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ABSTRACT
The Transport Layer Security (TLS) protocol is the de-facto standard
for encrypted communication on the Internet. However, it has been
plagued by a number of different attacks and security issues over
the last years. Addressing these attacks requires changes to the
protocol, to server- or client-software, or to all of them. In this
paper we conduct the first large-scale longitudinal study examining
the evolution of the TLS ecosystem over the last six years. We
place a special focus on the ecosystem’s evolution in response to
high-profile attacks.

For our analysis, we use a passive measurement dataset with
more than 319.3B connections since February 2012, and an active
dataset that contains TLS and SSL scans of the entire IPv4 address
space since August 2015. To identify the evolution of specific clients
we also create the—to our knowledge—largest TLS client fingerprint
database to date, consisting of 1,684 fingerprints.

We observe that the ecosystem has shifted significantly since
2012, with major changes in which cipher suites and TLS extensions
are offered by clients and accepted by servers having taken place.
Where possible, we correlate these with the timing of specific at-
tacks on TLS. At the same time, our results show that while clients,
especially browsers, are quick to adopt new algorithms, they are
also slow to drop support for older ones. We also encounter signif-
icant amounts of client software that probably unwittingly offer
unsafe ciphers. We discuss these findings in the context of long tail
effects in the TLS ecosystem.
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1 INTRODUCTION
The Transport Layer Security (TLS) protocol is the most widely
used encrypted communication protocol on the Internet. However,
in order to stay secure, it has had to constantly evolve in the face
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of each new attack and vulnerability that is discovered. Over the
last few years various TLS vulnerabilities such as BEAST, Lucky
13, POODLE, Heartbleed, FREAK, Logjam, and multiple attacks
against RC4 have been discovered. The Snowden revelations have
also highlighted weaknesses in TLS, specifically the reliance on
RSA key transport for establishing keying material, a method that
can be passively broken by an entity in possession of the server’s
RSA private key. Addressing these attacks requires changes to
the protocol, to server-, or to client-software, or to all of them
simultaneously.

Prior work highlights different parts of the TLS ecosystem like
specific attacks [6, 9, 10, 17, 41, 44, 44, 63, 74, 82], problems of the
PKI [7, 46, 54, 60] or problems of TLS usage in specific areas like on
mobile devices [47, 71, 83]. However, to the best of our knowledge,
no prior work has examined the specific impact of security issues
on protocol deployment.

In this paper, we conduct a large-scale longitudinal study exam-
ining the evolution of the TLS ecosystem since 2012 both on the
client and on the server side. We analyze trends and evolution of the
ecosystem, putting a special focus on changes occurring in response
to specific high-profile attacks. For this, we use a combination of
passive and active measurement data. Our passive measurements
have been running continuously since February 2012 and currently
contain protocol information about more than 319.3B TLS connec-
tions. The active measurement data provided to us by Censys [42]
contains SSL and TLS scans of the entire IPv4 address space starting
from August 2015.

To identify the patching behavior and evolution of specific clients
we also create the—to our knowledge—largest TLS client fingerprint
database to date, consisting of 1,684 fingerprints. These fingerprints
allow us to attribute 69.26% of TLS connections to specific TLS-
using programs or libraries. Using these fingerprints we discover
that while clients, especially browsers, are quick to adopt new al-
gorithms, they are also slow to drop support for older ones. We
also encounter significant amounts of client software that probably
unwittingly offer unsafe ciphers. We discuss these findings in the
context of long tail effects arising from the desire to maintain back-
wards compatibility, software abandonment, and the difficulties
faced by users of TLS (in a broad sense) in keeping up-to-date with
proper TLS usage.

Our analysis, shows radical changes in the TLS ecosystem over
the last 6 years. In 2012, 90% of TLS connections used TLS 1.0, while
today 90% use TLS 1.2, with TLS 1.3 traffic increasing rapidly. In
2012, the use of RC4 and CBC-mode for encryption was prevalent;
today RC4 has almost completely disappeared in response to at-
tacks, while CBC-mode accounts for about 10% of traffic. RC4 and
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CBC-mode have been largely replaced by modern AEAD schemes,
especially AES-GCM. We observe significant declines in the adver-
tisement and use of export cipher suites, anonymous cipher suites,
and vintage algorithms like 3DES. We also see a rise in the use of
forward-secret cipher suites, now accounting for more than 90%
of connections. Ephemeral elliptic-curve-based Diffie-Hellman key
exchange (ECDHE) now dominates RSA key transport in TLS hand-
shakes, with Curve25519 gaining in popularity and accounting for
more than 20% of connections today.

We correlate major changes in the use of cipher suites and TLS
extensions with the timing of specific TLS attacks and assess the
impact of security research.We observe a few cases, like HeartBleed,
where the ecosystem changed very quickly. We also observe a
strong correlation in time between Snowden revelations and the
change to forward-secret ciphers. On the other hand, it took several
years for RC4 usage to reduce significantly after attacks against
RC4 were discovered. Moreover, we do not observe a change in our
traffic after CBC attacks, possibly due to the lack of better available
options at the time or due to the existence of patches. At last, server
support for SSL3 is still embarassingly high, despite the severity of
POODLE and RC4 attacks.

Our main contributions are as follows: (i) We conduct a large-
scale longitudinal study on the evolution of the TLS ecosystem
since 2012. We place a special focus on high-profile attacks and
detail the impact that these attacks have had on the ecosystem.
(ii) We present the largest, and longest-running, passive TLS moni-
toring dataset comprising 319.3B TLS connections collected since
February 2012. We use our passive dataset, together with a large
active scan dataset, to detail the changes to the TLS ecosystem since
2012. Where possible, we correlate the changes that we observe in
these datasets with the timing of specific attacks on TLS. (iii) We
create the largest database of TLS client fingerprints to-date. We
use these fingerprints to identify the evolution of client software
on the Internet. We will release our TLS client fingerprints to the
community after publication of this paper1.

The remainder of this paper is structured as follows: §2 covers
the background. §3 introduces the datasets used in our paper and
§4 details our TLS client fingerprinting. §5 examines the impact
TLS vulnerabilities had on the TLS ecosystem and §6 investigates
TLS characteristics not directly related to attacks. §7 discusses the
implications of our findings. Finally, §8 presents the related work
and §9 concludes.

2 BACKGROUND
This section gives a brief overview of relevant parts of the TLS
protocol, as well as the TLS vulnerabilities we analyze. For a detailed
TLS description, we refer the reader to RFC 5246 [40]. Note that
while we predominantly use the term TLS, our measurements also
cover the earlier Secure Sockets Layer (SSL) protocol.

2.1 TLS Connection Establishment
To establish a TLS connection, the client and server first negotiate
the parameters of the connection using Client Hello and Server
Hello messages. These two messages are not encrypted, allowing
passive observation. The client first sends a Client Hello message
1https://github.com/platonK/tls_fingerprints

to the server listing its capabilities such as the maximum protocol
version, the cipher suites, and elliptic curves it supports. The server
then chooses its preferred options, among those offered by the
client, and informs the client of its choices in the Server Hello
message. Thus, the server chooses the final protocol version, cipher
suite, and other parameters that will be used in the secure channel.

Table 1 lists the release dates of all SSL/TLS versions. A key
feature added in TLS 1.0 over the earlier SSL protocol versions are
TLS extensions used for adding TLS functionality and TLS protocol
message formats [40]. The client includes in the Client Hello all the
extensions that it supports and the server simply ignores extensions
that it does not understand. As of March 2018, 28 TLS extensions
have been standardized [57]. It is also possible for anyone to define
their own extensions.

2.2 TLS Attacks
Many attacks against SSL/TLS have been discovered in recent years.
As a result, both the protocol specification and individual implemen-
tations have been significantly revised. In some cases, just changing
client and/or server configurations was sufficient mitigation – for
example to avoid using weak cipher suites. In other cases, where
good alternatives were not widely supported or where support for
legacy was needed, more invasive changes to implementations were
required. Finally, as we will see, clients and servers have changed
the versions of the protocol they negotiate in response to attacks.
Below, we provide a brief description and a timeline of the most
notable attacks, ordered by disclosure date.

BEAST (09/06/2011) BEAST allows a MITM attacker to decrypt
data passing between a webserver and an end-user browser for CBC
cipher suites in TLS versions 1.0 and earlier [26, 41]. The attack
exploits these versions’ reliance on predictable IVs; these are not
present in TLS 1.1 and 1.2. BEAST requires the attacker to have
very fine control over the placement of chosen plaintext blocks
in the client’s messages. Client-side mitigation was possible and
widely implemented. As a response to BEAST, server operators
were encouraged to enforce the use of RC4 suites whenever TLS 1.0
and lower is offered by the client [74].

Lucky 13 (06/12/2012) Lucky 13 is a cryptographic timing attack
against TLS implementations using CBC mode [10, 29]. All TLS
cipher suites using CBC-mode encryption are potentially vulnera-
ble to this attack. The best counter-measure is to switch to using
authenticated encryption with associated data (AEAD) cipher suites
in TLS 1.2, but at the time of the attack’s disclosure, most imple-
mentations did not support TLS 1.2. Consequently, and in view of
the security issues in RC4 disclosed soon after Lucky 13, most im-
plementations took steps to try to limit the timing leaks. Follow-up
work has shown that this was not always successful [8, 14, 79].

RC4 attacks (12/3/2013 and later) This sequence of attacks [9,20,
27,33,48,85] exploited biases in the output of the RC4 stream cipher
to recover plain-texts that are sent repeatedly under the protection
of TLS, e.g., HTTP cookies or passwords. The attacks grew stronger
over time, making the use of RC4 increasingly indefensible as an
encryption option, and spurring the adoption of TLS 1.2 with its
stronger, modern AEAD cipher suites.
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Heartbleed (03/12/2013) Heartbleed is an OpenSSL bug allow-
ing remote attackers to obtain sensitive information from process
memory via packets that trigger a buffer over-read [44, 87]. It was
introduced into the software in 2012 and publicly disclosed in April
2014 [30]. Due to the severity of the attack and the ease of exploiting
it, Heartbleed attracted a lot of media attention.

POODLE (14/05/2014) POODLE is a cryptographic exploit which
takes advantage of TLS clients’ willingness to fall back to SSL 3 and
the specifics of CBC-mode padding in SSL 3 [31, 63]. Since RC4, the
only other encryption option in SSL 3, was already considered to
be weak, the only real countermeasures to this attack are to disable
SSL 3 and support TLS downgrade protection.

FREAK (03/03/2015) Export-grade ciphersuites have limited key
lengths to satisfy US cryptography export laws of the 1990s. They
offer approximately 40 bits of security and can today be broken
quite easily [82]. Since the early 2000s, with the relaxation of export
controls, cryptography no longer has to be hobbled in this way.
FREAK allows an MITM attacker to downgrade TLS connections to
use export-grade cryptography (512-bit RSA for key transport) [17,
32,51]. The attack is possible when a client connects to a web server
that supports RSA_EXPORT cipher suites and the client requests
an RSA cipher suite. The attack also relies on a client-side bug
where the client accepts handshake messages of the special format
encountered in export handshakes, when no such handshake was
requested by the client. To mitigate this vulnerability, both clients
and servers should disable support for export cipher suites.

Logjam (20/05/2015) Logjam, reminiscent of FREAK, allows an
MITMattacker to attack connections if the server supports DHE_EX-
PORT cipher suites and the client requests a DHE cipher suite [6,34].
The effect is to downgrade the security of TLS connections to the
level of export-grade cryptography (512-bit DH key exchange). Log-
jam takes advantage of the protocol-level flaw in TLS that the server
signature in a DHE handshake does not cover the entire handshake
but only the DH parameters. To mitigate this vulnerability, both
clients and servers should disable export cipher suites.

Sweet32 (31/08/2016) The DES and Triple-DES (3DES) ciphers
with their 64-bit block size are vulnerable to a birthday-bound
attack on CBC-mode which makes it possible for an MITM attacker
to recover plaintext from long-duration connections [18, 37]. To
counter this attack it is necessary to stop using 64-bit block ciphers
or to re-key the session frequently.

Other Attacks. Besides the aforementioned attacks, other TLS
vulnerabilities such as CRIME [28], SLOTH [35] and DROWN [36]
were also publicly disclosed. They are not included in our study
because we are not able to study them in detail using our dataset .

3 DATASETS
This section introduces the datasets used in our study.

3.1 ICSI SSL Notary
The main data source for this study is the ICSI SSL Notary [12]. The
Notary passively collects metadata about outgoing SSL/TLS connec-
tions on all ports from several universities and research networks
mainly located in North America. The dataset consists of 319.3B

Version Release Date

SSL 2 Feb. 1995
SSL 3 Nov. 1996
TLS 1.0 Jan. 1999
TLS 1.1 Apr. 2006
TLS 1.2 Aug. 2008
TLS 1.3 Aug. 2018

Table 1: Release dates of all SSL/TLS versions.

connections collected over 6 years, from February 2012 to March
2018. During this period it collected 31.5M unique certificates. This
number excludes short-lived certificates used by GRID Computing
and Tor [68].

The Notary uses the Bro Network Security Monitor [1] to collect
its data. We significantly extended the TLS-related features in Bro
since we started our data collection back in 2012.

The Notary dataset is fundamentally different from active scan
datasets because it focuses on connections instead of servers. It
captures how TLS is actually used on the Internet and includes
the interplay between clients and servers. It also emphasizes con-
nections to services that users commonly use and de-emphasizes
services rarely accessed by users.We consider this a feature since it
shows the current makeup of the traffic on the Internet.

We note that our dataset exhibits artifacts of the collection pro-
cess that are beyond our control. As we leverage operational setups
that run our analysis on top of their normal duties, we must accept
occasional outages, packets drops (e.g., due to CPU overload) and
misconfigurations. As such our data collection effort is designed
as a “best effort” process: we take what we get but generally can-
not quantify what we miss. However, given the large total volume
across the sites, we consider the aggregate as representative of
many properties of real-world SSL/TLS activity.

3.2 Censys
We complement the passive Notary dataset with active scans from
Censys [42]. Censys performs periodic Internet-wide TLS scans and
provides a search engine to explore the collected scan data. Censys
uses a combination of ZMap [46] and ZGrab [4] for data collection.

We use multiple Censys datasets: First, we use TLS scans of
the IPv4 address space on TCP port 443 covering 46M hosts and
535M unique certificates. Second, we use HTTPS scans of the top
1M Alexa most popular websites. Both scans offer the same set of
cipher suites as a 2015 version of Chrome including a number of
strong ciphers such as AES-GCM cipher suites with forward secrecy,
as well as weaker CBC, RC4, and 3DES cipher suites. Finally, we
use weekly scans of the IPv4 address space on TCP port 443 that
offer SSL 3 as the sole supported protocol version and other scans
that look for Export-grade cipher suite support. Censys scans are
available starting from August 22nd 2015; in our paper we use the
data till May 13 2018.

These datasets provide a temporal view of publicly-reachable TLS
servers active in the IPv4 address space over 32 months, allowing us
to study how the choices of SSL/TLS versions and cipher suites by
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servers change over time, and whether these changes correspond
to attack disclosures and vulnerability reports.

3.3 Ethical Considerations
The passive data collection performed by the ICSI SSL Notary was
cleared by the responsible parties at each contributing institution.
Note that the ICSI SSL Notary specifically excludes or anonymizes
sensitive information, such as client IP addresses. Censys performs
a number of steps to make sure that data is collected ethically; these
are outlined in [42].

4 TLS CLIENT FINGERPRINTING
As of May 2018, IANA has registered almost 200 cipher suites, 28
TLS extension, and 35 elliptic curves values [56, 57]. The different
combinations of these parameters in a Client Hello message (see §2)
can reveal the client from which a given TLS flow has emanated.
Matching client fingerprints against the Notary dataset allows us
to analyze the evolution of TLS usage of specific applications, e.g.,
to see how they react to discovered TLS vulnerabilities.

In this work, a TLS client fingerprint is the concatenation of four
features extracted from the Client Hello: (i) the cipher suite list,
(ii) the list client extensions, (iii) Supported Elliptic Curves (EC),
and (iv) the Supported EC Point Formats extension. All features are
stored in the order they appear in the Client Hello.

Some Google software like Chrome uses a feature called GREA-
SE [38] that adds a list of invalid values to these fields to improve
server tolerance of future new extensions. We identify and remove
these values from handshakes.

Our feature selection is similar to the feature selection of pre-
vious work, albeit slightly more constrained because a few items
are not available in our passive dataset. Prior work has included
additional fields like the client TLS version, compression methods,
and signature algorithms [22,45]. We plan adding these fields to the
Notary in the future. Fingerprints with more fields allow a more
specific identification of client software. To determine the impact
we take the fingerprints of [22] and apply our more restrictive
methodology to them. Originally 2.4% of the fingerprints collide;
with our methodology this increases to 7.3%. Thus, our collection
gives slightly less distinct results.

Each fingerprint in our database maps to a program or library
and the version range that the fingerprint covers. When a collision
with a different kind of software or library occurs we remove the
fingerprint from the database; it cannot uniquely identify a client.
When a collision between a specific software and a library occurs we
assume that the software uses the library. Due to this, e.g., Chrome
on Android is just identified as “Android SDK”, conflict resolution
is performed manually.

We build our fingerprint database from several sources: we use
the data of previous research studies [45, 71], use BrowserStack [2]
to gather the fingerprints of browsers and mobile devices, compile
multiple versions of OpenSSL to gather their data, and manually
identify TLS clients by examining the hosts they connect to.

4.0.1 TLS Client Fingerprint Coverage. As discussed in §3.1, the
Notary gradually incorporated new TLS-related features since its
initial deployment in February 2012. The fields necessary for fin-
gerprinting have been introduced in February 2014. As a result, we

Type (Examples) № FPs Coverage

Libraries (OpenSSL, MS CryptoAPI) 700 46.49%
Browsers (Chrome, Firefox) 193 15.63%
OS Tools and Services (Apple Spotlight) 13 2.29%
Mobile apps (Facebook, Hola VPN) 489 1.35%
Dev. tools (Flux, git) 12 0.88%
AV (Avast, Bluecoat Proxy, Kaspersky) 44 0.85%
Cloud Storage (Dropbox) 29 0.71%
Email (Apple mail, Thunderbird) 33 0.58%
Malware & PUP (Zbot, InstallMoney) 49 0.48%
All 1,684 69.23%

Table 2: Fingerprint summary. The table reports number of
unique fingerprints, and amount of matching Notary con-
nections for each class.

can only match our fingerprints to 191.9G (60%) total flows con-
taining the necessary information. When applied on those 191.9G
TLS connections, our 1,684 fingerprints allow us to identify the TLS
client originating 69.23% of them. Table 2 summarizes our finger-
print database. The whole Notary dataset contains 69,874 unique
TLS connection fingerprints. The coverage follows a power law
distribution: the 10 most common fingerprints explain 25.9% of the
total Notary traffic. These 10 fingerprints are associated to popular
web browsers such as Chrome and Safari and OS-provided libraries
(mainly Android and iOS). The most common unlabeled fingerprint
is responsible for only 1% of remaining traffic. This indicates that
obtaining more fingerprints associated with unpopular TLS clients
may not translate in significantly improving our coverage.

4.1 Software use over time
As far as we are aware, our work is the first time that TLS finger-
printing is used on a large-scale dataset covering several years. A
few interesting questions that arise in this scenario are: How long
do we see specific TLS fingerprints? Do fingerprints commonly only
appear for short periods of time (which might indicate frequent
client updates) or are a lot of them unchanged for years?

In our dataset we have 69,874 usable fingerprints (for which all
needed features that we are using are present), starting from Oct.
2014. We define the duration a fingerprint was seen as the time
between the first time and the last time it was seen. The maximum
duration in our dataset is 1,235 days (3 years, 4 months). The median
duration a fingerprint was seen is 1 day, the mean 158.8 days, the
3rd quantile 171 days and the standard deviation is 302.31 days.

It is interesting that a lot of fingerprints are only seen very
briefly and do not reappear later. Our dataset reveals an extreme
bias with 42,188 of the 69,874 fingerprints only appearing on a single
day. These 42,188 fingerprints are only responsible for 801,232 of
the 191B total connections for which we have fingerprints. We
are not sure which software these fingerprints originate from. One
possibility is that there is software that does not send its ciphersuites
in a fixed order (due to a bug, perhaps), causing an explosion of
fingerprints.

Looking at the other end reveals a different picture. There are
1,203 fingerprints that we see for more than 1,200 days. These
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fingerprints are responsible for 21.75% of connections (for which
we have fingerprints). We were able to identify the software for 343
of these (responsible for 18.08% of connections). The top software
identified is iPad Air (library), Safari, Android SDK, as well as
Chrome, Firefox, and the MacOs Mail App.

This indicates that significant numbers of connections are caused
by software that has either not been updated since 2014 or not
changed its fingerprints since then. The latter seems unlikely since it
takes significant effort to not change the fingerprint at all, especially
since doing so prevents adoption of new features.

5 VULNERABILITY ANALYSIS
In this section, we analyze the TLS ecosystem evolution by exam-
ining negotiated TLS parameters in TLS connections in the Notary
dataset, as well as client TLS configurations. We view our analysis
through the prism of the disclosed TLS attacks listed in §2.2. We
examine if and how server and client configurations change, and
how traffic patterns shift.

5.1 Legacy SSL Versions
Old protocol versions, especially SSL 2 and 3, are no longer con-
sidered secure [78, 81]. Our passive traffic shows that there is still
a marginal number of connections that use SSL 2 or 3. For exam-
ple, we saw 1.2K SSL 2, as well as 360.1K (< 0.01% of total) SSL 3
connections in February 2018. We have not observed SSL 3 in a sig-
nificant amount of connections since mid-2014 and never observed
significant numbers of SSL 2 connections.

All observed SSL 2 connections terminate at servers of a single
University; some of them on the Nagios port, a piece of system
monitoring software. SSL 3 paints a more varied picture—we see
connections to 1,789 different servers indicating use of it; 30 servers
receive more than 1,000 connections. The 4 servers receiving more
than 50,000 connections belong to Symantec and Wayport.

Looking at Censys data for server support shows that in Sep-
tember 2015, more than 45% of servers still supported SSL 3. The
number has decreased since then—as of the beginning of May 2018,
less than 25% of servers support SSL 3. However, considering that
TLS 1.0 was standardized in 1999 (Table 1) and that SSL 3 has been
considered badly broken since the POODLE attack in 2014 (on top
of the RC4 attacks), this still seems like a large number. Censys
does not scan using SSL 2 and we have no information about its
support.

5.2 CBC Attacks
There are three publicly known attacks against CBC-mode (see §2):
BEAST (2011), Lucky 13 (2013), and POODLE (2014). Each CBC-
mode attack requires different countermeasures. BEAST could only
be fixed on the client-side, for example using record splitting. How-
ever, it was also recommended to switch to newer TLS versions
(TLS 1.1 is immune to the attack) or to avoid CBC-mode on the
server side. Because of lack of widespread support for TLS 1.1 and
TLS 1.2 at the time, this would mean switching to RC4 cipher suites.
In the case of Lucky 13, complex patches were rolled out on both
clients and servers. Again, TLS 1.2 was not widely available at the
time, so switching to authenticated encryption (AEAD) was not
practical. However, Lucky 13 in combination with the RC4 attacks
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Figure 1: Negotiated SSL/TLS Versions. Vertical lines show
dates of high-profile attacks.
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Figure 2: Negotiated connections using RC4, CBC or AEAD
cipher suites.
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Figure 3: Connections with client advertising support for
RC4, DES, 3DES or AEAD cipher suites. Total CBC-mode is
always above 99%.

can be seen as having spurred the adoption of TLS 1.2. The best
defense against POODLE is to disable SSL 3 completely (since it also
enables attacks against later versions of TLS due to TLS fallback
behavior).
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Figure 4: TLS fingerprints with support for RC4, DES, 3DES
or AEAD cipher suites. CBC-mode support is near universal.
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Figure 5: Average relative position of the first AEAD, CBC,
RC4, DES or 3DES client-advertised cipher.

Figure 1 shows that TLS 1.0 stayed in use for years after BEAST
became public, though there is a steady decline over the period of
our study from nearly 100% in January 2012 to 2.8% in February
2018. Interestingly, there is a period of time from mid-2012 to late
2013 where TLS 1.1 gains traction; this may have been in response
to BEAST. The TLS 1.1 traffic drops off quickly as TLS 1.2 takes off
in late 2013. Figure 2 shows both that RC4 traffic did not increase
significantly post-BEAST, and also that CBC-mode remained pop-
ular right up until August 2015, when the amount of CBC-mode
traffic finally starts to show a decline. This is all suggestive that
client-side patches for BEAST were seen as sufficient mitigation for
the attack (which anyway required a specific browser vulnerability
to gain the fine control over the placement of chosen plaintext
blocks to make the attack feasible [26, 41]).

We also see a drop off in SSL 3 traffic in Figure 1. However, this
predates the publication of the POODLE attack, regarded as the
“SSL 3 killer”. Thus we cannot directly say that POODLE influenced
the move away from SSL 3, though this could be the case if infor-
mation about the attack was circulating prior to publication as is
often the case.

Browser Ver. Date № CBC ciphersuites

Firefox 27 04/02/2014 Reduced from 29 to 17
33 14/10/2014 Reduced to 10
37 31/03/2015 Reduced to 9
60 beta 14/03/2018 Reduced to 5

Chrome 29 20/08/2013 Reduced from 29 to 16
31 12/11/2013 Reduced to 10
41 03/03/2015 Reduced to 9
49 02/03/2016 Reduced to 7
56 25/01/2017 Reduced to 5

Opera 15 02/07/2013 Increased from 25 to 29
16 27/08/2013 Reduced to 16
18 19/11/2013 Reduced to 10
28 10/03/2015 Reduced to 9
30 09/06/2015 Reduced to 7
43 07/02/2017 Reduced to 5

Safari 7.1 18/09/2014 Increased from 28 to 30
9 01/09/2016 Reduced to 15
10.1 19/07/2017 Reduced to 12

Table 3: Changes in the number of CBC ciphersuites offered
by major browsers.

Concerning the impact of Lucky 13 on CBC-mode usage, we
do not see a clear shift in traffic patterns. This may be because all
major implementations patched against the attack and this was
considered sufficient mitigation. We point to the rise in TLS 1.2
traffic and the use of AEAD cipher suites as a longer-term reaction
to the sequence of attacks on CBC-mode (including Lucky 13) and
RC4.

During our observation period basically all of the TLS clients in
our dataset support CBC-mode. However, while clients still sup-
ported CBC-mode, they gradually “downgraded” support for it over
time. Table 3 lists the changes in the TLS configurations of 4 major
browsers as regards as their support of CBC-mode cipher suites. It
shows that Firefox, Chrome, and Opera significantly downgraded
their support between August 2013 and February 2014. Safari did
so in September 2016. On the other hand, while clients are reducing
the number of CBC-mode cipher suites they offer, Figure 5 shows
that they still place CBC-mode quite high in their list of preferences,
with little change in the relative position of the first offered CBC-
mode cipher suite over time. Figure 5 shows the relative position
over time of various client-advertised ciphers. Ciphers found at the
top (AEAD, and CBC) are (on average) placed in the beginning of
the client advertised cipher list. Even today, as Figure 3 and Figure 4
show, almost all clients still offer CBC-mode cipher suites. Presum-
ably this is done in order to be able to establish secure connections
with servers that have not been updated to TLS 1.2 yet. According
to Censys, server side support of CBC ciphers has also dropped
significantly, with the percentage of servers choosing CBC-mode
cipher suites over other cipher suites offered going down from
54% in September 2015 to 35% in May 2018, with the highest drop
happening between late-2016 and mid-2017
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Browser Ver. Date № RC4 ciphersuites

Firefox 27 04/12/2014 Reduced from 6 to 4
36 24/02/2015 Fallback only1[5]
38 12/05/2015 Only available for whitelist [5]
44 26/01/2016 Removed completely

Chrome 29 20/08/2013 Reduced from 6 to 4
43 19/05/2015 Removed completely

Opera 15 02/07/2013 Increased from 2 to 6
16 27/08/2013 Reduced to 4
30 09/06/2015 Removed completely

IE/Edge2 13 20/05/2015 All RC4 ciphersuites removed
Safari 6 25/02/2012 Reduced from 7 to 6

9 30/09/2015 Reduced to 4
10.1 20/09/2016 Removed completely

1 RC4 only offered if connection without RC4 failed.
2 Not removed in Windows XP.
Table 4: Changes in the support of RC4 ciphersuites by major
browsers.

5.3 RC4 Attacks
Multiple attacks targeting RC4 were found in recent years [9, 48,
85]. It has been recommended since at least 2015 that RC4 should
no longer be used [67]. Note that this was a change from earlier
recommendations: after CBC-mode problems were discovered, RC4
was often recommended as an alternative cipher.

Figure 2 shows the percentage of connections that negotiate an
RC4 cipher suite and captures the drop of RC4 usage from 60% in
August 2013 to almost zero in March 2018. A similar observation
can be made for Figure 6 that shows the percentage of connections
in which clients advertise RC4 cipher suites. Table 4 shows the
dates at which each browser reduced and completely removed their
support for RC4.

A big drop in clients advertising RC4 connections can be ob-
served at the beginning of 2015 in Figure 6, correlating in time
with the decision of Chrome, Firefox and IE/Edge to completely
remove support for RC4. However, matching our fingerprints to
Notary traffic reveals that a residual number of clients continued
to advertise RC4 for some time after browsers officially dropped it,
indicating a user population that does not quickly update. This is
supported by our findings in §4.1.

Interestingly, the drop in advertised RC4 cipher suites, driven
mostly by changes in major browsers, comes almost 18 months after
the beginning of the reduction in the number of TLS connections
that negotiate RC4 seen in Figure 2. This demonstrates that removal
of RC4 started on the server side and only later happened on the
client side. This is further illustrated in Figure 4 which shows that
the removal of RC4, when counted by distinct TLS fingerprints, hap-
pened much more slowly. Indeed, 39.9% of the observed fingerprints
still support RC4 as of March 2018.

Censys does not contain an active scan that tests for just RC4
support. However, it shows that even today (May 2018) 1,342,659
servers (3.4%) will choose RC4 given an older Chrome cipher list
(down from 11.2% in September 2015). Curiously some server con-
figurations will choose RC4 even if they support much more secure
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Figure 6: Percentage of connections where the client adver-
tises RC4 cipher suites. Lines represent the dates of high
profile attacks; black dots the dates that browsers dropped
RC4 support.

ciphers. For example, the website of one of the largest banks in
Iran, bankmellat.ir, will use RC4 despite much stronger ciphers
being offered. When removing RC4 from the list, it will switch to a
modern AEAD cipher. SSL Pulse [70] tests RC4 support for about
150K websites with selection based on Alexa’s list of most popular
sites. 19.1% of servers still support RC4 cipher suites (down from
92.8% in their first scan in October 2013). They also report that 1 site
still supports only RC4 (down from 4,248 or 2.6% of sites surveyed
in October 2013).

5.4 Heartbleed
As mentioned in §2, Heartbleed was an OpenSSL vulnerability in
the processing of the Heartbeat extension that could leak process
memory, including private keys. The group that discovered Heart-
bleed estimates that over 66% of servers on the Internet might have
been vulnerable to it before disclosure [80]; however, this number is
just based on the number of Apache and NGinx servers, and these
could have been using other libraries. Some sites might also have
deactivated this feature. Durumeric et al. [44] estimated that at
least 23.7% of servers were vulnerable at the time when Heartbleed
became public. In their first scan in 2014, they found 5.9% of servers
to be vulnerable and 11.4% of servers supporting the Heartbeat
extension.

Heartbleed was extensively featured in the media and received
a quick response from server operators; the number of vulnerable
servers dropped to less than 2% in a month [44]. Looking at Heart-
bleed today, according to Censys scans, 0.32% of servers were still
vulnerable in May 2018, pointing to a significant long tail effect.
34% of servers now support the Heartbeat extension. While purely
passive observation cannot show if hosts are still vulnerable to
Heartbleed, we can monitor whether the Heartbeat extension is
still being actively used in the wild: 3% of the observed TLS connec-
tion negotiations still use it (i.e., the extension is offered by client
and acknowledged by the server) in May 2018. We find this odd
in view of the fact that the Heartbeat extension is a DTLS-specific
feature that is used to keep connections alive and detect the path
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Figure 7: Percentage ofmonthly connections where the client
advertises Export, NULL, or Anonymous ciphers.

MTU [77], both features that are not needed in TCP based TLS
connections.

5.5 FREAK, Logjam and Export Ciphers
Web servers supporting export ciphersuites are vulnerable to the
FREAK [17] and Logjam [6] attacks (see §2). Looking at our passive
data, we can conclude that export ciphers are basically not negoti-
ated in the wild: only 677 connections were negotiated with these
ciphers in 2018. However, we cannot infer from this that FREAK
and Logjam attacks were not mounted in practice against clients.
This is because our data gathering is done close to the clients, and
at the clients, the TLS handshakes do not contain export cipher
suites even if they are undergoing a FREAK or Logjam attack.

A closer look at the connections supporting export cipher suites
reveals that the connections either terminated at servers of a uni-
versity using anonymous export cipher suites (the port number
suggests Nagios servers) or are associated with Interwise products
(according to the certificate served), a company providing voice &
videoconferencing services. For the university Nagios connections,
secure cipher suites were offered by the client; the server chose
export ciphersuites. In the case of Interwise, the clients offered a
non-export cipher suite (RC4_128_SHA) and the server chose an
export RC4 cipher suite (EXP_RC4_40_MD5). This deviates from
the TLS protocol specification. Our logs indicate that at least some
of the sessions were successfully established (both sides sent a
Change Cipher Spec). We are unsure about what exactly is behind
this unexpected behavior, but this again deviates from normal TLS
negotiation.

Figure 7 shows that client support for export ciphers has de-
creased significantly over the last few years. In 2012 (more than
10 years after the restrictions were lifted) it still was advertised in
28.19% of connections (2018: 1.03%). The steady downward trend
can be attributed to a growing awareness of the dangers of support-
ing weak cipher suites, as exemplified by FREAK and Logjam.

5.6 Sweet32, DES and 3DES
Sweet32 is a birthday attack against 64-bit block ciphers such as
DES and 3DES [18] (see §2). Looking at our passive data, in 2018
0.3% of connections negotiated a 3DES cipher suite. By comparison,

Browser Ver. Date № 3DES ciphersuites

Firefox 27 04/02/2014 Reduced from 8 to 3
33 14/10/2014 Reduced to 1

Chrome 29 20/08/2013 Reduced from 8 to 1
Opera 16 27/08/2013 Reduced from 8 to 1
Safari 6.2 18/09/2014 Reduced from 7 to 6

9.0 30/09/2015 Reduced to 3
Table 5: Changes in the number of 3DES ciphersuites offered
by major browsers.

in 2012 (June-August) 1.4% of connections negotiated 3DES. Gener-
ally, usage always has been relatively low with the highest peaks
reaching 5%.

On the other hand, Figure 3 shows that almost all clients adver-
tised 3DES up to the end of 2016, a few months after the disclosure
of the attack. The figure today still stands at more than 69%. Fig-
ure 4 backs this up, showing that even today more than 70% of
fingerprinted clients offer 3DES. Table 5 shows how 3DES support
has changed in popular browsers; notably, all major browsers still
support 3DES. We find this set of findings remarkable given the
poor performance of the algorithm (OpenSSL’s inbuilt speed test
shows it to be 10 times slower than AES-128, even without hard-
ware support), its extreme age (it was developed in the 1970s), and
the wide availability of more secure, faster options. However, it
is perhaps justifiable to keep 3DES as a “cipher of last resort” for
clients connecting to out-dated servers. In connection with this,
active scan data from Censys indicates that the popularity of the
only 3DES cipher offered by the scan has reduced over time, with
the percentage of the servers choosing it (despite its placement at
the bottom of the list and much stronger cipher suites being offered)
dropping to 0.25% in May 2018 from 0.54% in August 2015. This
suggests a long tail on the server side, but one large enough for
clients to justify their continuing to offer 3DES. Censys scans do
not offer any DES cipher suites.

6 NOTABLE ECOSYSTEM FINDINGS
In this section we look at other characteristics of the TLS ecosystem
that do not directly have to do with attacks. We discuss the use of
weak as well as strong ciphers and examine how TLS 1.3 is already
being used.

6.1 NULL Cipher Suites
NULL ciphers provide integrity but no confidentiality—data is sent
in the clear and can be read by any observer. Figure 7 reveals that a
relatively large number of connections and software offer at least
one NULL cipher in the handshake. For most of these connections
and fingerprints we could not find any matching software: these
connections do not originate from any Browser known to us, nor
any known library in its default configuration. However, we do
identify two Android applications, Craftar Image Recognition, and
Lookout Personal that advertise support for them. The latter is an
identify theft protection application.

Our hypothesis concerning the source of these connections is
supported when we look in detail at connections that are actually
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established using NULL ciphers. Examining our dataset reveals that
connections where the server chooses a NULL cipher are rare; over
all of our dataset 2.84% of connections were established using a
NULL cipher. We examined all connections using a NULL cipher in
2018 (42.3M connections or 0.42% of connections). Nearly all these
connections (99.99%) were identifiable as GRID traffic that is used
for data transfers between scientific institutions, where TLS is only
used for mutual authentication of client and server.

While using NULL ciphers in GRID computing environment
might make sense, it is alarming that a not insignificant number
of the client fingerprints we see (8% of fingerprints and 0.46% of
connections in 2018) offer a NULL cipher. If an attacker were able
to perform a downgrade attack they might be able to force an
unencrypted connection for such connections.

There is also the NULL_WITH_NULL_NULL cipher suite offer-
ing neither integrity nor confidentiality. Since 2012 we have seen
a total of 198.3K connections using this cipher suite, with 198 in
2018. They terminate at the Nagios servers mentioned in §5.5.

6.2 Anonymous cipher suites
Anonymous cipher suites provide record layer protection (integrity
and confidentiality) but the key establishment process is not au-
thenticated. There are 19 such cipher suites, all identifiable by the
keyword “Anon” in their name. Typically, a Diffie-Hellman key
exchange is used to establish a symmetric cipher but the server
does not present a certificate. Figure 7 shows the percentage of
connections and unique TLS fingerprints that advertise anonymous
cipher suites. As in the case of NULL ciphers, while there is a signif-
icant number of fingerprints that include anonymous cipher suites,
as well as a few percent of connections that advertise them, we
could not determine the vast majority of applications responsible
for this. However, among those that we can identify we find a
security scanner (i.e., Shodan) and Android security applications
(i.e., Lookout Personal, Kaspersky). Once again we assume the main
reason might be poorly written client applications. We do not have
an explanation for the spike in clients offering such cipher suites in
mid-2015, where the figure jumped from 5.8% to 12.9% in the space
of two months. This spike correlates in time with a spike in NULL
cipher suites being offered.

Similarly to the case of NULL ciphers, only a minuscule number
of connections successfully negotiate the use of an anonymous
cipher suite: 0.17% of connections in the whole dataset and 0.60%
in 2018. Examining the successful connections reveals that nearly
all of them are caused by Nagios. Nagios uses anonymous cipher
suites in combination with its own authentication scheme that is
performed after the TLS connection is established.

The fact that so many clients offer anonymous cipher suites is
alarming. This is because client/server combinations offering/accepting
such cipher suites are trivially vulnerable to MITM attack, even if
the client also offers non-anonymous cipher suites in preference to
the anonymous ones in the Client Hello.

6.3 Strong Cipher Suites
6.3.1 Forward secrecy. In TLS handshakes that use RSA key trans-
port to establish keying material, the symmetric keys used in the
record protocol can be recovered by anyone in possession of the
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Figure 8: Negotiated RSA and forward secret connections.
Dotted line shows the date of first Snowden revelations.

server’s private key after observing the handshake. If an attacker
recorded complete TLS sessions, then a later compromise of the
server’s private key would compromise all sessions. Forward se-
crecy (FS) decouples the symmetric record protocol keys from the
long-lived server key. In TLS this is achieved by performing a DHE
or an ECDHE key exchange.

Figure 8 shows the number of connections that we see using
RSA, DHE and ECDHE key exchanges. It shows that there has been
a significant shift in the last few years away from RSA-based key
establishment; now the vast majority of connections use ECDHE;
meanwhile DHE never found much use.

This result is especially interesting when also examining client
support for FS cipher suites: even at the beginning of our measure-
ment period in 2012 more than 80% of clients supported FS cipher
suites, and this quickly increased to nearly 100%. Thus servers chose
to not negotiate FS cipher suites for a long time even when clients
supported them.We find this interesting because making the switch
does not require issuing new RSA keys and certificates to the server.
Moreover, ECDHE exchanges are in general faster to perform for
servers than RSA-based ones, so there is a performance incentive
to switch.

The Snowden revelations in June 2013 raised awareness of the
public of the importance of forward secrecy [15]. Figure 8 shows
that the Snowden revelations coincide with the start of a significant
shift to use of FS cipher suites.While it looks like there was already a
small shift towards FS cipher suites before, there was a tremendous
shift immediately after these revelations. This correlation in time
does not necessarily mean causality.

TLS also supports static DH and ECDH key exchanges that are
not forward secret. We also see some use of these: DH is used in
0.00% of connections (2018: 4 total), ECDH in 0.27% (2018: 20.2K
total). DH connections in 2018 terminate at two now unreachable
servers; ECDH nearly exclusively at Splunk servers on port 9997.

6.3.2 Authenticated Encryption with Associated Data. Authenti-
cated Encryption with Associated Data or AEAD provides mes-
sage integrity in addition to message confidentiality in a single
cryptographic transform. In TLS, AEAD is supported starting with
TLS 1.2, for example with AES in Galois Counter Mode (AES-GCM).
Happily, because of widespread support at the CPU instruction
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Figure 9: Percentage of connections that use AES-
GCM(128/256), ChaCha20-Poly1305, and number of
connections using any AEAD cipher.
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Figure 10: Connections advertising AES-GCM ChaCha20-
Poly1305, and AES-CCM.

Browser Ver. Date Protocol Support

Firefox 27 04/02/2014 TLS 1.1/1.2 supported
37 31/03/2015 SSL 3 fallback removed
60 16/05/2018 TLS 1.3 supported

Chrome 22 25/09/2012 TLS 1.1 supported
29 20/08/2013 TLS 1.2 supported
39 18/11/2014 SSL 3 fallback removed

Internet Explorer 11 01/11/2013 TLS 1.1/1.2 supported
Opera 16 27/08/2013 TLS 1.1 supported

27 22/01/2015 SSL 3 fallback removed
Safari 7 22/10/2013 TLS 1.1/1.2 supported

9 30/09/2015 SSL 3 support removed
Table 6: Browser TLS version support.

level for the cryptographic operations involved, GCM is roughly
twice as fast as CBC-mode cipher suites on mainstream CPUs. The
ChaCha20-Poly1305 AEAD scheme is a good alternative where
such instructions are not available, e.g., on mobile devices.

Figure 9 shows the number of connections negotiated with
AEAD and Figure 10 shows the percentage of connections that
advertise such ciphers. We see a sharp up-tick in the use of AEAD
from late 2013 onwards. This is time at which significant client
support for TLS 1.2 became available. Table 6 provides a timeline
of protocol support for the major browsers. While many clients
now offer ChaCha20-Poly1305, it is clear that the vast majority of
AEAD use today is of AES-GCM, with 128-bit keys dominating
256-bit keys. We saw ChaCha20-Poly1305 being used in 1.7% of
connections in March 2018, and we see little AES-CCM traffic—it
was offered in 0.3% connections across our dataset.

6.3.3 Elliptic Curve Cryptography. As shown in Figure 8, connec-
tions using Elliptic Curve Cryptography are becoming more and
more common. During the duration of our measurement, the top 5
used curves are secp256r1 (84.4%), secp384r1 (8.6%), curve 25519
(6.7%), sect571r1 (0.2%), and secp521r1 (0.1%). Curve 25519 is seen as
being independent of NSA influence and has become more popular
over time, especially since mid-2017. It is currently the second most
used curve and was used in 22.2% of connections in February 2018.

6.4 TLS 1.3
The standardization process for TLS 1.3 started in 2014 [39] and
reached its final stages in the IETF process. The latest, and possibly
final, draft is draft 28 [72].

TLS 1.3 represents the most radical change to the TLS ecosys-
tem since the switch from SSL 2 to SSL 3. It touches all parts of
the protocol. The TLS 1.3 handshake is quite distinct from earlier
releases, and much more of it is encrypted (including certificates).
TLS 1.3 significantly reduces the number of cipher suites from the
several hundred permitted in earlier releases to just 5. In particular,
CBC-mode and RC4 cipher suites from earlier TLS versions are no
longer permitted.

TLS 1.3 is of special interest to us since it shows how the ecosys-
tem has changed over the past years. While it took TLS 1.2 six years
after standardization to be used in more than 50% of connections,
we already see significant uptake of TLS 1.3 today, before the RFC
is completely ratified.

In April 2018, in 23.6% of the observed connections, the clients
indicated that they support TLS 1.3. This is a marked increase
from earlier months (9.8% in March and 0.5% in February). This
is probably caused by TLS 1.3 being enabled by new versions of
Chrome and Firefox for a subset of users [21]. In fact, TLS 1.3
support has been gradually rolled out by Firefox and Chrome. TLS
1.3 was added to Firefox 52.0 (released in March 2017) but it was
disabled by default [64]. It was not until version 60.0, recently
released in May 2018, when Firefox uses TLS 1.3 by default [65]. In
the case of Chrome, TLS 1.3 was temporally enabled by default in
2017 after the release of Chrome 56 but it was removed [25].

The number of negotiated sessions is still much lower—only
1.3% of observed connections successfully negotiated it in April
2018. This is not surprising since supporting TLS 1.3 at the moment
usually requires compiling new versions of libraries & custom setup
procedures.

The TLS 1.3 version negotiation mechanism is different from
earlier versions: the Client Hello still lists 1.2 as the offered version;
however, there is a new extension that contains a list of all TLS
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versions that the client actually supports. This change to the mech-
anism is to make TLS 1.3 easier to deploy in the face of middleboxes
that block connections offering 1.3 as the version number. Since
each draft of the TLS 1.3 specification has a unique version number
this gives us some insight into the deployment of TLS 1.3 over time.
Curiously the version that we saw most commonly advertised by
clients in the extension has not been officially assigned—0x7e02 in
82.3% of connections with the extension. This is one of the several
experimental Google TLS 1.3 variants. The most commonly adver-
tised “official” version of TLS 1.3 that we encountered was draft
18 (13.4%).

7 DISCUSSION
This section discusses the evolution of TLS and its security based
on our observations.

7.1 Ecosystem Improvements
Our measurements show that the security and the deployment of
TLS have both changed radically in the last few years. In 2012, more
than 90% of connections were using TLS 1.0. Nearly all connections
used either RC4 or CBC-mode cipher suites. More than 60% of
connections used non-forward-secret ciphers. At that point in time,
TLS 1.2 had already been standardized for nearly 4 years (August
2008). AEAD cipher suites for TLS similarly were standardized in
2008. Diffie-Hellman (DH) forward secret cipher suites were part
of TLS 1.0 (standardized in 1999); in 2006 support for ECDH and
ECDHE was standardized [19]. So more secure options existed; they
simply were not being used.

Today more than 90% of connections use TLS 1.2 with a forward
secret, AEAD cipher suite. Furthermore we already see significant
support for TLS 1.3 even though the standardization process has
not yet concluded. Where in the past there was a gap of years
between standardization of a technique and its deployment, today
this time gap can be practically zero. This points towards the fact
that encrypted communication is seen as a much more important
topic today than it was even as recently as 2012; indeed more
than half of all HTTP traffic is now protected using TLS. This
is due in no small part to the influence of a few large vendors
(such as CloudFlare, Facebook, and Google) becoming more actively
involved in standardization bodies like IETF and vendor forums like
the CA/Browser forum. These organizations have also pushed at
first experimental and then production deployment of new versions
of TLS, new cipher suites, and new protocol features.

7.2 Backwards Compatibility
Despite these positive advances, as our data shows, there are still
many long tail effects in TLS deployment.

In particular, support for older, sometimes insecure, ciphers still
is common: for example more than 20% of servers still support SSL 3
which was superseded by the standardization of TLS 1.0 in 1999.
3DES is still offered by clients in 69% of connections as a “cipher of
last resort”. Nearly 40% of application fingerprints that we see per
day still support RC4.

This is a problem in several ways: first, downgrade attacks have
surfaced time and again. Thus even supporting old cipher suites
might open users up to attack—even if they have taken precautions

to prevent downgrades. Second, supporting old features leaves room
for misconfigurations. As mentioned in §5.3 we found servers that
prefer old ciphers even when they support newer ones. Just offering
an older cipher as a client might result in the server choosing it
over more secure choices, perhaps as a result of poor server-side
configuration.

There are multiple reasons for supporting old cryptographic
primitives. Browsers are hesitant to remove support for old cipher
suites fearing that they might break compatibility with websites. If
a web browser shows warning messages or refuses to connect to a
site where a different web browser still works, this might encour-
age users to switch browsers [3]. Additionally, today a significant
number of smartphones, embedded systems, and IoT devices (e.g.,
printers and even smart light bulbs) support TLS [69]. While this
represents an important step towards better security on the part of
device vendors, many do not then provide security updates to their
devices. This results in devices being used, sometimes for years,
with abandoned and outdated software that only supports older
and weaker cipher suites [71].

On the other hand, servers are hesitant to remove support for
old cipher suites for the reverse reasons: old clients. For example,
there are still millions of devices running Android 2.3 (Gingerbread)
(Google claims 0.3% of devices connecting to the Play Store [50];
there are more than 2 billion Android devices in total [75]). Android
2.3 only supports TLS 1.0, and supports neither ECDHE nor AEAD
cipher suites [49].

Solving this dichotomy is difficult. The solution that Firefox
employed for RC4 has merit: removing insecure cipher suites by
default but either allowing them as a fallback or (even better) just
for whitelisted servers. Compliance with industry standards has
also been a driver for change here. One can particularly highlight
PCI-DSS, which is applicable to any enterprise that processes credit
card payments. While the PCI DSS requirements with regards to
SSL and TLS have been slow to harden, they did ban SSL in June
2016 and will require the use of TLS 1.1 (and preferably TLS 1.2)
from June 2018 onwards [66].

7.3 Misconfigurations, Poor Implementations
While we mentioned legitimate reasons to keep supporting older
cipher suites and protocols in some cases, it should be noted often
there are no legitimate reasons to do so. Due to the complexities
involved and the radical speed of change in the last years it is
inevitable that developers and administrators are not always well-
versed on the state of the art. Web servers that choose outdated
cipher suites despite supporting much stronger ones or client soft-
ware that offers NULL ciphers along with non-NULL ciphers are
strong indicators of software developers not having caught up with
proper TLS usage. In addition, some suggested attack mitigations
may have also generated confusion for users—for example, one fix
for the BEAST attack in 2011 was to switch from CBC-mode to RC4,
but this was then followed in 2013 by attacks on RC4, which then
may have prompted users to upgrade to TLS 1.1 and switch back to
CBC-mode, and ultimately to make the harder leap to TLS 1.2.

Our data also contains a small number of hosts that, against
TLS specification, choose cipher suites that were not offered by
the client. Among these are a number of hosts that choose GOST
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cipher suites, a Soviet and Russian government block cipher, and
anonymous NULL cipher suites. While none of the standard TLS
clients finish the handshake in these cases, it shows that there are
an alarming number of systems in that might be running custom
TLS implementations with questionable security.

Improving the accessibility and usability of TLS libraries and
other software packages that use TLS can help mitigate some of
these issues: providing a strong general-purpose default configura-
tion by TLS libraries and making TLS software configuration more
stream-lined and accessible in general encourages people to use
trusted and usable TLS libraries instead of implementing their own.
Making backwards compatibility features opt-in can also greatly
reduce the possibility of misconfiguration through use of default
settings.

7.4 Impact of Security Research
Our work shows that the impact of security research on the TLS
ecosystem is sometimes spectacular, but sometimes also quite slow.
In a few cases—especially those that attracted a lot of media atten-
tion or had significant impact—the ecosystem changed very quickly.
The best example is Heartbleed (§5.4). The beginning of the Snow-
den revelations also clearly correlates with a change to forward
secret ciphers (§6.3.1).

On the other hand, while RC4 use started to drop soon after
attacks were announced (§5.3), it still took several years for RC4
usage to reduce significantly. Only with increasingly strong attacks
did browser vendors eventually opt for full disablement in mid-
2015. It can be argued that the first RC4 attack in 2013 was rather
easy to dismiss as infeasible in practice; only when a direction of
travel was established did the ecosystem begin to shift. There were
also persistent rumors concerning the capabilities of Nation State
Adversaries with regards to breaking RC4, though it is unclear
whether these were relevant for RC4 as used in TLS.

With the CBC attacks (§5.2), there was no clear change in traffic
(though we may posit that the temporary uptick in TLS 1.1 traffic
was due to BEAST). In fact, CBC traffic increased slightly over time
post-BEAST and despite Lucky 13, until TLS 1.2 implementations
became widespread. This is attributable to the lack of better avail-
able options at the time, the ability to patch against both BEAST
and Lucky 13 attacks, and the fact that both attacks are actually
difficult to mount in practice. In contrast, no single-sided patch was
available for the RC4 attacks, making them much harder to address.

Server support for SSL 3 is still embarrassingly high (§5.1), de-
spite the severity of POODLE and RC4 attacks which apply to it.
This can be attributed to modern web browsers never proposing to
use SSL 3, modern web servers supporting newer versions of TLS,
and the removal of version fallback from modern web browsers.
However, we have seen several times how maintaining support for
legacy features weakens the whole TLS ecosystem, especially with
export cipher suites and FREAK/Logjam. It may only be a matter of
time before an exploit is found which exploits widespread server-
side support for SSL 3. For example, one could imagine a DROWN-
style attack making use of some as yet undiscovered vulnerability
in legacy code for RSA decryption in SSL 3 implementations to
forge RSA signatures on TLS 1.3 handshakes, cf. [16, 59, 62].

7.5 Dataset Bias
The ICSI SSL notary contains SSL/TLS connections collected from
North American universities and research institutions. Although
this may introduce a potential geographical bias, given the size of
the dataset we believe it is representative of many properties of
real-world SSL/TLS activity.

Censys active scans are performed on the IPv4 address space
without the use of the Server Name Indication (SNI) extension. We
do not consider the lack of IPv6 scans to be an important limitation,
since IPv6 adoption, although increasing over the years, is still
limited. The lack of SNI does not introduce any bias in our study,
since our analysis does not include server certificates.

8 RELATEDWORK
A large body of work has examined different facets of the TLS and
HTTPS ecosystem. A large amount of work has focused on the
PKI [7, 11, 24, 46, 54], including revocation [86, 87]. Most recently, a
number of PKI papers have focused on Certificate Transparency [23,
52, 76, 84]. More closely related to our work, a smaller set of work
examined properties of specific parts of TLS. Durumeric et al. [43]
examined email delivery security using active scans. Touching
on a lot of different topics, the work also includes a snapshot of
key exchanges/ciphers used for email delivery. Holz et al. [53]
performed a more focused analysis of how TLS is used for electronic
communication protocols (Mail, IMAP, IRC, XMPP). SSL Pulse [70]
provides current statistics of the quality of SSL/TLS across the Alexa
top pages. Similarly the ICSI SSL Notary page [58] gives up-to-date
high level statistics about the dataset used in this study.

TLS handshake fingerprinting has been proposed and used by
different parties over the years. Ristić [73] proposed to use an
Apache module to create cipher suite lists. Majkowski implemented
fingerprinting for p0f [61]. Most closely related to ourwork, HusÃąk
et al. [55] did a study in which they linked HTTP user-agent to TLS
cipher suite lists. They obtained 12,832 user-agent/cipher-suite links.
Using this list they performed a 7-day measurement at the uplink
of Masaryk University. They determined that the top 31 cipher
suites were enough to cover 90% of traffic. Anderson et al. [13]
examined how malware uses TLS and how their TLS handshakes
differ from other applications. Recently Durumeric et al. [45] studied
the prevalence of HTTPS interception using TLS fingerprinting.

For a discussion of TLS attack papers, please see §2.

9 CONCLUSIONS
Our longitudinal study shows that the TLS ecosystem has changed
radically in the last six years, largely for the better: weak algorithms
like DES and RC4 are going the way of the dodo, to be replaced
by stronger AEAD designs; export, anonymous and NULL cipher
suites are in retreat; forward secrecy is increasingly de rigeur ; new
elliptic curves are on the uptake; and TLS 1.3 is showing signs of
rapid adoption. There is, and will probably continue to be, a long
tail of software and devices that advertise and select legacy cipher
suites; we have extensively discussed the reasons for this messy
state of affairs. We have examined, through the lens of attacks, how
and why these changes have come about, using datasets gathered
from large-scale active and passive scans in concert with the largest
database of TLS client fingerprints assembled to date.
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We conclude by noting that the datasets we used reveal many
other fascinating insights which lack of space precluded us from
discussing here. As examples, we are able to track the response to
the TLS renegotiation attack through the deployment of the RIE
extension; we can see the very limited take up of the “Encrypt-
then-MAC” extension as a response to the Lucky 13 attack; and we
can see the rapid evolution of TLS 1.3 as it begins to be deployed
experimentally by vendors. As the ecosystem continues to develop,
we will continue to track it in all its fascinating and complex glory.
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