X0 = {∗}. Attach to it two 1-cells e1
1, e

1
2 via the constant maps

φ1 = φ2 : S0 → {∗} to obtain X1. Take e2 a single 2-cell and consider the

map φ : S1 → X1 such that it sends each pair of opposite quarters of the

S1 to a different 1-cell. Then, T = X2.

These examples help us to get an idea of how important to the CW-

complex structure of a topological space X is the way the discs Dn
α are

incorporated into X. That leads to the following definition, that we will use

further in this section to clarify what CW in CW-complexes stand for:

Definition 1.9. For each n-cell enα of a CW-complex X we define its char-

acteristic map Φn
α : Dn

α → X by the composition

Dn
α ↪→ Xn−1

⊔
α

Dn
α � Xn ↪→ X.

Remark 1.10. If X is a CW-complex and enα is any of its n-cells, then Φn
α

is continuous and its restriction to the interior of Dn
α is a homeomorphism

onto enα.
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Remark 1.11. If A ⊆ X is an open (closed) subset of a CW-complex X,

then a map f : A → Y , where Y is any topological space, is continuous if

and only if its restriction f
∣∣
A∩ē

is continuous for all cells of X.

And it is always important when we define a mathematical object (or

structure) to define and study its sub-objects (sub-structures):

Definition 1.12. Given a CW-complex X, a subspace A ⊂ X is a subcom-

plex of X if for every cell e of X, if there is p ∈ e such that p ∈ A, then

ē ⊂ A, where ē is the closure of e.

Equivalently, a subspace A of a CW-complex X is a subcomplex if it is

a closed subset that is the union of a set of cells of X.

Definition 1.13. Given a CW-complex X and a set of points P ⊆ X,

the closure of P in X, denoted by X(P ), is the smallest subcomplex of X

containing P , i.e., the intersection of all subcomplexes of X that contain P .

Definition 1.2 introduces CW-complexes in a constructive way, making

it easier to work with such spaces. At this point we are able to relate

this definition with the original one that J. H. C. Whitehead formulated

in 1949 in [Whi49]. Whitehead’s definition, even if less practical than the

one commonly used nowadays, gives a better insight in why such spaces are

called CW-complexes and which topological necessities they were defined to

cover in Homotopy Theory.

Definition 1.14. [Whi49, Section 4] A Hausdorff space X is called a cell

complex if it is the union of disjoint open cells enα subject to the following

condition: the closure ēnα of each n-cell enα ∈ X shall be the image of a fixed

n-simplex σnα by a map f : σnα → ēnα such that

(i) f
∣∣
(σnα\∂σnα)

is a homeomorphism onto enα

(ii) ∂enα ⊂ Xn−1, where ∂enα = f∂σbα = ēnα\enα and Xn−1 is the (n − 1)-

skeleton of X, consisting of all the cells whose dimensionalities do not
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exceed n− 1.

Definition 1.15. [Whi49, Section 5] A cell complex X is said to be closure

finite if X(e) is a finite subcomplex of X for every cell.

Note that the notion of subcomplex refers to cell complexes and not to

CW-complexes. A subspace A of a cell complex X is a subcomplex if it is

the union of a subset of X’s cells such that e ⊆ L implies ē ⊆ L for all cells

of X.

Definition 1.16. [Whi49, Section 5] A cell complex X has the weak topology

if a subset U ⊆ X is closed provided U ∩ ē is closed for each cell e ∈ X.

And finally, Whitehead’s definition of CW-complex:

Definition 1.17. [Whi49, Section 5] A cell complex X is a CW-complex if

it is closure finite and has the weak topology.

Now we can see clearly that C stands for closure finite and W for weak

topology.

A proof of the equivalence between Definition 1.2 and Definition 1.17

can be found, for example, in the Appendix of [Hat01]:

Proposition 1.18. [Hat01, Proposition A.2.] Given a Hausdorff space X

and a family of maps Φn
α : Dn

α → X, then these maps are the characteristic

maps of a CW-complex (as in Definition 1.2) structure on X if and only if:

(i) each Φn
α restricts to a homeomorphism from D̊n

α = Dn
α\∂Dn

α onto its

image, a cell enα ⊆ X;

(ii) for each cell enα, Φn
α(∂Dn

α) is contained in a finite subcomplex whose

cells have dimension strictly less than n; and

(iii) a subset of X is closed if and only if it meets the topological closure of

each cell of X in a closed set.
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As one may note, previous proposition alone does not prove the equiv-

alence of the two definitions. For its completion, CW-complexes defined as

in Definition 1.2 have to be Hausdorff. A stronger property is true:

Proposition 1.19. [Hat01, Proposition A.3.] CW-complexes (as in Defini-

tion 1.2) are normal and, in particular, Hausdorff.

We shall now introduce some constructions preserving the structure of

CW-complexes that will be used directly or indirectly for the results on this

thesis.

1.1 Quotients

Let X be a CW-complex and A ⊆ X a subcomplex of X. Then the space

X/A inherits a CW-structure from X naturally, by keeping the cells from

X rA and identifying A with an extra 0-cell.

In a more general case that will be useful when considering mapping

cones and joins, for example, we have:

Proposition 1.20. [Whi49, (F) in Section 5] If X is a CW-complex, L is

a closure finite complex and π : X → L is a surjective map such that:

1) L has the identification topology determined by π and

2) L(f(ē)) is finite for every cell e ∈ X,

then L is a CW-complex.

1.2 Product

Definition 1.21. Let X and Y be CW-complexes with cells enα and ẽnβ and

characteristic maps Φn
α : Dn

α → X and Φ̃n
β : Dn

β → Y , respectively. We say

the product cellular structure of X × Y is the one defined by (X × Y )n =

17



{ekα × ẽlβ | 0 ≤ k + l ≤ n} and characteristic maps

Ψk,l
α,β : Dk+l

α,β −→ X × Y

p 7−→ Ψk,l
α,β (p) =

(
Φk
α(pX), Φ̃l

β(pY )
)
,

where pX = fk,l(π
k
1 (p)) and pY = fk,l(π

l
2(p)) for the natural homeomorphism

fk,l : Dk+l → Dk ×Dl and the projections πk1 , π
l
2 from Dk ×Dl to Dk and

Dl, respectively.

Note that, for any cells ekα ∈ X and elβ ∈ Y , ekα × ẽlβ ⊂ X(ekα)× Y (ẽlβ)

holds, being the latter a subcomplex of X × Y . Then, by definition of

closure of a subset in a CW-complex, (X × Y )
(
ekα × ẽlβ

)
⊂ X(ekα)× Y (ẽlβ)

and therefore since X and Y a closure finite, so is X × Y .

However, X and Y having the weak topology with respect to their CW-

complex structures doesn’t generally mean X × Y has the weak topology

with respect to the product cellular structure defined above.

According to Theorem A.6 ([Hat01, Appendix: Topology of Cell Com-

plexes]) and to Propositions (D) and (H) ([Whi49, Section 5]) we have some

conditions on X and Y for their product (together with the product cellular

structure) to be a CW-complex:

Theorem 1.22. Let X and Y be CW-complexes. Then X×Y with the prod-

uct cellular structure defined above is a CW-complex if any of the following

is true:

(i) either X or Y is locally compact;

(ii) either X of Y is locally finite;

(iii) both X and Y have finitely many cells.

1.3 Join

Definition 1.23. The join of two non-empty topological spaces X and Y ,

denoted by X ∗ Y , is given by the quotient

X ∗ Y = X × Y × [0, 1]/ ∼,

18



where ∼ is the equivalence relation generated by (x, y1, 0) ∼ (x, y2, 0) for all

x ∈ X and y1, y2 ∈ Y and (x1, y, 1) ∼ (x2, y, 1) for all x1, x2 ∈ X and y ∈ Y .

Corollary 1.24. If X and Y are CW-complexes such that any of the condi-

tions in Theorem 1.22 is true, then X ∗ Y admits a CW-structure inherited

from the product cellular structure of X × Y × [0, 1] and the projections

πX : X × Y × {0} → X and πY : X × Y × {1} → Y .

Proof. By Theorem 1.22 and since [0, 1] locally compact, both X × Y and

X×Y × [0, 1] are CW-complexes with respect to the corresponding product

cellular structure.

Let CX = X × Y × [0, 1]/ ∼0, where ∼0 is the equivalence relation

generated by (x, y1, 0) ∼0 (x, y2, 0) for all x ∈ X and y1, y2 ∈ Y . Let

π̃X : X × Y × [0, 1]→ CX be the corresponding quotient map. Then, ap-

plying Proposition 1.20 to π̃X , we have that CX is a CW-complex.

We can express X∗Y as the quotient CX/ ∼1 where ∼1 is the equivalence

relation generated by (x1, y, 1) ∼1 (x2, y, 1) for all x1, x2 ∈ X and y ∈ Y .

Let π̃Y : CX → X ∗ Y be the corresponding quotient map. Then, applying

Proposition 1.20 to π̃Y , we have that X ∗Y is a CW-complex,, as we wanted

to see.

1.4 Attaching spaces along maps

Some important examples of attaching spaces that we will use throughout

this thesis are the following:

Definition 1.25. Given f : X → Y a continous map between topological

spaces, the mapping cylinder of f is

Cyl (f) = (X × [0, 1]) ∪g Y,

where g : X × {1} ⊂ X × [0, 1]→ Y is defined by g(x, 1) = f(x).

The mapping cone of f is

C (f) = Cyl (f) / ∼,
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where ∼ is the equivalence relation generated by (x, 0) ∼ (x′, 0) for all

x, x′ ∈ X.

Definition 1.26. Given f : X → Y and g : X → Z continuous maps

between topological spaces, the double mapping cylinder of Y
f←− X

g−→ Z

is

Cyl (f, g) = (X × [0, 1]) ∪k (Y t Z) ,

where k : X×{0, 1} ⊂ X× [0, 1]→ (Y t Z) is defined by k(x, 0) = f(x) ∈ Y

and k(x, 1) = g(x) ∈ Z.

Definition 1.27. Let X and Y be CW-complexes. Then a continuous map

f : X → Y is called cellular if f(Xn) ⊆ Y n for all n.

A cellular map sends 0-cells to 0-cells but the same is not necessarily true

for n-cells with n > 0. For example, take f : R → R given by f(x) = x2,

where R has the CW-complex structure given in Example 1.6. f is a cellular

map since X0 = Z, f(Z) ⊂ Z and f(R) ⊆ R. However, if we take e1 = (1, 2),

f(e1) = (1, 4), and (1, 4) is not a 1-cell but the union of two 1-cells and one

0-cell.

Note that the maps g and h in Definition 1.25 are cellular if f is, given

that {0} and {1} are the 0-cells of [0, 1]. Analogously, the map k in Defini-

tion 1.26 is cellular if f and g are.

The following theorem gives us some conditions under which an adjunc-

tion space is a CW-complex:

Theorem 1.28. [FP90, Theorem 2.3.1.][Lüc12, Lemma 3.10] Let X and

Y be CW-complexes and A ⊆ X a subcomplex of X. Let f : A → Y be

a cellular map. Then, if we take Z to be the topological push-out of the

diagram formed by f and ι : A ↪→ X, Z is a CW-complex.

Moreover, if ῑ and f̄ are the maps that complete the push-out diagram and

c(X), c(Y ), c(A), c(Z) are the sets of open cells of X,Y,A and Z respectively,

the n-skeleton Zn = f̄(An) ∪ ῑ(Y n) and c(Z) = c(Y ) t (c(X)\c(A)).
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Corollary 1.29. Let X, Y and Z be CW-complexes and let f : X → Y

and g : X → Z be cellular maps. Then the mapping cone C (f), the map-

ping cylinder Cyl (f) and the double mapping cylinder Cyl (f, g) are CW-

complexes with X and Y (and Z in the case of Cyl (f, g)) as subcomplexes.

Proof. Consequence of Proposition 1.20 and Theorem 1.28.

The condition of f being a cellular map is not as big a restriction as

it may seem, given the following result, that can be found for example in

[tD08, Theorem 8.5.4.], [Hat01, Theorem 4.8] and [FP90, Theorem 2.4.11]:

Theorem 1.30 (Cellular Approximation Theorem). Every continuous map

f : X → Y between CW-complexes is homotopic to a cellular map g : X → Y .

If f is already cellular on a subcomplex A ⊂ X, the homotopy may be taken

to be stationary on A.

In [Lüc89, Theorem 2.1], W. Lück provides a version of the theorem for

G-CW-complexes (which we will talk about in the next section).

2 G-CW-Complexes

Definition 1.31. Let G be a discrete group and X a topological space such

that G acts continuously on X. A G-CW-complex structure on X consists

of

(i) a filtration ∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆ X such that⋃
n≥0X

n = X;

(ii) a collection {enα |α ∈ An} of G-subspaces enα ⊆ Xn for each n ∈ N

such that

(a) X has the weak topology with respect to the filtration {Xn}n∈N
(b) for each n ≥ 0 Xn can be obtained by attaching the G-subspaces enα

to Xn−1 via continuous G-maps qnα : G/Hα × Sn−1 → Xn−1, where
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Hα are subgroups of G. That is, Xn is the push-out of the following

diagram:

⊔
α∈An

G/Hα × Sn−1 Xn−1

⊔
α∈An

G/Hα ×Dn Xn

⊔
α∈An

qnα

ι ⊔
α∈An

Qnα

In this case the n-skeleton is Xn again and enα are the (open) equivariant

n-cells and ēnα are their topological closure (we may refer to them as closed

equivariant n-cells).

We may assume that X is a Hausdorff space. In fact, in some of their

first appearances, G-CW-complexes were defined to be Hausdorff spaces

([Mat71], [Ill73]), as the original CW-complexes were all normal (and hence

Hausdorff). Also, in [tD87] it is shown that if Xn is obtained from Xn−1 as

in the push-out above and Xn−1 is Hausdorff, then Xn is also Hausdorff.

G-CW-complexes can be defined more generally for topological groups

(see [Lüc05], for example).

As for any G-space, the isotropy groups of a G-CW-complex X play

an essential role when studying the relation between G and X. If we take

the isotropy group of x ∈ X, Gx = {g ∈ G | gx = x}, we can see that it

is nothing than the preimage of {x} by the action of G on X, which is a

continuous map. In the case that we focus our interest, groups are discrete,

and so equipped with the discrete topology. In that case, of course, isotropy

groups are open and closed.

Proposition 1.32. [Lüc05, Remark 1.3] Let X be a G-space with G-invariant

filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆ X =
⋃
n≥0

Xn.
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Then the following assertions are equivalent:

i) Every isotropy group of X is open and the filtration above yields a

G-CW-structure on X.

ii) The filtration above yields a CW-structure on X such that for each

open cell e ⊆ X and each g ∈ G, if ge∩e 6= ∅ then g fixes e point-wise.

The case of the proposition above holds for discrete groups, but it is

not the general case if one takes in consideration any topological group. In

Section 2 of [Ill90] there is an example of non-discrete equivariant (for the

circle group S1 = {z ∈ C | |z| = 1}) CW-complex X such that X does not

admit a CW structure compatible with the equivariant CW structure given.

Definition 1.33. Let G be a topological group acting on a CW-complex

X. We say that the G-action on X is cellular (or that G acts cellularly on

X) iff

(i) if e is an n-cell of X and g ∈ G, then ge is also an n-cell of X and

(ii) if e is a cell of X and g ∈ G is such that ge∩ e 6= ∅ then gp = p for all

p ∈ e.

As a particular case of Proposition 1.32, we have the following charac-

terization of equivariant CW-complexes for discrete groups:

Corollary 1.34. Let G be a discrete group and X a topological space. Then

X is a G-CW-complex if and only if X admits a CW-structure and G acts

on X cellularly.

Example 1.6 (Continued). Let G = Z = 〈t〉, then R is a G-CW-complex.

The G-action would be defined by tnx = x+ n, where n ∈ Z and x ∈ R, i.e.

G = Z acts on R by translation of 1 unit in the positive direction. According

to Corollary 1.34, we only need to check that the action is cellular. 0-cells

are points m ∈ Z, and clearly G sends points in Z to Z. 1-cells are intervals

(m,m + 1) where m ∈ Z. Since all elements of g would act by addition of
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an integer, 1-cells would also go to 1-cells. It only remains to check that

if g ∈ G and a 1-cell (m,m + 1) are such that gx ∈ (m,m + 1) for some

x ∈ (m,m+ 1), then gy = y for all y ∈ (m,m+ 1). But that is clear given

the definition of the action.

More generally, Rn is a Zk-CW-complex for any n, k ∈ N, where each

generator of Zk acts either trivially on Rn or by translation by any integer

on one of the components of the points of Rn.

Example 1.35. Similarly, R is also a D∞-CW-complex, where D∞ =

〈a, b | ab = ba, b2 = 1〉 is the infinite dihedral group.

In this case, a acts by translation of 2 units in the positive direction and

b by reflection with respect to 0.

It is necessary for the translation induced by a to be of 2 units since the

element ab fixes the midpoint between 0 and a0, which would need to be a

0-cell itself and not belong to the interior of a 1-cell. Alternatively, we could

define the 0-skeleton of R to also include the points of the form m
2 for m ∈ Z

and the 1-skeleton to be the segments between consecutive 0-cells.

Definition 1.36. Given a group G and a G-space X (with left-action), the

quotient of X by the G-action is

G\X = X/ ∼

where x ∼ y if and only if there is g ∈ G such that x = gy.

Note that G\X is itself a G-space where G acts trivially. Since G and X

have a topology and the G-action on X is continuous, G\X is a topological

space with the quotient topology.

Definition 1.37. A G-space X is cocompact if G\X is compact.

Definition 1.38. AG-CW-complex is said to be of finite type if the indexing

sets An in Definition 1.31 are all finite, i.e., if there are finitely many n-cells

for all n ∈ N.
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Remark 1.39. A G-CW-complex is of finite type if and only if it has only

finitely many G-orbits in each dimension.

Remark 1.40. A G-CW-complex X is cocompact if and only if it is of finite

type and finite-dimensional.

Example 1.8 (Continued). Consider G = Z2 = 〈s, t〉. As seen in the

continuation of Example 1.6, R2 is a Z2-CW-complex. We can take as

action the one generated by s(0, 0) = (1, 0) and t(0, 0) = (0, 1).

Note that in this case Z2\R2 = T. And so, T is a Z2-CW-complex on

which Z2 acts trivially.

2.1 Operations with G-CW-complexes

In Section 1 we showed constructions with CW-complexes that result in CW-

complexes that we will use throughout. Let us extend some of those results

to G-CW-complexes for discrete groups, using Corollary 1.34. In the case of

the quotient and product of G-CW-complexes, the properties (F ) and (H)

in [Mat71], respectively, provide more general results than the ones in this

section, but we are only interested in the case where G is a discrete group. In

the case of the join, mapping cylinder and double mapping cylinder, similar

results can be found in [Lüc89]. For this reasons, one should read the proofs

we provide as a way of obtaining useful information about the G-actions for

the discrete case, since the results were proved in previously cited sources.

Corollary 1.41. Given a G-CW-complex X and π : X � L a surjective

map as in Proposition 1.20. Assume moreover that gx = gy for all g ∈ G

and x, y ∈ X such that π(x) = π(y) and that π is cellular. Then L is a

G-CW-complex.

Proof. Given g ∈ G, g acts on l ∈ L by l 7→ π(gx), where π(x) = l. This

action is cellular as both π and the action of G on X are cellular.
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Corollary 1.42. Let X and Y be G-CW-complexes. Then, under any of

the conditions stated in Theorem 1.22, X × Y is a G-CW-complex.

Proof. By Theorem 1.22, X × Y with the product cellular structure is a

CW -complex.

Define the action of g ∈ G on X × Y by (x, y) 7→ (gx, gy). We need to

see that this action is cellular:

(i) If e is an n-cell of X×Y and g ∈ G, then ge is also an n-cell of X×Y :

By definition of the product cellular structure on X × Y , there is e1 a

k-cell of X and there is e2 a (n − k)-cell of Y such that e = e1 × e2.

Also, ge = (ge1) × (ge2), and since the G-actions on X and Y are

cellular, we have ge1 is a k-cell of X and ge2 is an (n − k)-cell of Y .

Hence, ge is the n-cell of X × Y .

(ii) If e is a cell of X × Y and g ∈ G is such that ge ∩ e 6= ∅ then gp = p

for all p ∈ e:

Let e1 and e2 as above. Then if ge ∩ e 6= ∅ then we have ge1 ∩ e1 6= ∅

and ge2 ∩ e2 6= ∅. And as the G-actions on X and Y are both cellular,

that means that gp1 = p1 for all p1 ∈ e1 and gp2 = p2 for all p2 ∈ e2.

Therefore, for every p ∈ e, gp = p.

By Corollay 1.34, we are done, as G is discrete.

Corollary 1.43. Let X and Y be G-CW-complexes. Then, under any of

the conditions stated in Theorem 1.22, X ∗ Y is a G-CW-complex.

Proof. X × Y is a G-CW-complex by Corollary 1.42. Hence, X × Y × [0, 1]

is also a G-CW-complex by the same result, taking the trivial G-action on

[0, 1]. Let π : X × Y × [0, 1] → X ∗ Y be the quotient map. Note that the

restriction π to X × Y × (0, 1) is injective. Note that the cells of X ∗ Y are

of the form π(e1× e2× (0, 1)), π(e1× e2× 0) = e1 or π(e1× e2× 1) = e2 for

e1 and e2 cell of X and Y respectively.
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Let g ∈ G, then we define the action of g on X ∗ Y by gπ(x, y, t) =

π(g(x, y, t)) = π(gx, gy, t). We need to see now that this G-action is cellular:

(i) If e is an n-cell of X ∗ Y and g ∈ G, then ge is also an n-cell of X ∗ Y :

If e is of the form ei for i ∈ {1, 2}, then since X and Y are G-CW-

complexes, ge is a cell of X ∗ Y of the same form. If e is of the form

π(e1×e2×(0, 1)), then ge = π(ge1×ge2×(0, 1)) is also a cell of X ∗Y ,

as ge1, ge2 and (0, 1) are cells of X, Y and [0, 1] respectively.

(ii) If e is a cell of X ∗ Y and g ∈ G is such that ge ∩ e 6= ∅ then gp = p

for all p ∈ e:

If e = ei for i ∈ {1, 2}, then we are done since G acts cellularly on

X and Y . If e is of the form π(e1 × e2 × (0, 1)) and ge ∩ e 6= ∅, then

we have g(e1 × e2 × (0, 1)) ∩ e1 × e2 × (0, 1) 6= ∅. Let p ∈ ∩e, since

π is injective in X × Y × (0, 1), π−1(p) ∈ e1 × e2 × (0, 1) is a single

point. Since G acts cellularly in X×Y × [0, 1], then gπ−1(p) = π−1(p).

Hence, gp = p, as we wanted to see.

By Corollay 1.34, we are done, as G is discrete.

Corollary 1.44. Let X and Y be G-CW-complexes and let f : X → Y be

a G-map. Then, Cyl (f) is a G-CW-complex.

Proof. Let G act trivially on [0, 1]. Then, by Corollary 1.42, X × [0, 1] is a

G-CW-complex, and so is (X × [0, 1])tY . Let π : (X × [0, 1])tY → Cyl (f)

be the quotient map. Then, given g ∈ G we can define the action of g on

Cyl (f) as gπ(x, t) = (gx, t) for x ∈ X and t ∈ [0, 1] and gπ(y) = gy for

y ∈ Y . Since f is a G-map, the action is well-defined, i.e., for all x ∈ X

gπ(x, 1) and gπ(f(x)) correspond to the same point in Cyl (f). By definition,

π is bijective when restricted to X × [0, 1) and when restricted to Y .

Hence, the cells of Cyl (f) are of the form π(e1 × {0}), π(e1 × (0, 1)) or

π(e2) for e1 and e2 cells of X and Y respectively.
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(i) If e is an n-cell of Cyl (f) and g ∈ G, then ge is also an n-cell of Cyl (f):

Let e be an n-cell of Cyl (f) of the form π(e1 ×A) where e1 is a k-cell

of X and A is either {0} or (0, 1). Since π is bijective when restricted

to X × [0, 1), we have k + dim(A) = n. By definition of the G-action

on Cyl (f), ge = π((ge1) × A). Since X is a G-CW-complex, if e1 is

a k-cell of X, so is ge1. And again as π is bijective when restricted

to X × [0, 1), that means ge is a k + dim(A)-cell of Cyl (f). In the

case e is an n-cell of Cyl (f) of the form π(e2) for e2 and n-cell of Y ,

as gπ(e2) = π(e2) and Y is a G-CW-complex, gπ(e2) is an n-cell of

Cyl (f).

(ii) If e is a cell of Cyl (f) and g ∈ G is such that ge ∩ e 6= ∅ then gp = p

for all p ∈ e:

Let again e be of the form π(e1 × A) where e1 is a cell of X and A

is either {0} or (0, 1). Then, since π is bijective when restricted to

X × [0, 1) and by definition of the action of G on Cyl (f), ge ∩ e 6= ∅

if and only if g(e1 × A) ∩ e1 × A 6= ∅. But G is acting trivially on

[0, 1], so the second condition is equivalent to ge1 ∩ e1 6= ∅. And since

X is a G-CW-complex, in that case for all p ∈ e1, gp = p, which by

analogous reasoning is equivalent to gq = q for all q ∈ e. In the case e

is of the form π(e2), the proof is analogous, taking into consideration

that f is a G-map (and hence f(gx) = gf(x)) for the points in Cyl (f)

of the form π(f(x)) for x ∈ X.

By Corollay 1.34, we are done, as G is discrete.

Corollary 1.45. Let X, Y and Z be G-CW-complexes and let f : X → Y

and g : X → Z be G-maps. Then, Cyl (f, g) is a G-CW-complex.

Proof. It is only necessary to apply Corollary 1.44 to each of the maps and

identify the two copies of X × {0}.
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3 Families of subgroups

Given two G-spaces X and Y , and a G-map g : X → Y , we denote by [g]

the equivalence class of all G-maps from X to Y that are homotopic to g

and we denote by [X,Y ]G the set of G-homotopy classes of G-maps from X

to Y .

The following theorem is stated and proved for topological groups in

[Lüc05], but we include a reduced version restricted to discrete groups. With

it, families of subgroups are introduced from their relation to Homotopy

Theory.

Theorem 1.46 (Whitehead Theorem for Families). [Lüc05, Theorem 1.6]

Let f : Y → Z be a G-map of G-spaces for G a discrete group. Let F be a

set of subgroups of G which is closed under conjugation. Then the following

assertions are equivalent:

i) for any G-CW-complex X, whose isotropy groups belong to F, the map

induced by f

f∗ : [X,Y ]G → [X,Z]G, [g] 7→ [f ◦ g]

between the set of G-homotopy classes of G-maps is bijective;

ii) for any H ∈ F the map fH : Y H → ZH is a weak homotopy equiva-

lence, where AH represents the subset of fixed points by H of a G-space

A.

Definition 1.47. Let G be a group. A non-empty collection F of subgroups

of G is a family if it is closed under conjugation. If it is also closed under

finite intersections, we say F is a semi-full family. In the case it is closed

under taking subgroups, we call F a full family.

All results produced in this thesis will refer to full families. Therefore,

if not indicated otherwise, we will assume that families are full families.
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Example 1.48. The following are full families of subgroups:

1) F = {{1}}, the trivial family;

2) All, the family of all subgroups of G;

3) Fin, the family of all finite subgroups of G;

4) VC, the family of all virtually cyclic subgroups of G;

5) P, the family of all p-subgroups of G;

Example 1.49. Let X be a non-empty class of groups closed under taking

subgroups and let r : X→ N ∪ {∞} be a rank such that:

(i) if H,K ∈ X are such that there is an injective homomorphism f : H →

K, then r(H) ≤ r(K) and

(ii) if H,K ∈ X are such that H ∼= K, then r(H) = r(K).

Then, given a group G and n ∈ N ∪ {∞},

Xn(G) = {H ≤ G |H ∈ X and r(H) ≤ n}

is a full family of subgroups of G.

Here we expose some ways to obtain new families from given families

and subgroups:

Remark 1.50. Let F and G be two families of subgroups of a group G and

let K ≤ G and N CG. Then, the following holds:

1) F ∩G is a family of subgroups of G;

2) F ∪G is a family of subgroups of G;

3) the restriction of F to K, F ∩ K = {H ∩ K |H ∈ F}, is a family of

subgroups of K;

4) F/N = {HN/N ≤ G/N |H ∈ F} is a family of subgroups of G/N .

Remark 1.51. If the families F and G in Remark 1.50 are full, so are F∩G,

F ∪G, F ∩K and F/N .
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If the families F and G are semi-full, so are F ∩ G, F ∩ K and F/N .

However, F ∪ G is not semi-full in general, given that the subgroups of the

form H ∩K, where H ∈ F and K ∈ G, do not necessarily belong to any of

the two original families.

4 Classifying spaces

In this section, we present some basic results about classifying spaces for

families of subgroups. More information can be found in [Lüc05], for exam-

ple.

Definition 1.52. Let G be a topological group and let F be a semi-full

family of subgroups of G. A G-CW-complex X is a classifying space of G

for the family F if it satisfies the following conditions:

(i) All isotropy groups of X belong to F.

(ii) If Y is a G-CW-complex with isotropy groups in F, then there exists

G-map f : Y → X, unique up to G-homotopy.

Equivalently, we may say X is a model for EF (G) when X is a classifying

space for the family F of subgroups of G.

We will refer to condition (ii) as universal property of classifying spaces,

and it is equivalent to X being a terminal object in the G-homotopy category

of G-CW-complexes with isotropy groups in the family F.

One of the first questions that arises is whether the existence of such

spaces is conditional or universal. The following theorem shows that their

existence is universal:

Theorem 1.53 (Existence of models for EF (G)). [Lüc89, Proposition 2.3]

Let G be a topological group and F a semi-full family of (closed) subgroups

of G. Then, there is a model for EF (G).

And as a consequence of Whitehead Theorem for Families (1.46), we can

characterize classifying spaces homotopically as follows:
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Theorem 1.54 (Homotopy characterization of EF (G)). [Lüc05, Theorem

1.9] Let F be a semi-full family of subgroups of a topological group G. Then,

a G-CW-complex X is a model for EF (G) if and only if all its isotropy

groups belong to F and for each H ∈ F the set XH of points fixed by H is

weakly contractible.

In the case of a discrete group G, the condition of XH being weakly

contractible can be substituted by XH being contractible, as weak homotopy

equivalences between CW-complexes are homotopy equivalences ([Whi12,

Theorem 3.5]).

Proposition 1.55. Let F be a semi-full family of subgroups of a discrete

group G. Then, a G-CW-complex X is a model for EF (G) if and only if all

its isotropy groups belong to F and for each H ∈ F the set XH is contractible.

Finally, when considering full families of subgroups of discrete groups,

we can conclude the following characterization of classifying spaces:

Corollary 1.56. [Flu11, Corollary 2.5] Let F be a full family of subgroups

of a discrete group G. Then, a G-CW-complex X is a model for EF (G) if

and only if for every H ≤ G we have

(i) XH = ∅ if H /∈ F;

(ii) XH is contractible if H ∈ F.

Example 1.57. Let G be any discrete group and All the family of all

subgroups of G, then G/G = {∗} is a model for EAll (G). Moreover, EF (G)

admits a 0-dimensional model if and only if G ∈ F ([Flu11, Proposition

3.19]).

Example 1.6 (Continued). Rn is a classifying space for the family of finite

subgroups Fin of Zn (which in this case coincides with the trivial family).

Given a set {g1, . . . , gn} of generators of Zn and a base {e1, . . . , en} of Rn as
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a R-vector space, define the action of Zn on Rn as follows: For i ∈ {1, . . . , n},

gi acts on Rn by translation by the vector ei.

Then, it is clear that only the subgroup {1} fixes points (all Rn, which

is contractible).

Example 1.35 (Continued). R is a model for EFin (D∞).

First, note that a subgroup H of D∞ is finite if and only if there is i ∈ Z

such that H = Hi = 〈bai〉. It is easy to see that RHi = {−i}. Moreover,

if K ≤ D∞ is not finite, then it contains an element of the form aj , which

doesn’t fix any element in R. Hence, if K /∈ Fin, RK = ∅, as we needed to

see.

We will visit examples of classifying spaces for other families than Fin

and the trivial family in Section 5 of Chapter 3.
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Chapter 2

Bredon Cohomology

Contents

1 Bredon Modules . . . . . . . . . . . . . . . . . . . 34

2 Free and projective Bredon modules . . . . . . . 36

3 Bredon Cohomology . . . . . . . . . . . . . . . . . 39

1 Bredon Modules

LetG be a group. IfH is a subgroup ofG, thenG/H is aG-space. Moreover,

the action of G on G/H is transitive, so G/H is a homogeneous G-space.

Let H,K ≤ G and consider G/H and G/K as G-spaces. Then, we

denote the set of all G-maps from G/H to G/K as [G/H,G/K]G.

Given f ∈ [G/H,G/K]G, since f(gH) = gf(H), f is fully characterised

by f(H). Assume g ∈ G is such that f(H) = gK. Then, given h ∈ H,

since hH = H, hgK = gK. That means g−1Hg ≤ K, so gK ∈ (G/K)H . In

addition, given gK ∈ (G/K)H , we can define a G-map fg : G/H → G/K

by fg(xH) = xgK and fg is the unique G-map such that the image of the

coset H is gK.

Then, gK 7→ fg is a bijection between (G/K)H and [G/H,G/K]G.
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Definition 2.1. Let G be a group and F a family of subgroups of G. The

orbit category OFG is the small category whose objects are homogeneous

G-spaces G/H for H ∈ F and whose morphisms are G-maps between such

G-spaces.

Definition 2.2. A Bredon module over the orbit category OFG is a functor

M : OFG→ Ab where Ab is the category of abelian groups.

In the case that M is a contravariant functor, we will say that M is a

right OFG-module and if it is a covariant functor, we will say that M is a

left OFG-module.

If M and N are contravariant OFG-modules, a morphism Φ : M → N

is a natural transformation from the functor M to the functor N . That

is, Φ is given by a family of homomorphisms of abelian groups Φ(G/H) :

M(G/H) → N(G/H) such that for every f ∈ [G/H,G/K]G the following

diagram commutes:

M(G/H) N(G/H)

M(G/K) N(G/K).

Φ(G/H)

Φ(G/K)

M(f) N(f)

In the case M and N are covariant OFG-modules, morphisms are defined

in the analogous way, taking into account that the vertical arrows in the

diagram have to be reversed.

Example 2.3. The trivial OFG-module ZF is defined by the functor that

associates any element of the orbit category with Z and any morphism be-

tween elements of the orbit category with the identity homomorphism in

Z. That is, if G/H,G/K ∈ OFG and f : G/H → G/K is a G-map, then

ZF(G/H) = Z and ZF(f) : Z→ Z is defined by ZF(f)(n) = n.
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More generally, given an abelian group A, we define a constant OFG

module A as A(G/H) = A for each object G/H of OFG and A(f) is the

identity homomorphism in A for every morphism f of OFG.

Example 2.4. Given K ∈ F, we define the contravariant (right) Bredon

module Z[?, G/K]G as follows:

(i) for G/H ∈ OFG, take Z[G/H,G/K]G as the free abelian group with

basis [G/H,G/K]G;

(ii) for G/H,G/L ∈ OFG and f ∈ [G/H,G/L]G, Z[f,G/K]G sends g ∈

[G/L,G/K]G to g ◦ f ∈ [G/H,G/K]G, and then extend linearly to a

homomorphism Z[G/L,G/K]G → Z[G/H,G/K]G.

Analogously, we can define the covariant (left) Bredon module Z[G/H, ?]G

for a given G/H ∈ OFG.

Definition 2.5. Mod-OFG is the category of contravariant Bredon modules

over OFG with morphisms as defined in 2.2.

OFG -Mod is the category of covariant Bredon modules over OFG with

morphisms as defined in 2.2.

2 Free and projective Bredon modules

We will briefly construct the free objects of Mod-OFG. For a more detailed

and rigorous view on this matter, see [Flu11, Chapter 1. Section 5].

Definition 2.6. An F-set ∆ is a pair ∆ = (∆, φ) consisting of a set ∆ and

a function φ : ∆ → F. We denote ∆H = φ−1({H}) the H-component of ∆

for each H ∈ F. A map f : (∆, φ) → (∆′, φ′) of F-sets is a map f between

the sets ∆ and ∆′ such that the diagram formed by f , φ and φ′ commutes.

The category described by the objects and maps defined above is denoted

by F-Set.
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A Bredon moduleM can also be seen as an F-set, takingMH = M(G/H).

We can consider the forgetful functor

U : Mod-OFG→ F-Set

that sends the Bredon module M to its underlying F-set UM , also denoted

by M .

Definition 2.7. We say an F-set X is a subset of a Bredon module M if

XH ⊆ MH for all H ∈ F. The submodule of M generated by X is the

smallest submodule of M containing the F-set X and denoted by 〈X〉.

The singleton F-sets are those with ∆K = {δ} for a particular K ∈ F and

∆H = ∅ for all H ∈ F different from K. We will denote this singleton by ∆δ,

and K = φ(δ). These F-sets give rise to the Bredon modules Z[?, G/K]G:

Lemma 2.8. [Flu11, Lemma 1.12] Let K ∈ F. Then Z[?, G/K]G = 〈∆δ〉,

where K = φ(δ).

We can write any F-set ∆ as the coproduct of the singleton F-sets of its

elements, i.e., ∆ =
∐
δ∈∆ ∆δ. For this reason, and given Lemma 2.8, we can

now define a left adjoint for U :

Proposition 2.9. [Flu11, Proposition 1.13] The forgetful functor U has a

left adjoint F : F-Set→ Mod-OFG.

It follows that given an F-set ∆ its image by F is

F∆ =
∐
δ∈∆

Z[?, G/φ(δ)]G.

Definition 2.10. Given M ∈ Mod-OFG, we say that M is free if there is

an F-set ∆ such that M = F∆.

Definition 2.11. Given P ∈ Mod-OFG, we say P is a projective Bredon

module if for every M,N ∈ Mod-OFG and morphisms φ : P → M and
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π : N →M such that N
π−→M → 0 is exact there is a morphism ψ : P → N

such that the following diagram commutes

P

N M 0

ψ
φ

π

Mod-OFG is an abelian category in which kernels and images are cal-

culated component wise. In particular, a sequence of right OFG-modules

L → M → N is exact at M if and only if the corresponding sequences of

abelian groups N(G/H)→M(G/H)→ L(G/H) are exact at M(G/H) for

all G/H ∈ OFG. For those reasons, the following characterization of projec-

tive Bredon modules, analogous to that for modules over a ring that can be

found for example in [Wei95, section 2.2] or [Rot08, section 3.1], holds true.

Proposition 2.12. Let P be a Bredon module over the orbit category OFG.

Then the following statements for P are equivalent:

(1) P is projective;

(2) every exact sequence 0→M → N → P → 0 splits;

(3) morF (P, ?) is an exact functor;

(4) P is a direct summand of a free OFG-module.

Note that the right Bredon modules Z[?, G/K]G are projective Bredon

modules, as they are free OFG-modules. This, together with Proposition 2.9,

leads us to the following crucial result:

Theorem 2.13. Mod-OFG has enough projectives, i.e., for every M ∈

Mod-OFG there is a projective P ∈ Mod-OFG and an epimorphism Φ :

P →M .

In [Mis03, Section 3], the author gives a constructive approach to projec-

tive Bredon modules that may offer more practical insight on these modules.

In particular, reading the proof of Theorem 2.13 ([Mis03, Pg. 9-10]) may be

a good exercise to get familiar with working with Bredon modules.
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Definition 2.14. Given a right OFG-module M , a resolution of M in

Mod-OFG is a long exact sequence

. . .→ Nn → Nn−1 → . . .→ N0 →M → 0

such that Nk ∈ Mod-OFG for all k.

In the case that Nk are projective OFG-modules, we say that the se-

quence is a projective resolution.

Note that Theorem 2.13 implies that there is a projective resolution of

every contravariant OFG-module in Mod-OFG.

3 Bredon Cohomology

By Theorem 2.13, every M ∈ Mod-OFG admits a projective resolution

P∗(M) � M . Therefore, for every M,N ∈ Mod-OFG we can define a

cochain complex morF (P∗(M), N), which allows us to define the derived

functors of the morphism functor morF (?, ??).

Definition 2.15. Given N ∈ Mod-OFG and n ∈ N, we define ExtnF
(
?, N

)
to be the n-th right derived functor of morF (?, N). That is, for every M ∈

Mod-OFG

Ext
n
F

(
M,N

)
= Hn(morF (P∗(M), N)).

Analogously to the case of Proposition 2.12, the results [Wei95, 2.2.3]

and [Wei95, 2.5.2] remain true for Mod-OFG:

Proposition 2.16. Let M ∈ Mod-OFG. Then the following statements for

M are equivalent:

(1) M is projective;

(2) morF (M, ?) is an exact functor;

(3) ExtnF
(
M,N

)
= 0 for every n ≥ 1 and every N ∈ Mod-OFG;

(4) Ext1
F

(
M,N

)
= 0 for every N ∈ Mod-OFG.
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Definition 2.17. Let M ∈ Mod-OFG. Then the Bredon cohomology groups

Hn
F

(
G;M

)
of G with coefficients in M are

H
n
F

(
G;M

)
= Ext

n
F

(
ZF,M

)
.
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Chapter 3

Bredon Dimensions

Contents

1 Bredon cohomological dimension . . . . . . . . . 41

2 Bredon cohomology and Classifying spaces . . . 43

1 Bredon cohomological dimension

Definition 3.1. Let G be a discrete group, F a full family of subgroups of

G and M ∈ Mod-OFG. Let n be the smallest natural number such that

there is a projective resolution of M

0→ Pn → Pn−1 → . . .→ P0 →M → 0

of length n. Then, we say that n is the projective dimension of M and

denote it by pdFM = n. In the case there is no such n, we say pdFM =∞.

As in the case of Proposition 2.16, the results [Wei95, Lemma 4.1.6] and

[Rot08, Proposition 8.6] hold for Mod-OFG:

Proposition 3.2. Let M be a right OFG-module. Then the following state-

ments are equivalent:

(1) pdFM ≤ d;
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(2) ExtnF
(
M,N

)
= 0 for every N ∈ Mod-OFG and every n > d ;

(3) Extd+1
F

(
M,N

)
= 0 for every N ∈ Mod-OFG;

(4) given any projective resolution of M

. . .→ P2 → P1 → P0 → 0,

the kernel Ker (Pd → Pd−1) is projective.

Definition 3.3. Let G be a discrete group and F a full family of subgroups

of G. The Bredon cohomological dimension of G with respect to F is the

projective dimension of the trivial OFG-module ZF and we denote it cdFG.

Note that if the group G belongs to the family F, then the trivial OFG-

module ZF is free (and hence projective). That means cdFG = 0. The

reciprocal is true in the case of F being semi-full:

Proposition 3.4. [Flu11, Proposition 3.20] Let G be a group and F a semi-

full family of subgroups of G. Then, cdFG = 0 if and only if G ∈ F.

Corollary 3.5. Given a full family F of subgroups of a discrete group G,

we have

(i) cdFG = max{d | there is M ∈ Mod-OFG with Hd
F

(
G;M

)
6= 0} and

(ii) cdFG = min{d | Hd+1
F

(
G;M

)
= 0 for all M ∈ Mod-OFG}.

Also, cdFG = ∞ if and only if the maximum in (i) doesn’t exist, which is

equivalent to the set over which we take the minimum in (ii) being empty.

Definition 3.6. Let G be a discrete group and F a full family of subgroups

of G. Then, the Bredon geometric dimension of G for the family F is the

smallest possible dimension of a model for EF (G).

Since {∗} is a model for EF (G) if G ∈ F and since {∗} is the only 0-

dimensional contractible G-CW-complex, we have the following result anal-

ogous to Proposition 3.4:

Proposition 3.7. [Flu11, Proposition 3.19] Let G be a group and F a semi-

full family of subgroups of G. Then, gdFG = 0 if and only if G ∈ F.
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2 Bredon cohomology and Classifying spaces

Given a G-CW-complex X, we will construct a chain of projective con-

travariant OFG-modules for any family F containing the family of isotropy

groups of X as done in [Mis03].

Definition 3.8. Given X a G-CW-complex, we denote by F(X) the family

of isotropy subgroups of X.

Let ∆n be the G-set formed by taking all cosets involved in the cell

attachment to construct the n-skeleton of X from its (n− 1)-skeleton. That

is, ∆n = {G/Hα |α ∈ An}.

Then we have the cellular chain complex C∗(X) given by

Cn(X) = Z[∆n].

Given K ≤ G, if we consider the cellular chain complex defined from the

G-CW-complex XK , we have Cn(XK) = Z[∆K
n ]. By definition of ∆n,

and since (G/H)K ∼= [G/K,G/H]G for any H ≤ G, we have Cn(XK) ∼=⊕
α∈An Z[G/K,G/Hα]G. Given a family F such that F(X) ⊆ F, we can

define the contravariant OFG-module

Cn(X) : OFG −→ Ab

G/K 7−→ Cn(XK),

We can summarize some of the properties of C∗(X) found for example

in [Mis03]:

Remark 3.9. (i) since Cn(X) =
⊕

α∈An Z[?, G/Hα]G, then Cn(X) is

projective for every n ≥ 0 and

(ii) given M ∈ Mod-OFG, we have

morF

(
C∗(X),M

)
∼= morF(X)

(
C∗(X), resF M

)
,

where F : F(X)→ F is the inclusion functor.
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Definition 3.10. Let X be a G-CW-complex, F a family of subgroups of G

such that F(X) ⊆ F and M ∈ Mod-OFG. We define the Bredon cohomology

groups of X with coefficients in M as the groups

H
n
F

(
X;M

)
= Hn

(
morF

(
C∗(X),M

))
for every n ≥ 0.

Corollary 3.11. [Mis03, Corollary 3.5] Let F be a full family of subgroups

of G. Let X be a model for EF (G) and M ∈ Mod-OFG. Then, C∗(X) is

a projective resolution of ZF. In particular, by the definition of Hn
F

(
G;M

)
,

we have

H
n
F

(
X;M

) ∼= H
n
F

(
G;M

)
for all n ≥ 0.

The following results relating Bredon cohomology and classifying spaces

can give a good overview of the basic relation between cohomological and

geometric Bredon dimensions:

Proposition 3.12. [LM00, Theorem 0.1 (a)] Let G be a discrete group, let

F be a semi-full family of subgroups of G and let n ≥ 3. Then, there is

an n-dimensional model for EF (G) if and only if there exists a projective

resolution of the trivial OFG-module ZF of length n in Mod-OFG.

In [Lüc89, pp. 151ff], the author constructs a projective resolution of ZF

in Mod-OFG of length n, given an n-dimensional model for EF (G), which

proves the following:

Theorem 3.13. For any semi-full family F of subgroups of a discrete group

G we have

cdF(G) ≤ gdF(G).

And as a consequence of the two previous results we have:
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Proposition 3.14. Let F be a semi-full family of subgroups of G such that

cdF(G) ≥ 3 or gdF(G) ≥ 4. Then, cdF(G) = gdF(G).

Definition 3.15. Let F be a semi-full family of subgroups of G. We say

that Y is a model for BF (G) if there is a model X for EF (G) such that

Y = X/G, that is, Y is the orbit space of some classifying space for F.

Theorem 3.16. [Flu11, Theorem 4.2] Let F be a semi-full family of sub-

groups of G. Then, for every n ∈ N we have

H
n
F

(
G;ZF

) ∼= Hn (BF (G)) ,

where H∗ denotes the singular cohomology functor.

2.1 Mayer-Vietoris sequence for push-outs

Push-outs of CW-complexes play a central role in the construction of clas-

sifying spaces. In this section we give a Mayer-Vietoris type sequence for

push-outs relating the cohomology groups of the spaces involved.

Theorem 3.17 (Mayer-Vietoris Sequence for cellular Push-outs). [Lüc12,

Satz 3.12] Consider the following push-out

X Y

Z P

ι

f f̄

ῑ

in which Y and Z are CW-complexes, X ⊆ Y is a subcomplex, ι : X → Y

the inclusion and f : X → Z is a cellular map. Then, for every Homology

theory H∗ we get the long exact Mayer-Vietoris sequence

· · · ∂n+1−−−→ Hn (X)
Hn(f)⊕Hn(ι)−−−−−−−−→ Hn (Z)⊕Hn (Y )

Hn(ῑ)−Hn(f̄)
−−−−−−−−−→ Hn (P )

∂n−→ Hn−1 (X)
Hn−1(f)⊕Hn−1(ι)−−−−−−−−−−−−→

Hn−1 (Z)⊕Hn−1 (Y )
Hn−1(ῑ)−Hn−1(f̄)
−−−−−−−−−−−−→ Hn−1 (P )

∂n−1−−−→ · · ·
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Corollary 3.18. Let X, Y and Z be CW-complexes, f : X → Z and

g : X → Y cellular maps and H∗ a homology theory. Then, if P is the

push-out of the diagram Z
f←− X g−→ Y , we get the long exact Mayer-Vietoris

sequence

· · · ∂n+1−−−→ Hn (X)
Hn(f)⊕Hn(g)−−−−−−−−−→ Hn (Z)⊕Hn (Y )

Hn(ḡ)−Hn(f̄)
−−−−−−−−−→ Hn (P )

∂n−→ Hn−1 (X)
Hn−1(f)⊕Hn−1(g)−−−−−−−−−−−−→

Hn−1 (Z)⊕Hn−1 (Y )
Hn−1(ḡ)−Hn−1(f̄)
−−−−−−−−−−−−→ Hn−1 (P )

∂n−1−−−→ · · ·

Proof. Given that g : X → Y is a cellular map, by Corollary 1.29, the inclu-

sion ι : X → Cyl (g) and the projection π : Cyl (g) → Y are cellular maps

(with X and Y being subcomplexes of Cyl (g)). By definition of Cyl (g), π

is a homotopy equivalence and we have π ◦ ι = g. Then, we can substitute

g : X → Y by ι : X → Cyl (g) in the push-out and apply Theorem 3.17.
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Bredon dimensions for

related families
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Given a group G and a family of its subgroups F, building a classifying

space for the family F can be accomplished by using known (or easier to

build) classifying spaces for other families of subgroups that are related to

F as raw materials. We can observe this in many of the constructions for

the family VC of virtually cyclic subgroups where the known models for

EFin (G) are heavily used. Similarly, there are results that provide bounds

to the Bredon cohomological dimension of a group G over a family in terms

of that over a related family.
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The purpose of this chapter is to present the results that provide bounds

on Bredon dimensions with respect to a family given the Bredon dimensions

with respect to related families. The appropriate topological constructs (for

example, quotients, joins and mapping cones of CW-complexes) have been

already presented in previous chapters, so we proceed now to introduce the

cohomological ones.

1 Restriction, induction and coinduction of Bre-

don modules

Definition 4.1. [Lüc89, 9.12] Given a group G and a family F of subgroups

of G, the tensor product over F is the bifunctor

?⊗F?? : Mod-OFG×OFG -Mod→ Ab

defined by

M ⊗F N =

(∐
H∈F

M(G/H)⊗N(G/H)

)
/ ∼,

where ∼ is the equivalence relation generated by m ⊗ N(f) ∼ M(f) ⊗ n

with m ∈M(G/H), n ∈ N(G/K), f ∈ [G/H,G/K]F and H,K ∈ F.

Here, ⊗ denotes the tensor product of abelian groups over Z.

The tensor product ⊗F can be made into a Bredon module evaluating it

in Bredon bimodules:

Definition 4.2. [Lüc89, 9.14] Let G1 and G2 be two groups and F1 and F2

families of subgroups of G1 and G2 respectively. An OF1G1-OF2G2-bimodule

M is a bifunctor

M : OF1G1 ×OF2G2 → Ab

that is covariant in the first variable and contravariant in the second.
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Example 4.3. [Flu11, Example 1.8] As we saw in Example 2.4, Z[G/H, ?]G ∈

OFG -Mod and Z[?, G/K]G ∈ Mod-OFG for all H,K ∈ F. Then,

Z[?, ??]G : OFG×OFG→ Ab

is a OFG-OFG-bimodule (see [Flu11] for a detailed definition).

Definition 4.4. Let G1, G2, F1 and F2 be as in Definition 4.2. Let M be

an OF2G2-OF1G1-bimodule and N ∈ OF1G1 -Mod. Then

M(?, ??)⊗F1 N(??)

is a left (covariant) OF2G2-module.

Symmetrically, letM ∈ Mod-OF1G1 andN be anOF1G1-OF2G2-bimodule.

Then

M(?)⊗F1 N(?, ??)

is a right (contravariant) OF2G2-module.

Note that in the tensor products in the above definition, the coproduct

would involve the abelian groups resulting from evaluating the Bredon bi-

module and module in the component marked by ?? in the first case and by

? in the second, that in both cases refer to elements of OF1G1.

Definition 4.5. [Lüc89, 9.15 and pg. 350] Let G1, G2, F1 and F2 be as

in Definition 4.2. Let F : OF1G1 → OF2G2 be a functor between orbit

categories.

The restriction with F is the functor resF : Mod-OF2G2 → Mod-OF1G1

defined by resF M = M(??)⊗F2 Z[F (?), ??]G2 .

The induction with F is the functor indF : Mod-OF1G1 → Mod-OF2G2

defined by indF M = M(?)⊗F1 Z[??, F (?)]G2 .

The coinduction with F is the functor coindF : Mod-OF1G1 → Mod-OF2G2

defined by coindF M = morF1 (Z[F (?), ??]G2,M(?)).
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The following properties of the functors described above are summarized

in [Flu11, Proposition 1.31-1.35]:

Proposition 4.6. Let G1 and G2 be groups, F1 and F2 families of subgroups

of G1 and G2 respectively and F : OF1G1 → OF2G2 be a functor between

orbit categories. Then, the following statements are true:

(1) indF is a left adjoint to resF ;

(2) coindF is a right adjoint to resF ;

(3) resF is exact;

(4) indF is right exact;

(5) coindF is left exact;

(6) resF and indF preserve arbitrary colimits;

(7) resF and coindF preserve arbitrary limits;

(8) indF preserves free and projective Bredon modules.

2 Restriction to subgroups

Let F be a family of subgroups of G. Given a subgroup K ≤ G such that

F ∩ K ⊂ F, let IK : OF∩KK → OFG be the inclusion functor (defined by

IK(H) = H for H ∈ F ∩K). Then, we have the following results regarding

restriction and induction with IK :

Proposition 4.7. [Flu11, Proposition 3.26] Induction with IK is an exact

functor.

Proposition 4.8. [Flu11, Proposition 3.28] Restriction with IK preserves

free Bredon modules. In particular, it preserves projective Bredon modules.

These propositions, together with properties (2) and (3) in 4.6, give rise

to the following isomorphisms in H∗ and Ext∗:
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Proposition 4.9. [Flu11, Proposition 3.29] For any M ∈ Mod-OFG and

N ∈ Mod-OF∩KK there is an isomorphism

Ext
∗
F∩K

(
resIK M,N

) ∼= Ext
∗
F

(
M, coindIK N

)
that is natural in both M and N .

Proposition 4.10. [Flu11, Proposition 3.31] For any M ∈ Mod-OF∩KK

there is an isomorphism

H
∗
F∩K

(
K;M

) ∼= H
∗
F

(
G; coindIK M

)
that is natural in M .

The following result can be obtained by using either the isomorphisms

in Proposition 4.10 and Corollary 3.5 or the facts that resIK is exact and

preserves projectives and resIK ZF = ZF∩K .

Theorem 4.11. [Flu11, Proposition 3.32] Let G be a group and F a family

of subgroups of G. Then for any K ≤ G we have cdF∩K K ≤ cdFG.

It is important to realise that, in general, not all right OF∩KK-modules

are of the form resIK M
′ for M ′ ∈ Mod-OFG and not all right OFG-modules

are of the form coindIK N
′ for N ′ ∈ Mod-OF∩KK. That is why we can

not ensure the equality between the corresponding Bredon cohomological

dimensions by applying any of the aforementioned arguments that prove

Theorem 4.11.

To relate the Bredon geometric dimensions, restricting ourselves to the

case where F is a full family (and hence for any subgroup K ≤ G, F∩K ⊂ F

holds), note that a model for EF (G) is also a model for EF∩K (K), and

therefore:

Proposition 4.12. [Flu11, Proposition 3.33] Let G be a group and F a full

family of subgroups of G. Then for any K ≤ G we have gdF∩K K ≤ gdFG.
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3 Families related by a functor

In this section we will describe the results in the paper [MP02] that provide

upper bounds for the Bredon cohomological dimension and similar results

included (or derived from those) in [LW12] for the Bredon geometric dimen-

sion of two families related by a functor.

Let G be a discrete group and F and H two families of subgroups of G.

Let π : F→ H be such that π̄ : OFG→ OHG defined by π̄(G/H) = G/π(H)

is a covariant functor.

In [MP02, Theorem 3.9], the author proves the existence and conver-

gence of a spectral sequence relating the Bredon cohomology groups for

both families, given the following conditions for every S ∈ H:

(MP1) For g ∈ G and L ∈ F, Lg ≤ S if and only if π(L)g ≤ S, and

(MP2) F ∩ S ⊆ F.

As a consequence of this result, we have:

Corollary 4.13. [MP02, Corollary 4.1] Let F,H, π : F→ H as above satis-

fying conditions (1) and (2) and assume that we have an integer n such that

for any S ∈ H, cdF∩S S ≤ n. Then,

cdFG ≤ n+ cdHG.

In the case of the Bredon geometric dimension, we restrict ourselves to

F ⊆ G being full families of subgroups of G. In that setting, we have the

following result:

Proposition 4.14. [LW12, Proposition 5.1 (i)] Let F ⊆ G be full families

of subgroups of a group G. Then, if there is n ∈ N such that gdF∩H H ≤ n

for every H ∈ G,

gdFG ≤ gdGG+ n.
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3.1 Passing to quotients

Let now G be a group, N CG and F a family of subgroups of G. Let H̄ be

a family of subgroups of Ḡ = G/N satisfying the following conditions:

(i) For any L ∈ F, LN/N ∈ H̄ and

(ii) for any S/N ∈ H̄, F ∩ S ⊆ F.

Let H = {S ≤ G |N ≤ S and S/N ∈ H̄} and π : F → H defined by

π(L) = LN , F,H and π satisfy conditions (MP1) and (MP2).

Moreover, if we take Φ : Mod-OHG→ Mod-OH̄Ḡ defined by Φ(M)
(
Ḡ/H̄

)
=

M(G/H), since {S 7→ S/N |S ∈ H} is a bijection between H and H̄, we have

that for all M ∈ Mod-OHG and all n ≥ 0

H
n
H

(
G;M

) ∼= H
n
H̄

(
Ḡ; Φ(M)

)
,

which means cdHG ≤ cdH̄ Ḡ.

Now, if we apply Corollary 4.13 to F, H and π : F→ H, we can conclude:

Corollary 4.15. [MP02, Corollary 5.2.] Under the previous assumptions

over F, H, π and H̄, if there is n ≥ 0 such that for any S ∈ H, cdF∩S S ≤ n,

then

cdFG ≤ n+ cdH̄ Ḡ.

As previously, in the case of the Bredon geometric dimension, we restrict

outselves to F and H̄ being full families of subgroups.

Lemma 4.16. Let G be a discrete group, N C G and H̄ a full family of

subgroups of Ḡ = G/N . Let H = {L ≤ G |LN/N ∈ H̄} and X be a model

for EH̄

(
Ḡ
)
. Then, H is a full family of subgroups of G and X is a model

for EH (G). In particular,

gdHG ≤ gdH̄ Ḡ.

Proof. To see that H is a full family of subgroups of G, we need to see that

it is closed under conjugation and under taking subgroups. Let S ∈ H and
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g ∈ G. Since N CG, we have SgN/N = (SN/N)gN . Moreover, H̄ is closed

under conjugation, so (SN/N)gN ∈ H̄. Hence, Sg ∈ H, as we needed to see.

Now let S ∈ H and K ≤ S. Since KN/N ≤ SN/N and H̄ is closed under

taking subgroups, KN/N ∈ H̄, which completes the proof for H being a full

family of subgroups of G.

We define the G-action on X as gx = (gN)x, where g ∈ G, x ∈ X and

(gN)x denotes the G/N -action on X. Then, if K ≤ G, the set XK of fixed

points of the G-action on X by K is equal to the set XKN/N of fixed points

of the G/N -action on X by KN/N .

Let L ∈ H. Since LN/N ∈ H̄, XLN/N is contractible and so is XL. Let

now L /∈ H. By definition of H, that means LN/N /∈ H̄, and for that reason

XL = XLN/N = ∅. Hence, by Corollary 1.56, X is a model for EH (G).

Theorem 4.17. Let G be a discrete group, N C G and F a full family of

subgroups of G. Let H̄ be a full family of subgroups of Ḡ = G/N such that

for every L ∈ F the subgroup LN/N of Ḡ belongs to H̄. Let H = {L ≤

G |LN/N ∈ H̄}. Then, if there is n ∈ N such that gdF∩S S ≤ n for any

S ∈ H,

gdFG ≤ n+ gdH̄ Ḡ.

Proof. By Lemma 4.16 and Proposition 4.14, showing that F ⊆ H will con-

clude the proof. Let K ∈ F. Then, by hypothesis, LN/N ∈ H̄. That means,

by definition of H, that L ∈ H, as we wanted to see.

4 Union of families

Given two families of subgroups of a group G, we can build a classifying

space for the union of those families using the classifying spaces for each of

the families. The first direct approuch gives us the following result:

Lemma 4.18. Let F and G be two families of subgroups of G. Then

gdF∪GG ≤ gdFG+ gdGG+ 1.
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Proof. Let X,Y be models for EF (G) and EG (G) respectively. Let Z =

X ∗ Y be the join of these two spaces, which is a G-CW-complex by Corol-

lary 1.43. Then G acts on Z as it acts on X and Y on each extreme of

the interval and diagonally in the rest of Z. With this action defined, Z

is a model for EF∪G (G). And we finish the proof by noting dim(Z) =

dim(X) + dim(Y ) + 1.

If additionally we also take into account the classifying space over the

intersection of those families, we have:

Lemma 4.19. [CCMNP17, Lemma 2.4] Let F and G be two full families of

subgroups of G. Then

gdF∪GG ≤ max{gdFG, gdGG, gdF∩GG+ 1}.

Proof. Let X, Y and Z be models for EF (F ), EG (G) and EF∩G (G) respec-

tively. By the universal property of classifying spaces for families, there

are G-maps, unique up to G-homotopy, h : Z → Y and f : Z → X. By

the Cellular Approximation Theorem (1.30), f and h can be assumed to be

cellular. By Corollary 1.45, Cyl (f, h) is a G-CW-complex.

Let B = ((Z × IX) tX) t ((Z × IY ) t Y ), where IX and IY are two

copies of [0, 1]. Let π : B → Cyl (f, h) be the quotient map. Then, if

g ∈ G, g acts on Cyl (f, h) by gπ(p, t) = π(gp, t) for p ∈ Z and t ∈ [0, 1]

and gπ(q) = π(gq) for q ∈ X or q ∈ Y . Then, given H ≤ G, Cyl (f, h)H =

π(
((
ZH × IX

)
tXH

)
t
((
ZH × IY

)
t Y H

)
). Since And since f , h and π

are G-maps, we can conclude

Cyl (f, h)H = π(
((
ZH × IX

)
tXH

)
t
((
ZH × IY

)
t Y H

)
)

Let H ∈ F ∪ G. If H ∈ F\G, Y H and ZH are both empty, since

H /∈ G and H /∈ F ∩ G. In that case, XH is non-empty and contractible,

so Cyl (f, h)H = π(XH). The restriction of π to X ⊆ Cyl (f, h) is the

identity, so π(XH) is also contractible. Analogously in the case H ∈ G\F.
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In the case H ∈ F ∩ G, XH , Y H , ZH and hence ZH × IX and ZH × IY

are all non-empty and contractible. Note that f(ZH) ⊆ (f(Z))H ⊆ XH

and h(ZH) ⊆ (h(Z))H ⊆ Y H . Therefore, Cyl (f, h)H is non-empty and

contractible. Finally, if H /∈ F∪G, Cyl (f, h)H = ∅ as XH = ZH = Y H = ∅.

Hence, Cyl (f, h) yields a model for EF∪G (G) of the desired dimension.

And for this last case, we can apply Corollary 3.18 and use the following

corollary to obtain a Bredon cohomological equivalent of Lemma 4.19.

Lemma 4.20. Let F and G be two full families of subgroups of G, M be

a right OF∪GG-module and FF : F → F ∪ G, FG : G → F ∪ G and I :

F ∩ G → F ∪ G the inclusion functors. Then, the following sequence in

Bredon Cohomology is exact

· · · −→ H
n
F∪G

(
G;M

)
−→

H
n
F

(
G; resFF

M
)
⊕H

n
G

(
G; resFG

M
)
−→

H
n
F∩G

(
G; resIM

)
−→ H

n+1
F∪G

(
G;M

)
−→ · · ·

and hence

cdF∪GG ≤ max{cdFG, cdGG, cdF∩GG+ 1}.

Proof. Let X, Y and Z be models for EF (G), EG (G) and EF∩G (G) respec-

tively. Consider P = Cyl (f, h) the model for EF∪G (G) described in the

proof of Lemma 4.19.

Given M ∈ Mod-OF∪GG and taking as (co)homology theory the one

defined in 3.10, by Corollary 3.18 we have the following long exact sequence:

· · · −→ H
n−1
F∪G

(
P ;M

)
−→

H
n−1
F

(
X; resFF

M
)
⊕H

n−1
G

(
Y ; resFG

M
)
−→

H
n−1
F∩G

(
Z; resIM

)
−→ H

n
F∪G

(
P ;M

)
−→ · · ·
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And using Corollary 3.11, the previous Mayer-Vietoris long exact se-

quence is equivalent to the following long exact sequence:

· · · −→ H
n
F∪G

(
G;M

)
−→

H
n
F

(
G; resFF

M
)
⊕H

n
G

(
G; resFG

M
)
−→

H
n
F∩G

(
G; resIM

)
−→ H

n+1
F∪G

(
G;M

)
−→ · · ·

Now, if we take d = max{cdFG, cdGG, cdF∩GG+ 1}, we know

H
d+1
F

(
G; resFF

M
)

= H
d+1
G

(
G; resFG

M
)

= H
d
F∩G

(
G; resIM

)
= 0

by Proposition 3.2. Hence, the long exact sequence above is

· · · → 0→ H
d+1
F∪G

(
G;M

)
→ 0→ · · ·

As the sequence is exact, in particular it is exact at Hd+1
F∪G

(
G;M

)
, which

means Hd+1
F∪G

(
G;M

)
= 0. Since this is true for all M ∈ Mod-OF∪GG, by

Proposition 3.2, we can conclude cdF∪GG ≤ d, as we wanted to see.

5 Strongly structured inclusions

5.1 A pre-example

We will firstly describe Farrell’s construction, which produces a classifying

space for the family of (virtually) cyclic subgroups of Z2. This construction

can be also found in [JPL06, p. 108] and in [Flu11, pp. 87-89].

Studying these classical constructions of classifying spaces, we can per-

ceive a hint of what nowadays represents the most broadly used procedure

to build such spaces for a family G of subgroups of a group G given known

models for EF (G) and other classifying spaces for families related with F,

where F ⊆ G: the Lück-Weiermann method.

Let then G = Z2 and F = VC be the family of (virtually) cyclic sub-

groups of G, which in this case coincides with the family of the subgroups

of Z2 that are isomorphic to Z.
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Note that for every H ∈ F there is a unique H̄ ∈ F such that H ≤ H̄

and H̄ is maximal among those subgroups with the same properties, i.e., if

L ∈ F is such that H ≤ L then L ≤ H̄.

Let H denote the set of the maximals subgroups of F we just described.

If H1, H2 ∈ H are different, then their intersection is necessarily trivial, as a

proper non-trivial intersection between two maximals would contradict the

fact that they are maximals. Moreover, Z2/H ∼= Z for any H ∈ H.

The set H can be indexed by Z and we write Hi to denote the i-th

maximal subgroup. As we saw in Example 1.6, and since Z2/H ∼= Z, if we

take Xi to be a copy of R, Xi is a model for E{{1}}
(
Z2/Hi

)
, which in this

case is equivalent to being a model for EFin

(
Z2/Hi

)
.

For any i ∈ Z, we can define a Z2-action on Xi as gx = gHix for g ∈ Z2

and for all x ∈ Xi, where gHi represents the class of g in Z2/Hi. Note that if

H ≤ Z2, the set of fixed points by H with respect to the described Z2-action

on Xi is contractible if H ≤ Hi or empty otherwise, that is, Xi is a model

for EAll(Hi)

(
Z2
)
, where All(Z2) is the family of all subgroups of Hi.

Consider now the space Yi = Xi ∗ Xi+1 for i ∈ Z, on which we have

the diagonal Z2-action defined from the Z2-actions in each of the spaces

in the join in the proof of Corollary 1.43. Let K ≤ Z2. If K ≤ Hi is

a non-trivial subgroup, since Hi ∩ Hi+1 = ∅ and K ∈ All(Hi), we have

Y K
i = XK

i ' {∗}. The same reasoning holds for any non-trivial K ≤ Hi+1.

In the case of K = {1}, Y K
i = Yi ' {∗}. And finally, in the case where

K /∈ All(Hi) ∪ All(Hi+1), the set of fixed points by K will be empty, as

XK
i = XK

i+1.

Hence, Yi is a model for EAll(Hi)∪All(Hi+1)

(
Z2
)
. This can now be proved

using Lemma 4.18. Moreover, taking Ai = {[x, y, t] ∈ Yi | t = 1/2}, Ai is a

classifying space for the family All(Hi)∩All(Hi+1) = {{1}} of subgroups of

Z2 so Lemma 4.19 can also be used.
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If we take

X =

(⊔
i∈Z

Xi ∗Xi+1

)
/ ∼,

where ∼ is the equivalence relation consisting on identifying, for each i ∈ Z,

the pair of copies of Xi in X, it follows that X is a model for EVC

(
Z2
)
.

We can observe a similar construction in [CFH06], and it is a very inter-

esting exercise to build the same spaces obtained in that publication using

the method we will describe in this section and find the resemblances of both

approaches.

5.2 Construction

Definition 4.21. [LW12, (2.1)] Let F and G families of subgroups of a

given group G such that F ⊆ G. Let ∼ be an equivalence relation on G\F

satisfying:

(i) For H,K ∈ G\F with H ≤ K we have H ∼ K.

(ii) Let H,K ∈ G\F and g ∈ G, then H ∼ K ⇐⇒ gHg−1 ∼ gKg−1.

We call ∼ a strong equivalence relation. Denote by [G\F] the equivalence

classes of ∼ and define for all [H] ∈ [G\F] the following subgroup of G:

NG [H] = {g ∈ G | [gHg−1] = [H]}.

Now define a family of subgroups of NG [H] by

G[H] = {K ≤ NG [H] |K ∈ G\F , [K] = [H]} ∪ (F ∩NG [H]).

Here F ∩NG [H] is the family of subgroups of NG [H] belonging to F.

Theorem 4.22. [LW12, Theorem 2.3] Let F ⊆ G and ∼ be as in Definition

4.21. Denote by H a complete set of representatives of the conjugacy classes
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in [G\F]. Then the G-CW-complex given by the cellular G-pushout⊔
[H]∈H

G×NG[H] EF∩NG[H] (NG [H]) EF (G)

⊔
[H]∈H

G×NG[H] EG[H] (NG [H]) X

ι

t
[H]∈H

idG×NG[H]f[H]

where either ι or the f[H] are inclusions, is a model for EG (G) .

5.3 Mayer-Vietoris sequence

In [LW12], the authors use a Mayer-Vietoris type long exact sequence in

Bredon Cohomology that can be derived from Theorems 4.22 and 3.17. We

include such derivation for completeness and comprehension, given that it

is not explicitly detailed in the original source.

Proposition 4.23. Let F ⊆ G be two full families of subgroups of G such

that there is a strong equivalence relation ∼ in G\F, as in Definition 4.21.

Let H be a set of representatives of the classes in [G\F]. Let M ∈ Mod-OGG.

Let FF : F → G and F[H] : G[H] → G and I[H] : F ∩ NG [H] → G the

inclusion functors for each H ∈ H . Then, the following sequence in Bredon

Cohomology is exact

· · · −→ H
n−1
G

(
G;M

)
−→ ∏

[H]∈H

H
n−1
G[H]

(
NG [H] ; resF[H]

M
)⊕H

n−1
F

(
G; resFF

M
)
−→

∏
[H]∈H

H
n−1
F∩NG[H]

(
NG [H] ; resI[H]

M
)
−→ H

n
G

(
G;M

)
−→ · · ·

Proof. Let X[H], Y and Z[H] be models for EG[H] (NG [H]), EF (G) and

EF∩NG[H] (NG [H]) for each [H] ∈ H, respectively. Consider P the model

for EG (G) obtained as the G-pushout of the diagram in Theorem 4.22.

Given M ∈ Mod-OGG and taking as (co)homology theory the one de-
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fined in 3.10, by Corollary 3.18 we have the following long exact sequence:

· · · −→ H
n−1
G

(
P ;M

)
−→ ∏

[H]∈H

H
n−1
G[H]

(
X[H]; resF[H]

M
)⊕H

n−1
F

(
Y ; resFF

M
)
−→

∏
[H]∈H

H
n−1
F∩NG[H]

(
Z[H]; resI[H]

M
)
−→ H

n
G

(
P ;M

)
−→ · · ·

And using Corollary 3.11, the previous Mayer-Vietoris long exact se-

quence is equivalent to the following long exact sequence:

· · · −→ H
n−1
G

(
G;M

)
−→ ∏

[H]∈H

H
n−1
G[H]

(
NG [H] ; resF[H]

M
)⊕H

n−1
F

(
G; resFF

M
)
−→

∏
[H]∈H

H
n−1
F∩NG[H]

(
NG [H] ; resI[H]

M
)
−→ H

n
G

(
G;M

)
−→ · · ·

This result was generalised for arbitrary Ext functors. The approach

in that case is strictly algebraic, meaning that it is independent from the

geometric construction in Theorem 4.22:

Theorem 4.24. [DP14, Theorem 7.7] Let F ⊆ G be two families of sub-

groups of a group G such that the set G\F is equipped with a strong equiv-

alence relation. Let H be a set of representatives of the classes in [G\F].

Let M ∈ Mod-OGG. Let FF : F → G and F[H] : G[H] → G and I[H] :

F ∩NG [H]→ G the inclusion functors for each H ∈ H . Then, the follow-

ing sequence is exact:

· · · −→ Ext
n−1
G

(
M,N

)
−→ ∏

[H]∈H

Ext
n−1
G[H]

(
resF[H]

M, resF[H]
N
)⊕ Ext

n−1
F

(
resFF

M, resFF
N
)
−→

∏
[H]∈H

Ext
n−1
F∩NG[H]

(
resI[H]

M, resI[H]
N
)
−→ Ext

n
G

(
M,N

)
−→ · · ·
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5.4 Dimensions

The condition in Theorem 4.22 on the two maps being inclusions is not that

strong a restriction as one can replace the spaces by the mapping cylinders,

as we saw in Corollary 3.18.

Corollary 4.25. [LW12, Remark 2.5] Suppose there exists an n-dimensional

model for EF (G) and for each H ∈ H there exist a (n−1)-dimensional model

for EF∩NG[H] (NG [H]) and a n-dimensional model for EG[H] (NG [H]). Then

there is an n-dimensional model for EG (G) .

Analogously, as a consequence of the long exact sequence in Proposi-

tion 4.23:

Theorem 4.26. [DP14, Theorem 7.2] Suppose there is a natural number n

such that cdFG ≤ n and for each [H] ∈ H cdF∩NG[H]NG [H] ≤ n − 1 and

cdF[H]NG [H] ≤ n. Then cdGG ≤ n.

If we express Corollary 4.25 in terms of Bredon geometrical dimensions

and rephrase Theorem 4.26, we obtain upper bounds for gdGG and cdGG.

Corollary 4.27. The following inequalities hold:

(i) gdGG ≤ max{max
[H]∈H

{gdG[H](NG [H]), gdF∩NG[H](NG [H]) + 1}, gdFG}

(ii) cdGG ≤ max{max
[H]∈H

{cdG[H](NG [H]), cdF∩NG[H](NG [H]) + 1}, cdFG}

6 Families of subgroups of a direct union of groups

In this section we will present a series of results that will later be useful

to extend applications of the theorems in Chapter 5. These results can be

found in [Nuc04], [LW12] and [Flu11].

Definition 4.28. Let {Gλ |λ ∈ Λ} be a set of subgroups of G, where Λ is

an indexing set. We say that G is the direct union of the groups Gλ if the

the following conditions hold:
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(i) for every λ, µ ∈ Λ there is ν ∈ Λ such that Gλ ≤ Gν and Gµ ≤ Gν and

(ii) G ⊆
⋃
λ∈ΛGλ as sets.

Direct unions are a particular case of direct limits if we take the par-

tial order in Λ λ ≤ µ if and only if Gλ ≤ Gµ and taking inclusions as

homomorphisms.

Definition 4.29. Let G be the direct union of {Gλ |λ ∈ Λ}. Let F be a

family of subgroups of G and for each λ ∈ Λ let Fλ be a family of subgroups

of Gλ. We say F and Fλ for λ ∈ Λ are compatible with the direct union if

the following holds for every λ, µ ∈ Λ:

(1) Fλ ⊆ Fµ if λ ≤ µ;

(2) Fλ ⊆ F;

(3) F ⊆
⋃
λ∈Λ Fλ and

(4) Fλ = F ∩Gλ.

Proposition 4.30. [Flu11, Proposition 3.43] Let G be the direct union of

{Gλ |λ ∈ Λ} and let F be a full family of finitely generated subgroups of G.

Then, F and {F ∩Gλ |λ ∈ Λ} are compatible with the direct union.

Proposition 4.31. Let G be the direct union of {Gλ |λ ∈ Λ} and let F be a

full family of subgroups of G such that for every K ∈ F there is λ ∈ Λ such

that K ≤ Gλ. Then, Fλ = F ∩Gλ for λ ∈ Λ and F are compatible with the

direct union.

Proof. Conditions (1), (2) and (4) in Definition 4.29 are true given that F is

a full family of subgroups and the fact that we are taking Fλ = F ∩Gλ. To

prove condition (iii), let K ∈ F. By hypothesis, we know there is λ ∈ Λ such

that K ≤ Gλ. Hence, K ∩Gλ = K, so K ∈ Fλ, as we needed to see.

The following theorem can be deduced from [LW12, Theorem 4.3] and

[Nuc04, Theorem 4.1], but since we didn’t introduce flat Bredon modules and
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hence Bredon homological dimensions, we will only give the cohomological

version:

Theorem 4.32. [Flu11, Theorem 3.42] Let G be a group that is the direct

union of {Gλ |λ ∈ Λ}, where Λ is a countable set of indexes. Let F and Fλ

be full families of subgroups of G and Gλ for all λ ∈ Λ, respectively, that are

compatible with the direct union. Then,

sup
λ∈Λ
{cdFλ Gλ} ≤ cdFG ≤ sup

λ∈Λ
{cdFλ Gλ}+ 1.

Note that the first inequality is given by Theorem 4.11, since Fλ = F∩Gλ
for all λ ∈ Λ.

In the case of the Bredon geometric dimensions, the following result is

proved whithin the proof of [LW12, Theorem 4.3]:

Theorem 4.33. Let G be a group that is the direct union of {Gλ |λ ∈ Λ},

where Λ is a countable set of indexes. Let F and Fλ be full families of

subgroups of G and Gλ for all λ ∈ Λ, respectively, that are compatible with

the direct union. Then,

sup
λ∈Λ
{gdFλ

Gλ} ≤ gdFG ≤ sup
λ∈Λ
{gdFλ

Gλ}+ 1.

In this case, the first inequality is given by Theorem 4.12.

Definition 4.34. Let X be a class of groups. We say a group G is locally

X if for all finitely generated subgroups H ≤ G, H ∈ X.

Using the fact that every group is the direct union of its finitely gener-

ated subgroups and Propositions 3.4 and 3.7, we get a first application of

Theorems 4.32 and 4.33:

Proposition 4.35. [Flu11, Proposition 3.47] Let G be a group and F a

full family of finitely generated subgroups of G. If G is locally F and G is

countable, then

cdFG ≤ 1.
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Proposition 4.36. Let G be a group and F a full family of finitely generated

subgroups of G. If G is locally F and G is countable, then

gdFG ≤ 1.
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Chapter 5

Classifying spaces for chains

of families of subgroups

Contents

1 Strongly structured ascending chains of families

of subgroups . . . . . . . . . . . . . . . . . . . . . 67

2 Construction . . . . . . . . . . . . . . . . . . . . . 70

3 Bredon dimensions and Mayer-Vietoris sequences 81

4 Classifying spaces for the families RG
r (H) . . . . 86

The results presented in Chapter 4, most importantly those from [LW12],

have been used fruitfully to build the classifying spaces for the family of

virtually cyclic subgroups of a wide variety of groups from those for the

family of finite subgroups.

In [CCMNP17], we used these methods to recursively build classifying

spaces for the families A0 ⊆ A1 ⊆ . . . ⊆ An of subgroups of bounded torsion-

free rank of any finitely generated abelian group.

The objective of this chapter is to widen the results presented in the

aforementioned sources, to be able to study the Bredon dimensions with

respect to families forming an ascending chain with certain properties.
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1 Strongly structured ascending chains of families

of subgroups

Definition 5.1. A chain of families of subgroups F0 ⊆ F1 ⊆ . . . ⊆ Fr ⊆ . . .

of a group G is said to be a strongly structured ascending chain of subgroups

of G if for all r, i ∈ N with i ≤ r, if H,K ∈ Fr \ Fr−1 are such that

H ∩K ∈ Fr \ Fr−1 and L ∈ Fi \ Fi−1, then L ∩H ∈ Fi \ Fi−1 if and only if

L ∩K ∈ Fi \ Fi−1.

We will use the abbreviation “SSACFS” for “strongly structured ascend-

ing chains of families of subgroups”.

Example 5.2. Let G be a group and Fn be the family of finitely generated

abelian subgroups of G of torsion-free rank smaller than or equal to n. Then,

(Fr)r∈N is a strongly structured ascending chain of families of subgroups of

G.

If G is a finitely generated abelian group, then we can find the construc-

tion we generalise in this chapter for this particular choice of group and

chain of families of subgroups in [CCMNP17].

Now let us present a more general example related to the previous one

and also to Example 1.49, for which we will need the concept of commensu-

rability of groups:

Definition 5.3. We say that two groups G1 and G2 are commensurable if

and only if there are finite index subgroups H1 ≤ G1 and H2 ≤ G2 such

that H1
∼= H2.

When we restrict ourselves to subgroups H,K of a given group G, we

say H and K are commensurable if and only if |H : H ∩ K| < ∞ and

|K : K ∩H| <∞. In that case, we define the commensurator of H in G as

the set of all elements g ∈ G such that H and Hg are commensurable and

we denote it by CommG(H).
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Lemma 5.4. Let X be a non-empty class of groups closed under taking

subgroups and let r : X→ N∪{∞} be a rank such that if H,K ∈ X are such

that there is an injective homomorphism f : H → K, then:

(i) r({1}) = 0,

(ii) r(H) ≤ r(K) and

(iii) r(H) = r(K) if and only if H and K are commensurable.

Let G be a group and for all n ∈ N ∪ {∞} take

Xn(G) = {H ≤ G |H ∈ X and r(H) ≤ n}.

Then, (Xn(G))n∈N is a strongly structured ascending chain of families of

subgroups of G.

Proof. First, since All(G) ∩ X 6= ∅, and since X is closed under taking sub-

groups, Xn(G) 6= ∅ for all n ∈ N and closed under taking subgroups. Also,

if H ∈ Xn(G) and g ∈ G, since conjugation is an isomorphism, applying (i)

to conjugation by g and its inverse, we have r(Hg) = r(H).

That means Xn(G) is a full family of subgroups of G for all n ∈ N.

And by construction we have Xk(G) ⊆ Xn(G) for all k ≤ n. So (Xn)n∈N

is an ascending chain of full families of subgroups of G.

It only remains to prove that for all r, i ∈ N with i ≤ r, if H,K ∈

Xr(G)\Xr−1(G) are such thatH∩K ∈ Xr(G)\Xr−1(G) and L ∈ Xi(G)\Xi−1(G),

then L ∩H ∈ Xi(G)\Xi−1(G) if and only if L ∩K ∈ Xi(G)\Xi−1(G).

Observe that for H ≤ G, H ∈ Xr(G)\Xr−1(G) if and only if r(H) = r.

Therefore, given 0 ≤ i ≤ r and given H,K,L ≤ G such that h(H) = h(K) =

h(H ∩K) = r and h(L) = i, we need to prove that h(H ∩L) = i if and only

if h(K ∩ L) = i. By hypothesis (ii), since L ∩ K ≤ L and L ∩ H ≤ L, it

is equivalent to prove that |L : L ∩H| < ∞ if and only if |L : L ∩K| < ∞

given that |H : H ∩K| <∞ and |K : H ∩K| <∞.

Assume then that |H : H ∩ K| < ∞, |K : H ∩ K| < ∞ and |L :

L ∩ H| < ∞. Since |H : H ∩ K| < ∞, intersecting with L, we obtain
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|L ∩ H : L ∩ H ∩ K| < ∞. Hence, since |L : L ∩ H| < ∞ and index is

multiplicative, |L : L∩H ∩K| <∞. Finally, since L∩H ∩K ≤ L∩K ≤ L,

we can conclude |L : L ∩K| <∞, as we wanted to show.

The converse implication is symmetrical.

We will use the results in [LW12] summarised in section 5 of Chapter 4

for each of the inclusions in the chain of families, so we need to start by

showing that we can use such results:

Definition 5.5. Given a chain (Fr)r∈N of full families of subgroups of a

group G, for each r ∈ N, let ∼r denote the following relation on Fr \ Fr−1 :

H ∼r K ⇐⇒ H ∩K ∈ Fr \ Fr−1

Lemma 5.6. If (Fr)r∈N is a strongly structured ascending chain of families

of subgroups of a group G, then Fr−1 ⊆ Fr is a strongly structured inclusion

of families of subgroups of G with respect to ∼r for every r > 0, i.e., ∼r is

a strong equivalence relation (in the sense of [LW12]) in Fr \Fr−1 for every

r > 0.

Proof. ∼r is clearly reflexive and symmetric. As for transitivity, given

H,K,L ∈ Fr \ Fr−1 such that H ∼r K and K ∼r L, we need to see that

H ∼r L. By definition of SSACFS, in the particular case that i = r, since

H ∩K ∈ Fr \ Fr−1 and K ∩ L ∈ Fr \ Fr−1, then H ∩ L ∈ Fr \ Fr−1. Hence,

∼r is an equivalence relation in Fr \ Fr−1.

To prove that it is strong in the sense of Lück-Weiermann, first letH,K ∈

Fr \ Fr−1 with H ≤ K. Then, H ∩K = H ∈ Fr \ Fr−1, so H ∼r K. Finally,

let g ∈ G and H,K ∈ Fr \ Fr−1. We need to see H ∼r K if and only

if Hg ∼r Kg. And for that it suffices to prove that (H ∩K)g = Hg ∩Kg,

since Fr and Fr−1 are families of subgroups of G and, therefore, closed under

conjugation. An element l ∈ G belongs to Hg ∩Kg if and only if there are

h ∈ H and k ∈ K such that l = ghg−1 = gkg−1. But in that case h = k and

so l ∈ (H ∩K)g. The other implication follows trivially.
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And not only the equivalence relations ∼r are strong in the sense of

[LW12], but they are the finest of all possible strong equivalence relations

at each inclusion.

Lemma 5.7. Let (Fr)r∈N be a strongly structured ascending chain of families

of subgroups of a group G, let r > 0 and let ∼ be any equivalence relation

in Fr \Fr−1 that is strong in the sense of [LW12]. Then ∼r is finer than ∼.

Proof. Let H,K ∈ Fr \ Fr−1 such that H ∼r K. Then, H ∩K ∈ Fr \ Fr−1.

By (i) in Definition 4.21, H ∩K ∼ H and H ∩K ∼ K given H ∩K ≤ H and

H ∩K ≤ K respectively. Finally, by transitivity of ∼, that implies H ∼ K,

as we wanted to see.

Following the example in Lemma 5.4, we have:

Lemma 5.8. Given a group G and (Xn(G))n∈N as in Lemma 5.4, for every

r > 0 and H,K ∈ Xr(G)\Xr−1(G), H ∼r K if and only if H and K are

commensurable.

Proof. Given H,K ∈ Xr(G)\Xr−1(G), by definition of ∼r, H ∼r K if and

only if r(H ∩K) = r(H) = r(K) = r. Since commensurability is transitive,

H∩K ≤ H andH∩K ≤ K, by hypothesis (ii), r(H∩K) = r(H) = r(K) = r

if and only if H and K are commensurable, as we needed to see.

2 Construction

Our objective is to be able to give a bound on the Bredon cohomological and

geometric dimensions of a group over the families in a strongly structured

ascending chain of families of subgroups (Fr)r∈N. For that, in this section

we are going to build classifying spaces for the mentioned families using

recursion over r.

By Theorem 1.53, models for EFr (G) exist for all r ∈ N, so for all re-

sults related to constructions and dimensions we don’t need to construct
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any initial spaces. However, as we will be interested in finite-dimensionality,

finite-dimensional models for those basic spaces in the process we will de-

scribe in this section will be a must-have to draw any conclusions that can

not be already drawn from Theorem 1.53.

As the first example of the aforementioned basic spaces (i.e. spaces used

but not being built in the recursive process), a finite-dimensional model for

EF0 (G) will be necessary. But let us start the construction process and

discover all elements needed as they appear.

From now on, let G be a discrete group and (Fr)r∈N a strongly structured

ascending chain of families of subgroups of G.

2.1 Set-up and involved spaces

Let r > 0. The first step will consist of applying Lück-Weiermann to the

families Fr−1 ⊆ Fr of subgroups of G.

We start, then, by choosing the strong equivalence relations at each level:

by Lemma 5.6, we can take ∼r as strong equivalence relation in the sense of

LW in Fr \ Fr−1.

Definition 5.9. Given H ∈ Fr \ Fr−1, we denote by [H]r the equivalence

class of H and we denote by [Fr \ Fr−1] the set of all equivalence classes.

Define for all [H]r ∈ [Fr \ Fr−1] the subgroup of G

NG [H]r = {g ∈ G |Hg ∼r H}

and the family of subgroups of NG [H]r

Fr[H] = {K ≤ NG [H]r |K ∈ Fr \ Fr−1 , K ∼r H} ∪ (Fr−1 ∩NG [H]r).

We can now apply Theorem 4.22. The spaces involved in the push-out

would be a model for EFr−1 (G) and, for each representative of the equiva-

lence classes under∼r, models for EFr−1∩NG[H]r
(NG [H]r) and EFr[H] (NG [H]r).

Of the last two sets of models, we can give an upper bound of the Bredon
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dimensions of NG [H]r with respect to Fr−1∩NG [H]r in terms of the Bredon

dimensions of G with respect to Fr−1 by Theorem 4.11 and Proposition 4.12.

However, in the case of the family Fr[H] of subgroups of NG [H]r, we need

to find a suitable classifying space that is related to those for the families Fi

with i ≤ r − 1.

The family Fr[H] is given as a union of the sets of subgroups of NG [H]r

[H]r and Fr−1∩NG [H]r. Note that Fr−1∩NG [H]r is a family of subgroups

of NG [H]r but [H]r = {K ≤ NG [H]r |H ∼r K} is not closed under taking

subgroups. To complete [H]r, we can add those subgroups in Fr−1∩NG [H]r

that are related to a subgroup of H. This way, and using the structure on

the chain of families (Fr)r∈N, we will be able to build the spaces needed to

use Lemma 4.19.

Definition 5.10. Let r > 0, H ∈ Fr \ Fr−1 and 0 < i ≤ r. Then, we define

RG
i (H) to be union between F0 ∩ NG [H]r and the set of subgroups K of

NG [H]r in Fi such that there is L ≤ H with L ∈ Fj \ Fj−1 and L ∼j K for

some 0 < j ≤ i.

In the case i = 0, we define

RG
0 (H) = F0 ∩NG [H]r .

Lemma 5.11. Let r > 0, H ∈ Fr \ Fr−1 and 0 < i ≤ r. Then,

RG
i (H) = {K ∈ Fi∩NG [H]r |K ∼j K∩H with 0 < j ≤ i}∪(F0∩NG [H]r).

Proof. Let K ≤ NG [H]r such that K ∈ Fj \Fj−1 for 0 < j ≤ i. For the first

inclusion, assume there is L ≤ H such that L ∼j K. We need to see that

then K ∼j K ∩H. So we need to see K ∩H ∈ Fj \ Fj−1. Since K ∈ Fj , so

is K ∩H. Then K ∩H /∈ Fj \ Fj−1 would be equivalent to K ∩H ∈ Fj−1.

Since Fj−1 is closed under taking subgroups and L∩K ≤ K ∩H, we would

have L ∩ K ∈ Fj−1, which is a contradiction with the fact that L ∼j K.

Therefore, K ∩H ∈ Fj \ Fj−1 as we wanted to see.
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The other inclusion is direct taking L = K ∩ H as the subgroup of H

involved in the definition of RG
i (H).

And now we need to see that RG
i (H) is well-defined in terms of the

classes in [Fr \ Fr−1] and that RG
i (H) is a family of subgroups of NG [H]r

for all 0 ≤ i ≤ r:

Lemma 5.12. For H,H ′ ∈ Fr \ Fr−1 with H ∼r H ′, RG
i (H) = RG

i (H ′).

Proof. Since H ∼r H ′, we know NG [H]r = NG [H ′]r. Hence, RG
0 (H) =

RG
0 (H ′). Let now 0 < i ≤ r.

Given the symmetry of ∼r, we only need to prove one inclusion. Let

K ∈ RG
i (H) and let 0 < j ≤ i such that K ∼j K ∩H. We know H ∼r H ′,

and hence, since (Fr)r∈N is a SSACFS of G, we have K ∼j K ∩H ′, as we

needed to prove.

Note that if there is no such j it meansK ∈ F0∩NG [H]r, and thereforeK

will belong to RG
i (H ′) sinceNG [H]r = NG [H ′]r and RG

0 (H) ⊆ RG
i (H).

Lemma 5.13. Let r > 0, H ∈ Fr \ Fr−1 and i ≤ r. Then, RG
i (H) is a

family of subgroups of NG [H]r.

Proof. Firstly, {1} ∈ RG
i (H) 6= ∅. To prove closure under taking subgroups

and conjugation, we will assume K /∈ F0 ∩ NG [H]r, since otherwise the

statements reduce to F0 ∩ NG [H]r being a family, which we already know

is true. Let K ≤ NG [H]r with K ∈ Fj \ Fj−1 for some 0 < j ≤ i such that

K ∼j K ∩H.

Let L ≤ K and 0 < l ≤ j such that L ∈ Fl\Fl−1. SinceK ∼j K∩H, since

(Fr)r∈N is a SSACFS ofG, L∩K ∈ Fl\Fl−1 if and only if L∩K∩H ∈ Fl\Fl−1.

But L ∩K = L ∈ Fl \ Fl−1 by hypothesis, so we can conclude that RG
i (H)

is closed under taking subgroups, as L ∼l L ∩H.

Now if g ∈ NG [H]r, we need to prove Kg ∈ RG
i (H). Since K ∈ Fj \Fj−1

and both Fj and Fj−1 are families, Kg ∈ Fj\Fj−1. For the same reason, since
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K ∼j K ∩H, (K ∩H)g = Kg ∩Hg ∈ Fj \ Fj−1. And because g ∈ NG [H]r

we have H ∼r Hg. Therefore, since (Fr)r∈N is a SSACFS of G, as we have

Kg ∼j Kg ∩ Hg and H ∼r Hg, we know Kg ∼j Kg ∩ H. This proves

Kg ∈ RG
i (H), as we needed to see.

Finally, we express the family F[H] of subgroups of NG [H]r as a union

of families and find their intersection to prove that we can use the results

for unions of families described in Chapter 4:

Lemma 5.14. Let r > 0 and H ∈ Fr \ Fr−1. Then, the following hold:

(i) Fr[H] = RG
r (H) ∪ (Fr−1 ∩NG [H]r)

(ii) RG
r−1 (H) = RG

r (H) ∩ (Fr−1 ∩NG [H]r)

Proof. (i) Since {K ≤ NG [H]r |K ∈ Fr \ Fr−1 , H ∼r K} ⊆ RG
r (H),

Fr[H] ⊆ RG
r (H) ∪ (Fr−1 ∩NG [H]r). For the other inclusion, let K ∈

RG
r (H). If K ∈ F0 or K ∈ Fi \ Fi−1 for some 0 < i < r, then

K ∈ Fr−1∩NG [H]r. If K ∈ Fr \Fr−1, since K ∼r K ∩H is equivalent

to K ∼r H, we have K ≤ {K ≤ NG [H]r |K ∈ Fr \Fr−1 , H ∼r K} ⊆

Fr[H].

(ii) Let K ∈ RG
r (H) ∩ (Fr−1 ∩NG [H]r). In particular, K ∈ Fr−1. If

K ∈ F0, we are done, since F0 ∩NG [H]r ⊆ RG
i (H) for all 0 ≤ i ≤ r.

Let i be such that 0 < i ≤ r − 1 and K ∈ Fi \ Fi−1. And since

K ∈ RG
r (H), K ∼i K ∩ H, so K ∈ RG

r−1 (H), since i ≤ r − 1. The

other inclusion follows directly from RG
r−1 (H) being a subset of both

RG
r (H) and Fr−1 ∩NG [H]r.

Therefore, let us first build models for ERGi (H) (NG [H]r).
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2.2 Classifying spaces for the families
(
RG
i (H)

)r
i=0

In this section, we will take advantage of the structure that the families(
RG
i (H)

)r
i=0

inherit from (Fr)r∈N to build recursively models for ERGi (H) (NG [H]r),

where H ∈ Fr \ Fr−1.

For the base case, note that RG
0 (H) = F0 ∩ NG [H]r. Hence, by The-

orem 4.11 and Proposition 4.12, the Bredon dimensions of NG [H]r with

respect to the family RG
0 (H) will be finite in the case cdF0 G and gdF0

G

are.

Let now 0 < i ≤ r. We want to use Lück-Weiermann method on the

families RG
i−1 (H) ⊆ RG

i (H).

Lemma 5.15.
(
RG
i (H)

)r
i=0

is a SSACFS of NG [H]r.

Proof. Let 0 ≤ i ≤ j ≤ r. Let K,L ∈ RG
j (H) \RG

j−1 (H) such that K ∩L ∈

RG
j (H) \ RG

j−1 (H). Assume M ∈ RG
i (H) \ RG

i−1 (H). We need to see

M∩K ∈ RG
i (H)\RG

i−1 (H) if and only if M∩L ∈ RG
i (H)\RG

i−1 (H). Given

the symmetry of intersection, we only need to prove one of the implications.

Let M then be such that M ∩ K ∈ RG
i (H) \ RG

i−1 (H). By definition of

RG
i (H) and RG

i−1 (H), that happens if and only if M ∩K ∈ Fi \ Fi−1 and

M ∩K ∩H ∈ Fi \ Fi−1. We need to see M ∩ L,M ∩ L ∩H ∈ Fi \ Fi−1.

SinceK,L,K∩L ∈ RG
j (H)\RG

j−1 (H), we knowK∩H,L∩H,K∩L∩H ∈

Fj \ Fj−1.

The chain (Fr)r∈N is a SSACFS, K,L,K∩L ∈ Fj \Fj−1 and M,M ∩L ∈

Fi \ Fi−1, therefore M ∩ L ∈ Fi \ Fi−1.

Analogously, since K∩H,L∩H,K∩L∩H ∈ Fj \Fj−1 and M ∩K∩H ∈

Fi \ Fi−1, we have M ∩ L ∩H ∈ Fi \ Fi−1, as we needed to see.

Corollary 5.16. The restriction of ∼i to RG
i (H) \RG

i−1 (H) ⊆ Fi \ Fi−1 is

a strong equivalence relation for 0 < i ≤ r, and in particular it is the same

equivalence relation than that defined from the chain being a SSACFS.
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Proof. It is a result of Lemma 5.15 and the fact that RG
i (H) \RG

i−1 (H) ⊆

Fi \ Fi−1.

Note that if i = r, then RG
r (H) \RG

r−1 (H) = [H]r and hence [RG
r (H) \

RG
r−1 (H)] consists solely on the class of H under the restriction of ∼r to

RG
r (H) \ RG

r−1 (H) (which coincides with [H]r). This means the family

RG
r (H) [H] would coincide with RG

r (H) and hence the classifying space

that we want to obtain as a result of a push-out would appear in the dia-

gram as one of the necessary classifying spaces. Also, by Lemma 5.7 and

Corollary 5.16, the restriction of ∼r to RG
r (H)\RG

r−1 (H) is the finest equiv-

alence relation that is strong in the sense of LW. That means that utilizing

any other strong equivalence in RG
r (H) \ RG

r−1 (H) would always result in

[H]r as the only equivalence class. For that reason, it is not possible to

bound the Bredon dimensions of NG [H]r with respect to RG
r (H) using LW

method on RG
r−1 (H) ⊆ RG

r (H).

We encountered now a set of the basic spaces that we mentioned at the

beginning of Section 2. And these will be the last of such spaces, so we can

now summarize this information:

Observation 5.17. (1) No upper bound for the Bredon dimensions of

G with respect to F0 can be deduced from the construction we are

describing, since we are using this family as the base case for our

recursive process.

(2) For each k > 0 and each class [K]k with respect to ∼k, we won’t

be able, in general, to provide a bound for the Bredon dimensions

of NG [K]k with respect to RG
k (K) as part of the recursive process

we are providing. We will be able, however, under certain additional

conditions.

(3) To prove that the Bredon dimensions of G with respect to Fr are

finite (and to give a finite upper bound for them) using the recursive

construction we are providing, finite-dimensional models for EF0 (G)
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and for ERGk (K) (NG [K]k) for allK ∈ RG
k (H)\RG

k−1 (H) and 0 < k ≤ r

are required.

Let hence i ∈ N such that 0 < i < r. Let Ki be a set of representatives

[K]i for the equivalence classes in [RG
i (H) \RG

i−1 (H)].

Lemma 5.18.

NNG[H]r
[K]i = NNG[K]i

[H]r = NG [K]i ∩NG [H]r .

Proof. We only need to prove that NNG[K]i
[H]r = NG [K]i ∩NG [H]r, since

intersection is symmetric.

Let g ∈ NNG[K]i
[H]r. That happens if and only if g is an element of

NG [K]i such that Hg ∼r H. Since NG [K]i ≤ G, Hg ∼r H if and only if

g ∈ NG [H]r, which completes the proof.

Therefore, we can express the family RG
i−1 (H)∩NNG[H]r

[K]i in a simpler

way that will help on the computation of dimensions just by considering

NG [K]i the ambient group. Thus, we have

Remark 5.19. RG
j (H) ∩NNG[H]r

[K]i = R
NG[K]i
j (H) for all j ≤ i.

Then, as a consequence of Theorem 4.22, Lemma 5.15, Corollary 5.16,

Lemma 5.6 and Remark 5.19, we have

Corollary 5.20. In the configuration described above, the NG [H]r-CW-

complex Y given by the NG [H]r-pushout

⊔
[K]i∈Ki

NG [H]r ×NNG[H]r
[K]i

E
R
NG[K]i
i−1 (H)

(
NNG[H]r

[K]i

)
ERGi−1(H) (NG [H]r)

⊔
[K]i∈Ki

NG [H]r ×NNG[H]r
[K]i

ERGi (H)[K]

(
NNG[H]r

[K]i

)
Y

ι

t
[K]i∈Ki

idNG[H]r
×NNG[H]r

[K]i
g[K]i

is a model for ERGi (H) (NG [H]r) if either ι is an inclusion or g[K]i are in-

clusions for all [K]i ∈ Ki.
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By Theorem 4.11 and Proposition 4.12, the Bredon dimensions ofNNG[H]r
[K]i

with respect to the families R
NG[K]i
i−1 (H) can be bounded by those of NG [H]r

with respect to RG
i−1 (H).

We want now to be able to relate the models for ERGi (H)[K]

(
NNG[H]r

[K]i

)
with those appearing naturally in the recursive process we are describing.

Note that we can write the family RG
i (H) [K] as a union of full families:

Lemma 5.21. RG
i (H) [K] = R

NG[H]r
i (K) ∪R

NG[K]i
i−1 (H) .

Proof. From Definition 4.21 and using Remark 5.19, we have RG
i (H) [K] =

{L ≤ NNG[H]r
[K]i |L ∈ RG

i (H) \ RG
i−1 (H) , L ∼i K} ∪ R

NG[K]i
i−1 (H). It

suffices to prove {L ≤ NNG[H]r
[K]i |L ∈ RG

i (H) \ RG
i−1 (H) , L ∼i K} ⊆

R
NG[H]r
i (K) and R

NG[H]r
i (K) ⊆ RG

i (H) [K].

For the first inclusion, let M ≤ NNG[H]r
[K]i be such that M ∈ RG

i (H)\

RG
i−1 (H) and M ∼i K. In particular, M ∈ Fi \ Fi−1 and M ∼i K, so

M ∈ RG
i (H)∩NNG[H]r

[K]i. And by Remark 5.19, RG
i (H)∩NNG[H]r

[K]i =

R
NG[H]r
i (K).

For the second inclusion, let M ∈ R
NG[H]r
i (K) (which means M ≤

NNG[H]r
[K]i) and for some j ≤ i, M ∈ Fj \Fj−1 and M ∼j M ∩K. If j = i

then M ∼i K, so M ∈ {L ≤ NNG[H]r
[K]i |L ∈ RG

i (H) \ RG
i−1 (H) , L ∼i

K}. Assume now j < i. Since RG
i (H) is a family of subgroups and K ∈

RG
i (H), so will be M ∩K. Moreover, since M ∼j M ∩K, we also have M ∈

RG
i (H). But j < i, so we can conclude that M ∈ RG

i−1 (H) ∩NNG[H]r
[K]i,

concluding our proof.

Lemma 5.22. R
NG[H]r
i (K) ∩R

NG[K]i
i−1 (H) = R

NG[H]r
i−1 (K) .

Proof. We need to prove both inclusions.

For the first one, take M ∈ R
NG[H]r
i (K) ∩ R

NG[K]i
i−1 (H). In particular,

M ∈ Fi−1 ∩NNG[H]r
[K]i and M ∼j M ∩K for some j ≤ i − 1 (it is so for

some j ≤ i, but since M ∈ Fi−1, j ≤ i− 1). That means M ∈ R
NG[H]r
i−1 (K).

For the converse inclusion, let M ∈ R
NG[H]r
i−1 (K). That means M ∈
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Fi∩R
NG[K]i
i−1 (H) andM ∼j M∩K for some j ≤ i−1. It only remains to prove

M ∼j M ∩H, but that is consequence of Lemma 5.15 and K ∼i K ∩H.

Corollary 5.23. Let H ∈ Fr \ Fr−1 for r > 0 and the chain of families(
RG
i (H)

)r
i=0

defined in 5.10. Let K ∈ RG
i (H) \ RG

i−1 (H) for 0 < i < r.

Then,

gdRGi (H)[K](NNG[H]r
[K]i) ≤ max{ gd

R
NG[H]r
i (K)

(NNG[H]r
[K]i) ,

gd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) ,

gd
R
NG[H]r
i−1 (K)

(NNG[H]r
[K]i) + 1}.

Proof. It is a consequence of Lemmas 5.21, 5.22 and 4.19.

Corollary 5.24. Let H ∈ Fr \ Fr−1 for r > 0 and the chain of families(
RG
i (H)

)r
i=0

defined in 5.10. Let K ∈ RG
i (H) \ RG

i−1 (H) for 0 < i < r.

Then,

cdRGi (H)[K](NNG[H]r
[K]i) ≤ max{ cd

R
NG[H]r
i (K)

(NNG[H]r
[K]i) ,

cd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) ,

cd
R
NG[H]r
i−1 (K)

(NNG[H]r
[K]i) + 1}.

Proof. It is a consequence of Lemmas 5.21, 5.22 and 4.20.

Finally, we can draw conclusions on the Bredon dimensions correspond-

ing to all groups and families of subgroups appearing in the push-out in

Corollary 5.20.

Corollary 5.25. Let G be a group and (Fn)n∈N a SSACFS of G. Let H ∈

Fr \ Fr−1 and the chain of families
(
RG
i (H)

)r
i=0

defined in 5.10. Then, if

0 < i < r,

gdRGi (H)NG [H]r ≤ max
[K]i∈K

{ gd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) + 1 ,

gdRGi (H)[K]i
(NNG[H]r

[K]i) ,

gdRGi−1(H)(NG [H]r)}.
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Proof. It follows from Corollaries 5.20 and 4.27.

Corollary 5.26. Let G be a group and (Fn)n∈N a SSACFS of G. Let H ∈

Fr \ Fr−1 and the chain of families
(
RG
i (H)

)r
i=0

defined in 5.10. Then, if

0 < i < r,

cdRGi (H)NG [H]r ≤ max
[K]i∈K

{ cd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) + 1 ,

cdRGi (H)[K]i
(NNG[H]r

[K]i) ,

cdRGi−1(H)(NG [H]r)}.

Proof. It follows from Corollaries 5.20 and 4.27.

Note that we now have upper bounds for the Bredon dimensions related

to all families of subgroups appearing in Corollary 5.20 in terms of those of

classifying spaces for which the recursive process gives upper bounds on the

Bredon dimensions or that are listed in Observation 5.17. This means that

if we have finite-dimensional classifying spaces for the families in Observa-

tion 5.17, we will have finite-dimensional classifiying spaces for the families

RG
i (H) of subgroups of NG [H]r for 0 ≤ i ≤ r, but a more specific result

will be given in Section 3.

2.3 Classifying spaces for the families (Fr)r∈N

We have now all necessary ingredients to tackle the recursive construction

process for the chain (Fr)r∈N.

Proposition 5.27. Let r > 0 and take ∼r and [H]r, NG [H]r and Fr[H] for

H ∈ Fr \ Fr−1 as defined in Section 2.1. Let Hr be a set of representatives

for the equivalence classes in [Fr \Fr−1]. Then, the G-CW-complex X given
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by the G-pushout⊔
[H]r∈Hr

G×NG[H]r
EFr−1∩NG[H]r

(NG [H]r) EFr−1 (G)

⊔
[H]r∈Hr

G×NG[H]r
EFr[H] (NG [H]r) X

ι

t
[H]r∈Hr

idG×NG[H]r
f[H]r

is a model for EFr (G) if either ι is an inclusion or f[H] are inclusions for

all [H]r ∈ Hr.

Proof. Consequence of Lemma 5.6 and Theorem 4.22.

And in the case of the spaces in the left-bottom corner of the previous

diagram, we have:

Corollary 5.28. If r > 0 and H ∈ Fr \ Fr−1,

gdFr[H]NG [H]r ≤ max{ gdFr−1∩NG[H]r
NG [H]r , gdRGr (H)NG [H]r ,

gdRGr−1(H)NG [H]r + 1}.

Proof. The proof follows from Lemmas 5.13, 5.14 and 4.19.

Corollary 5.29. If r > 0 and H ∈ Fr \ Fr−1,

cdFr[H]NG [H]r ≤ max{ cdFr−1∩NG[H]r
NG [H]r , cdRGr (H)NG [H]r ,

cdRGr−1(H)NG [H]r + 1}.

Proof. The proof follows from Lemmas 5.13, 5.14 and 4.20.

3 Bredon dimensions andMayer-Vietoris sequences

In this section, we will present the results regarding upper bounds for Bredon

cohomological and geometric dimensions of the elements involved in the

construction described in the previous section.
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For the following results, let G be a group and (Fr)r∈N) a strongly struc-

tured ascending chain of families of subgroups of G. Let also the equiva-

lence relations ∼r as defined in Definition 5.5 and for each r ∈ N let Hr

be a set of representatives of the classes under ∼r. For each H ∈ Hr,

let the strongly structured ascending chain (RG
i (H))ri=0 of subgroups of

NG [H]r be as defined in Definition 5.10. Take for every H ∈ Hr and every

0 < i < r the set of representatives Ki(H) of the classes under ∼i restricted

to RG
i (H) \RG

i−1 (H), i.e., Ki(H) = Hi ∩RG
i (H).

3.1 Bredon geometric dimensions

In the case of the auxiliary chain of families
(
RG
i (H)

)r
i=0

of subgroups of

NG [H]r, we have:

Proposition 5.30. Let H ∈ Fr \ Fr−1 for r > 0 and 0 < i < r. Then,

gdRGi (H)(NG [H]r) ≤ max
[K]i∈Ki(H)

{ gd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) + 1 ,

gd
R
NG[H]r
i−1 (K)

(NNG[H]r
[K]i) + 1 ,

gd
R
NG[H]r
i (K)

(NNG[H]r
[K]i) ,

gdRGi−1(H)(NG [H]r)}.

Proof. From Corollaries 5.25 and 5.23.

And this, as we mentioned in the last paragraph of Section 2.2, implies

the following result about finite-dimensionality:

Corollary 5.31. Let H ∈ Fr \ Fr−1 for r > 0 and 0 < i < r. If there are

finite-dimensional models for E
R
NG[H]r
i (K)

(
NNG[H]r

[K]i

)
for every 0 < i <

r and K ∈ Ki(H) and there is a finite-dimensional model for EF0 (G), then

there is a finite-dimensional model for ERGi (H) (NG [H]r) for all i ∈ N with

0 ≤ i < r.

Proof. It is the result of Proposition 5.30 and recursion over i.
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Analogously, for the chain (Fr)r∈N:

Proposition 5.32. Let H ∈ Fr \ Fr−1 for r > 0. Then,

gdFr G ≤ max
[H]r∈Hr

{ gdFr−1∩NG[H]r
(NG [H]r) + 1 ,

gdRGr (H)(NG [H]r) ,

gdRGr−1(H)(NG [H]r) + 1 ,

gdFr−1
G}.

Proof. It is a consequence of Proposition 5.27 and Corollary 5.28.

Corollary 5.33. Let n > 0. If there are finite-dimensional models for

ERGr (H) (NG [H]r) for every 0 < r ≤ n and H ∈ Hr and there is a finite-

dimensional model for EF0 (G), then there is a finite-dimensional model for

EFr (G) for all r ∈ N with 0 ≤ r ≤ n.

Proof. It is the result of Proposition 5.32 and recursion over r.

3.2 Bredon cohomological dimensions

Analogous results to those in the previous section can be proven for the Bre-

don cohomological dimensions. We also present Mayer-Vietoris long exact

sequences that can help improve the upper bounds or provide lower bounds

for the Bredon dimensions when applied to particular groups and chains of

families of subgroups.

Proposition 5.34. Let K ∈ Ki and let M ∈ Mod-ORGi (H)[K]NNG[H]r
[K]i.

Let F1 : R
NG[H]r
i (K) → RG

i (H) [K], F2 : R
NG[K]i
i−1 (H) → RG

i (H) [K] and

F∩ : R
NG[H]r
i−1 (K) → RG

i (H) [K] be the inclusion functors. Then, the fol-

lowing sequence in Bredon cohomology is exact

· · · → H
n
RGi (H)[K]

(
NNG[H]r

[K]i ;M
)
→

H
n

R
NG[H]r
i (K)

(
NNG[H]r

[K]i ; resF1 M
)
⊕H

n

R
NG[K]i
i−1 (H)

(
NNG[H]r

[K]i ; resF2 M
)
→

H
n

R
NG[H]r
i−1 (K)

(
NNG[H]r

[K]i ; resF∩M
)
→ H

n+1
RGi (H)[K]

(
NNG[H]r

[K]i ;M
)
→ · · ·
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and hence

cdRGi (H)[K](NNG[H]r
[K]i) ≤ max{ cd

R
NG[H]r
i (K)

(NNG[H]r
[K]i) ,

cd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) ,

cd
R
NG[H]r
i−1 (K)

(NNG[H]r
[K]i) + 1}.

Proof. Consequence of Lemmas 4.20, 5.21 and 5.22.

Theorem 5.35. Let H ∈ Hr and let i ∈ N with 0 < i < r. Let M

be a right ORGi (H)NG [H]r-module. Let F1 : RG
i−1 (H) → RG

i (H) and

F[K] : RG
i (H) [K] → RG

i (H) and I[K] : R
NG[K]i
i−1 (H) → RG

i (H) the in-

clusion functors for each K ∈ Ki. Then, the following sequence in Bredon

Cohomology is exact

· · · → H
n−1
RGi (H)

(
NG [H]r ;M

)
→ ∏

[K]∈Ki

H
n−1
RGi (H)[K]

(
NNG[H]r

[K]i ; resF[K]
M
)⊕H

n−1
RGi−1(H)

(
G; resF1 M

)
→

∏
[K]∈Ki

H
n−1

R
NG[K]i
i−1 (H)

(
NNG[H]r

[K]i ; resI[K]
M
)
→ H

n
RGi (H)

(
NG [H]r ;M

)
→ · · ·

and hence

cdRGi (H)(NG [H]r) ≤ max
[K]i∈K

{ cd
R
NG[K]i
i−1 (H)

(NNG[H]r
[K]i) + 1 ,

cd
R
NG[H]r
i−1 (K)

(NNG[H]r
[K]i) + 1 ,

cd
R
NG[H]r
i (K)

(NNG[H]r
[K]i) ,

cdRGi−1(H)(NG [H]r)}.

Proof. The Mayer-Vietoris sequence exists and is exact due to Corollary 5.20

and Proposition 4.23. The upper bound for Bredon cohomological dimension

is consequence of Corollary 5.26 and Proposition 5.34.

Proposition 5.36. Let H ∈ Hr and let M ∈ Mod-OFr[H]NG [H]r. Let

F1 : RG
r (H) → Fr[H], F2 : Fr−1 ∩NG [H]r → Fr[H] and F∩ : RG

r−1 (H) →
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Fr[H] be the inclusion functors. Then, the following sequence in Bredon

cohomology is exact

· · · −→ H
n
Fr[H]

(
NG [H]r ;M

)
−→

H
n
RGr (H)

(
NG [H]r ; resF1 M

)
⊕H

n
Fr−1∩NG[H]r

(
NG [H]r ; resF2 M

)
−→

H
n
RGr−1(H)

(
NG [H]r ; resF∩M

)
−→ H

n+1
Fr[H]

(
NG [H]r ;M

)
−→ · · ·

and hence

cdFr[H](NG [H]r) ≤ max{ cdRGr (H)(NG [H]r) ,

cdFr−1∩NG[H]r
(NG [H]r) ,

cdRGr−1(H)(NG [H]r) + 1}.

Proof. Consequence of Lemmas 4.20 and 5.14.

Theorem 5.37. Let G be a group and (Fr)r∈N a strongly structured ascend-

ing chain of families of subgroups of G. Let r > 0 and M ∈ Mod-OFrG.

Let Hr be a set of representatives of the equivalence classes in Fr \ Fr−1

with respect to ∼r (as defined in Definition 5.5). Let F1 : Fr−1 → Fr and

F[H] : Fr[H]→ Fr and I[H] : Fr−1 ∩NG [H]r → Fr the inclusion functors for

each H ∈ Hr. Then, the following sequence in Bredon Cohomology is exact

· · · −→ H
n−1
Fr

(
G;M

)
−→ ∏

[H]∈Hr

H
n−1
Fr[H]

(
NG [H]r ; resF[H]

M
)⊕H

n−1
Fr−1

(
G; resF1 M

)
−→

∏
[H]∈Hr

H
n−1
Fr−1∩NG[H]r

(
NG [H]r ; resI[H]

M
)
−→ H

n
Fr

(
G;M

)
−→ · · ·

and hence

cdFr G ≤ max
[H]r∈Hr

{ cdFr−1∩NG[H]r
(NG [H]r) + 1 ,

cdRGr (H)(NG [H]r) ,

cdRGr−1(H)(NG [H]r) + 1 ,

cdFr−1 G}.
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Proof. Propositions 5.27 and 4.23 gives us the Mayer-Vietoris long exact se-

quence and Corollary 4.27 and Proposition 5.36, the upper bound on Bredon

cohomological dimension.

4 Classifying spaces for the families RG
r (H)

In this section, we give some additional conditions to the initial set-up that

will guarantee a finite-dimensional model for ERGr (H) (NG [H]r). From this

point on, we adopt the commonly used notation cdG, gdG,EG to represent

cdFin(G)G, gdFin(G)G and EFin(G) (G), respectively.

Theorem 5.38. Let H ∈ Fr\Fr−1 be such that NGH = NG [H]r. Then, H̄ =

{LH/H |L ∈ RG
r (H)} is a full family of subgroups of NGH/H. Moreover,

if there is n ∈ N such that cdRGr (H)∩LH LH ≤ n for all L ∈ RG
r (H), then

cdRGr (H)NGH ≤ cdH̄ (NGH/H) + n.

Proof. First of all, if L ∈ RG
r (H), since NG [H]r = NGH, L ≤ NGH, so

H C LH and LH/H is a subgroup of NGH/H.

To see that H̄ is closed under conjugation, we need to prove that (LH/H)gH

belongs to H̄ for gH ∈ NGH/H and L ∈ RG
r (H). Take kH ∈ LH/H. Then

(gH)(kH)(gH)−1 = gkg−1H ∈ LgH/H, given the fact that gNGH and

hence (LH)g = LgH. And since L ∈ RG
r (H), g ∈ NGH and RG

r (H) is

closed under conjugation, LgH/H ∈ H̄.

Let L ∈ RG
r (H) and S/H ≤ LH/H. We need to find S′ ∈ RG

r (H) such

that S′H/H = S/H. Take S′ = S ∩ L. Since S ≤ LH, then S ∩ L ≤ L,

so S′ ∈ Fr. We only need to see that S′ ∩ H ∼j S′ for some j ≤ r. But

S′ ∩H = S ∩L ∩H = S ∩H ∩L = S ∩L = S′, since H ≤ S. In particular,

S′ ∩H ∼j S for some j ≤ r, so H̄ is closed under taking subgroups.

Now that we proved that H̄ is a full family of subgroups of NGH/H, as

direct consequence of Corollary 4.15, we obtain the rest of the theorem.
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Theorem 5.39. Let H ∈ Fr \ Fr−1 be such that NGH = NG [H]r. Then, if

there is n ∈ N such that gdRGr (H)∩LH LH ≤ n for all L ∈ RG
r (H), then

gdRGr (H)NGH ≤ gdH̄ (NGH/H) + n.

Proof. As we saw in Theorem 5.38, H̄ is a full family of subgroups of

NGH/H. Since RG
r (H) is a full family of subgroups of NGH and LH/H ∈ H̄

for every L ∈ RG
r (H), Theorem 4.17 yields the inequality we wanted to

show.

Corollary 5.40. Let H ∈ Fr \ Fr−1 be such that NGH = NG [H]r and

LH ∈ RG
r (H) for all L ∈ RG

r (H). Then,

cdRGr (H)NGH ≤ cdH̄ (NGH/H) .

Proof. By Theorem 5.38, we know H̄ is a full family of subgroups of NGH

and hence we can apply Corollary 4.15. Let H = {S ≤ G |N ≤ S and S/N ∈

H̄} and let S ∈ H. By definition of H̄ and H, we know that S = LH for

some L ∈ RG
r (H). Then, S ∈ RG

r (H), by hypothesis, so cdRGr (H)∩S S = 0,

as we needed to see.

Corollary 5.41. Let H ∈ Fr \ Fr−1 be such that NGH = NG [H]r and

LH ∈ RG
r (H) for all L ∈ RG

r (H). Then,

gdRGr (H)NGH ≤ gdH̄ (NGH/H) .

Proof. Let H = {S ≤ G |N ≤ S and S/N ∈ H̄}. By Theorem 4.17, we only

need to see that gdRGr (H)∩S S = 0 for all S ∈ H. And that is true given that

S ∈ RG
r (H) for all S ∈ H, as we saw in the proof of Corollary 5.40.

Corollary 5.42. Let (Fn)n∈N be a strongly structured ascending chain of

families of subgroups of G such that the equivalence relation ∼r in Fr \Fr−1

is commensurability, i.e., if H,K ∈ Fr \Fr−1 then H ∩K ∈ Fr \Fr−1 if and
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only if |H : H ∩K| <∞ and |K : H ∩K| <∞. Then, if [H]r ∈ [Fr \Fr−1]r

is such that NG [H]r = NGH, we have

cdRGr (H)NG [H]r ≤ cd (NGH/H) .

Proof. First, we need to see that the family H̄ defined in Theorem 5.38 is

the family of finite subgroups of NGH/H.

For a subgroup of L ≤ NGH, LH/H ∈ Fin(NGH/H) if and only if

|LH : H| < ∞. Also, as ∼r is commensurability, L ≤ NGH belongs to

RG
r (H) if and only if |H : H ∩ L| < ∞. By the Second Isomorphism

Theorem, we know |LH : H| = |H : H ∩ L|, so LH/H ∈ Fin(NGH/H) if

and only if LH/H ∈ H̄, as we wanted to see.

By Corollary 5.40, it only remains to prove that given H ∈ Fr \ Fr−1

such that NG [H]r = NGH and L ∈ Fr ∩NGH such that |L : L ∩H| < ∞,

then |LH : H| <∞. But that is consequence of L ≤ NGH and the Second

Isomorphism Theorem.

Corollary 5.43. Let (Fn)n∈N be a strongly structured ascending chain of

families of subgroups of G such that the equivalence relation ∼r in Fr \

Fr−1 is commensurability. Assume that [H]r ∈ [Fr \ Fr−1]r is such that

NG [H]r = NGH and let X be a model for E (NGH/H). Then, X is a

model for ERGr (H) (NG [H]r) and

gdRGr (H)NG [H]r ≤ gd (NGH/H) .

Proof. Let H = {L ≤ G |LH/H ∈ Fin(NGH/H)}. If we show that H =

RG
r (H), by Lemma 4.16, we will reach the desired conclusions.

But by the same argumentation we used to prove H̄ = Fin(NGH/H) in

Corollary 5.42, L ∈ H if and only if L ∈ RG
r (H).

The inequality of Bredon geometric dimensions can be also proven as in

the proof of Corollary 5.42, using Corollary 5.41.
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We would like to relax the condition of NGH = NG [H]r in order to

provide upper bounds for the Bredon dimension with respect to the families

RG
r (H) of subgroups of NG [H]r in a more general set-up. For that, the

following equivalence will be helpful:

Lemma 5.44. Let H ∈ Fr \Fr−1. Then, the following conditions are equiv-

alent:

(i) there is H ′ ∈ [H]r such that NGH
′ = NG [H]r;

(ii) for all K ≤ NG [H]r there is HK ∈ [H]r such that K ≤ NGHK .

Proof. For the first implication ((i) ⇒ (ii)), let K ≤ NG [H]r. If we take

HK = H ′, we are done, since NGH
′ = NG [H]r.

For the other implication, take K = NG [H]r. Then, by hypothesis, there

is HNG[H]r
such that NG [H]r ≤ NGHNG[H]r

. But since HNG[H]r
∈ [H]r, we

also have NGHNG[H]r
≤ NG

[
HNG[H]r

]
r

= NG [H]r. Hence, taking H ′ =

HNG[H]r
completes the proof.

Condition (ii) in Lemma 5.44 (and hence condition (i)) can be relaxed

by restricting K to belong to some set of subgroups of NG [H]r, instead of it

being any subgroup. The following results apply this idea to a decomposition

of NG [H]r as a direct union of subgroups.

We can see a similar methodology applied to the particular case of

CAT(0) groups and the chains of families Fin ⊆ VC in [DP15] and (Ar)r∈N

in [Pry], where Ar is the family of virtually abelian subgroups of torsion-free

rank less than or equal to r. In the following results we relax the hypoth-

esis used in the aforementioned publications, while also making the proofs

independent of the particular class of groups and families of subgroups con-

sidered.

Theorem 5.45. Let G be a group and (Fr)r∈N be a SSACFS of G. Let

H ∈ Fr \ Fr−1 such that NG [H]r is the direct union of {Nλ |λ ∈ Λ} with:
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(i) Λ is countable;

(ii) for all K ∈ RG
r (H) there is λ ∈ Λ such that K ≤ Nλ; and

(iii) for all λ ∈ Λ there is Hλ ∈ Fr \ Fr−1 such that H ∼r Hλ and Nλ ≤

NGHλ.

Then, if s = sup
λ∈Λ
{cdRGr (H)∩NGHλ NGHλ},

s ≤ cdRGr (H)NG [H]r ≤ s+ 1

and

s ≤ gdRGr (H)NG [H]r ≤ s+ 1.

Proof. By Proposition 4.31, by assumption (ii) and since RG
r (H) is a full

family, we know that RG
r (H) ∩ Nλ for λ ∈ Λ and RG

r (H) are compatible

with the direct union. Then, by Theorems 4.32 and 4.33,

cdRGr (H)NG [H]r ≤ sup
λ∈Λ
{cdRGr (H)∩Nλ Nλ}+ 1

and

gdRGr (H)NG [H]r ≤ sup
λ∈Λ
{gdRGr (H)∩Nλ Nλ}+ 1,

respectively.

Consider now Hλ as in assumption (iii). Nλ ≤ NGHλ and RG
r (H) ∩

NGHλ is a full family of subgroups, so by Theorem 4.11, cdRGr (H)∩Nλ Nλ ≤

cdRGr (H)∩NGHλ NGHλ. That proves cdRGr (H)NG [H]r ≤ s + 1. Using Theo-

rem 4.12 instead, we obtain gdRGr (H)NG [H]r ≤ s+ 1.

Since Hλ ∼r H, we know NGHλ ≤ NG [H]r. For that reason, by Theo-

rems 4.11 and 4.12, we have for all λ ∈ Λ

cdRGr (H)∩NGHλ NGHλ ≤ cdRGr (H)NG [H]r

and

gdRGr (H)∩NGHλ NGHλ ≤ gdRGr (H)NG [H]r .

And since the supremum of a set is the smallest of its upper bounds, that

finishes the proof.
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We can now deduce similar results to 5.38, 5.39, 5.40, 5.41, 5.42 and

5.43 substituting the condition that NGH = NG [H]r by the hypotheses in

Theorem 5.45.

Theorem 5.46. Let H ∈ Fr \Fr−1 such that NG [H]r is the direct union of

{Nλ |λ ∈ Λ} and conditions (i)−(iii) in Theorem 5.45 hold. Then, for every

λ ∈ Λ, H̄λ = {LHλ/Hλ |L ∈ RNGHλ
r (Hλ)} is a full family of subgroups of

NGHλ/Hλ. Moreover, if there is n ∈ N such that cd
R
NGHλ
r (Hλ)∩LHλ

LHλ ≤ n

for all L ∈ RNGHλ
r (Hλ) and for all λ ∈ Λ, then

cdRGr (H)NG[H]r
NG [H]r ≤ sup

λ∈Λ
{cdH̄λ

(NGHλ/Hλ)}+ n+ 1.

Proof. First, note that RNGHλ
r (Hλ) = RG

r (H) ∩NGHλ, since Hλ ∼r H for

all λ ∈ Λ. In particular, for all L ∈ RNGHλ
r (Hλ) we have Hλ C LH, so H̄λ

is a well defined and, following the reasoning in Theorem 5.38, full family of

subgroups of NGHλ.

By Theorem 5.45,

cdRGr (H)NG [H]r ≤ sup
λ∈Λ
{cdRGr (H)∩NGHλ NGHλ}+ 1.

That means that we only need to prove that cdRGr (H)∩NGHλ NGHλ ≤

cdH̄λ
(NGHλ/Hλ) + n for every λ ∈ Λ. And that is consequence of Theo-

rem 5.38.

Theorem 5.47. Let H ∈ Fr \Fr−1 such that NG [H]r is the direct union of

{Nλ |λ ∈ Λ} and conditions (i)− (iii) in Theorem 5.45 hold. Then, if there

is n ∈ N such that gd
R
NGHλ
r (Hλ)∩LHλ

LHλ ≤ n for all L ∈ RNGHλ
r (Hλ) and

for all λ ∈ Λ,

gdRGr (H)NG[H]r
NG [H]r ≤ sup

λ∈Λ
{gdH̄λ

(NGHλ/Hλ)}+ n+ 1.

Proof. As in proof of Theorem 5.46 but using Theorem 5.39 instead of The-

orem 5.38.
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Corollary 5.48. Let H ∈ Fr \Fr−1 be such that NG [H]r is the direct union

of {Nλ |λ ∈ Λ} and conditions (i) − (iii) in Theorem 5.45 hold. Assume

LHλ ∈ RNGHλ
r (Hλ) for all L ∈ RNGHλ

r (Hλ) and for all λ ∈ Λ. Then,

cdRGr (H)NG [H]r ≤ sup
λ∈Λ
{cdH̄λ

(NGHλ/Hλ)}+ 1.

Proof. As in proof of Corollary 5.40, but using Theorem 5.46 instead of

Theorem 5.38.

Corollary 5.49. Let H as in Corollary 5.48. Then,

gdRGr (H)NG [H]r ≤ sup
λ∈Λ
{gdH̄λ

(NGHλ/Hλ)}+ 1.

Proof. As in proof of Corollary 5.41, but using Theorem 5.47 instead of

Theorem 5.39.

Corollary 5.50. Let (Fn)n∈N be a strongly structured ascending chain of

families of subgroups of G such that the equivalence relation ∼r in Fr \Fr−1

is commensurability. Let [H]r ∈ [Fr \ Fr−1]r be such that NG [H]r is the

direct union of {Nλ |λ ∈ Λ} and conditions (i)− (iii) in Theorem 5.45 hold.

Then,

cdRGr (H)NG [H]r ≤ sup
λ∈Λ
{cd (NGHλ/Hλ)}+ 1.

Proof. Proceeding as we did in proof of Corollary 5.42, but using Corol-

lary 5.48 instead of Corollary 5.40.

Corollary 5.51. Let (Fn)n∈N and [H]r ∈ [Fr \ Fr−1]r as in Corollary 5.50.

Then,

gdRGr (H)NG [H]r ≤ sup
λ∈Λ
{gd (NGHλ)}+ 1.

Proof. As in proof of Corollary 5.43, but using Corollary 5.49 instead of

Corollary 5.41.
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Chapter 6

Classifying spaces for

families of virtually

polycyclic subgroups

Contents

1 Virtually polycyclic groups . . . . . . . . . . . . . 95

2 Locally virtually polycyclic groups . . . . . . . . 101

In this chapter we will use the constructions and results presented in

Chapters 4 and 5 to study the Bredon dimensions of certain groups G with

respect to families of virtually polycyclic subgroups. We will first focus

on groups G that are themselves virtually polycyclic to then extend those

results to groups G belonging to a wider class of groups.

In [Sco87] and [Seg83], many of the basic properties of polycyclic and

virtually polycyclic groups can be found. In the first source mentioned,

virtually polycyclic groups are referred to as M-groups.

Definition 6.1. Given a property or class of groups X, we say that a group
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G is poly- X if it admits a subnormal series

{1} = G0 CG1 C . . .CGk = G

where Gi+1/Gi has the property X for all 0 ≤ i < k.

Polycyclic groups, hence, are those that admit a finite subnormal series

with cyclic factors. Polycyclicity is preserved under taking subgroups and

quotients.

Note that being virtually polycyclic, polycyclic-by-finite, poly-Z-by-finite

or poly-(Z or finite) are equivalent group properties, and all of them are pre-

served by taking subgroups, quotients and extensions.

We will use these facts throughout the current chapter without mention.

As an invariant for polycyclic-by-finite groups to define an indexed as-

cending chain of subgroups (as torsion-free rank does in [CCMNP17]), we

take the Hirsch length of the group:

Definition 6.2. Given a polycyclic-by-finite groupG, its Hirsch length h(G)

is the number of infinite cyclic factors in any of its subnormal series with

infinite cyclic or finite factors.

These and many other properties of this class of groups and the Hirsch

length can be found in [Seg83]. The following one is crucial in many of the

proofs:

Lemma 6.3. Let G be virtually polycyclic, H ≤ G and N CG, then

(i) h(H) ≤ h(G)

(ii) h(H) = h(G)⇔ |H : G| <∞

(iii) h(G) = h(N) + h(G/N)

Definition 6.4. Let G be any group. We define Hr as the family of virtually

polycyclic subgroups of G of Hirsch length less than or equal to r, where

r ∈ N.
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Corollary 6.5. Let G be any group, then (Hr)r∈N is a strongly structured

ascending chain of subgroups of G.

Proof. It is direct consequence of Lemma 5.4 and Lemma 6.3.

In this case, given H ∈ Hr \ Hr−1 and i ≤ r, we have

RG
i (H) = {K ≤ NG [H]r |h(K) = h(H ∩K) ≤ i}

and NG [H]r = CommG(H).

1 Virtually polycyclic groups

Let us focus our interest in the chain of families (Hr)r∈N of subgroups of a

virtually polycyclic group G.

Note that in general the family H0 is the family of finite subgroups of G

and the family H1 is the family of virtually cyclic subgroups of G. Models for

EFinG and EVCG and the dimensions gdFinG, gdVCG, cdFinG and cdVCG

for any virtually polycyclic group G can be found in [Lüc05] and [LW12].

For this reason, we dispose of the base case spaces in both recursions for

the construction described in previous chapter, given the fact that RG
0 (H)

is the family of finite subgroups of NG [H]h(H), which is also virtually poly-

cyclic.

But as we saw in last chapter, we also require (finite-dimensional) models

for ERGr (H) (NG [H]r) for H ∈ Fr \Fr−1 and for all r > 0, where the families

RG
r (H) are as in Definition 5.10. We will use Theorems 5.42 and 5.43 to

build them, and for that we need the result that follows:

Lemma 6.6. [CKRW17, Corollary 10] The following assertions are equiv-

alent for any finitely generated virtually soluble group G:

(i) G is polycyclic-by-finite.

(ii) Every H ≤ G contains a finite index subgroup K such that NGK =

CommG(H).
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(iii) For all subnormal subgroups H of G and all finitely generated J ≤

CommG(H), there exists a finite index subgroup K ≤ H which is nor-

mal in 〈J ∪K〉.

We can take for each r > 0 a set of representatives Hr of the classes with

respect to ∼r such that if H ∈ Hr then NGH = CommG(H).

Corollary 6.7. Let G be a virtually polycyclic group and for every r ∈ N

let Hr be the family of subgroups of G of Hirsch length smaller than or equal

to r. Let H ∈ Hr. If X is a model for EFin (NGH/H), then X is also a

model for ERGr (H) (NGH). In particular, we have

gdRGr (H) (NGH) ≤ h(NGH)− h(H).

Proof. Consequence of Corollary 5.43, since gd(NGH/H) = h(NGH/H) =

h(NGH)− h(H).

Corollary 6.8. Let G be a virtually polycyclic group and for every r ∈ N

let Hr be the family of subgroups of G of Hirsch length smaller than or equal

to r. Let H ∈ Hr. Then,

cdRGr (H)NGH ≤ h(NGH)− h(H).

Proof. Since cd(NGH/H) = h(NGH/H) = h(NGH) − h(H), by Theo-

rem 5.42 the inequality we had to prove holds.

Now we have all necessary ingredients to apply results from Chapter 5.

Let us first study the chain of families (RG
i (H))ri=0 for H ∈ Hr.

As a direct consequence of Corollary 5.23 and Proposition 5.30, we have:

Corollary 6.9. Let G be a virtually polycyclic group and for every r ∈ N

let Hr be the family of subgroups of G of Hirsch length smaller than or equal

to r. Let H ∈ Hr and let Ki = Hi ∩RG
i (H) for i = 0, . . . , r − 1. Then,
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gdRGi (H)[K](NNGHK) ≤ max
[K]i∈Ki

{h(NNGHK)− h(K) ,

gd
R
NGK
i−1 (H)

(NNGHK) ,

gd
R
NGH
i−1 (K)

(NNGHK) + 1}

and hence

gdRGi (H)(NGH) ≤ max
[K]i∈Ki

{ gd
R
NGK
i−1 (H)

(NNGHK) + 1 ,

gd
R
NGH
i−1 (K)

(NNGHK) + 1 ,

h(NNGHK)− h(K) ,

gdRGi−1(H)(NGH)}.

Proof. Corollaries 5.23 and 6.7 give us the first inequality. The second in-

equality is consequence of the first one and Proposition 5.30.

Corollary 6.10. Under the same assumptions than the previous result, we

have

cdRGi (H)[K](NNGHK) ≤ max
[K]i∈Ki

{h(NNGHK)− h(K) ,

cd
R
NGK
i−1 (H)

(NNGHK) ,

cd
R
NGH
i−1 (K)

(NNGHK) + 1}

and hence

cdRGi (H)(NGH) ≤ max
[K]i∈Ki

{ cd
R
NGK
i−1 (H)

(NNGHK) + 1 ,

cd
R
NGH
i−1 (K)

(NNGHK) + 1 ,

h(NNGHK)− h(K) ,

cdRGi−1(H)(NGH)}.

Proof. The first inequality is given by applying Corollaries 5.24 and 6.8.

The second, by applying Theorem 5.35.
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We can extend these results to produce upper bounds for the Bredon

dimensions of NGH with respect to the family RG
i (H), where H ∈ Hr and

i ≤ r:

Proposition 6.11. Let G be a virtually polycyclic group and for every r ∈ N

let Hr be the family of subgroups of G of Hirsch length smaller than or equal

to r. Let H ∈ Hr and i ≤ r − 1. Then,

gdRGi (H)(NGH) ≤ h(NGH) + i

and

cdRGi (H)(NGH) ≤ h(NGH) + i.

Proof. We will prove it by induction on i. For the base case, since RG
0 (H)

coincides with the family of finite subgroups of NGH, we already know

gdRG0 (H)NGH = h(NGH). Note that this equality holds for all virtually

polycyclic group L and S ≤ L such that CommL S = NLS.

For the induction step, we assume that for all L virtually polycyclic and

all S ≤ L such that CommL S = NLS we have gdRLi−1(S)NLS ≤ h(NLS) +

i − 1 and we need to prove that gdRGi (H)NGH ≤ h(NGH) + i. Given

Corollary 6.9, if is sufficient to prove the following for all K ∈ Ki = Hr ∩

RG
i (H):

(i) gd
R
NGK
i−1 (H)

(NNGHK) ≤ h(NGH) + i− 1;

(ii) gd
R
NGH
i−1 (K)

(NNGHK) ≤ h(NGH) + i− 1 and

(iii) gdRGi−1(H)(NGH) ≤ h(NGH) + i.

And the three inequalities are true by induction hypothesis applied to

H∩NGK ≤ NGK, K ≤ NGH and H ≤ G, respectively, given that if A ≤ B

then h(A) ≤ h(B) for all A,B virtually polycyclic.

The proof for the Bredon cohomological dimension is the same as the

one for the Bredon geometric dimension, but using Corollary 6.10 instead

of 6.9.
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We can now derive similar results for the families Hr[H] and Hr of sub-

groups of NGH and G, respectively.

Corollary 6.12. Let G be a virtually polycyclic group and for every r ∈ N

let Hr be the family of subgroups of G of Hirsch length smaller than or equal

to r. Then,

gdHr[H]NGH ≤ max
H∈Hr

{ gdHr−1∩NGH NGH , h(NGH)− h(H) ,

gdRGr−1(H)NGH + 1}.

and hence

gdHr G ≤ max
H∈Hr

{ gdHr−1∩NGH(NGH) + 1 ,

h(NGH)− h(H) ,

gdRGr−1(H)(NGH) + 1 ,

gdHr−1
G}.

Proof. We get the first inequality from Corollaries 5.28 and 6.7. For the

second inequality, we use the first and Proposition 5.32.

Corollary 6.13. Let G and Hr as in the previous result. Then,

cdHr[H]NGH ≤ max
H∈Hr

{ cdHr−1∩NGH NGH , h(NGH)− h(H) ,

cdRGr−1(H)NGH + 1}.

and hence

cdHr G ≤ max
H∈Hr

{ cdHr−1∩NGH(NGH) + 1 ,

h(NGH)− h(H) ,

cdRGr−1(H)(NGH) + 1 ,

cdHr−1 G}.
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Proof. Using Proposition 5.36, Corollary 6.8 and Theorem 5.37.

Finally, we get the following upper bounds for the Bredon dimensions of

G with respect to the family Hr, for r ≤ h(G):

Theorem 6.14. Let G be a virtually polycyclic group and, for every r ∈ N,

let Hr be the family of subgroups of G of Hirsch length smaller than or equal

to r. Then,

gdHr G ≤ h(G) + r

and

cdHr G ≤ h(G) + r.

Proof. We proceed, as in the proof of Proposition 6.11, by induction over r.

For the base case, since H0 is the family of finite subgroups of G, we know

that gdH0
G = h(G).

For the inductive step, let H ∈ Hr \ Hr−1 be such that NG [H]r = NGH

and assume that for all L virtually polycyclic we have gdHr−1∩L L ≤ h(L)+i.

By hypothesis of induction, we have:

(i) gdHr−1∩NGH NGH ≤ h(NGH) + r − 1 ≤ h(G) + r − 1;

(ii) gdRGr−1(H)(NGH) ≤ h(NGH) + r − 1 and

(iii) gdHr−1
G ≤ h(G) + r − 1.

By Corollary 6.12, we have gdHr G ≤ h(G) + r, as we needed.

The proof for the Bredon cohomological dimension is the same as the

one for the Bredon geometric dimension, using Corollary 6.13 instead of

6.12.

We can also give lower bounds for the Bredon dimensions of G with

respect to Hr that will be useful in the next section.

Corollary 6.15. Let G be a virtually polycyclic group and, for every r ∈ N,

let Hr be the family of subgroups H ≤ G such that h(H) ≤ r. Then,

cdHr G ≥ h(G)− r
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and

gdHr G ≥ h(G)− r.

Proof. Consider the families H0 ⊆ Hr and π : H0 → Hr to be the inclusion.

Given H ∈ Hr, we know that cdH0∩H H = gdH0∩H H = h(H) ≤ r. By

Corollary 4.13 and Proposition 4.14, since H0 ⊆ Hr are full families, we

can conclude that h(G) = cdH0 G ≤ cdHr G + r and h(G) = gdH0
G ≤

gdHr G+ r.

2 Locally virtually polycyclic groups

In this section we use Theorems 4.33 and 4.32 to widen the class of groups

to which the ambient group belongs in the results in the previous section.

Definition 6.16. Let G be a locally virtually polycyclic group. Then, we

define its Hirsch length as h(G) = sup{h(H) |H ≤ G finitely generated}.

Note that this extension of the definition of the Hirsch length is consistent

with that for virtually polycyclic groups given in the previous section and

also with that for elementary amenable groups given in [Hil91].

Theorem 6.17. Let G be a locally virtually polycyclic countable group such

that h(G) <∞. Then,

cdHr G ≤ h(G) + r + 1

and

gdHr G ≤ h(G) + r + 1,

for 0 ≤ r < h(G) and cdHr G ≤ 1 and gdHr G ≤ 1 for r ≥ h(G).

Proof. Let {Gλ |λ ∈ Λ} be the set of finitely generated subgroups of G. Let

r ∈ N. Since Hr is a full family of finitely generated subgroups of G, by

Proposition 4.30, the families Hr and {Hr ∩Gλ |λ ∈ Λ} are compatible with
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the direct union. Given that G is a countable group, Λ is also countable.

Hence, by Theorems 4.32 and 4.33, we have

sup
λ∈Λ
{cdHr,λ Gλ} ≤ cdHr G ≤ sup

λ∈Λ
{cdHr,λ Gλ}+ 1

and

sup
λ∈Λ
{gdHr,λ

Gλ} ≤ gdHr G ≤ sup
λ∈Λ
{gdHr,λ

Gλ}+ 1,

where Hr,λ = Hr ∩Gλ.

Let λ ∈ Λ and r ∈ N. Since G is locally virtually polycyclic and Gλ is

finitely generated, Gλ is virtually polycyclic. Therefore, by Theorem 6.14,

cdHr,λ Gλ ≤ h(Gλ) + r and gdHr,λ
Gλ ≤ h(Gλ) + r, respectively. Note that

if r ≥ h(Gλ), Gλ ∈ Hr,λ, so cdHr,λ Gλ = gdHr,λ
Gλ = 0, which concludes the

proof, since h(G) = sup
λ∈Λ
{h(Gλ)}.

Theorem 6.18. Let G be a locally virtually polycyclic countable group and

r ∈ N. Then, cdHr G <∞ if and only if h(G) <∞.

Proof. We only need to prove the left-to-right implication, as the other impli-

cation is proven in Theorem 6.17. We want to see that h(G) <∞ assuming

that cdHr G < ∞. In order to achieve that, we will proceed by contrapos-

itive, i.e., we assume that h(G) = ∞ and see that then cdHr G can not be

finite.

Note that since G is countable, G is the direct union of {Gλ |λ ∈ Λ},

where Gλ is finitely generated (and hence virtually polycyclic). Proceeding

as we did in in proof of Theorem 6.17, we get that

cdHr G ≥ sup
λ∈Λ
{cdHr,λ Gλ}.

Let M ∈ N. We want to find λ ∈ Λ such that cdHr,λ Gλ > M . Since

Gλ is virtually polycyclic for all λ ∈ Λ, by Corollary 6.15, cdHr∩Gλ Gλ ≥

h(Gλ) − r. As h(G) = ∞ and h(G) = sup
λ∈Λ
{h(Gλ)}, for each n ∈ N there is

λ(n) ∈ Λ such that h(Gλ(n)) > n. If we take λ = λ(M + r), we get that
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cdHr,λ Gλ > M + r − r = M . Therefore, cdHr G can not be finite, as we

wanted to see.

Analogously, in the case of the Bredon geometric dimension:

Theorem 6.19. Let G be a locally virtually polycyclic countable group and

r ∈ N. Then, gdHr G <∞ if and only if h(G) <∞.

Proof. Exchanging cd by gd in the previous theorem’s proof yields the de-

sired result.
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