
VERTICES OF MODULES AND DECOMPOSITION NUMBERS

OF C2 o Sn

JASDEEP KOCHHAR

Abstract. Given n ∈ N, we consider the imprimitive wreath product C2 oSn.

We study the structure of the p-modular reduction of modules whose ordinary
characters form an involution model of C2 o Sn, where p is an odd prime.

We describe the vertices of these modules, and we use this description of the

vertices to determine certain decomposition numbers of C2 o Sn.

1. Introduction

Given n ∈ N, let Sn denote the symmetric group on n letters. The imprimitive
wreath product C2 oSn can be thought of in various ways, such as the Weyl group of
type Bn, or as the symmetry group of the n-dimensional hypercube. In this paper
we use the characterisation of C2 o Sn as the centraliser of the permutation

(1 1̄)(2 2̄) . . . (n n̄)

in the symmetric group on the set {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}. Explicitly, C2 oSn is the
subgroup of S2n generated by the set

{(1 1̄), (1 2)(1̄ 2̄), (1 2 . . . n)(1̄ 2̄ . . . n̄)}.

We study certain representations of FC2 o Sn, where F is a field of odd prime
characteristic p. We remark that there are various connections between the repre-
sentations of C2 o Sn and Sn. For instance, the simple FC2 o Sn-modules can be
constructed using the simple FSn-modules (see [1] and [10, §4.3]), where F is any
field. For detailed accounts on the representation theory of the symmetric group,
see [10] and [11].

In the case of our attention, there are notable similarities between the block
structures of the algebras FC2 oSn and FSn. In Proposition 2.11, we give a complete
description of the blocks of FC2 o Sn. We also describe the Brauer correspondence
between the blocks of FC2oSn and the blocks of FNC2oSn(R), where R is a particular
p-subgroup of C2 o Sn.

We also note that if k is a field of characteristic 2, then the subgroup

Bn := 〈(1 1̄), (2 2̄), . . . , (n n̄)〉,

is contained in the kernel of all irreducible representations of kC2 oSn. In this case,
the irreducible representations of kC2 oSn are inflations (see §1.1) of the irreducible
representations of kSn.
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1.1. Main results. We introduce the background required to state our first main
theorem.

Define Tn to be the subgroup of C2 o Sn such that

Tn = 〈(1 2)(1 2), (1 2 . . . n)(1 2 . . . n)〉.
We refer to Tn as the top group. It follows that C2 o Sn = Bn o Tn.

Consider σ ∈ Sym({1, 2, . . . , n}). Define σ ∈ Sym({1, . . . , n}) to be such that

σ(x) = σ(x). Given H ≤ Sym({1, 2, . . . , n}), we define ξ(H) to be the subgroup of
the top group consisting precisely of the permutations σσ such that σ ∈ H.

Let ĥ be the image of h ∈ C2 o Sn under the natural surjection C2 o Sn � Sn.

Write InfC2oSn
Sn

ρ for the representation of FC2 oSn such that (InfC2oSn
Sn

ρ)(h) = ρ(ĥ)
for h ∈ C2 o Sn, where ρ is a representation of FSn. Note that FBn is in the kernel

of InfC2oSn
Sn

ρ. If M is a module corresponding to ρ, we write InfC2oSn
Sn

M for the

module corresponding to InfC2oSn
Sn

ρ.
Given a ∈ N, define fa ∈ C2 o S2a to be the permutation equal to

(1 a+ 1)(2 a+ 2) . . . (a 2a)( 1 a+ 1 )( 2 a+ 2 ) . . . ( a 2a ),

and let Va be the centraliser of fa in C2 o S2a. Therefore Va is equal to

〈( 1 1 )( a+ 1 a+ 1 ), ( 2 2 )( a+ 2 a+ 2 ), . . . , ( a a )( 2a 2a )〉o ξ(S2 o Sa ).

We also define Vλ to be the subgroup of Va equal to

〈( 1 1 )( a+ 1 a+ 1 ), ( 2 2 )( a+ 2 a+ 2 ), . . . , ( a a )( 2a 2a )〉o ξ(S2 o Sλ ),

where λ is a partition of a, and Sλ is the corresponding Young subgroup of Sa.
Let N denote the non-trivial simple FC2-module. Given c ∈ N, we define

Ñ⊗c to be the one-dimensional FC2 o Sc-module on which Tc acts trivially and the

permutation ( i ī ) acts by negative sign for all 1 ≤ i ≤ c. Note that Ñ⊗c agrees
with the notation in [10, §4.3]. Also define sgnSc to be the sign module of FSc.

Given (a, b, c) ∈ N3
0 such that 2a+ b+ c = n, we define the module

M(2a,b,c) = (F
xC2oS2a

Va
� InfC2oSb

Sb
sgnSb �(Ñ⊗c ⊗ InfC2oSc

Sc
sgnSc))

xC2oSn
C2oS(2a,b,c)

,

where
x denotes the induction of modules. Our first main theorem characterises

the vertices of the indecomposable summands of M(2a,b,c). To state this result, we
also require the following notation. Given r ∈ N such that rp ≤ n, define

T ′r := {(λ, t, u) : λ ∈ Λ(2, s), 2s+ t+ u = r and sp ≤ a, tp ≤ b, up ≤ c},
where Λ(2, s) denotes the set of all compositions of s in at most 2 parts.

Theorem 1.1. Let (a, b, c) ∈ N3
0 be such that 2a + b + c = n, and let U be a

non-projective indecomposable summand of M(2a,b,c). Then U has a vertex equal to
a Sylow p-subgroup of

Vpλ × C2 o Stp × C2 o Sup,
for some r ∈ N, where rp ≤ n, and (λ, t, u) ∈ T ′r.

A key motivation for Theorem 1.1 is [8, Theorem 1.2], which describes the ver-
tices of the indecomposable summands of the FS2m+k-module

H(2m;k) := (FS2oSm � sgnSk)
xS2m+k

S2oSm×Sk
.

This description is used to determine certain decomposition numbers of the sym-
metric group in [8, Theorem 1.1]. An essential part of the proof of [8, Theorem 1.1]



VERTICES AND DECOMPOSITION NUMBERS 3

is that the ordinary character of H(2m;k) is multiplicity free. By Propositions 1 and
2 in [3], the ordinary character of the module M(2a,b,c) is also multiplicity free. Also
observe that both of S2 oSm×Sk and Va×C2 oSb×C2 oSc are centralisers of certain
involutions in S2m+k and C2 o Sn, respectively. These similarities between H(2m;k)

and M(2a,b,c) arise as these two modules are examples of a deeper phenomenon
that is occurring. In order to describe this, we require the following definition. We
say that a finite group G has an involution model if there exists a set of elements
{e1, e2, . . . , et} ⊆ G, such that e2

i = 1 for all i, and for each ei there exists a linear
character ψi of CG(ei) such that

t∑
i=1

ψGi =
∑

ψ∈Irr(G)

ψ.

The main result of [9] is that the sum of the ordinary characters of the modules
H(2m;k) is an involution model for S2m+k. In [3], Baddeley proves that if the group
G has an involution model, then the imprimitive wreath product G oSn also has an
involution model. The module M(2a,b,c) is part of the involution model constructed
by Baddeley when G = C2. Using similar ideas as in the proof of [8, Theorem 1.1],
we use Theorem 1.1 in this paper to understand particular decomposition numbers
of C2 o Sn.

In order to state our result on decomposition numbers, we require an understand-
ing of the simple QC2 oSn-modules. Let P2(n) be the set of pairs of partitions (λ, µ)
such that |λ|+ |µ| = n. Given (λ, µ) ∈ P2(n), we define

S(λ,µ) = (Inf
C2oS|λ|
S|λ|

Sλ � Ñ⊗|µ| ⊗ Inf
C2oS|µ|
S|µ|

Sµ)
xC2oSn
C2oS(|λ|,|µ|)

,

where Sλ is the usual Specht module labelled by λ. We refer to a module of this form
as a hyperoctahedral Specht module. The set of all hyperoctahedral Specht modules
S(λ,µ) such that (λ, µ) ∈ P2(n) is a complete set of simple QC2 o Sn-modules.

Recall that p is a prime number not equal to 2. Let (ν, ν̃) ∈ P2(n) be such that
ν and ν̃ are p-regular. The module S(ν,ν̃) has a unique maximal submodule, and we
write D(ν,ν̃) for the quotient of S(ν,ν̃) by this maximal submodule. We have that
D(ν,ν̃) is a simple FC2 o Sn-module; furthermore, every simple FC2 o Sn-module is
of this form (see Proposition 2.12). The decomposition number dλν,µν̃ is defined to

be the number of composition factors of S(λ,µ) isomorphic to D(ν,ν̃).
We now introduce one more piece of notation required to state our second main

theorem. Given a p-core partition γ and given b ∈ N0, let wb(γ) be the minimum
number of p-hooks such that when added to γ, we obtain a partition with exactly
b odd parts. Let Eb(γ) be the set of all partitions of |γ| + wb(γ)p obtained in this
way.

Theorem 1.2. Let γ and δ be p-core partitions, and let b, c ∈ N0. If b ≥ p (resp.
c ≥ p), suppose that wb−p(γ) 6= wb(γ) − 1 (resp. wc−p(δ) 6= wc(δ) − 1). Then
there exists a set partition of Eb(γ)×Ec(δ), say Λ1, . . . ,Λt, such that each Λi has a
unique pair (νi, ν̃i) with νi and ν̃i both maximal in the dominance orders on Eb(γ)
and Ec(δ), respectively.

Moreover, νi and ν̃i are p-regular for each i, and the column of the decomposition
matrix of C2 oSn labelled by (νi, ν̃i) has ones in the rows labelled by the pairs in Λi,
and zeros in all other rows.
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We remark that Theorem 1.2 follows by combining [8, Theorem 1.1] and the
Morita equivalence between FC2 oSn and

⊕n
i=0 FS(i,n−i) given by Proposition 2.11

in this paper. However, our characterisation of the vertices in Theorem 1.1 does not
follow from this Morita equivalence. Example 4.14 makes this explicit by describing
the vertices of the non-projective indecomposable summands of M(54,0,0) over a field
of characteristic 3.

1.2. Outline. We now provide an outline of the paper. Our approach to proving
Theorem 1.1 is by using results on the Brauer morphism for p-permutation modules
(see [6]). We present the required background on the Brauer morphism in §2.1. In
§2.2 we construct particular subgroups of C2 o Sn that will be used in the proof
of Theorem 1.1. We also require a description of the conjugacy classes in C2 o Sn,
which we give in §2.3.

We collect the required background for Theorem 1.2 in §2.4 and §2.5. In §2.4
we describe a basis of S(λ,µ). In order to apply Theorem 1.1 to Theorem 1.2, we
require results on the blocks of the group algebra FC2 o Sn. We state these results
on blocks in §2.5 as a corollary of Theorem 2.10. As a further corollary of Theorem
2.10, we also describe the simple FC2 o Sn-modules in §2.5.

In §3 we give an explicit combinatorial basis for the module M(2a,b,c), specifically
in §3.1. The basis that we describe is generally not a permutation basis for M(2a,b,c),
and so is in general not a p-permutation basis for an arbitrary p-subgroup of C2 o
Sn. In §3.2, we show how the basis given in §3.1 can be used to construct a p-
permutation basis of M(2a,b,c) with respect to a given p-subgroup of C2 o Sn. We
will use this basis and results on the Brauer morphism to prove Theorem 1.1.

In §4 we prove Theorem 1.1. The proof is technical in areas, and so it is broken
down into three steps. We first consider the Brauer correspondent of M(2a,b,c) with
respect to a particular cyclic group of order p in C2 oSn, denoted Rr, where rp ≤ n.
We decompose M(2a,b,c) as a direct sum of indecomposable FNC2oSn(Rr)-modules,
denoted N(λ,t,u), using Clifford theory arguments. We see that each summand
N(λ,t,u) has a vertex containing the subgroup Rω? (defined in the first step of the
proof). In the second step, we therefore consider the module N(λ,t,u)(Rω?). We show
that N(λ,t,u)(Rω?) is an indecomposable FNC2oSn(Rω?)-module, and we determine
its vertex. In the third step, we use the description of the vertices of N(λ,t,u)(Rω?)
to complete the proof of Theorem 1.1.

In §5 we prove Theorem 1.2. We do this by showing that every summand of
M(2a,b,c) in the block B((γ,wb(γ)), (δ, wc(δ))) is projective. We can lift summands
ofM(2a,b,c) from Fp to Zp using a result of Scott. We are then able to understand the
ordinary characters of these lifted summands using Brauer reciprocity for projective
modules. These results of Scott and Brauer are essential tools in using the local
information on vertices to understand the situation in the global case.

2. Background

Recall that F is assumed to be a field of characteristic p, where p is an odd
prime. We remark that the results in §2.1 also hold over a field of characteristic 2.

2.1. The Brauer morphism. Throughout this section let G be a finite group.
We recount the theory of the Brauer morphism that will be used in this paper.
We also state the results required that relate the Brauer morphism to the vertices
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of modules and to the blocks of FG. For details on the theory of vertices and the
theory of blocks, we refer the reader to [2].

Let H ≤ G, and let M be an FG-module. Define MH to be the set of vectors
in M fixed by every element in H. Given L ≤ H ≤ G, we define the map

TrHL : ML → MH

x 7→
∑
xg,

where the sum runs over a transversal of the cosets of L in H.
When P is a p-subgroup of G, we define

M(P ) = MP /
∑
Q<P

TrPQM
P .

This is an FNG(P )-module, on which P acts trivially. The natural quotient map
MP 7→M(P ), is known as the Brauer morphism and is an FNG(P )-module homo-
morphism.

Let U be an indecomposable FG-module. A vertex of U is a subgroup Q of

G, minimal such that U is a direct summand of U
xG
Q

. It is known (see [2, Sec-

tion 9, Theorem 4]) that U has a vertex, and that any vertex of U is a p-group.
Furthermore, any two vertices of U are conjugate in G.

The Brauer morphism can be used to obtain information about the vertices of
a certain class of modules known as p-permutation modules. The module M is
a p-permutation module if for all p-subgroups of G, there exists an F -basis of M
that is permuted by P . If B is such a basis, then we say that B is a p-permutation
basis of M with respect to P . The following lemma from [6] gives an another
characterisation of p-permutation modules.

Lemma 2.1 ([6, 0.4]). The module M is a p-permutation module if and only if

there exists a subgroup H of G such that M is a summand of F
xG
H
.

We now assume that M is a p-permutation module, and that P is a p-subgroup of
G. The following lemmas show how the Brauer morphism can be used to determine
the vertices of a p-permutation module.

Lemma 2.2 ([6, 3.2(1)]). Let M be an indecomposable p-permutation FG-module.
Then M has a vertex equal to P if and only if P is a maximal p-subgroup of G such
that M(P ) 6= 0.

Lemma 2.3 ([6, 1.1(3)]). Let B be a p-permutation basis of M with respect to P,
and let BP be the set of points in B that are fixed by P . Then BP is a basis of
M(P ).

It follows that Q is a vertex of M if there exists a vector in a p-permutation basis
of M (with respect to Q) that is fixed by Q, and Q is maximal with this property.
We also require the following lemma, which will be crucial in the proof of Theorem
1.1.

Lemma 2.4 ([8, Lemma 4.7]). Let R be a normal subgroup of P, and let K =
NG(R). Then M(R) is a p-permutation FK-module. Moreover, M(P ) ∼= M(R)(P ),
where the isomorphism is of FNK(P )-modules.

We now describe how the Brauer morphism can be used to determine information
about blocks of a group algebra. Given H ≤ G, let B a block of G, and let b be a
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block of H. We say that the block B corresponds to b (see [2, §4]) if b is a summand
of BH×H , and B is the unique block of G with this property. In this case, we write
bG = B.

The following lemma relates the theory of blocks to the Brauer morphism.

Lemma 2.5 ([14, Lemma 7.4]). Suppose that M lies in the block B of G. If M(P )
has a summand in the block b of NG(P ), then bG = B.

2.2. Subgroups of C2 o Sn. Recall that given an element h ∈ C2 o Sn, we write ĥ
for the image of h under the natural surjection C2 o Sn � Sn. Given Q ≤ C2 o Sn,

we define Q̂ = {ĥ : h ∈ Q}.
Also given X ⊂ {1, 2, . . . , n}, we write C2 o SX for the subgroup of C2 o Sn

generated by the set

{(x x) : x ∈ X} ∪ {(x y)(x y) : x, y ∈ X,x 6= y}.
We now consider p-subgroups of C2 o Sn. As C2 o Sn has a Sylow p-subgroup

contained in the top group Tn, any p-subgroup of C2 o Sn has a conjugate in the
top group.

2.3. Conjugacy in the hyperoctahedral group. Given i ∈ {1, 2, . . . , n}, we

define i = i. Given g ∈ C2 o Sn, we say that g is a positive r-cycle if

g = (a1, a2, . . . , ar)(a1, a2, . . . , ar),

and that g is a negative r-cycle if

g = (a1, a2, . . . , ar, a1, a2, . . . , ar),

where a1, . . . , ar ∈ {1, 1, . . . , n, n}.

Example 2.6. Let n = 1. The identity permutation (1)(1̄) is a positive 1-cycle,
and the permutation (1 1) is a negative 1-cycle.

Every element of C2 oSn can be expressed uniquely, up to the order of the factors,
as a product of disjoint positive and negative cycles. The number of positive (resp.
negative) r-cycles of g ∈ C2 o Sn is denoted by pr (resp. nr), and we say that g has
cycle type ((pr), (nr))1≤r≤n. We now have the following lemma.

Lemma 2.7 ([10, §4.2]). Let g, h ∈ C2 o Sn. Then g and h are conjugate in C2 o Sn
if and only if they have the same cycle type.

Furthermore, the centraliser of an element with cycle type ((pr), (nr))1≤r≤n has
order equal to

n∏
r=1

(2r)pr+nr (pr!)(nr!).

2.4. Hyperoctahedral Specht modules. Given x ∈ {1, 2, . . . , n}, we define [x, x]
to be the image of (x, x) in the quotient of the FC2 o Sn-permutation module
F [{1, . . . , n, 1, . . . , n}] by the submodule generated by

{(x, x) + (x, x) : 1 ≤ x ≤ n}.
Therefore the F -span of [x, x] is isomorphic to N as an F [Sym({x, x})]-module.

Given (λ, µ) ∈ P2(n), let t be the disjoint union of a λ-tableau and a µ-tableau,
such that

(1) the λ-tableau has entries {x, x}, and the µ-tableau has entries [y, y]
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(2) the set {x, x} is an entry of the λ-tableau if and only if [x, x] is not an entry
of the µ-tableau, for all 1 ≤ x ≤ n.

In this case, we say that t is a (λ, µ)-tableau. We write t+ for the λ-tableau, and
t− for the µ-tableau.

Example 2.8. The following is a ((3), (3, 1))-tableau.

[4,4̄] [5,5̄] [6,6̄]

[7,7̄]

{1,1̄}{2,2̄}{3,3̄}

Given a (λ, µ)-tableau t, let R(t) (resp. C(t)) be the subgroup of Tn consisting
of all permutations that setwise fix the entries in each row (resp. column) of t. We
define an equivalence relation v on the set of (λ, µ)-tableaux by t v u if and only
if there exists π ∈ R(t) such that u = tπ. The (λ, µ)-tabloid {t} is the equivalence
class of t. We define the (λ, µ)-polytabloid et by

et =
∑

σ∈C(t)

sgn(σ){t}σ.

The hyperoctahedral Specht module S(λ,µ) (defined in §1.2) is a cyclic module,
generated by any (λ, µ)-polytabloid et. In order to describe a basis of S(λ,µ), we
order the sets {x, x} by setting {x, x} ≤ {y, y} if and only if x ≤ y. We also define
an ordering on the set of [x, x] in the same way. We say that t is standard if both t+

and t− are standard tableaux with respect to the orders just defined. The module
S(λ,µ) has a basis given by the set of all polytabloids et such that t is a standard
(λ, µ)-tableau.

2.5. The simple modules and the blocks of FC2 o Sn. It is well-known that
the blocks of Sn are labelled by pairs (γ, v) such that γ is a p-core partition, and
|γ| + vp = n. Moreover, the FSn-module Sλ lies in the block labelled by the p-
core of λ. This result is known as Nakayama’s conjecture, and was first proved by
Brauer and Robinson in [5] and [12]. The main result in this section is a complete
description of the blocks of FC2 oSn, which we give in Proposition 2.11. We actually
prove the stronger Theorem 2.10 below, from which Proposition 2.11 follows. We
prove Theorem 2.10 as it is also used in this section to describe the simple FC2 oSn-
modules, and in §5 to determine the blocks of NC2oSn(Rr), where Rr is defined in
§4.

We now give the required preliminaries for Theorem 2.10. Assume that G =
Ca2 o H, where a ∈ N. There is an action of G on Lin(Ca2 ) given by conjugation,
and we have the following lemma.

Lemma 2.9. The G-conjugacy classes of Lin(Ca2 ) are labelled by pairs (a1, a2) ∈
N2

0 such that a1 + a2 = a.

Given 0 ≤ i ≤ a, write Lini(C
a
2 ) for the conjugacy class of Lin(Ca2 ) labelled by

(i, a− i). Fix χi ∈ Lini(C
a
2 ) and define Gi = Ca2 oHi, where Hi is the stabiliser of

χi in H. Given an FG-module V and χ ∈ Lin(Ca2 ), let

V χ = {v ∈ V : vg = χ(g)v for all g ∈ Ca2 }.
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For g ∈ G, we have that V χg = V χg, and so V χi is an FGi-module. Furthermore,
V (i) :=

⊕
χ∈Lini(Ca2 ) V

χ is an FG-module. Then

V =

n⊕
i=0

V (i), (2.1)

as a direct sum of FG-modules. We say that V belongs to i if V = V (i) for some
i. Clearly every indecomposable FG-module belongs to i for some i.

Let θ ∈ HomFG(U, V ). By considering the action of Ca2 , we see that θ(Uχ) ⊆ V χ.
Therefore HomFG(U, V ) = 0 if U belongs to i and V belongs to j for i 6= j. It follows
that the FG-modules belonging to i generate a subcategory of the module category
mod(G). We write modi(G) for this subcategory.

Theorem 2.10. The rings FG and
⊕n

i=0 FHi are Morita equivalent.

Proof. Fix 0 ≤ i ≤ a. Let M be an FHi-module, and write Ki for the one-
dimensional FGi-module on which Ca2 acts according to χi and Hi acts trivially.
Define the functor Fi : mod(Hi)→modi(G) by

M 7→ (Ki ⊗ InfGiHiM)
xG
Gi
.

It is sufficient to prove that Fi is an equivalence of categories, which we do by
showing that it is essentially surjective, full, and faithful.

To prove that Fi is essentially surjective, it is sufficient to consider the case when
U is an indecomposable FG-module. Therefore U belongs to i, and so by definition

U =
⊕

χ∈Lini(Ca2 )

Uχ ∼= Uχi
xG
Gi
.

where the isomorphism follows from [2, Section 8, Corollary 3]. By definition, Uχi

is such that Ca2 acts according to χi. Therefore Uχi is isomorphic to the tensor
product of Ki and a module on which Ca2 acts trivially. This is equivalent to

writing Uχi ∼= Ki ⊗ InfGiHi U
′, where U ′ is an FHi-module. This proves that Fi is

essentially surjective.
Suppose that 0 6= θ ∈ HomFG(U, V ), where V also belongs to i. Write ϕ for

θ restricted to Uχi , which we view as an FGi-module homomorphism. We have
that U is generated by Uχi , and so ϕ(Uχi) 6= 0. Moreover, let u ∈ U be such that
u = u′g for some g ∈ Gi/G and u′ ∈ Uχi . By the remark preceding this proof, we
have ϕ(Uχi) ⊆ V χi . Furthermore, by the discussion in the previous paragraph, we
have that Uχi ∼= U ′ as an FHi-module. Writing ϕ′ for ϕ viewed as an FHi-module
homomorphism, we have

θ(u) = θ(u′g) = θ(u′)g = ϕ(u′)g = ϕ′(u′)g.

It follows from part (4) of [2, Section 8, Lemma 6] that θ = Fi(ϕ′), and so Fi is full.
Moreover, ϕ′ is determined by the restriction of θ to Uχi , and so Fi is faithful. �

Proposition 2.11. The rings FC2 oSn and
⊕n

i=0 FS(i,n−i) are Morita equivalent.
Moreover, the blocks of FC2 o Sn are labelled by pairs ((γ, v), (δ, w)), where γ and δ
are p-core partitions such that |γ|+ vp+ |δ|+ wp = n. The hyperoctahedral Specht
module S(λ,µ) lies in the block labelled by ((γ, v), (δ, w)) if and only if λ is a partition
of |γ|+ vp with p-core γ, and µ is a partition of |δ|+ wp with p-core δ.
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Proof. Given i ∈ {0, 1, . . . , n}, let χi ∈ Lin(Cn2 ) be such that χi((1 1)) = · · · =
χi((i i)) = 1 and χi((i + 1 i+ 1)) = · · · = χi((n n̄)) = −1. In this case Hi =
S(i,n−i). The first statement of the result is now immediate using Theorem 2.10.

The remaining statements follow from the definition of S(λ,µ) and Nakayama’s
conjecture for the symmetric group. �

We write B((γ, v), (δ, w)) for the block labelled by the pair ((γ, v), (δ, w)).
We now describe the simple FC2 oSn-modules D(ν,ν̃). Given a p-regular partition

ν, the Specht module Sν has a unique maximal submodule, and the quotient of Sν

by its maximal submodule is denoted Dν . Moreover, Dν is a simple FS|ν|-module,
and every simple FS|ν|-module is of this form (see [11, Theorem 11.5]).

Given (ν, ν̃) ∈ P2(n) such that ν and ν̃ are p-regular, we define

D(ν,ν̃) = (Inf
C2oS|ν|
S|ν|

Dν �N⊗|ν̃| ⊗ Inf
C2oS|ν̃|
S|ν̃|

Dν̃)
xC2oSn
C2oS(|ν|,|ν̃|)

.

We remark that this definition ofD(ν,ν̃) agrees with that given in §1.1. The following
proposition follows immediately from the first statement of Proposition 2.11.

Proposition 2.12. Let n ∈ N. The set

{D(ν,ν̃) : (ν, ν̃) ∈ P2(n) and ν, ν̃ are p-regular},
is a complete set of non-isomorphic simple FC2 o Sn-modules.

3. A p-permutation basis of M(2a,b,c)

Let a, b, c ∈ N0 be such that n = 2a+b+c. In this section we explicitly construct
the module M(2a,b,c). We also provide a p-permutation basis of M(2a,b,c) with respect
to an arbitrary p-subgroup of C2 o Sn.

3.1. A module isomorphic to M(2a,b,c). Let C(2a,b,c) be the set{g, γ, δ} :

g ∈ C2 o Sn has cycle type a positive 2-cycles
γ = ({ia+1, ia+1}, . . . , {ia+b, ia+b})
δ = ([ia+b+1, ia+b+1], . . . , [in, in])
supp(g) ∪ {ia+1, ia+1, . . . , in, in} = {1, 1, . . . , n, n}

 ,

where [x, x] = −[x, x] as in §2.4.
Let v = {g, γ, δ} ∈ C(2a,b,c) be such that

γ = ({ia+1, ia+1}, . . . , {ia+b, ia+b})
δ = ([ia+b+1, ia+b+1], . . . , [in, in]).

Define

S(v) = supp(g) ∩ {1, 2, . . . , n}
T (v) = {ia+1, . . . , ia+b}
U(v) = {ia+b+1, . . . , in}.

As 2a+ b+ c = n, these sets are mutually disjoint.
There is an action of h ∈ C2 o Sn on v given by vh = {gh, γh, δh}. With D(2a,b,c)

defined to be F -span of the set

{v − sgn ( ĥ )vh : v ∈ C(2a,b,c), h ∈ C2 o ST (v) × C2 o SU(v)},
we have the following lemma.
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Lemma 3.1. The vector space FD(2a,b,c) is an FC2 o Sn-submodule of FC(2a,b,c).

Proof. We show that FD(2a,b,c) is closed under the action of C2 oSn. Let h ∈ C2 oSn,
and let v− sgn(ĝ)vg ∈ D(2a,b,c), where g ∈ C2 o ST (v) ×C2 o SU(v). With g′ := gh, it
follows that

(v − sgn(ĝ)vg)h = vh− sgn(ĝ)v(gh)

= vh− sgn(ĝ)(vh)g′

= vh− sgn(ĝ′)(vh)g′.

The third equality follows as g and g′ are conjugate in C2 o Sn. By definition of

T (v), the set T (vh) = {xĥ : x ∈ T (v)}, and the analogous statement holds for
U(v). The lemma is now proved as supp(g′) = {xh : x ∈ supp(g)}, and so g′ ∈
C2 o ST (vh) × C2 o SU(vh). �

Let v = {g, γ, δ}+D(2a,b,c) be such that

γ = ({ia+1, ia+1}, . . . , {ia+b, ia+b})
δ = ([ia+b+1, ia+b+1], . . . , [in, in]),

where ia+1, . . . , in ∈ {1, 2, . . . , n}, with ia+1 < · · · < ia+b and ia+b+1 < · · · < in.
Write B(2a,b,c) for the set of all v + D(2a,b,c) of this form. It follows from Lemma
3.1 that B(2a,b,c) is a basis of FC(2a,b,c)/D(2a,b,c). We use this basis in the follow-
ing lemma to show that the quotient module FC(2a,b,c)/D(2a,b,c) is isomorphic to
M(2a,b,c) as an FC2 o Sn-module. To simplify the notation, we write (g, γ, δ) for
{g, γ, δ}+D(2a,b,c) ∈ B(2a,b,c).

Lemma 3.2. The F -span of B(2a,b,c) is isomorphic to M(2a,b,c) as an FC2 o Sn-
module.

Proof. Recall that fa is the element equal to

(1 a+ 1)(2 a+ 2) . . . (a 2a)( 1 a+ 1 )( 2 a+ 2 ) . . . ( a 2a ),

with centraliser Va in C2 o S2a. It follows that the module F
xC2oS2a

Va
has a basis

indexed by the elements in the conjugacy class of fa in C2 o S2a. Let

γ = ({2a+ 1, 2a+ 1}, . . . , {2a+ b, 2a+ b})
δ = ([2a+ b+ 1, 2a+ b+ 1], . . . , [n, n]),

and define S to be the F -span of {(fga , γ, δ) : g ∈ C2 o S2a}. Then S is isomorphic,
as an F [C2 o (S{1,2,...,2a} × S{2a+1,...,2a+b} × S{2a+b+1,...,n})]-module, to

F
xC2oS2a

Va
� (InfC2oSb

Sb
sgnSb)� (Ñ⊗c ⊗ InfC2oSc

Sc
sgnSc),

where N is the non-trivial one-dimensional FC2-module. Let

w = (h, ({ja+1, ja+1}, . . . , {ja+b, ja+b}), ([ja+b+1, ja+b+1], . . . , [jn, jn])),

be a vector in B(2a,b,c). As the natural action of C2 o Sn on its blocks

{1, 1}, {2, 2}, . . . , {n, n},

is transitive, there exists σ ∈ C2 o Sn such that fσa = h, and kσ = jk for all
a + 1 ≤ k ≤ n. It follows that vσ = ±w, and so FS generates FC(2a,b,c)/D(2a,b,c).
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Recall that FC(2a,b,c)/D(2a,b,c) has a basis indexed by elements of the form (fga , γ̃, δ̃).
Using the remark following Lemma 2.7, there are

2nn!

4aa!2b+c(b+ c)!

conjugates of fa in C2 o Sn. Given any such conjugate there are(
b+ c

b

)
ways to choose the support of γ̃, which then determines γ̃ and δ̃ completely. There-
fore

dimF M(2a,b,c) =
2nn!

4aa!2b+c(b+ c)!
×
(
b+ c

b

)
=

22a × (2a)!

4aa!
× n!

(2a)!b!c!

= dimF FS × [C2 o Sn : C2 o S(2a,b,c)].

The result now follows by the characterisation of induced modules in [2, Section 8,
Corollary 3]. �

Consider now the module M(2a,0,0), which is a permutation module and therefore
a p-permutation module. The modules M(0,b,0) and M(0,0,c) are one-dimensional
modules. Therefore the action of any p-subgroup of C2 o Sb or C2 o Sc on M(0,b,0)

or M(0,0,c), respectively, is trivial. It follows that both M(0,b,0) and M(0,0,c) are p-
permutation modules. By [6, Proposition 0.2(2)], the module M(2a,b,c) is therefore
a p-permutation module.

3.2. A p-permutation basis of M(2a,b,c). In this section we assume that Q is a
p-group contained in the top group of C2 o Sn, which we can do by the discussion
in §2.2. Also given (g, γ, δ) ∈ B(2a,b,c) such that

γ = ({ia+1, ia+1}, . . . , {ia+b, ia+b})
δ = ([ia+b+1, ia+b+1], . . . , [in, in]),

define θ((g, γ, δ)) = (g, γ′, δ′) where

γ′ = {{ia+1, ia+1}, . . . , {ia+b, ia+b}}
δ′ = {[ia+b+1, ia+b+1], . . . , [in, in]}.

Lemma 3.3. Let Q be a p-subgroup of C2 o Sn. Then

(1) there is a choice of sign sv for each v ∈ B(2a,b,c) such that

{svv : v ∈ B(2a,b,c)}
is a p-permutation basis of M(2a,b,c) with respect to Q

(2) the element v is fixed by Q if and only θ(v) is fixed by Q. In this case,
sv = 1.

Proof. Let H(2a,b,c) be the set {
θ(v) : v ∈ B(2a,b,c)

}
.

There exists a natural bijection between H(2a,b,c) and B(2a,b,c), and there is a natural
action of Q on H(2a,b,c).
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Let θ(v1), θ(v2), . . . , θ(vl) be representatives for the Q-orbits on H(2a,b,c). Given
θ(v) ∈ H(2a,b,c), there exists a unique k such that θ(vk) = θ(v)g for some g ∈ Q.
Then vg and vk are equal up to some ordering of the elements in their respective
b-tuples and c-tuples. Therefore vk = svvg, for some sv ∈ {−1,+1}.

Suppose that there exists some other g̃ ∈ Q such that θ(vk) = θ(v)g̃. Then
±v = vgg̃−1, and so the F -span of v is a one-dimensional module for the cyclic
group generated by gg̃−1. The only such module is the trivial module, and so
vg = vg̃. The sign sv is therefore well-defined.

In order to prove the first part of the lemma, we need to check that the set

{svv : v ∈ B(2a,b,c)}
is a p-permutation basis for M(2a,b,c) with respect to Q. Suppose that h ∈ Q is
such that svvh = ±sww, for v and w in B(2a,b,c). Then svv and ±sww lie in the
same Q-orbit, and so there exists some k such that svv = vkg, and ±sww = vkg̃.
Therefore vkghg̃

−1 = ±vk. Arguing as before shows that the sign on the right hand
side is positive, and so the first part of the lemma is proved.

For the second part of the lemma, if

θ(v) := (g, {{ia+1, ia+1}, . . . , {ia+b, ia+b}}, {[ia+b+1, ia+b+1], . . . , [in, in]})
is fixed by Q, then vh = ±v for all h ∈ Q. Therefore the F -span of v is a one-
dimensional Q-module, and so v is fixed by Q as required. Moreover, as θ(v) is its
own Q-orbit representative, we have that sv = 1. �

4. The vertices of the summands of M(2a,b,c)

Let U be a non-projective indecomposable summand of M(2a,b,c). The vertex of
U is therefore non-trivial, and so it contains a conjugate of the cyclic group Cp
(viewed as a subgroup of C2 o Sn). By the discussion in §2.2, any copy of Cp in
C2 o Sn is conjugate to

Rr := 〈σ1σ2 . . . σr〉,
where σj := ((j − 1)p+ 1 . . . jp)((j − 1)p+ 1 . . . jp), for some rp ≤ n. It follows
that U(Rr) 6= 0, and so in the first step of the proof of Theorem 1.1, we completely
determine the indecomposable summands of M(2a,b,c)(Rr). We begin by describing
the group NC2oSn(Rr).

4.1. The normaliser of Rr. It is clear that there is a factorisation

NC2oSn(Rr) = NC2oSrp(Rr)× C2 o S{rp+1,...,n}, (4.1)

and so it suffices to describe the group NC2oSrp(Rr).
Let j ∈ N be such that j ≤ r. Define

τj = ((j − 1)p+ 1 (j − 1)p+ 1) . . . (jp jp).

The subgroup 〈τ1, τ2, . . . , τr〉 is the full centraliser of Rr in the subgroup Brp (as
defined in §1) of C2 o Srp.

Let i ∈ N be such that i < r. Define

ρi = ((i− 1)p+ 1 ip+ 1)((i− 1)p+ 1 ip+ 1) . . . (ip (i+ 1)p)(ip (i+ 1)p).

We note that

σρij =

 σj+1 j = i
σj−1 j = i+ 1
σj j 6∈ {i, i+ 1}.
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Let x be a fixed primitive root modulo p. Given i ∈ N, let j be the unique natural
number such that (j − 1)p < i ≤ jp. We define zr ∈ C2 o Srp to be the permutation

such that zr( ī ) = zr(i) and

zr(i) = x(i− 1) + 1− ikp,
where ik is the unique non-negative integer such that (j−1)p < x(i−1)+1−ikp ≤ jp
for all i. We give an example of zr below in the case when p = 3.

Example 4.1. Let p = 3, and let x = 2. Then

zr = (2 3)(2̄ 3̄)(5 6)(5̄ 6̄) . . . (3r − 1 3r)(3r − 1 3r),

and (σ1σ2 . . . σr)
zr = (σ1σ2 . . . σr)

2.

For 1 ≤ i ≤ r, the element zr commutes with τi; moreover, σzri = σxi . We
therefore have the following lemma.

Lemma 4.2. The normaliser subgroup NC2oSrp(Rr) is generated by the set

{τi, σi, ρi : 1 ≤ i ≤ r − 1} ∪ {τr, σr} ∪ {zr}.
Furthermore, the above set without the element zr generates the full centraliser
CC2oSrp(Rr).

It follows that NC2oSrp(Rr) ∼= (C2p oSr)oCp−1, and that CC2oSrp(Rr) ∼= C2p oSr,
where the isomorphisms are of abstract groups.

4.2. The proof of Theorem 1.1. We are now ready to proceed with the first
step of the proof.

First step: The Brauer correspondent M(2a,b,c)(Rr). Fix r ∈ N such that
rp ≤ n. Define

T r = {(2s, t, u) ∈ N3
0 : 2s+ t+ u = r, sp ≤ a, tp ≤ b, up ≤ c}.

By the first part of Lemma 3.3, for each v ∈ B(2a,b,c), there exist sv ∈ {−1, 1}
such that {svv : v ∈ B(2a,b,c)} is a p-permutation basis of M(2a,b,c) with respect
to Rr. Moreover, by the second part of Lemma 3.3 we can take sv = 1 for all
v ∈ BRr(2sp,tp,up). Given (2s, t, u) ∈ T r, define A(2s,t,u) to be the setv :

v ∈ BRr(2a,b,c)

S(v) contains exactly 2s orbits of R̂r of length p

T (v) contains exactly t orbits of R̂r of length p

U(v) contains exactly u orbits of R̂r of length p

 .

Lemma 4.3. There is a direct sum decomposition of FNC2oSn(Rr)-modules

M(2a,b,c)(Rr) =
⊕

(2s,t,u)

〈A(2s,t,u)〉,

where the sum runs over all (2s, t, u) ∈ T r.

Proof. Given v ∈ A(2s,t,u), let

v = (g, ({ia+1, ia+1}, . . . , {ia+b, ia+b}), ([ia+b+1, ia+b+1], . . . , [in, in])).

We first prove that the number of R̂r-orbits contained in S(v) must be even. If

v ∈ BRr(2a,b,c), then g ∈ CC2oSn(Rr). Therefore g permutes the Rr-orbits as blocks
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for its action, and the same is true for ĝ and R̂r. As ĝ has order 2 and p is odd, the

number of R̂r-orbits contained in S(v) is necessarily even. Given h ∈ NC2oSn(Rr),
let vh = ±ṽ, where

ṽ = (gh, ({ja+1, ja+1}, . . . , {ja+b, ja+b}), ([ja+b+1, ja+b+1], . . . , [jn, jn])).

The R̂r-orbits contained in S(ṽ) are exactly the conjugates, by ĥ, of the R̂r-
orbits contained in S(v). The same argument holds for T (ṽ) and U(ṽ), and so
ṽ ∈ 〈A(2s,t,u)〉. It follows that 〈A(2s,t,u)〉 is a submodule of M(2a,b,c)(Rr). The lemma
now follows as B(2a,b,c) =

⋃
A(2s,t,u). �

In the following lemma, we factorise the module 〈A(2s,t,u)〉 as an outer tensor
product of modules, compatible with the factorisation of NC2oSn(Rr) in (4.1). By
doing this, we see that in order to understand M(2a,b,c)(Rr), it is sufficient to
understand the modules M(2sp,tp,up)(Rr), where (2s, t, u) ∈ T r.

Lemma 4.4. There is an isomorphism

〈A(2s,t,u)〉 ∼= M(2sp,tp,up)(Rr)�M(2(a−sp),b−tp,c−up),

of F [NC2oSrp(Rr)× C2 o S{rp+1,...,n}]-modules.

Proof. Let B+
(2(a−sp),b−tp,c−up) be the set of elements in B(2(a−sp),b−tp,c−up), each

shifted by appropriately by rp or rp. The F -span of B+
(2(a−sp),b−tp,c−up) is therefore

an F [C2 o S{rp+1,...,n}]-module isomorphic to M(2(a−sp),b−tp,c−up).
Let v ∈ A(2s,t,u) be such that

v = (g, ({ia+1, ia+1}, . . . , {ia+b, ia+b}), ([ia+b+1, ia+b+1], . . . , [in, in])),

where S(v) = {i1, . . . , ia} and the notation is chosen so that

{i1, . . . , i2sp} ∪ {ia+1, . . . , ia+tp} ∪ {ia+b+1, . . . , ia+b+up} = {1, 2, . . . , rp}.

Let v1 ∈ BRr(2sp,tp,up) be the unique element such that

S(v1) = S(v) ∩ {1, 2, . . . , rp}
T (v1) = T (v) ∩ {1, 2, . . . , rp}
U(v1) = U(v) ∩ {1, 2, . . . , rp}.

By construction, the p-element σ1σ2 . . . σr has support {1, 1, . . . , rp, rp}, and so v
is fixed by Rr if and only if v1 is fixed by Rr. Let v2 ∈ B+

(2(a−sp),b−tp,c−up) be such

that

S(v2) = S(v)\S(v1)

T (v2) = T (v)\T (v1)

U(v2) = U(v)\U(v1).

It follows that there is a natural bijection f between BRr(2a,b,c) and

BRr(2sp,tp,up) × B
+
(2(a−sp),b−tp,c−up),

defined by f(v) = v1 ⊗ v2.
We now show that f is an F [NC2oSn(Rr)]-module homomorphism. Given g ∈

NC2oSn(Rr), and v ∈ B(2a,b,c), let v? ∈ B(2a,b,c) be such that the entries in its b-
tuple and c-tuple are those of vg in ascending order (with respect to the orders
in §2.4). Let h ∈ C2 o ST (vg) × C2 o SU(vg) be the unique permutation such that
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v? = vgh. As g ∈ NC2oSrp(Rr) × C2 o S{rp+1,...,n}, it permutes the elements in the

sets {1, 2, . . . , rp, 1̄, . . . , rp} and {rp+ 1, . . . , n, rp+ 1, . . . , n̄} separately. It follows
that there exists a factorisation h = h1h2, where h1 ∈ C2 o S{1,2,...,rp} and h2 ∈
C2 o S{rp+1,...,n}. Therefore

f(vg) = f(sgn( ĥ )v?)

= sgn( ĥ )(v?1 ⊗ v?2)

= sgn( ĥ ) sgn( ĥ1 ) sgn( ĥ2 )(v1 ⊗ v2)

= f(v)g,

and so the result is proved. �

In order to express M(2sp,tp,up)(Rr) as a sum of indecomposable modules, we first
write M(2sp,tp,up)(Rr) as a direct sum of FNC2oSrp(Rr)-modules N(λ,t,u) (defined
below), before showing that each of these modules is indecomposable. We require

a deeper understanding of the fixed points v ∈ BRr(2sp,tp,up) before we can define

N(λ,t,u). We begin by considering the example M(2p,0,0)(Rr) for all r ∈ N. This

illustrative example will be used when describing BRr(2sp,tp,up) in the general case.

Example 4.5. The FC2 o S2p-module M(2p,0,0) is a permutation module, with
permutation basis given by the set

Bp := {fhp : h ∈ C2 o S2p}.

The set T j is empty for all j ∈ N such that j 6= 2, and so we consider M(2p,0,0)(R2).
We write σ1σ2 as

σ1σ2 = (1 2 . . . p)( 1 2 . . . p )(1∗ 2∗ . . . p∗)( 1∗ 2∗ . . . p∗ ),

where x∗ := x+ p for 1 ≤ x ≤ p.
Let g ∈ Bp be fixed by R2. If (1)g = x, then (2)g = (x)σ1σ2. Therefore, for

2 ≤ i ≤ p− 1,

(i+ 1)g = (x)(σ1σ2)i, (4.2)

and so g is completely determined by (1)g.
Suppose that x ∈ {2, 2, . . . , p, p}. If x ∈ {2, . . . , p}, it follows from (4.2) that

(x)g = 2x−1 mod p. As p is odd, we cannot have that (x)g = 1, and so g does not
have order 2. It follows that g cannot be a conjugate of fp, which is a contradiction.
A similar argument shows that x 6∈ {2, . . . , p}.

There are now 2p possible choices for x. As each such choice completely deter-
mines the permutation g, the module M(2p,0,0)(R2) has dimension 2p.

Fix (2s, t, u) ∈ T r, and let k = t+ u. We define Ω(2s;k) to be the set of elements
of the form

{{i1, i′1}, . . . , {is, i′s}, {j1, . . . , jk}},
where {i1, i′1, . . . , is, i′s, j1, . . . , jk} = {1, 2, . . . , r}. Let cs,k = |Ω(2s;k)|. Given ω ∈
Ω(2s;k) of the above form, define

Rω = 〈σi1σi′1〉 × · · · × 〈σisσi′s〉 × 〈σj1〉 × · · · × 〈σjk〉.

and write B(ω) for BRω(2sp,tp,up).

Lemma 4.6. Let v ∈ BRr(2sp,tp,up). Then v ∈ B(ω) for a unique ω ∈ Ω(2s;k).
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Proof. By the second part of Lemma 3.3, the vector v ∈ B(2sp,tp,up) is fixed by Rr
if and only if θ(v) is fixed by Rr. Let v be such that θ(v) = (g, γ, δ) where

γ = {{i2sp+1, i2sp+1}, . . . , {i(2s+t)p, i(2s+t)p}}
δ = {[i(2s+t)p+1, i(2s+t)p+1], . . . , [irp, irp]}.

By definition, g can be written a product of s disjoint p positive 2-cycles g1, . . . , gs.
Let {i1, i2, . . . , i2s−1, i2s} be such that supp(σi2j−1

σi2j ) = supp(gj) for each j. It
follows from Example 4.5 that g commutes with Rr if and only if g commutes with
σi2j−1σi2j for each j.

Let {j1, . . . , jt} be such that

supp(σj1 . . . σjt) = {i2sp+1, i2sp+1, . . . , i(2s+t)p, i(2s+t)p}.

As γ is fixed by Rr, the set T (v) is equal to a union of R̂r-orbits. The orbits of R̂r
are equal to precisely the orbits of σ̂ji for each 1 ≤ i ≤ r. Therefore γ is fixed by
Rr if and only if it is fixed by the group 〈σj1〉 × · · · × 〈σjt〉.

Similarly if δ is such that

supp(σk1 . . . σku) = {i(2s+t)p+1, i(2s+t)p+1, . . . , irp, irp},
then δ is fixed by the group 〈σk1〉 × · · · × 〈σku〉.

Therefore if v is fixed by Rr, then v is fixed by Rω, where

ω = {{i1, i2}, . . . , {i2s−1, i2s}, {j1, . . . , jt, k1, . . . , ku}}.
Moreover, ω is unique as it is determined by the fixed sets supp(g), supp(γ), and
supp(δ). �

Given ∅ 6= E ⊆ {1, 2, . . . , r}, we define τE =
∏
e∈E τe. If E is empty, then we

define τE = 1.

Definition. Fix y ∈ {−1, 1}s. Given (g, γ, δ) ∈ BRr(2sp,tp,up), let

ω := {{i1, i′1}, . . . , {is, i′s}, {j1, . . . , jk}}
be the unique element of Ω(2s;k) such that (g, γ, δ) ∈ B(ω). Define

(y(g), γ, δ) =
∑

E⊆{i1,...,is}

(
∏
e∈E

ye)(g
τE , γ, δ).

It follows from Example 4.5 and Lemma 4.6 that τij and τi′j act in the same way

on g, and so (y(g), γ, δ) is well-defined.

Given y ∈ {−1, 1}s, let λ ∈ Λ(2, s) be the composition of s such that λ1 (resp.
λ2) is equal to the number of yi that are equal to +1 (resp. −1). We say that y
has weight λ in this case.

We now define N(λ,t,u) to be the F -span of

{(y(g), γ, δ) : (g, γ, δ) ∈ BRr(2sp,tp,up) and y has weight λ}. (4.3)

It is clear that
M(2sp,tp,up)(Rr) =

⊕
λ∈Λ(2,s)

N(λ,t,u),

is an equality of vector spaces.
Before we state the next result, we remark that NC2oSrp(Rr) permutes the Rr-

orbits as blocks for its action. It follows that the set of subgroups of the form Rω
is an NC2oSrp(Rr)-set, with the action given by conjugation. We have seen in the
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proof of Lemma 4.6 that the Rr-orbits are the same as the orbits of the subgroup
C := 〈σ1〉 × · · · × 〈σr〉, and we write Oi for the union of the non-trivial orbits of
〈σi〉.

Lemma 4.7. Given ω, ω̃ ∈ Ω(2s;k), let h ∈ NC2oSrp(Rr), be such that Rhω = Rω̃.

Given 1 ≤ i ≤ r, let ĩ be such that Ohi = Oĩ. Then (y(g), γ, δ)h is contained in the
F -span of B( ω̃ ).

Proof. It follows from the definition of (y(g), γ, δ) that

(y(g), γ, δ)h =
∑

E⊆{i1,...,is}

(
∏
e∈E

ye)(g
τE , γ, δ)h

=
∑

E⊆{i1,...,is}

(
∏
e∈E

ye)((g
τE )h, γh, δh)

=
∑

Ẽ⊆{ĩ1,...,ĩs}

(
∏
e∈E

ye)((g
h)τẼ , γh, δh)

= (ỹ(gh), γh, δh),

where Ẽ = {̃i : i ∈ E} and ỹĩ = yi for all i ∈ {i1, i2, . . . , is}. The lemma is proved
once we show that (gh, γh, δh) is fixed by Rω̃. As σhi = σĩ for all 1 ≤ i ≤ r, for
1 ≤ j ≤ s

(gh)
σ
ĩj
σ
ĩ′
j = (g

(σijσi′j
)
)h = gh.

An entirely similar argument shows that γhσĩj = γh for s < j ≤ s + t, and that

δhσĩj = δh for s+ t < j ≤ r. �

It follows from Lemma 4.7 that each N(λ,t,u) is an FNC2oSrp(Rr)-module.

Corollary 4.8. Let h ∈ NC2oSrp(Rr) be such that τhi = τi for 1 ≤ i ≤ r, and

σhi = σxi , for some x ∈ N. If (g, γ, δ) ∈ B(ω), then (g, γ, δ)h is contained in the F -
span of B(ω). In particular if h = τij for some j ∈ {1, 2, . . . , s}, then (y(g), γ, δ)h =
yj(y(g), γ, δ).

Proof. For the first statement, observe that Ohi = Oi for 1 ≤ i ≤ r. Now apply
Lemma 4.7. For the second statement observe that when h = τij for some j ∈
{1, . . . , s}, then

(y(g), γ, δ)τij =
∑

E⊆{i1,...,is}

(
∏
e∈E

ye)(g
τEτij , γ, δ)

= yj
∑

E⊆{i1,...,is}

(
∏
e∈E

yeyj)(g
τEτij , γ, δ) = yj(y(g), γ, δ).

�

Write Kr for CC2oSrp(Rr), which recall is isomorphic to C2p o Sr. In order to
prove that each N(λ,t,u) is an indecomposable FNC2oSrp(Rr)-module, we show that
it is indecomposable as an FKr-module. We do this by filling in the details of the
following sketch.

Given 1 ≤ i ≤ r, define Di = 〈σi, τi〉, and so D1× · · · ×Dr is a normal subgroup
in Kr. We define an F [D1×· · ·×Dr]-module Nω?

y , and in Lemma 4.9 we determine
its inertial group Y(λ,t,u) in Kr. Using Lemma 4.10, we determine the dimension of
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N(λ,t,u). In Lemma 4.11, we first show that Ny := Nω?

y

xY(λ,t,u)

X(λ,t,u)
is indecomposable,

where X(λ,t,u) is the largest subgroup in Y(λ,t,u) that Nω?

y can be extended to.

We then prove that N(λ,t,u) = Ny
xKr
Y(λ,t,u)

. It follows using Clifford theory (see [4,

Proposition 3.13.2]) that N(λ,t,u) is an indecomposable FKr-module.

Define ω? = {{1, s+1}, . . . , {s, 2s}, {2s+1, . . . , r}} ∈ Ω(2s;k). Furthermore define
v? = (fsp, γ

?, δ?) ∈ B(ω?), where

T (v?) = supp(σ2s+1 . . . σ2s+t) ∩ {1, 2, . . . , n}
U(v?) = supp(σ2s+t+1 . . . σr) ∩ {1, 2, . . . , n}.

Given λ ∈ Λ(2, s), define yλ ∈ {−1, 1}s to be the tuple of weight λ such that

(yλ)i =

{
1 if 1 ≤ i ≤ λ1

−1 if λ1 + 1 ≤ i ≤ s.

Define Nω?

y to be the F -span of

{(yλ(g), γ?, δ?) : (g, γ?, δ?) ∈ B(ω?)}.
We also define X(λ,t,u) to be the subgroup of Kr generated by the set

{σi, τi : 1 ≤ i ≤ r} ∪ {ρρ2ρ3...ρs1 } ∪ {ρiρi+s : 1 ≤ i ≤ s− 1 and i 6= λ1}
∪ {ρi : 2s+ 1 ≤ i < r, i 6= 2s+ t},

and Y(λ,t,u) to be the subgroup of Kr generated by the set

{σi, τi : 1 ≤ i ≤ r} ∪ {ρi : 1 ≤ i ≤ r − 1 and i 6∈ {2λ1, 2s, 2s+ t}}.
Similar to the remark following Lemma 4.2, there are isomorphisms of abstract
groups X(λ,t,u)

∼= C2p o ((S2 o Sλ)× St × Su), and Y(λ,t,u)
∼= C2p o (S2λ × St × Su).

Lemma 4.9. The vector space Nω?

y is an F [D1 × · · · ×Dr]-module, with inertial

group Y(λ,t,u) in Kr. Moreover, we can extend Nω?

y to a module for FX(λ,t,u).

Proof. That Nω?

y is an F [D1 × · · · ×Dr]-module follows from by applying the first
statement of Corollary 4.8.

Write T for the inertial group of Nω?

y , which permutes the groups Di by conjuga-

tion. The permutations σ1, . . . , σ2s act freely on Nω?

y , whereas σ2s+1, . . . , σr all act

trivially on Nω?

y . Therefore T must be contained in the subgroup of Kr that per-
mutes the groups D1, . . . , D2s amongst themselves and the groups D2s+1, . . . , Dr

amongst themselves.
For 2s < i ≤ 2s+ t, the action of τi on (yλ(g), γ?, δ?) is determined by its action

on ({(i− 1)p+ 1, (i− 1)p+ 1}, . . . , {ip, ip}). Therefore τi acts trivially in this case.
Similarly for 2s + t < i ≤ r, the action of τi on (yλ(g), γ?, δ?) is determined by

its action on ([(i − 1)p + 1, (i− 1)p+ 1 ], . . . , [ip, ip]). It follows that τi acts with
sign (−1)p, which is negative as p is odd. Therefore T must be contained in the
subgroup of Kr that permutes the D2s+1, . . . , D2s+t amongst themselves, and the
D2s+t+1, . . . , Dr amongst themselves.

It follows from the second statement of Corollary 4.8 that T must permute the
groups D1, . . . , Dλ1

, Ds+1, . . . , Dλ1+s amongst themselves, and the same is true for
the groups Dλ1+1, . . . , D2s, Dλ1+s+1, . . . , D2s. This shows that T must be contained
in Y(λ,t,u). Moreover, if h ∈ Y(λ,t,u), then (Nω?

y )h ∼= Nω?

y . Therefore Y(λ,t,u) is
contained in T, which proves the second statement of the lemma.
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For the final statement, it remains to prove that Nω?

y is closed under the action
of

Z ∪ {ρi : 2s+ 1 ≤ i < r, i 6= 2s+ t},

where Z = {ρρ2ρ3...ρs1 } ∪ {ρiρi+s : 1 ≤ i ≤ s − 1 and i 6= λ1}. It is sufficient
to prove that each of (y(g)z, γ?, δ?), where z ∈ Z, and (y(g), (γ?)ρi, δ

?), where
2s+1 ≤ i < 2s+ t, and (y(g), γ?, (δ?)ρi), where 2s+ t < i < r, is contained in Nω?

y .
First consider γ?ρi, where 2s + 1 ≤ i < 2s + t. As ρi permutes precisely those

orbits of Rω? with support equal to the support of γ?, it follows that γ?ρi = ±γ?.
The same argument shows that δ?ρi = ±δ? for 2s+ t < i < r. If z ∈ {ρρ2ρ3...ρs1 } ∪
{ρiρi+s : 1 ≤ i ≤ s− 1 and i 6= λ1}, then

(y(g), γ?, δ?)z =
∑

E⊆{1,...,s}

(
∏
e∈E

ye)(g
(τE)z, γ?, δ?)

=
∑

E′⊆{1,...,s}

(
∏
e∈E

ye)((g
z)τE′ , γ?, δ?),

where E′ = E if z = ρρ2ρ3...ρs1 , otherwise E′ is the subset of {1, . . . , s} obtained
from E by swapping i and i+1. As i 6= λ1, we have yi = yi+1 in all cases. It follows
that (y(g), γ, δ)z = (y(gz), γ, δ). The lemma is proved if (gz, γ, δ) ∈ B(ω?). This
follows from the first statement of Corollary 4.8 as z centralises Rω? . �

Lemma 4.10. The module M(2sp,tp,up)(Rr) has dimension equal to

(2p)s ×
(
k

t

)
× cs,k.

Proof. By Lemma 4.6 every element in BRr(2sp,tp,up) is fixed by Rω, for a unique

ω ∈ Ω(2s;k). We therefore count the size of B(ω) for each ω. Fix ω ∈ Ω(2s;k), and let
ω = {{i1, i′1}, . . . , {is, i′s}, {j1, . . . , jk}}.

Let (g, γ, δ) ∈ B(ω) be such that g = g1 . . . gs, where gj is fixed by σijσi′j for each

j. By Example 4.5, each σijσi′j has 2p fixed points in B(2p,0,0). Therefore there are

(2p)s choices for the fixed points of 〈σi1σi′1〉 × · · · × 〈σisσi′s〉 under the conjugacy
action.

Let γ := ({γ1, γ1}, {γ2, γ2}, . . . , {γtp, γtp}) be such that γ1 < γ2 < · · · < γtp
and supp(σj1 . . . σjt) = {γ1, γ1, . . . , γtp, γtp}. Then γ is the unique element of this
form with support not disjoint to σj1 . . . σjt that is fixed by σj1 . . . σjt . Similarly,

we define δ = ([δ1, δ1], . . . , [δup, δup]) to be such that δ1 < δ2 < · · · < δup and

{δ1, δ1, . . . , δtp, δtp} = supp(σjt+1 . . . σjk). Then δ is the unique element with support
not disjoint to σjt+1

. . . σjk that is fixed by σjt+1
. . . σjk .

As there are
(
k
t

)
ways to choose j1, j2, . . . , jt, there are (2p)s×

(
k
t

)
fixed points of

Rω in B(2sp,tp,up). The statement of the lemma now follows by definition of cs,k. �

Recall that C is defined to be the elementary abelian group 〈σ1, . . . , σr〉.

Lemma 4.11. The module N(λ,t,u) is an indecomposable FKr-module.

Proof. Define Ω(2λ;k) to be the subset of Ω(2s;k) consisting precisely of the ω ∈
Ω(2s;k) of the form {{i1, i′1}, . . . , {is, i′s}, {j1, . . . , jk}} such that
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{i1, i′1, . . . , iλ1 , i
′
λ1
} = {1, . . . , λ1, s+ 1, . . . , λ1 + s}

{iλ1+1, i
′
λ1+1, . . . , is, i

′
s} = {λ1 + 1, . . . , s, λ1 + 1 + s, . . . , 2s}

{j1, . . . , jk} = {2s+ 1, . . . , r},

and let cλ,k = |Ω(2λ;k)|. The module Ny := Nω?

y

xY(λ,t,u)

X(λ,t,u)
has a basis given by the

set

{(y(g), γ?, δ?) : (g, γ?, δ?) ∈ B(ω), ω ∈ Ω(2λ;k)}.

Therefore Ny(Rω?) and Nω?

y are equal as vector spaces. By the second paragraph
in the proof of Lemma 4.10, there are (2p)s choices for g in (g, γ?, δ?). Given E ⊆
{i1, . . . , is}, the second statement of Corollary 4.8 implies that (y(g), γ?, δ?) and
(y(g), γ?, δ?)τE are equal up to a sign. There are 2s choices for E, and so Nω?

y has
dimension ps.

The group Rω? acts trivially on Nω?

y , and so by [2, Chapter 8, Corollary 3]

Ny(Rω?)
y
C
∼= F

xC
Rω?

,

where the subgroup C is defined just before this lemma. Then Ny(Rω?) is an inde-
composable FC-module, and so Ny(Rω?) is an indecomposable F [NY(λ,t,u)

(Rω?)]-
module. It follows that there exists a unique summand of Ny with vertex containing
Rω? . Let W be a non-zero indecomposable summand of Ny. As

Ny
y
C
∼=

⊕
ω∈Ω(2λ;k)

F
xC
Rω
,

the Krull–Schmidt theorem implies that each indecomposable summand of W ↓C is
isomorphic to F ↑CRω? . Therefore W (Rω?) 6= 0, and so Lemma 2.2 states that W
has a vertex containing Rω? . The module Ny is therefore indecomposable.

Let (ỹ(g), γ̃, δ̃) ∈ N(λ,t,u) be such that (g, γ̃, δ̃) ∈ B(ω̃). As ỹ has weight λ, and
Kr permutes the Rr-orbits transitively, it follows from Lemma 4.7 that there exists

ρ ∈ 〈ρ1, . . . , ρr−1〉 such that ±(ỹ(g), γ̃, δ̃) = (y(gρ
−1

), γ, δ)ρ, where (y(gρ
−1

), γ, δ) ∈
Ny. Therefore Ny generates N(λ,t,u) as an FKr-module.

By definition there are cs,k choices for ω ∈ Ω(2s;k), and there are
(
s
λ1

)
choices for

y ∈ {−1, 1}s of weight λ. Therefore N(λ,t,u) has dimension cs,k ×
(
s
λ1

)
× ps ×

(
k
t

)
.

As Ny has dimension cλ,k × ps, applying [2, Chapter 8, Corollary 3] gives

N(λ,t,u)
∼= Ny

xKr
Y(λ,t,u)

.

Lemma 4.9 states that Y(λ,t,u) is the inertial group of the F [D1× · · · ×Dr]-module

Nω?

y . As Nω?

y is extended from D1×· · ·×Dr to X(λ,t,u), we have that Ny
y
D1×···×Dr

is isomorphic to a direct sum of [Y(λ,t,u) : X(λ,t,u)] copies of Nω?

y . Therefore the
proof of Proposition 3.13.2 in [4] carries over to this case, and so N(λ,t,u) is an
indecomposable FKr-module. �

By Lemma 2.4, M(2sp,tp,up)(Rr) and N(λ,t,u) are p-permutation FNC2oSrp(Rr)-
modules, where λ ∈ Λ(2, s). Write Jr for NC2oSrp(Rr). As Rr � Rω? , we have
Rω? ≤ Jr. By Lemma 2.4 M(2sp,tp,up)(Rr)(Rω?) ∼= M(2sp,tp,up)(Rω?), where the
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isomorphism is of FNJr (Rω?)-modules. Then Lemma 4.11 implies that

M(2sp,tp,up)(Rω?) ∼=
⊕

λ∈Λ(2,s)

N(λ,t,u)(Rω?),

as FNJr (Rω?)-modules. Moreover, for all λ ∈ Λ(2, s), the basis defining N(λ,t,u) in
(4.3) is a p-permutation basis of N(λ,t,u) with respect to Rω? .

Recall that U is a non-projective indecomposable summand ofM(2a,b,c). It follows
from the proof of Lemma 4.6 that each N(λ,t,u)(Rω?) 6= 0, and so by the Krull–
Schmidt theorem U(Rω?) 6= 0. By Lemma 2.2, every non-projective indecomposable
summand of M(2sp,tp,up) therefore has a vertex containing Rω? . In the second step
of the proof of Theorem 1.1, we consider the module N(λ,t,u)(Rω?) in order to
understand U(Rω?).

Second step: The vertices of N(λ,t,u)(Rω?). Recall that we write Kr for the
centraliser of Rr in C2 oSrp. In this step we show that N(λ,t,u)(Rω?) is indecompos-
able as an FCKr (Rω?)-module. It follows that N(λ,t,u)(Rω?) is an indecomposable
FNC2oSrp(Rω?)-module, and in Lemma 4.13 we determine its vertex. We remark
that the group CKr (Rω?) is generated by the set

{σi, τi : 1 ≤ i ≤ r} ∪ {ρρ2ρ3...ρs1 } ∪ {ρiρi+s : 1 ≤ i ≤ s− 1 and i 6= λ1}
∪ {ρi : 2s+ 1 ≤ i < r},

and so we have the inclusion X(λ,t,u) ≤ CKr (Rω?).

Lemma 4.12. Let λ ∈ Λ(2, s). Then the FNKr (Rω?)-module N(λ,t,u)(Rω?) is in-
decomposable.

Proof. By definition Rω? acts trivially on Nω?

y , and so it follows from [2, Chapter
8, Corollary 3] that

Nω?

y

y
C
∼= F

xC
Rω?

.

This is an indecomposable FC-module, and so Nω?

y is an indecomposable FX(λ,t,u)-
module.

Let (ỹ(g), γ̃, δ̃) ∈ N(λ,t,u)(Rω?). As CKr (Rω?) permutes the Rω? -orbits of a fixed
size transitively amongst themselves, it follows from Lemma 4.7 that there exists

ρ ∈ 〈ρρ2ρ3...ρs1 , ρ1ρs+1, . . . , ρs−1ρ2s−1, ρ2s+1, . . . , ρr−1〉

such that ±(ỹ(g), γ̃, δ̃) = (y(gρ
−1

), γ, δ)ρ, where (y(g), γ, δ)ρ ∈ Nω?

y . Therefore Nω?

y

generates N(λ,t,u)(Rω?) as an FCKr (Rω?)-module. As there are exactly
(
s
λ1

)
tuples

of weight λ in {−1, 1}s, the second statement of Corollary 4.8 and Lemma 4.10

imply that the module N(λ,t,u)(Rω?) has dimension
(
s
λ1

)
×
(
k
t

)
× ps. By [2, Chapter

8, Corollary 3], we therefore have that

N(λ,t,u)(Rω?)
y
CKr (Rω? )

∼= Nω?

y

xCKr (Rω? )

X(λ,t,u)
.

By Lemma 4.9, the inertial group of Nω?

y in CKr (Rω?) is equal to X(λ,t,u). It follows
from [4, Proposition 3.13.2] that N(λ,t,u)(Rω?) is an indecomposable FCKr (Rω?)-
module. �

Given X ⊂ {1, 2, . . . , sp}, let C2 oSX be as in §2.2. Also given x ∈ {1, 2, . . . , sp},
define x∗ = x + sp. We remark that this definition of x∗ agrees with that of x∗ in
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Example 4.5, which is the case when s = 1. Given g ∈ C2 oS{1,2,...,sp}, let g∗ be the
permutation in C2 o S{sp+1,...,2sp} such that i∗g∗ = (ig)∗.

Also given λ ∈ Λ(2, s), we define J to be the group consisting of all elements gg∗

such that g is contained in a Sylow p-subgroup of C2 oS{1,...,pλ1}×C2 oS{pλ1+1,...,sp}
with base group 〈σ1, . . . , σs〉. Let J+ be a Sylow p-subgroup of

C2 o S{2sp+1,...,(2s+t)p} × C2 o S{(2s+t)p+1,...,rp}

with base group 〈σ2s+1, . . . , σr〉. We define Q(λ,t,u) = J × J+.
By construction, Rω? �Q(λ,t,u), and so Q(λ,t,u) ≤ NC2oSrp(Rω?). By Lemma 2.4

and Lemma 3.3, there exists a choice of signs sv ∈ {−1, 1} such that {svv : v ∈
BRr(2sp,tp,up)} is a p-permutation basis for M(2sp,tp,up)(Rω?) with respect to Q(λ,t,u).

Given v := (g, γ, δ) ∈ B(ω?), let (h, γ̃, δ̃) be a representative for the Q(λ,t,u)-orbit
containing v. It follows that for all E ⊆ {1, 2, . . . , s}, the representative for the

Q(λ,t,u)-orbit containing (gτE , γ, δ) can be chosen to be of the form (h′, γ̃, δ̃). For
distinct summands w and w̃ of (y(g), γ, δ), it follows that sw = sw̃. We can therefore
write s(g,γ,δ) in the place of sw for all such w, and then

{s(g,γ,δ)(y(g), γ, δ) : (g, γ, δ) ∈ B(ω?)}
is a p-permutation basis of N(λ,t,u)(Rω?) with respect to Q(λ,t,u).

Lemma 4.13. The module N(λ,t,u)(Rω?) has a vertex equal to Q(λ,t,u).

Proof. Let y = yλ. The element (fsp, γ
?, δ?) is a fixed point of Q(λ,t,u). As Q(λ,t,u) ≤

X(λ,t,u), the element (y(fsp), γ
?, δ?) is also a fixed point of Q(λ,t,u). Therefore

N(λ,t,u)(Rω?) has a vertex containing Q(λ,t,u).
The element y(fsp) is an alternating sum of elements conjugate to fsp in C2 oSrp,

and so any element in NC2oSrp(Rr) that fixes y(fsp) under the conjugacy action
must be contained in Vsp. Indeed, suppose that there exists h ∈ Q(λ,t,u) such that
h 6∈ Vsp. Therefore by definition of y(fsp), it must be the case that hτE ∈ Vsp for
some E ⊂ {1, 2, . . . , s}. However τE transposes the R2s-orbits

{(j − 1)p+ 1, . . . , jp}

{(j − 1)p+ 1, . . . , jp},
for each j ∈ E, and fixes all other R2s-orbits. As p is odd, it follows that h must
act trivially on these orbits. The only elements in NC2oSrp(Rr) that do this are
contained in Vsp, which is a contradiction.

As Q(λ,t,u) is the largest p-subgroup that is contained in both X(λ,t,u) and Vsp×
C2 o Stp × C2 o Sup, the statement of the lemma now follows by applying Lemma
2.2. �

Third step: Proof of Theorem 1.1. Given r ∈ N such that rp ≤ n, recall that

T ′r = {(λ, t, u) : λ ∈ Λ(2, s), 2s+ t+ u = r and sp ≤ a, tp ≤ b, up ≤ c}.
We now prove Theorem 1.1. We restate the result for the reader’s convenience.

Theorem 1.1. Let (a, b, c) ∈ N3
0 be such that 2a + b + c = n, and let U be a

non-projective indecomposable summand of M(2a,b,c). Then U has a vertex equal
to a Sylow p-subgroup of

Vpλ × C2 o Stp × C2 o Sup,
for some r ∈ N, where rp ≤ n, and (λ, t, u) ∈ T ′r.
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Proof of Theorem 1.1. Let r ∈ N be maximal such that Rr is contained in a vertex
of U . By Lemma 4.4, Lemma 4.11 and the Krull–Schmidt theorem, there exists
T ⊂ T ′r, and for each (λ, t, u) ∈ T, a summand W(λ,t,u) of M(2(a−sp),b−tp,c−up) such
that

U(Rr) ∼=
⊕

(λ,t,u)∈T

N(λ,t,u) �W(λ,t,u),

where s = |λ|.
Let (2s, t, u) ∈ T be such that s is minimal. Suppose there exists (2s̃, t̃, ũ) ∈ T r

such that s̃ > s. Given ω ∈ Ω(2s;t+u) and ω̃ ∈ Ω(2s̃;t̃+ũ), the subgroup Rω̃ cannot
contain a conjugate of Rω. Therefore N(λ̃,t̃,ũ)(Rω) = 0 for all |λ̃| = s̃.

We therefore now consider U(Rω), where ω ∈ Ω(2s;t+u). By Lemma 2.4, there is
an isomorphism U(Rω) ∼= U(Rr)(Rω), and so there exists S ⊆ T such that

U(Rω) ∼=
⊕

(λ,t,u)∈S

N(λ,t,u)(Rω)�W(λ,t,u),

where |λ| = s. Let L = NC2oSrp(Rω). By Lemma 4.13, each N(λ,t,u)(Rω) has a
vertex equal to Q(λ,t,u). Let Q(λ,t,u) be maximal such that (λ, t, u) ∈ S. By Lemma
2.4,

U(Q(λ,t,u)) ∼= U(Rω)(Q(λ,t,u))
=
⊕

(λ̃,t̃,ũ)N(λ,t,u)(Rω)(Q(λ,t,u))�W(λ,t,u),
(4.4)

where that the sum runs over the (λ̃, t̃, ũ) ∈ S such that Q(λ̃,t̃,ũ) is a conjugate

of Q(λ,t,u). Indeed as N(λ̃,t̃,ũ)(Rω)(Q(λ,t,u)) 6= 0, Lemma 2.2 says that Q(λ,t,u) is

contained in a conjugate of Q(λ̃,t̃,ũ), say P. If Q(λ̃,t̃,ũ) is not a conjugate of Q(λ,t,u),

then it strictly contains P. However this is a contradiction to the maximality of
Q(λ,t,u).

As N(λ,t,u)(Rω)(Q(λ,t,u)) 6= 0, it follows from Lemma 2.2 that U has a vertex
Q containing Q(λ,t,u). Suppose that Q strictly contains Q(λ,t,u). As Q(λ,t,u) is a
p-group, there exists g ∈ NQ(Q(λ,t,u)) such that g 6∈ Q(λ,t,u). The orbits of Q(λ,t,u)

have length at least p on {1, 1, . . . , rp, rp}, whereas the orbits of Q(λ,t,u) on

{rp+ 1, rp+ 1, . . . , n, n}

have length 1. As g cannot permute an element in an orbit of length strictly
greater than 1 with elements in an orbit of length 1, we can write g = hh+,
where h ∈ NC2oSrp(Q(λ,t,u)) and h+ ∈ C2 o S{rp+1,...,n}. The only elements in
Q(λ,t,u) with cycle type either one positive p-cycle, or two positive p-cycles are
those that are contained Rω. Therefore NC2oSrp(Q(λ,t,u)) ≤ NC2oSrp(Rω) = L, and
so 〈Q(λ,t,u), h〉 ≤ NL(Q(λ,t,u)).

Let C be a p-permutation basis of N(λ,t,u)(Rω) with respect to 〈Q(λ,t,u), g〉. By
Lemma 2.2, the group 〈Q(λ,t,u), g〉 has a fixed point in C. It follows from (4.4) that
there exists someN(λ,t,u)(Rω) that has a vertex containing 〈Q(λ,t,u), h〉.However, we
have already seen that each N(λ,t,u)(Rω) has vertex equal to Q(λ,t,u). Therefore h ∈
Q(λ,t,u), and so h+ is a non-identity p-element of Q. Therefore there exists a power of

h+ that is product of positive p-cycles with support outside {1, 1, . . . , rp, rp}. This
contradicts the hypothesis that r is maximal, and so the theorem is proved. �
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Example 4.14. In this example, we suppose that p = 3. The module M(54,0,0) is
spanned by the conjugates of

f27 := (1 28)(2 29) . . . (27 54)(1 28)(2 29) . . . (27 54)

in C2 oS54. In the notation of Theorem 1.1, we have that r = 9 and T ′9 = Λ(2, 9). By
Theorem 1.1, a non-projective indecomposable summand of M(54,0,0) has a vertex
containing a Sylow 3-subgroup of V3λ, for some λ ∈ Λ(2, 9). In fact we can say
more: for every λ ∈ Λ(2, 9), a Sylow 3-subgroup of V3λ contains a conjugate of a
Sylow 3-subgroup of V3(5,4), chosen with the following permutations in its centre:

σ1σ10, . . . , σ9σ18.

5. Decomposition numbers of C2 o Sn
In this section we prove Theorem 1.2. In order to do this, we first need to

understand how the blocks of FC2 o Sn and the blocks of FNC2oSn(Rr) are related.
We therefore require a description of the blocks of FNC2oSn(Rr), which we give in
the following section.

5.1. The blocks of FNC2oSn(Rr). Recall from (4.1) that

NC2oSn(Rr) = NC2oSrp(Rr)× C2 o S{rp+1,...,n}.

By Proposition 2.11 the blocks of FNC2oSn(Rr) are therefore of the form

b⊗B((γ, v − ṽ), (δ, w − w̃)),

where b is a block of FNC2oSrp(Rr), and γ, δ are p-core partitions such that |γ| +
(v− ṽ)p+ |δ|+(w−w̃)p = n−rp. It remains to describe the blocks of FNC2oSrp(Rr).

Proposition 5.1. The blocks of FNC2oSrp(Rr) are labelled by pairs (ṽ, w̃) such that
ṽ + w̃ = r.

Proof. Using the presentation of NC2oSrp(Rr) given in §4.1, we have that

NC2oSrp(Rr) ∼= Cr2 oNSrp(Rr).

In this case Cr2 = 〈τ1, . . . , τr〉. Let χṽ ∈ Lin(Cr2) be the character such that

χṽ(τ1) = · · · = χṽ(τṽ) = 1

χṽ(τṽ+1) = · · · = χṽ(τr) = −1.

Let w̃ = r − ṽ. Then the stabiliser of χṽ in NSrp(Rr) is isomorphic to

H(ṽ,w̃) := CS(ṽ,w̃)p
(Rr) o Cp−1,

and so Theorem 2.10 states that FNC2oSrp(Rr) and
⊕r

ṽ=0 FH(ṽ,w̃) are Morita equiv-
alent. The result now follows as FH(ṽ,w̃) has a unique block by Lemma 2.6 in [7]
for all 0 ≤ ṽ ≤ r. �

We can therefore write b(ṽ, w̃) for the block of FNC2oSrp(Rr) labelled by (ṽ, w̃).
Given a p-core partition γ = (γ1, γ2, . . . , γt) and v ∈ N0, define γ + vp to be the

partition

(γ1 + vp, γ2, . . . , γt).

It is proved in [14, Lemma 7.1] that the Specht module Sγ+vp is a p-permutation
FS|γ|+vp-module. If δ is also a p-core partition, then [6, Proposition 0.2(2)] says

that S(γ+vp,δ+wp) is a p-permutation module for all v, w ∈ N0.
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Proposition 5.2. Fix v, w ∈ N0. Let ṽ, w̃ ∈ N0 be such that ṽ ≤ v, w̃ ≤ w, and
ṽ + w̃ = r. The FNC2oSn(Rr)-module S(γ+vp,δ+wp)(Rr) contains a summand lying
in the block

b(ṽ, w̃)⊗B((γ, v − ṽ), (δ, w − w̃)).

Moreover the blocks b such that bC2oSn = B((γ, v), (δ, w)) are precisely those of this
form.

We prove Proposition 5.2 by applying Lemma 2.5 to S(γ+vp,δ+wp) with respect
to Rr. Given a p-subgroup Q of C2 o Sn, let UQ denote the kernel of the Brauer

morphism from (S(γ+vp,δ+wp))Q to S(γ+vp,δ+wp)(Q). We describe a polytabloid et?
that is not contained in UQ. We require the dominance order on standard tableaux,
details of which can be found in [11, Definition 3.11] and [14, §3.1].

Given a (γ+vp, δ+wp)-tableau t, let t̂+ denote the tableau obtained by replacing

each entry {x, x} in t+ with x, and define t̂− in the analogous way. We write t̂ for

the disjoint union of t̂+ and t̂−. Define t? to be the tableau such that t̂?
+

is the
greatest γ + vp-tableau in the dominance order with entries in {1, 2, . . . , |γ|+ vp},
and t̂?

−
is the greatest δ + wp-tableau in the dominance order with entries in

{|γ|+ vp+ 1, . . . , n}.

Lemma 5.3. Let Q be a p-subgroup of C2 o Sn with support size 2rp. Then the
polytabloid et? is not contained in UQ.

Proof. Let t = t?. Also by definition of the Brauer morphism, we have that UQ is

contained in the subspace V of S(γ+vp,δ+wp), where

V := 〈es + esg + · · ·+ esg
p−1 : s a standard tableau, g ∈ Q〉.

We show that et 6∈ V. Suppose, for a contradiction, that et ∈ V. Then there exists
some 0 ≤ i ≤ p − 1 such that et has non-zero coefficient in the expression of esg

i

as a linear combination of standard polytabloids. Given g ∈ Q, we can factorise
g = g+g−, where g+ ∈ C2 o S{1,2,...,|γ|+vp}, and g− ∈ C2 o S{|γ|+vp+1,...,n}.

Using the bilinearity of the outer tensor product, the polytabloid et+ has non-
zero coefficient in the expression of es+(g+)i as a linear combination of standard
polytabloids. The analogous statement also holds for et− and es−(g−)i. The action

of Q on et+ (resp. et−) is equivalent to the action of Q̂ on et̂+ (resp. et̂−). Therefore

it suffices to prove that the polytabloid corresponding to t̂+ is not contained in the

kernel of the Brauer morphism from (Sγ+vp)Q̂ to Sγ+vp(Q̂), and that the analogous

property holds for the polytabloid corresponding to t̂−. This follows from Lemma
5.2 in [14]. �

Before we prove Proposition 5.2, we introduce one more piece of notation. Let
Mλ be the FS|λ|-module corresponding to the action on the cosets of Sλ. Given

partitions (λ, µ) ∈ P2(n), we define

M (λ,µ) = (Inf
C2oS|λ|
S|λ|

Mλ � Ñ⊗|µ| ⊗ Inf
C2oS|µ|
S|µ|

Mµ)
xC2oSn
C2oS(|λ|,|µ|)

.

Proof of Proposition 5.2. Let R(ṽ,w̃) be a conjugate of Rr in the top group, with

support such that exactly ṽ non-trivial orbits of R̂(ṽ,w̃) are contained at the end of

the first row of t̂+? , and exactly w̃ non-trivial orbits of R̂(ṽ,w̃) are contained at the

end of the first row of t̂−? .
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By Lemma 5.3, the polytabloid et? is not contained in UR(ṽ,w̃)
. Therefore the

submodule of S(γ+vp,δ+wp)(R(ṽ,w̃)) generated by et? , denoted W , is non-zero.

Let s? be the (γ + (v − ṽ)p, δ + (w − w̃)p)-tableau such that ŝ+
? and ŝ−? are the

greatest γ + (v− ṽ)p-tableau and δ+ (w− w̃)p-tableau in the dominance orders on
the tableaux with entries

{1, 2, . . . , |γ|+ vp}\supp(R̂(ṽ,w̃))

{|γ|+ vp+ 1, |γ|+ vp+ 2, . . . , n}\supp(R̂(ṽ,w̃)),

respectively. Let s be the (ṽp, w̃p)-tableau with entries in the row of length ṽp
agreeing with those at the end of the first row of t+? , and with entries in the row of
length w̃p agreeing with those at the end of the first row of t−? . The extension of the
map {s′} ⊗ es 7→ et + U , denoted θ, is an F [NC2oSrp(R(ṽ,w̃)) × C2 o Sn−rp]-module
homomorphism from

M := M ((ṽp),(w̃p))(R(ṽ,w̃))� S
(γ+(v−ṽ)p,δ+(w−w̃)p),

to W. The extension of the map et + U 7→ {s′} ⊗ es, denoted φ, is a well-defined
morphism of F [NC2oSrp(R(ṽ,w̃))× C2 o Sn−rp]-modules such that φθ = idM . There-

fore S(γ+vp,δ+wp)(R(ṽ,w̃)) has a submodule isomorphic to M . As M lies in the block

b(ṽ, w̃)⊗B((γ, v − ṽ), (δ, w − w̃)), there exists a summand of S(γ+vp,δ+wp)(R(ṽ,w̃))
lying in this block, which proves the first statement of the proposition. That
B((γ, v), (δ, w)) corresponds to b(ṽ, w̃) ⊗ B((γ, v − ṽ), (δ, w − w̃)) now follows im-
mediately from Lemma 2.5.

Observe that we have shown if

(b(v′, w′)⊗B((γ′, v′′), (δ, w′′)))C2oSn = B((γ, v), (δ, w)),

then v′ + v′′ = v and w′ + w′′ = w. In particular v′ ≤ v and w′ ≤ w. Moreover
γ′ = γ and δ′ = δ. This completes the proof of the proposition. �

5.2. Proof of Theorem 1.2. Assume that M(2a,b,c) is defined over the field Fp,
as the results in this section then follow by change of scalars. We define χ(2a,b,c)

to be the ordinary character of M(2a,b,c) and χ(λ,µ) to be the ordinary character of

the hyperoctahedral Specht module S(λ,µ). In the following lemma, we decompose
the character χ(2a,b,c) into its irreducible constituents.

Lemma 5.4. Let n = 2a + b + c. The constituents of the character χ(2a,b,c) are

precisely those χ(λ,µ) such that the partition λ has exactly b odd parts, and the
partition µ has exactly c odd parts, each occuring with multiplicity one.

Proof. This follows from Propositions 1 and 2 in [3], and by multiplying through

by the ordinary character of the module InfC2oSn
Sn

sgnSn . �

Proposition 5.5. Let b, c ∈ N0. Given p-core partitions γ and δ, let n = |γ| +
wb(γ)p + |δ| + wc(δ)p. Suppose that if b, c ≥ p, then wb−p(γ) 6= wb(γ) − 1 and
wc−p(δ) 6= wc(δ)− 1. Then every summand of M(2a,b,c) lying in the FC2 o Sn-block
B((γ,wb(γ)), (δ, wc(δ))) is projective.

Proof. Suppose for a contradiction that there exists a non-projective indecompos-
able summand U of M(2a,b,c) in the block B((γ,wb(γ)), (δ, wc(δ))). By Theorem
1.1 U has a vertex equal to a subgroup of the form Q(λ,t,u), where λ = (λ1, λ2) ` s
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and sp ≤ a, tp ≤ b, up ≤ c. Let r = 2s+ t+u, and so Rr ≤ Q(λ,t,u). It follows from
Lemma 4.4 and Lemma 4.10 that

M(2a,b,c)(Rr) ∼=
⊕

N(λ,t,u) �M(2(a−|λ|p),b−tp,c−up),

where the sum runs over all (λ, t, u) ∈ T ′r. It follows from the Krull–Schmidt theorem
that

N(λ,t,u) �W |U(Rr),

for some indecomposable summand W of M(2(a−|λ|p),b−tp,c−up). By Lemma 2.5,
the block B((γ,wb(γ)), (δ, wc(δ))) therefore corresponds to the block containing
N(λ,t,u) �W. The second statement of Proposition 5.2 then implies that W lies in
a block of the form

B := B((γ,wb(γ)− i), (δ, wc(δ)− (r − i))),

for some 0 ≤ i ≤ r. By Lemma 5.4 there exists S(λ′,µ′) lying in B such that λ′ has
exactly b − tp odd parts, and µ′ has exactly c − up odd parts. Adding tp parts of
size 1 to λ′ results in a partition λ with p-core γ, weight wb(γ)− i+ t and exactly
b odd parts. Similarly adding up parts of size 1 to µ′ results in a partition µ with
p-core δ, weight wc(δ) − (r − i) + u and exactly c odd parts. This contradicts the
minimality of either wb(γ) or wc(δ), unless (t, u) = (i, r − i).

When (t, u) = (i, r− i), we distinguish two cases. First suppose that i 6= 0. Then
adding (i − 1)p parts of size 1 to λ′ results in a partition with p-core γ, weight
wb(γ) − 1 and b − p odd parts. Therefore wb−p(γ) = wb(γ) − 1, contradicting
the hypothesis of the theorem. In the case that i = 0, we argue in a similar way
by adding (r − 1)p parts of size 1 to µ′, and contradicting the hypothesis that
wc−p(δ) 6= wc(δ)− 1. �

Given p-regular partitions νi and ν̃i, let P (νi,ν̃i) denote the projective indecom-

posable module corresponding to the simple module D(νi,ν̃i). Also let P
(νi,ν̃i)
Zp

be

the module such that

P
(νi,ν̃i)
Zp

⊗Zp Fp = P (νi,ν̃i).

By Brauer reciprocity for projective modules (see for instance [13, §9.4]), the ordi-

nary character of P
(νi,ν̃i)
Zp

is

ψ(νi,ν̃i) =
∑
λ,µ

dλνi,µν̃iχ
(λ,µ),

where the decomposition number dλνi,µν̃i is defined in §1.2. It follows from Propo-
sition 2.11 and [11, Corollary 12.2] that that the sum can be taken over the
(λ, µ) ∈ P2(n) such that |νi| = |λ| with λ� νi, and |µ| = |ν̃i| with µ� ν̃i.

Proposition 5.6. Let b, c ∈ N0. Given p-core partitions γ and δ, let n = |γ| +
wb(γ)p + |δ| + wc(δ)p. Suppose that if b, c ≥ p, then wb−p(γ) 6= wb(γ) − 1 and
wc−p(δ) 6= wc(δ)− 1. Let λ and µ be maximal partitions in Eb(γ) and Ec(δ), respec-
tively. Then λ and µ are both p-regular.

Proof. It follows from Proposition 5.5 that every summand of the module M(2a,b,c)

in the block B((γ,wb(γ)), (δ, wc(δ))) is projective. Moreover by Lemma 5.4, there
exists a summand in this block. Therefore let

P
(ν1,ν̃1)
Fp

, . . . , P
(νt,ν̃t)
Fp
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be the summands of M(2a,b,c) in the block B((γ,wb(γ)), (δ, wc(δ))). Let M denote
M(2a,b,c) when defined over Zp. It follows from Scott’s lifting theorem (see [4, Corol-
lary 3.11.4]) that the summands of M(2a,b,c) can be lifted to summands of M. The
ordinary character of the summand of M(2a,b,c) in B((γ,wb(γ))(δ, wc(δ))) is equal

to ψ(ν1,ν̃1) + · · ·+ ψ(νt,ν̃t). It follows from Lemma 5.4 that

ψ(ν1,ν̃1) + · · ·+ ψ(νt,ν̃t) =
∑

(λ′,µ′)

χ(λ′,µ′), (5.1)

where the sum is over all (λ′, µ′) ∈ Eb(γ) × Ec(δ). By Brauer reciprocity, for each

i the constituents χ(λ′,µ′) of ψ(νi,ν̃i) are such that λ′ � νi and µ′ � ν̃i. As λ and µ
are maximal, (5.1) gives that (νi, ν̃i) = (λ, µ) for exactly one i, and so the result is
proved. �

Each pair of maximal partitions in Eb(γ)× Ec(δ) therefore labels a summand of
M(2a,b,c) lying in the block B((γ,wb(γ)), (δ, wc(δ))); moreover, every such summand
is labelled by a pair of this form. We now prove Theorem 1.2.

Proof of Theorem 1.2. Let P
(ν1,ν̃1)
Fp

, . . . , P
(νc,ν̃c)
Fp

be the summands of M(2a,b,c) lying

in the block B((γ,wb(γ)), (δ, wc(δ))), all of which are projective. It follows from
(5.1) that there exists a set partition Λ1, . . . ,Λt of Eb(γ)×Ec(δ) such that (νi, ν̃i) ∈
Λi for each i and

ψ(νi,ν̃i) =
∑

(λ′,µ′)∈Λi

χ(λ′,µ′).

It now follows again using Brauer reciprocity that the column of the decomposition
matrix labelled by (νi, ν̃i) has ones in the rows labelled by pairs in Λi and zeros in
all other rows. �
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