VERTICES OF MODULES AND DECOMPOSITION NUMBERS
OF (75,

JASDEEP KOCHHAR

ABSTRACT. Given n € N, we consider the imprimitive wreath product C2S, .
We study the structure of the p-modular reduction of modules whose ordinary
characters form an involution model of C3 Sy, where p is an odd prime.
We describe the vertices of these modules, and we use this description of the
vertices to determine certain decomposition numbers of C21 S),.

1. INTRODUCTION

Given n € N, let S;, denote the symmetric group on n letters. The imprimitive
wreath product C3?S,, can be thought of in various ways, such as the Weyl group of
type B, or as the symmetry group of the n-dimensional hypercube. In this paper
we use the characterisation of C3.5,, as the centraliser of the permutation

11)(22)...(n7)

in the symmetric group on the set {1,2,...,n,1,2,...,7a}. Explicitly, C21 S, is the
subgroup of Sy, generated by the set

{(11),12)12),12...0)12...7)}.

We study certain representations of F'Cy ! S, where F is a field of odd prime
characteristic p. We remark that there are various connections between the repre-
sentations of Cy ¢ S, and S,,. For instance, the simple FC5 ! S,,-modules can be
constructed using the simple F'S,-modules (see [1] and [10, §4.3]), where F' is any
field. For detailed accounts on the representation theory of the symmetric group,
see [10] and [11].

In the case of our attention, there are notable similarities between the block
structures of the algebras FC55,, and F'S,. In Proposition 2.11, we give a complete
description of the blocks of F'C31.S,,. We also describe the Brauer correspondence
between the blocks of FC31S,, and the blocks of FN¢,,s, (R), where R is a particular
p-subgroup of Cy.S,.

We also note that if &k is a field of characteristic 2, then the subgroup

By = ((11),(22),...,(na)),

is contained in the kernel of all irreducible representations of £C51.S,,. In this case,
the irreducible representations of kC31 S, are inflations (see §1.1) of the irreducible
representations of kS,,.
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1.1. Main results. We introduce the background required to state our first main
theorem.

Define T, to be the subgroup of C5 S,, such that

T,={(12)(12),12...n)(12...7m)).
We refer to T, as the top group. It follows that Cy? S,, = B,, x T),.

Consider o € Sym({1,2,...,n}). Define & € Sym({1,...,m}) to be such that
7(T) = o(z). Given H < Sym({1,2,...,n}), we define {(H) to be the subgroup of
the top group consisting precisely of the permutations ¢& such that o € H.

Let i be the image of h € Cy 1S, under the natural surjection Co 1S, — Sy.
Write Infcﬁs p for the representation of F'Cs1S,, such that (InfC2ZS p)(h) = p(h)
for h € C2 2 Sn, where p is a representation of F'S,,. Note that FBn is in the kernel
of Infcjzs p. If M is a module corresponding to p, we write Infcjzs" M for the

module corresponding to InfCQZS p-
Given a € N, define f, € Cg 1 S2, to be the permutation equal to

(la+1)2a+2)...(a2a)(Ta+1)(2a+2)...(a2a),
and let V, be the centraliser of f, in Cs?Ss,. Therefore V, is equal to
(1T)a+1la+1),(22)a+2a+2),...,(aa)(2a2a)) x&(S21S,).
We also define V), to be the subgroup of V, equal to
(1T)a+1la+1),(22)a+2a+2),...,(aa)(2a2a))x&(S215),

where A is a partition of a, and Sy is the corresponding Young subgroup of S,.

Let N denote the non-trivial simple FCs-module. Given ¢ € N, we define
N®¢ to be the one-dimensional F C5 1 S.-module on which T, acts trivially and the
permutation (i i) acts by negative sign for all 1 < i < ¢. Note that N®e agrees
with the notation in [10, §4.3]. Also define sgng to be the sign module of F'S..
Given (a,b,c) € N} such that 2a + b + ¢ = n, we define the module

Misusey = (FTS DIt sgng, RIVE o i sgug )) 1215

C21S(2a,p,c)’
where T denotes the induction of modules. Our first main theorem characterises
the vertices of the indecomposable summands of M(z4,.). To state this result, we
also require the following notation. Given r € N such that rp < n, define

T, :={(\t,u) : A€ A(2,s),2s+t+u =17 and sp < a,tp < b,up < c},

where A(2, s) denotes the set of all compositions of s in at most 2 parts.

Theorem 1.1. Let (a,b,c) € N3 be such that 2a + b+ ¢ = n, and let U be a
non-projective indecomposable summand of M(zqp.c)- Then U has a vertex equal to
a Sylow p-subgroup of

V},)\ x Cq ZStp x O Sup,
for some r € N, where rp < n, and (\,t,u) € T/.

A key motivation for Theorem 1.1 is [8, Theorem 1.2], which describes the ver-
tices of the indecomposable summands of the F'So,,r-module
k) L Som
gemk) . (Fsys,, Msgng, ) S;Stjxsk.
This description is used to determine certain decomposition numbers of the sym-
metric group in [8, Theorem 1.1]. An essential part of the proof of [8, Theorem 1.1]
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is that the ordinary character of H?™%) is multiplicity free. By Propositions 1 and
2 in [3], the ordinary character of the module M(s, 5 ) is also multiplicity free. Also
observe that both of S51.5,, X S, and V, x C51.5, x O30S, are centralisers of certain
involutions in Sg,, 4k and Ca .S, respectively. These similarities between H (2msk)
and M(24,c) arise as these two modules are examples of a deeper phenomenon
that is occurring. In order to describe this, we require the following definition. We
say that a finite group G has an involution model if there exists a set of elements
{e1,e2,...,e;} C G, such that e? = 1 for all 4, and for each e; there exists a linear
character 1; of C(e;) such that

t

o= > ¢

i=1 Pelrr(G)

The main result of [9] is that the sum of the ordinary characters of the modules
H®mik) s an involution model for So,,,%. In [3], Baddeley proves that if the group
G has an involution model, then the imprimitive wreath product G.S,, also has an
involution model. The module Mz, 3, is part of the involution model constructed
by Baddeley when G = Cs. Using similar ideas as in the proof of [8, Theorem 1.1],
we use Theorem 1.1 in this paper to understand particular decomposition numbers
of 02 l Sn

In order to state our result on decomposition numbers, we require an understand-
ing of the simple QC31S,,-modules. Let P?(n) be the set of pairs of partitions (), u)
such that |\ + |u| = n. Given (A, u) € P?(n), we define

C21Sy
C2S(a b’

Ap) C1S N 1S,
SO = (Infg’ "™ S RIN®H @ Infg " )T

where S* is the usual Specht module labelled by A. We refer to a module of this form
as a hyperoctahedral Specht module. The set of all hyperoctahedral Specht modules
Su1) such that (X, ) € P%(n) is a complete set of simple QCy ! S,,-modules.

Recall that p is a prime number not equal to 2. Let (v,7) € P?(n) be such that
v and ¥ are p-regular. The module S®*?) has a unique maximal submodule, and we
write D¥) for the quotient of S®¥) by this maximal submodule. We have that
D™ is a simple FC5 ! S,-module; furthermore, every simple FCs S,,-module is
of this form (see Proposition 2.12). The decomposition number dy, 5 is defined to
be the number of composition factors of S isomorphic to D®7).

We now introduce one more piece of notation required to state our second main
theorem. Given a p-core partition v and given b € Ny, let w;(y) be the minimum
number of p-hooks such that when added to -y, we obtain a partition with exactly
b odd parts. Let & () be the set of all partitions of || + ws(v)p obtained in this
way.

Theorem 1.2. Let vy and § be p-core partitions, and let b,c € No. If b > p (resp.
¢ > p), suppose that wy—p(7y) # wp(y) — 1 (resp. we—p(0) # we(6) — 1). Then
there exists a set partition of Ey(7y) x E.(9), say A1, ..., A, such that each A; has a
unique pair (v;,v;) with v; and v; both mazimal in the dominance orders on Ep(7y)
and E.(9), respectively.

Moreover, v; and U; are p-regqular for each i, and the column of the decomposition
matriz of Co1S,, labelled by (v, U;) has ones in the rows labelled by the pairs in A;,
and zeros in all other rows.



4 JASDEEP KOCHHAR

We remark that Theorem 1.2 follows by combining [8, Theorem 1.1] and the
Morita equivalence between F'C3?.S,, and @?:0 F'S(; n—s) given by Proposition 2.11
in this paper. However, our characterisation of the vertices in Theorem 1.1 does not
follow from this Morita equivalence. Example 4.14 makes this explicit by describing
the vertices of the non-projective indecomposable summands of M54 ¢, o) over a field
of characteristic 3.

1.2. Outline. We now provide an outline of the paper. Our approach to proving
Theorem 1.1 is by using results on the Brauer morphism for p-permutation modules
(see [6]). We present the required background on the Brauer morphism in §2.1. In
§2.2 we construct particular subgroups of Cs ! S,, that will be used in the proof
of Theorem 1.1. We also require a description of the conjugacy classes in Cs Sy,
which we give in §2.3.

We collect the required background for Theorem 1.2 in §2.4 and §2.5. In §2.4
we describe a basis of S, In order to apply Theorem 1.1 to Theorem 1.2, we
require results on the blocks of the group algebra FC5.5,,. We state these results
on blocks in §2.5 as a corollary of Theorem 2.10. As a further corollary of Theorem
2.10, we also describe the simple F'C5 1 S,-modules in §2.5.

In §3 we give an explicit combinatorial basis for the module M (24, c), specifically
in §3.1. The basis that we describe is generally not a permutation basis for M2, ),
and so is in general not a p-permutation basis for an arbitrary p-subgroup of Cs?
Sn. In §3.2, we show how the basis given in §3.1 can be used to construct a p-
permutation basis of Mz, ) With respect to a given p-subgroup of C31.S,. We
will use this basis and results on the Brauer morphism to prove Theorem 1.1.

In §4 we prove Theorem 1.1. The proof is technical in areas, and so it is broken
down into three steps. We first consider the Brauer correspondent of Ms, 5, ) with
respect to a particular cyclic group of order p in C315,,, denoted R,., where rp < n.
We decompose M2 ,) as a direct sum of indecomposable F'N¢,,s, (R;)-modules,
denoted Ny ), using Clifford theory arguments. We see that each summand
N(t,u) has a vertex containing the subgroup R, (defined in the first step of the
proof). In the second step, we therefore consider the module N ;) (R.+). We show
that Ny ¢u)(Ry+) is an indecomposable F'Ng,,s, (R, )-module, and we determine
its vertex. In the third step, we use the description of the vertices of N(x ;) (Rw+)
to complete the proof of Theorem 1.1.

In §5 we prove Theorem 1.2. We do this by showing that every summand of
M 24,p,c) in the block B((7,ws(7)), (6, w.(5))) is projective. We can lift summands
of M(24,p,c) from Fy, to Z,, using a result of Scott. We are then able to understand the
ordinary characters of these lifted summands using Brauer reciprocity for projective
modules. These results of Scott and Brauer are essential tools in using the local
information on vertices to understand the situation in the global case.

2. BACKGROUND

Recall that F' is assumed to be a field of characteristic p, where p is an odd
prime. We remark that the results in §2.1 also hold over a field of characteristic 2.

2.1. The Brauer morphism. Throughout this section let G be a finite group.
We recount the theory of the Brauer morphism that will be used in this paper.
We also state the results required that relate the Brauer morphism to the vertices
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of modules and to the blocks of FG. For details on the theory of vertices and the
theory of blocks, we refer the reader to [2].

Let H < G, and let M be an FG-module. Define M¥ to be the set of vectors
in M fixed by every element in H. Given L < H < G, we define the map

Mt - MM
x = Y. xzg,
where the sum runs over a transversal of the cosets of L in H.
When P is a p-subgroup of G, we define

M(P)y=M"/>" TeoM”.
Q<P
This is an F'Ng(P)-module, on which P acts trivially. The natural quotient map
MP s M(P), is known as the Brauer morphism and is an F'Ng(P)-module homo-
morphism.

Let U be an indecomposable F'G-module. A vertex of U is a subgroup @ of
G, minimal such that U is a direct summand of U Tg It is known (see [2, Sec-
tion 9, Theorem 4]) that U has a vertex, and that any vertex of U is a p-group.
Furthermore, any two vertices of U are conjugate in G.

The Brauer morphism can be used to obtain information about the vertices of
a certain class of modules known as p-permutation modules. The module M is
a p-permutation module if for all p-subgroups of G, there exists an F-basis of M
that is permuted by P. If B is such a basis, then we say that B is a p-permutation
basis of M with respect to P. The following lemma from [6] gives an another
characterisation of p-permutation modules.

Lemma 2.1 ([6, 0.4]). The module M is a p-permutation module if and only if
there exists a subgroup H of G such that M is a summand of FTg

We now assume that M is a p-permutation module, and that P is a p-subgroup of
G. The following lemmas show how the Brauer morphism can be used to determine
the vertices of a p-permutation module.

Lemma 2.2 ([6, 3.2(1)]). Let M be an indecomposable p-permutation FG-module.
Then M has a vertex equal to P if and only if P is a maximal p-subgroup of G such
that M (P) # 0.

Lemma 2.3 ([6, 1.1(3)]). Let B be a p-permutation basis of M with respect to P,
and let BY be the set of points in B that are fived by P. Then BT is a basis of
M(P).

It follows that @ is a vertex of M if there exists a vector in a p-permutation basis
of M (with respect to @) that is fixed by @, and @ is maximal with this property.
We also require the following lemma, which will be crucial in the proof of Theorem
1.1.

Lemma 2.4 ([8, Lemma 4.7]). Let R be a normal subgroup of P, and let K =
Ng(R). Then M(R) is a p-permutation F K -module. Moreover, M(P) = M(R)(P),
where the isomorphism is of F' Nk (P)-modules.

We now describe how the Brauer morphism can be used to determine information
about blocks of a group algebra. Given H < G, let B a block of G, and let b be a
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block of H. We say that the block B corresponds to b (see [2, §4]) if b is a summand
of Bryxm, and B is the unique block of G with this property. In this case, we write
b = B.

The following lemma relates the theory of blocks to the Brauer morphism.

Lemma 2.5 ([14, Lemma 7.4]). Suppose that M lies in the block B of G. If M(P)
has a summand in the block b of Ng(P), then b¢ = B.

2.2. Subgroups of C51S,,. Recall that given an element h € C3 .S, we write h
for the image of h under the natural surjection Cy .S, — S,. Given @ < C51 Sy,
we define Q = {E ch e}

Also given X C {1,2,...,n}, we write Cy ! Sx for the subgroup of Cs 1 S,
generated by the set

{(zZ):2e X}U{(zy)(TT): 2,y € X,z #£y}.

We now consider p-subgroups of Cy1.S,. As Cy 15, has a Sylow p-subgroup
contained in the top group T, any p-subgroup of C3!.S,, has a conjugate in the
top group.

2.3. Conjugacy in the hyperoctahedral group. Given i € {1,2,...,n}, we
define 7 = 4. Given g € C21 S, we say that g is a positive r-cycle if

g = (a1,as,...,a.)(a1,azg,...,a),
and that g is a negative r-cycle if

g=(ai,as,...,0,,01,03,...,q),
where ay,...,a, € {1,1,...,n,7}.

Example 2.6. Let n = 1. The identity permutation (1)(1) is a positive 1-cycle,
and the permutation (1 1) is a negative 1-cycle.

Every element of C51.5,, can be expressed uniquely, up to the order of the factors,
as a product of disjoint positive and negative cycles. The number of positive (resp.
negative) r-cycles of g € C91.S,, is denoted by p, (resp. n,.), and we say that g has
cycle type ((pr), (nr))1<r<n. We now have the following lemma.

Lemma 2.7 ([10, §4.2]). Let g,h € C31S,,. Then g and h are conjugate in Cy S,
if and only if they have the same cycle type.

Furthermore, the centraliser of an element with cycle type ((pr), (n))1<r<n has

order equal to
n

LI m) (n,).

r=1

2.4. Hyperoctahedral Specht modules. Givenz € {1,2,...,n}, we define [z, 7]
to be the image of (z,Z) in the quotient of the FCs ! S,-permutation module
F[{1,...,n,1,...,m}] by the submodule generated by

{(z,Z) + (Z,2) : 1 <x <n}.
Therefore the F-span of [z, 7] is isomorphic to N as an F[Sym({z,Z})]-module.

Given (A, i) € P?(n), let t be the disjoint union of a A-tableau and a u-tableau,
such that

(1) the A-tableau has entries {z, T}, and the u-tableau has entries [y, 7]
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(2) the set {z, T} is an entry of the A-tableau if and only if [x,Z] is not an entry
of the p-tableau, for all 1 <z < n.

In this case, we say that ¢ is a (\, u)-tableau. We write ¢ for the A-tableau, and
t~ for the p-tableau.

Example 2.8. The following is a ((3), (3, 1))-tableau.

[4,4] [5,5]|[6,6]‘

[7.7]

1,1%2,2%3,3

Given a (\, pu)-tableau t, let R(t) (resp. C(t)) be the subgroup of T;, consisting
of all permutations that setwise fix the entries in each row (resp. column) of ¢. We
define an equivalence relation « on the set of (A, u)-tableaux by ¢ «~ u if and only
if there exists m € R(t) such that u = tmr. The (A, u)-tabloid {t} is the equivalence
class of t. We define the (A, u)-polytabloid e; by

e = Z sgn(o){t}o.

oeC(t)

The hyperoctahedral Specht module S*#) (defined in §1.2) is a cyclic module,
generated by any (), u)-polytabloid e;. In order to describe a basis of SH) | we
order the sets {z,Z} by setting {z,T} < {y,7} if and only if = < y. We also define
an ordering on the set of [z, 7] in the same way. We say that ¢ is standard if both ¢
and ¢t~ are standard tableaux with respect to the orders just defined. The module
S(1) has a basis given by the set of all polytabloids e; such that ¢ is a standard
(A, p)-tableau.

2.5. The simple modules and the blocks of F(C5:.S,. It is well-known that
the blocks of S,, are labelled by pairs (v, v) such that v is a p-core partition, and
|v| + vp = n. Moreover, the F'S,-module S* lies in the block labelled by the p-
core of A. This result is known as Nakayama’s conjecture, and was first proved by
Brauer and Robinson in [5] and [12]. The main result in this section is a complete
description of the blocks of F'C31S,,, which we give in Proposition 2.11. We actually
prove the stronger Theorem 2.10 below, from which Proposition 2.11 follows. We
prove Theorem 2.10 as it is also used in this section to describe the simple F/C50.5,-
modules, and in §5 to determine the blocks of Ne,,s, (R,), where R, is defined in
84.

We now give the required preliminaries for Theorem 2.10. Assume that G =
C% x H, where a € N. There is an action of G on Lin(C¥) given by conjugation,
and we have the following lemma.

Lemma 2.9. The G-conjugacy classes of Lin(CS) are labelled by pairs (ay,as) €
N% such that a1 + a2 = a.

Given 0 < ¢ < a, write Lin;(C§) for the conjugacy class of Lin(CY) labelled by
(i,a —1). Fix x; € Lin;(CY) and define G; = C§ x H;, where H; is the stabiliser of
Xi in H. Given an FG-module V and x € Lin(C%), let

VX={veV:vg=x(g)vforall ge CS}.



8 JASDEEP KOCHHAR

For g € G, we have that VXg = VX9 and so VXi is an F'G;-module. Furthermore,
V(i) = @xeLini(Cg) VX is an F'G-module. Then

V=PV, (2.1)
i=0

as a direct sum of FG-modules. We say that V' belongs to i if V = V(i) for some
1. Clearly every indecomposable FG-module belongs to ¢ for some 4.

Let § € Hompg (U, V). By considering the action of C§, we see that §(UX) C VX,
Therefore Hompg (U, V') = 0 if U belongs to i and V belongs to j for i # j. It follows
that the FFG-modules belonging to i generate a subcategory of the module category
mod(G). We write mod,;(G) for this subcategory.

Theorem 2.10. The rings FG and @?:0 FH,; are Morita equivalent.

Proof. Fix 0 < ¢ < a. Let M be an FH;-module, and write K; for the one-
dimensional F'G;-module on which C§ acts according to x; and H; acts trivially.
Define the functor F; : mod(H;) — mod;(G) by

M (K; @ Inf5 M)]G,

It is sufficient to prove that F; is an equivalence of categories, which we do by
showing that it is essentially surjective, full, and faithful.

To prove that F; is essentially surjective, it is sufficient to consider the case when
U is an indecomposable F'G-module. Therefore U belongs to i, and so by definition

U= @ vx=velg.
XELil’li(C;)

where the isomorphism follows from [2, Section 8, Corollary 3|. By definition, UX:
is such that C§ acts according to x;. Therefore UX¢ is isomorphic to the tensor
product of K; and a module on which C¢ acts trivially. This is equivalent to
writing UX =2 K; ® Inf% U’, where U’ is an F'H;-module. This proves that F; is
essentially surjective.

Suppose that 0 # 6 € Hompg(U,V), where V also belongs to i. Write ¢ for
0 restricted to UXi, which we view as an F'G;-module homomorphism. We have
that U is generated by UX¢, and so ¢(UXi) # 0. Moreover, let u € U be such that
u = u'g for some g € G;/G and v’ € UXi. By the remark preceding this proof, we
have ¢ (UXi) C VXi. Furthermore, by the discussion in the previous paragraph, we
have that UX: =2 U’ as an F'H;-module. Writing ¢’ for ¢ viewed as an F H;-module
homomorphism, we have

O(u) = 0(u'g) = 0(u')g = p(u')g = ¢'(u)g.

It follows from part (4) of [2, Section 8, Lemma 6] that § = F;(¢’), and so F; is full.
Moreover, ¢’ is determined by the restriction of § to UXi, and so F; is faithful. O

Proposition 2.11. The rings FC51 S, and @, FS(; n—s) are Morita equivalent.
Moreover, the blocks of FC3 S, are labelled by pairs ((vy,v), (J,w)), where v and §
are p-core partitions such that |y| + vp + |6 + wp = n. The hyperoctahedral Specht
module S lies in the block labelled by ((,v), (6,w)) if and only if \ is a partition
of |v| + vp with p-core v, and p is a partition of |6 + wp with p-core 0.
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Proof. Given i € {0,1,...,n}, let x; € Lin(C¥) be such that x;((1 1)) = --- =
xi((i 7)) = 1and x;(i+1i+1)) = -+ = xi((n 7)) = —1. In this case H; =
S(i;n—iy- The first statement of the result is now immediate using Theorem 2.10.
The remaining statements follow from the definition of S™#*) and Nakayama’s
conjecture for the symmetric group. ([l

We write B((v,v), (6,w)) for the block labelled by the pair ((v,v), (§, w)).

We now describe the simple FC51S,,-modules D*?). Given a p-regular partition
v, the Specht module S* has a unique maximal submodule, and the quotient of S*
by its maximal submodule is denoted D”. Moreover, D" is a simple F'S),|-module,
and every simple F'S|,|-module is of this form (see [11, Theorem 11.5]).

Given (v,7) € P?(n) such that v and 7 are p-regular, we define

(v,5) _ C21S1u| v Q|7 C21S|5) oy +C215n
D = (Infsw DR NZ" @ Infg =" D )TC2ZS(\VM,7\)'

We remark that this definition of D***) agrees with that given in §1.1. The following
proposition follows immediately from the first statement of Proposition 2.11.

Proposition 2.12. Let n € N. The set
{DWP) : (v,7) € P?(n) and v, ¥ are p-regular},
is a complete set of non-isomorphic simple FCy .Sy, -modules.
3. A p-PERMUTATION BASIS OF M4, )

Let a,b,c € Ng be such that n = 2a+0b+c. In this section we explicitly construct
the module Mz, 4, .. We also provide a p-permutation basis of M2, 5,y with respect
to an arbitrary p-subgroup of C3.S,,.

3.1. A module isomorphic to M(24.). Let C(24,5,c) be the set

g € C21 Sy, has cycle type a positive 2-cycles
{g ¥ 6} . Y= ({ia+1’ia+1}’"'7{ia+b7ia7+b})

6 = ([ta+b+1s tatbs] - - [in, in)) - 7
Supp(g) U {ia+1aia+17 e Zn,zn} = {1, ]-7 ce ,Tl,ﬁ}
where [z,7] = —[Z, 2] as in §2.4.

Let v = {g,7,0} € Ci2a,p,c) be such that

v = ({ia+1,dat1}s - {atvs fatn})
0 = ([latbt1slatbils s [in, in))-
Define
S(v) =supp(g) N{1,2,...,n}
T (@) = {iat1s---siatb}
UMW) = {iatbtty---»in}-
As 2a + b+ ¢ = n, these sets are mutually disjoint.

There is an action of h € C51S,, on v given by vh = {g",vh,sh}. With D(24,b,c)
defined to be F-span of the set

~

{U — sgn ( h )’Uh 1V E C(Qa’byc), h e ST(U) x Cy SZ/{(v)}’>

we have the following lemma.
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Lemma 3.1. The vector space FD 34y, ) is an FC3 1 Sp-submodule of FCaqp,c)-

Proof. We show that F'D sy, ) is closed under the action of C51S,. Let h € C215,,
and let v — sgn(g)vg € D(2q,p.c), Where g € Co2 Sy () X Ca2 1 Sy(y. With ¢ := g", it
follows that
(v —sgn(g)vg)h = vh —sgn(g)v(gh)

= vh — sgn(g)(vh)g'

= vh —sgn(g’)(vh)g'.
The third equality followsAas g and ¢’ are conjugate in C3 ! S,. By definition of
T (v), the set T(vh) = {azh : x € T(v)}, and the analogous statement holds for

U(v). The lemma is now proved as supp(g’) = {xh : € supp(g)}, and so ¢’ €
Cy ZST(vh) x Oy ZSL{ vh)- ([l

Let v = {g,7,0} + D(2q,p,c) be such that

Y= ({ia+17 /éa+1}7 ceey {ia+b7 ia+b})
§= ([ia+b+17 ia+b+1]7 ) [Znaa])a
where igi1,...,0n € {1,2,...,n}, With {g41 < - < dgyp and fgppr1 < - o+ < in.

Write Baqp,c) for the set of all v + Do, p,¢) of this form. It follows from Lemma
3.1 that B(aqp,c) is a basis of FC(aqp,c)/D(2a,b,c)- We use this basis in the follow-
ing lemma to show that the quotient module F'C24,.¢)/D(24,b,c) is isomorphic to
M2q,p,c) as an FCy ! Sp-module. To simplify the notation, we write (g,7,d) for
{ga s 6} + D(Za,b,c) € B(Qa,b,c)-

Lemma 3.2. The F-span of Bap,) 5 isomorphic to Mg p ) as an FCy 0 Sy-
module.

Proof. Recall that f, is the element equal to
(la+1)2a+2)...(a2a)(Ta+1)(2a+2)...(a2a),

C21S24

with centraliser V,, in C5 0 Sa,. It follows that the module F T has a basis

indexed by the elements in the conjugacy class of f, in C5 Sa,. Let
v=({2a+1,2a+1},...,{2a +b,2a + b})
0=(2a+b+1,2a+b+1],...,[n,7]),

and define S to be the F-span of {(f¢,7,0) : g € C21S2,}. Then S is isomorphic,
as an F[CQ i (S{l 2,...,2a} X S{2a+1,...,2a+b} X S{2a+b+1w,n})]—module, to

FTCzZSQa fczzsb sgng, ) X (Kf®c ® InfngSC sgng_),
where N is the non-trivial one-dimensional F'Cs-module. Let

w = (h7 ({ja+17ja+1}7 BN} {ja+baja+b})7 ([ja+b+1aja+b+1]a ) []nv.]?]))v

be a vector in B(zq,c)- As the natural action of Cq 1S, on its blocks

{1,1},{2,2},...,{n,m},

is transitive, there exists ¢ € Cs 1S, such that fJ = h, and k7 = j; for all
a+1 <k <n. It follows that 7o = +w, and so I'S generates FC2q,b.c)/D(2a,b,c)-
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Recall that FC(24,4.¢)/D(2a,b,c) has a basis indexed by elements of the form (7,7, 5)
Using the remark following Lemma 2.7, there are

2"n)
4agl20+c(b + ¢)!

conjugates of f, in C515,. Given any such conjugate there are

()

ways to choose the support of 7, which then determines 7 and 5 completely. There-

fore
) 2"n! b+c
dimp M(2a,b,c) = 4“a'2b+—°(b+c)' X ( b )
22 x (2a)! n!

2aal (2a)lbld]
=dimp FS x [C21S, : Cy ZS(Qa’b,C)].

The result now follows by the characterisation of induced modules in [2, Section 8,
Corollary 3]. O

Consider now the module Mz, ¢,0), which is a permutation module and therefore
a p-permutation module. The modules Mg 4 0y and Mg, are one-dimensional
modules. Therefore the action of any p-subgroup of C 1Sy or Co 0 S. on Mg )
or Mg,0,c), respectively, is trivial. It follows that both M ;) and Mg ) are p-
permutation modules. By [6, Proposition 0.2(2)], the module M9, ) is therefore
a p-permutation module.

3.2. A p-permutation basis of M(y,.). In this section we assume that @ is a
p-group contained in the top group of C5 1S, which we can do by the discussion
in §2.2. Also given (g,7v,9) € B(2a,b,c) such that

v = ({ia+1,9at1}s - - {atv, Gatv})

0 = ([fator1sfatbar]s - [ins in)),
define 6((g,v,0)) = (g,7',¢") where

V' = {{iat1 ias}s - {iarss iaso}}

" = {lia+b+1s Gatvr1l - o, [in, i)}

Lemma 3.3. Let Q be a p-subgroup of C31S,,. Then
(1) there is a choice of sign s, for each v € B(aqap,¢) such that
{s0v 10 € Bape)}

is a p-permutation basis of Mqp, c) with respect to Q
(2) the element v is fixzed by Q if and only O(v) is fized by Q. In this case,
Sy = 1.

Proof. Let H,,c) be the set
{9(1}) v € B(me,c)} .

There exists a natural bijection between H (a4 p,c) and Ba4 p,¢), and there is a natural
action of Q on H g p,c)-
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Let 0(v1),0(vz),...,0(v;) be representatives for the Q-orbits on H(s, p,c). Given
0(v) € Hzqp,c), there exists a unique k such that 6(vi) = 0(v)g for some g € Q.
Then vg and vy, are equal up to some ordering of the elements in their respective
b-tuples and c-tuples. Therefore vy, = s,vg, for some s, € {—1,+1}.

Suppose that there exists some other g € @ such that 0(vg) = 0(v)g. Then
+v = vgg~!, and so the F-span of v is a one-dimensional module for the cyclic
group generated by gg~!. The only such module is the trivial module, and so
vg = vg. The sign s, is therefore well-defined.

In order to prove the first part of the lemma, we need to check that the set

{500 :v € Baap,e)}
is a p-permutation basis for My, ) With respect to Q. Suppose that h € Q is
such that s,vh = £s,w, for v and w in B(agp,c). Then s,v and +s,w lie in the
same (Q-orbit, and so there exists some k such that s,v = vgg, and +s,w = vig.
Therefore vyghg ! = ;. Arguing as before shows that the sign on the right hand
side is positive, and so the first part of the lemma is proved.
For the second part of the lemma, if

9(7}) = (97 {{ia+17m}7 SR {ia+bam}}7 {[iaerJrl’ ia+b+1]a IR [Zn’a]b

is fixed by @, then vh = tv for all h € Q. Therefore the F-span of v is a one-
dimensional @-module, and so v is fixed by @ as required. Moreover, as 6(v) is its
own Q-orbit representative, we have that s, = 1. (Il

4. THE VERTICES OF THE SUMMANDS OF M2 p,c)

Let U be a non-projective indecomposable summand of M(345 ). The vertex of
U is therefore non-trivial, and so it contains a conjugate of the cyclic group C,
(viewed as a subgroup of C3.S,). By the discussion in §2.2, any copy of C, in
C5 S, is conjugate to

R, .= (0102...0),

where o; := ((j — )p+1 ... jp)(j—p+1 ... jp), for some rp < n. It follows
that U(R,) # 0, and so in the first step of the proof of Theorem 1.1, we completely
determine the indecomposable summands of Mz, 5 ) (R,). We begin by describing
the group Neyys, (Ry).

4.1. The normaliser of R,. It is clear that there is a factorisation

NCQZS"(RT) = NCQZS7-p (Rr) X C? 2S{'r‘]nJrl ..... n}s (41)

and so it suffices to describe the group Ney,s,, (R;).
Let j € N be such that j < r. Define

7 =((G-Dp+1(—1p+1)...(jp jp).
The subgroup (71, 7s,...,7,) is the full centraliser of R, in the subgroup B,, (as
defined in §1) of C3 1 Syp.
Let ¢ € N be such that ¢ < 7. Define
pi=((i—Dp+1ip+1)((i—1)p+1ip+1)...(ip (i + 1)p)(ip (i + 1)p).
We note that

Ojt1 =1
ot = 0j—-1 j:Z+1
o je{i,i+1}.
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Let = be a fixed primitive root modulo p. Given i € N, let j be the unique natural
number such that (j — 1)p < i < jp. We define z, € C31S,, to be the permutation
such that z,(i) = 2z,.(i) and

zr(i) = x(i — 1) + 1 —ixp,

where i), is the unique non-negative integer such that (j—1)p < z(i—1)+1—ixp < jp
for all i. We give an example of z,. below in the case when p = 3.

Example 4.1. Let p = 3, and let z = 2. Then
2-=(23)(23)(56)(56)...(3r —13r)(3r — 1 3r),
and (o103 ...0,.)*" = (0102...0,)%

For 1 < i < r, the element z, commutes with 7;; moreover, o;" = of. We
therefore have the following lemma.

Lemma 4.2. The normaliser subgroup Ncys,,(R,) is generated by the set
{1i,06,pi : 1 <i<r—1}U{r, 0.} U{z.}.
Furthermore, the above set without the element z. generates the full centraliser
Cczlsrp (RT)
It follows that Ng,,s,, (R;) = (C2p1Sy) X Cp_1, and that Ce,s,, (Rr) = Copl Sy,
where the isomorphisms are of abstract groups.

4.2. The proof of Theorem 1.1. We are now ready to proceed with the first
step of the proof.

First step: The Brauer correspondent M(gayb’c)(RT). Fix r € N such that
rp < n. Define
T" = {(2s,t,u) € N§ : 25+t +u=r,sp < a,tp<bup<c}

By the first part of Lemma 3.3, for each v € B(aq,), there exist s, € {—1,1}
such that {s,v : v € B(Qaybyc)} is a p-permutation basis of M, ;) With respect

to R,. Moreover, by the second part of Lemma 3.3 we can take s, = 1 for all
v E Bgrsp,tp,up)' Given (2s,t,u) € T", define A(a, 4., to be the set
R,
CAS B(Qa,b,c)

S(v) contains exactly 2s orbits of ]/%: of length p
T (v) contains exactly t orbits of R, of length p
U (v) contains exactly u orbits of R, of length p

Lemma 4.3. There is a direct sum decomposition of F Noys, (Ry)-modules
M(2a,b,c) (RT) = @ <A(25,t,u)>a
(2s,t,u)

where the sum runs over all (2s,t,u) € T".
Proof. Given v € A(as,t,u), let

v = (ga ({ia-i-h ia—i—l}a sy {ia+b7 ia-i—b})v ([ia-‘rb-‘rla 7:a-‘,-b-‘,-l]7 DI [Znya]))

We first prove that the number of R,-orbits contained in & (v) must be even. If
v € Bgz bey then g € Coys, (Ry). Therefore g permutes the R,-orbits as blocks
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for its action, and the same is true for g and I/%j As ¢ has order 2 and p is odd, the
number of R,-orbits contained in S(v) is necessarily even. Given h € N¢,,s, (R;),
let vh = +v, where

U= (ghv ({ja+1’ja+1}7 AR {ja+b7ja+b})7 ([ja+b+17ja+b+1]a R [jnv]?]))

The j%\r—orbits contained in S(v) are exactly the conjugates, by }Az, of the ]/%;—
orbits contained in S(v). The same argument holds for 7(9) and U(?), and so
U € (A(2s,t,u))- It follows that (A(gs ¢,.)) is a submodule of Mz, ¢)(R,). The lemma
now follows as B(zqp,c) = U A2s,t,u)- O

In the following lemma, we factorise the module (A(,+,,)) as an outer tensor
product of modules, compatible with the factorisation of N¢,,s, (R;) in (4.1). By
doing this, we see that in order to understand M, 3 ) (R,), it is sufficient to
understand the modules M(ap,1p.up) (Rr), where (2s,t,u) € T".

Lemma 4.4. There is an isomorphism

(As,t,u)) = M2sp,tpup) (Br) B M2(a—sp) b—tp,c—up)s
of F[Ncys,, (Ry) X Co 0 S{rpt1,... .ny]-modules.

Proof. Let B(Jrz(a—sp),b—tp,c—up) be the set of elements in Bo(q—sp),b—tp,c—up), €ach
shifted by appropriately by rp or 7p. The F-span of B(z(afsp)’bftp’ciup)
an F[Cy 0 S{yp+1,....ny)-module isomorphic to Ma(a—sp),b—tp,c—up)-

Let v € A(24,4,4) be such that

is therefore

0 = (9, ({iastsTarth s iasoTaro)s (fasos 1o Tasorths o [im T,
where S(v) = {i1,...,i,} and the notation is chosen so that
{i1,. ., t2sp} U{lat1s- s lattp) U{latbtts- s latbrup) = {1,2,...,7p}.
Let vy € Bg;p,tp,up) be the unique element such that

S(vy) =Sw)n{L,2,...,rp}
T(v1)=Tw)N{L,2,...,rp}
U(v) =U(w)N{1,2,...,rp}.
By construction, the p-element o105 . ..o, has support {1,1,...,7p,7p}, and so v
is fixed by R, if and only if vy is fixed by R,.. Let vy € Ba(aisp),bitp)cfup) be such
that
S(v2) = S(0)\S(v1)
T (v2) = T()\T (v1)
U(vz) = U)\U(v1).
It follows that there is a natural bijection f between 322,@0)
Bl B

(2sp.tp.up)
defined by f(v) = v1 ® va.

We now show that f is an F[N¢,,s, (R;)]-module homomorphism. Given g €
Neyps, (Rr), and v € Bag ey, let v* € B(aap,e) be such that the entries in its b-
tuple and c-tuple are those of vg in ascending order (with respect to the orders
in §2.4). Let h € Ca 01 S7(vg) X Ca2 U Sy(vg) be the unique permutation such that

and

+
(2(a—sp),b—tp,c—up)’
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v* =wgh. As g € Ngys,, (Rr) X C2 1 Strpt1,... 0}, it permutes the elements in the
sets {1,2,...,rp,1,...,7p} and {rp+1,... ,n,rp+1,...,7} separately. It follows
that there exists a factorisation h = hihy, where hy € Ca 0 S{12.. +py and ha €

Co 1 S(yp+1,...,n}- Therefore

~

f(vg) = f(sgn(h)v")
= sgn(h)(v} ® v3)
= Sgn(ﬁ ) sgn( a) sgn( Ta )(v1 ® v2)
= f(v)g,
and so the result is proved. ([l

In order to express M(24p,1p,up) (R;) as a sum of indecomposable modules, we first
write M(asp, ip,up)(Rr) as a direct sum of FN¢,s,,(R,)-modules N, ;) (defined
below), before showing that each of these modules is indecomposable. We require

a deeper understanding of the fixed points v € ngp tpoup) before we can define
N t,u)- We begin by considering the example Mgy 0,0)(R;) for all » € N. This

Ry

illustrative example will be used when describing B
(2sp,tp,up)

in the general case.

Example 4.5. The FC3 Sy,-module My, 0,0y is a permutation module, with
permutation basis given by the set

By = {f":h e CylS}.

The set TV is empty for all j € N such that j # 2, and so we consider M 2p,0,0)(R2).
We write o109 as

o100 =(12...p)(12... p)(A* 2*... p")(1* 2*... p*),
where z* :=z +p for 1 <z <p.

Let g € B, be fixed by Ry. If (1)g = z, then (2)g = (z)o102. Therefore, for
2<i<p-1,

(i + 1)g = () (102)", (42)
and so g is completely determined by (1)g.

Suppose that z € {2,2,...,p,p}. If x € {2,...,p}, it follows from (4.2) that
(x)g = 2x—1 mod p. As p is odd, we cannot have that (z)g = 1, and so g does not
have order 2. It follows that g cannot be a conjugate of f,,, which is a contradiction.
A similar argument shows that = ¢ {2,...,p}.

There are now 2p possible choices for x. As each such choice completely deter-
mines the permutation g, the module M, o )(R2) has dimension 2p.

Fix (2s,t,u) € T", and let k = t + u. We define Q(*%) to be the set of elements

of the form

ity s il (e kb )
where {i1, i}, ... is,5% j1,- sk} = {1,2,...,7}. Let cop = |QZ%F)|. Given w €
Q2sik) of the above form, define

Ry, = (0i,00) X -+ x{0i,00) X (0j,) X -+ X {0,).

and write B(w) for Bg;pytp’up).

Lemma 4.6. Let v € ngp,tpmp). Then v € B(w) for a unique w € Q25%),
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Proof. By the second part of Lemma 3.3, the vector v € By, ip,up) is fixed by R,
if and only if §(v) is fixed by R,.. Let v be such that 6(v) = (g,~,d) where

v = {{i2spr1,i2sp41}s -+ {i(2s44)pr G (2548)p )
0 = {li2strtypr1s i@sttypra)s - s [irps irp] }-
By definition, g can be written a product of s disjoint p positive 2-cycles g1, ..., gs.

Let {i1,42,...,425—1,%2s} be such that supp(ci,, ,0i,,) = supp(g;) for each j. It
follows from Example 4.5 that g commutes with R, if and only if g commutes with
Tiy;_,Tiy; for each j.

Let {j1,...,j¢} be such that

Supp(ojl s th) = {i2sp+17 i2sp+17 s vi(25+t)p7 i(25+t)p}'

As v is fixed by R, the set T (v) is equal to a union of I/%\T—orbits. The orbits of 1/%:
are equal to precisely the orbits of ¢;, for each 1 < ¢ < r. Therefore v is fixed by
R, if and only if it is fixed by the group (o;,) X -+ X (0},)-
Similarly if § is such that
supp(ok, ... 0%, ) = {i(25+t)p+1a i(2s+t)p+1, s Z.Tp,m}’,

then ¢ is fixed by the group (o%,) X -+ X (0%, )-
Therefore if v is fixed by R, then v is fixed by R, where

W= {{ilviQ}v ) {i23—1ai28}7 {j17 e 7.jt7 kla e kU}}
Moreover, w is unique as it is determined by the fixed sets supp(g),supp(y), and
supp(9). O
Given @ # E C {1,2,...,r}, we define 75 = []
define 7 = 1.

Definition. Fix y € {—1,1}*. Given (g,7,0) € B(};sp tpyup)?

W= {{ilaill}v [ {7:877;;}7 {]17 cee 7]k}}

be the unique element of Q(25%) such that (g,7,d) € B(w). Define

(y(g)a’%é) = Z H ye By,

EC{i1,...;i} €€E

cep Te- If B is empty, then we

let

It follows from Example 4.5 and Lemma 4.6 that 7;; and it act in the same way
on g, and so (y(g),,0) is well-defined.

Given y € {—1,1}%, let A € A(2,s) be the composition of s such that A; (resp.
A2) is equal to the number of y; that are equal to +1 (resp. —1). We say that y
has weight A in this case.

We now define N(y ¢ ) to be the F-span of

{(4(9),7:6) : (9,7,8) € Bk, 1y 80 y has weight A}, (4.3)

It is clear that
M(Qs‘p tp, up) @ N()\tu)v
AEA(2,s)
is an equality of vector spaces.
Before we state the next result, we remark that Nc,,s,, (R,) permutes the R,.-
orbits as blocks for its action. It follows that the set of subgroups of the form R,
is an Ng,s,, (R;)-set, with the action given by conjugation. We have seen in the
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proof of Lemma 4.6 that the R,.-orbits are the same as the orbits of the subgroup
C = (1) X -+ x (0,), and we write O; for the union of the non-trivial orbits of

(03).

Lemma 4.7. Given w,w € Q) et h € Neys,, (Ry), be such that R = Rg.
Given 1 < i <, let i be such that (’)h O;. Then (y(g),7,0)h is contained in the
F-span of B(@).

Proof. Tt follows from the definition of (y(g),~,d) that

(y(g)7’y>6)h = Z H ye 27,0

EC{i1,...;i} e€E

> (I ve)(g™)" Ak, o)

EC{i1,..yis} e€E
> (I ve)(g")E A, bh)
BEC{i1,...i.} ¢€E
= (U(g"),vh, oh),
where E = {i : i € E} and y; =y, for all i € {i1,12,...,is}. The lemma is proved

once we show that (g",~vh,dh) is fixed by Rgz. As ol = o; for all 1 < i < r, for
1<75<s

()75 = (g7 = g
An entirely similar argument shows that fyhai; = vh for s < j < s+ t, and that
5hai;:§hfors+t<j§r. O

It follows from Lemma 4.7 that each Ny is an FN¢ys,, (R,)-module.

Corollary 4.8. Let h € NCQzS (R,) be such that T/ = 7; for 1 < i < r, and
ol = o¥, for some x € N. If (g,7,6) € B(w), then (g,7,d)h is contained in the F-

span ofB( ). In particular if h = le for some j € {1,2,...,s}, then (y(g),7,0)h =
yi (w(g),7,90).

Proof. For the first statement, observe that OF = O; for 1 < i < r. Now apply
Lemma 4.7. For the second statement observe that when h = 7;; for some j €
{1,...,s}, then

(y(g)77a5)7—ij - Z (H ye)(gTETija%é)

EC{i1,...,is} €€EE
=y; > ([T vew)(@™™.7.6) = y;(w(9).79).
EC{i1,...,is} €€E
O

Write K, for Cg,s,,(Ry), which recall is isomorphic to Ca, 0 S,. In order to
prove that each Ny ;) is an indecomposable F'N¢,,s,, (R, )-module, we show that
it is indecomposable as an F'K,.-module. We do this by filling in the details of the
following sketch.

Given 1 <4 < r, define D; = (0;,7;), and so Dy X - -+ x D,. is a normal subgroup
in K,.. We define an F[D; X - - - x D,]-module N;*, and in Lemma 4.9 we determine
its inertial group Y(y ;. in K. Using Lemma 4.10, we determine the dimension of
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Nxtu)- In Lemma 4.11, we first show that N, := NZJ* T;(A;t“u)) is indecomposable,
where X(y ;) is the largest subgroup in Y{() ;) that Nz‘/"* can be extended to.
We then prove that Ny ) = NyT;((;t)w. It follows using Clifford theory (see [4,
Proposition 3.13.2]) that Ny, is an indecomposable F'K,-module.
Define w* = {{1,5+1},...,{s,2s},{2s+1,...,7}} € Q%% Furthermore define

v* = (fop, 7", 0%) € B(w*), where

T (v*) = supp(oastq - - 02s4¢) N{1,2,...,n}

U(v*) = supp(oasityr -.-0r) N{1,2,...,n}.
Given X\ € A(2,s), define y) € {—1,1}° to be the tuple of weight A such that

() = 1 if1<i<)
YNEZ 1 it +1<i<s.

Define Nz‘/"* to be the F-span of
{r(9),7",0%) : (9,77,6%) € B(w™)}.
We also define X, ;) to be the subgroup of K, generated by the set
{o4,mi : 1 <i<r}uU{pP?” P} U{pipirs : 1 <i<s—1landi#\}
U{pi:2s+1<i<ri#2s+t},
and Y( ¢,4) to be the subgroup of K, generated by the set
{oi,7i: 1 <i<r}U{p;:1<i<r—1andi¢{2X\,2s,25+t}}.

Similar to the remark following Lemma 4.2, there are isomorphisms of abstract
groups X(A7t,u) = Oy ((S218y) x St x Sy), and Y(A,t,u) = Oy (Saxn X Sp X Sy).

Lemma 4.9. The vector space NZJ* is an F[Dy x -+ x D,]-module, with inertial
group Yx ) in K. Moreover, we can extend N;’* to a module for F Xy ¢ -

Proof. That N;’* is an F[Dq x - -+ x D,]-module follows from by applying the first
statement of Corollary 4.8.

Write T for the inertial group of N;*, which permutes the groups D; by conjuga-
tion. The permutations oy, ..., 095 act freely on N;’*, whereas 02541, ...,0, all act
trivially on N;”*. Therefore T' must be contained in the subgroup of K, that per-
mutes the groups D1, ..., Dos amongst themselves and the groups Dosiq, ..., D,
amongst themselves.

For 2s < i < 2s+1, the action of 7; on (yx(g),v*,0*) is determined by its action
on ({(i—1)p+1,(i —1)p+1},...,{ip,ip}). Therefore 7; acts trivially in this case.
Similarly for 2s +t < i < r, the action of 7; on (yx(g),7*,d*) is determined by

its action on ([(¢i — 1)p+ 1,(i = 1)p+1],...,[ip,ip]). It follows that 7; acts with
sign (—1)P, which is negative as p is odd. Therefore T' must be contained in the
subgroup of K, that permutes the Dasy1,..., Daosyy amongst themselves, and the
Dogyiy1, ..., D, amongst themselves.

It follows from the second statement of Corollary 4.8 that 7" must permute the
groups D1,..., Dy, Dst1,..., Dz +s amongst themselves, and the same is true for

the groups Dx,+1,- .-, Das, Dx,+s+1; - - - , D2s. This shows that 1" must be contained
in Y(5¢u). Moreover, if h € Y{5 1., then (N&" )" = N&". Therefore Y(y;,,) is
contained in T, which proves the second statement of the lemma.
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For the final statement, it remains to prove that Ng‘j* is closed under the action
of

ZU{p;:2s+1<i<ri#2s+t},

where Z = {p{?"* P} U {pipits : 1 < i < s—1landi # A\ }. It is sufficient
to prove that each of (y(g)%,~v*,d*), where z € Z, and (y(g), (v*)pi,0*), where
2s+1 < i< 2s+t, and (y(g),v*, (0%)pi), where 2s+1¢ < i < r, is contained in N;j*.

First consider v*p;, where 2s + 1 < i < 2s + t. As p; permutes precisely those
orbits of R, with support equal to the support of v*, it follows that v*p; = ++v*.
The same argument shows that 6*p; = £6* for 2s +t < i <. If z € {p{*** P} U
{pipits : 1 <1< s—1andi# A}, then

W) oz = S (J] w7, 5%)

EC{1,...,s} e€E

= Y. (JI @) ™,7.6,

E'C{l,..,s} c€E

where B/ = E if z = p{?*P* otherwise E’ is the subset of {1,...,s} obtained
from E by swapping ¢ and ¢+ 1. As ¢ # A1, we have y; = y;41 in all cases. It follows
that (y(g),7,0)z = (y(¢7),7,d). The lemma is proved if (¢*,7v,d) € B(w*). This
follows from the first statement of Corollary 4.8 as z centralises R,«. d

Lemma 4.10. The module M(Qspﬁtpyup)(Rr) has dimension equal to

(2p)® x <IZ) X Cg -

Proof. By Lemma 4.6 every element in Bg;p,mup) is fixed by R,,, for a unique

w € Q25K We therefore count the size of B(w) for each w. Fix w € Q2%*) and let
w = {{ila 7’/1}7 ) {isvi/s}7 {j17 s 7.7]6}}

Let (g,7,9) € B(w) be such that g = g ... gs, where g; is fixed by oy, o, for each
J- By Example 4.5, each oy, oy has 2p fixed points in B(g, 0,0y- Therefore there are
(2p)* choices for the fixed points of (04,03 ) X -+ x (0,04 ) under the conjugacy
action.

Let v := ({m, 7}, {2, %2}s - - {p, Tep}) be such that 1 < 72 < -+ < g
and supp(cj, ...05,) = {71, 71: - -+ Vep> Vep - Then 7 is the unique element of this
form with support not disjoint to o, ...0;, that is fixed by oj, ...0;,. Similarly,
we define § = ([81,01],- -, [0up,Oup]) to be such that §; < da < --+ < &, and
{61,681, ..., 6p,0tp} = supp(cj,,, - .. 0j,). Then & is the unique element with support
not disjoint to oy, , ...0y, that is fixed by oj,, ...05,.

As there are (’Z) ways to choose j1, jo, . . ., jt, there are (2p)* x (lz) fixed points of
Ry, in B(agp tp,up)- The statement of the lemma now follows by definition of ¢, 5. [

Recall that C' is defined to be the elementary abelian group (o1, ...,0.).

Lemma 4.11. The module Ny ;) is an indecomposable F K,.-module.

Proof. Define Q2**) to be the subset of Q%) consisting precisely of the w €
Qi) of the form {{i1,i'},...,{is, .}, {j1,- .., jx}} such that
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{il,ill,...7iAl,il)\l}:{17...,)\1,S+1,...,)\1+8}
{7;)\1+1,il)\1+1,...,i5,i;}:{)\1+1,...,S,)\1+1+8,...728}
{1y, gk} =9{2s+1,...,1},

— 1Q(@XE — Nt tYOurw ‘s o
and let ¢y x = [Q2}F)|. The module N, := Ny TX(A:,M has a basis given by the

set
{(y(9),7%,6%) : (9,7%,6") € B(w),w € QA

Therefore N, (R.+) and N;* are equal as vector spaces. By the second paragraph
in the proof of Lemma 4.10, there are (2p)* choices for g in (g,v*,*). Given E C
{i1,...,1s}, the second statement of Corollary 4.8 implies that (y(g),v*,d*) and
(y(g),v*, 0*)TE are equal up to a sign. There are 2° choices for E, and so N;’* has
dimension p°.

The group R+ acts trivially on Nz‘f*’ and so by [2, Chapter 8, Corollary 3]

Ny(Rw*)lc = FTim’

where the subgroup C'is defined just before this lemma. Then N, (R.+) is an inde-
composable FC-module, and so Ny(R,+) is an indecomposable F[Ny,, ,  (Ry~)]-
module. It follows that there exists a unique summand of N, with vertex containing
R.,~. Let W be a non-zero indecomposable summand of N,. As

NC’JLC = @ FTEW’

WwEQ(AR)

the Krull-Schmidt theorem implies that each indecomposable summand of W |¢ is
isomorphic to FT%W* . Therefore W(R,+) # 0, and so Lemma 2.2 states that W
has a vertex containing R.+. The module N, is therefore indecomposable.

Let @(g),ﬁ/,g) € N(at,u) be such that (g,’y,g) € B(w). As y has weight A, and
K, permutes the R,.-orbits transitively, it follows from Lemma 4.7 that there exists
p € p1,...,pr1) such that £(§(9),7,9) = (y(g” " ),7,6)p, where (y(g” ),7,6) €
N,. Therefore N, generates N(y ;. as an F'K,-module.

By definition there are c; j choices for w € Q@sik) and there are ( )\Sl) choices for

y € {—1,1}° of weight \. Therefore N, ) has dimension ¢, x (;1) X p¥ x (’;)

As N, has dimension ¢ ; x p°, applying [2, Chapter 8, Corollary 3] gives
o~ K
N 2 N 15

Lemma 4.9 states that Y, ¢, is the inertial group of the F[D; x --- x D,]-module
N;*. As N;’* is extended from D1 X+ - X D, to X () ¢,4), we have that NyiDl X Dy

is isomorphic to a direct sum of [Y(x¢.4) : X(x,¢,u)] copies of Nl‘j*. Therefore the
proof of Proposition 3.13.2 in [4] carries over to this case, and so Ny, is an
indecomposable F'K,-module. ([

By Lemma 2.4, M(2sp tp.up)(Rr) and Ny .) are p-permutation F'Ncys,, (R)-
modules, where A € A(2,s). Write J, for Ngys,,(R,). As R, < R,,~, we have
R+ < Jr. By Lemma 2.4 Mg, 1 up) (Br)(Ror) = M(asp tp,up)(Ror ), where the
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isomorphism is of FN; (R,~)-modules. Then Lemma 4.11 implies that

M(QSPJZ%UP) (Rw*) = @ N(/\,t,u)(Rw*)a
AEA(2,5)
as F'Nj, (R.+)-modules. Moreover, for all A € A(2,s), the basis defining Ny ;,,,) in
(4.3) is a p-permutation basis of Ny ;. with respect to R,,-.

Recall that U is a non-projective indecomposable summand of M(24p,c)- It follows
from the proof of Lemma 4.6 that each N();.)(R.+) # 0, and so by the Krull-
Schmidt theorem U(R,+) # 0. By Lemma 2.2, every non-projective indecomposable
summand of Mz 1p p) therefore has a vertex containing R,~. In the second step
of the proof of Theorem 1.1, we consider the module N, ;,)(Ry+) in order to
understand U (Ry,+).

Second step: The vertices of N(A,t,u)(Rw*)~ Recall that we write K, for the
centraliser of R, in C31.S5,,. In this step we show that Ny ;. (Rw+) is indecompos-
able as an F'Ck, (R.+)-module. It follows that Ny .)(R.+) is an indecomposable
FNg¢,,s,, (Ry+)-module, and in Lemma 4.13 we determine its vertex. We remark
that the group Ck, (R, ) is generated by the set

{o4,1i : 1< i <r}u{pP?”* P} U{pipirs : 1 <i<s—1andi#\}
U{pi:2s+1<i<r},
and so we have the inclusion Xy ¢ ,) < Ck, (Ru+)-

Lemma 4.12. Let A € A(2,5). Then the FNg, (Ry+)-module Ny ¢ ) (Rux) is in-
decomposable.

Proof. By definition R+ acts trivially on N‘y*’*7 and so it follows from [2, Chapter
8, Corollary 3] that

w* ~ C
Ny lC = FTRM* '
This is an indecomposable F'C-module, and so N;j* is an indecomposable F'X(y ¢ .)-
module.

Let (y(9),7,9) € Nixt,u)(Ruwv). As Ck, (Re+) permutes the R,,«-orbits of a fixed
size transitively amongst themselves, it follows from Lemma 4.7 that there exists

P E PP P1Pstts s Ps—1P25—1s P25ty -5 Pr—1)

such that +(3(g),7,0) = (y(¢*" ), 7, 8)p, where (y(g),~,8)p € Ng‘f*. Therefore N;J*
generates Ny ¢ ) (Rwr) as an FCg, (R,+)-module. As there are exactly (/\Sl) tuples
of weight A in {—1,1}*, the second statement of Corollary 4.8 and Lemma 4.10
imply that the module Ny ;,)(R,+) has dimension (/\‘51) X (];) x p®. By [2, Chapter
8, Corollary 3], we therefore have that

N()\,t,u) (Rw* ) J/CKT (R ) = N’;* T

By Lemma 4.9, the inertial group of N;’* in Ok, (R~ ) is equal to Xy ¢ ). It follows
from [4, Proposition 3.13.2] that N ) (Rw+) is an indecomposable FCg, (R,+)-
module. (]

Cr, (Ros)
Xatw)

Given X C {1,2,...,sp}, let Co2Sx be as in §2.2. Also given z € {1,2,...,sp},
define x* = x + sp. We remark that this definition of z* agrees with that of z* in
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Example 4.5, which is the case when s = 1. Given g € C20 51 .. let g* be the
permutation in C2 8 S{sp41,....25p) Such that i*g* = (ig)*.

Also given A € A(2, s), we define J to be the group consisting of all elements gg*
such that g is contained in a Sylow p-subgroup of C22S¢1,... px,} X C20S(pa, 11..
with base group (o1,...,0s). Let JT be a Sylow p-subgroup of

LSp}s

8P}

Co 2S{Qs;{H»l ..... (2s+t)p} X C2 S{(2s+t)p+1 ..... rp}

with base group (0241, ..,0,). We define Q(x ¢y = J x JT.
By construction, R+ IQ(x ), and s0 Q(xtu) < Nows,, (Rw+). By Lemma 2.4
and Lemma 3.3, there exists a choice of signs s, € {—1,1} such that {s,v : v €

Bg’s'p’mup)} is a p-permutation basis for M asp 1p,up) (Rew+) With respect to Qx ¢,u)-

Given v := (g,7,9) € B(w*), let (h,i/,g) be a representative for the @y s.,)-orbit
containing v. It follows that for all E C {1,2,...,s}, the representative for the

Q(x,t,u)-0rbit containing (977, ~,d) can be chosen to be of the form (h',7,). For
distinct summands w and w of (y(g), v, d), it follows that s,, = sz. We can therefore
write s(4+,5) in the place of s,, for all such w, and then

{3(9.7.6)((9),7,0) : (g,7,08) € B(w*)}
is a p-permutation basis of Ny ) (R.+) with respect to Qx ¢,u)-

Lemma 4.13. The module Ny ) (Ru+) has a verter equal to Q(x ¢u)-

Proof. Let y = yx. The element (f.,,7*,0*) is a fixed point of Q(x ¢,u)- As Q(xtu) <
X(xntu), the element (y(fsp),v*,0%) is also a fixed point of Q(x.). Therefore
N(at,u)(Ro) has a vertex containing Q(x ¢,v)-

The element y( fs,) is an alternating sum of elements conjugate to fg, in Co 1Sy,
and so any element in Ne,s,,(R,) that fixes y(fsp) under the conjugacy action
must be contained in V). Indeed, suppose that there exists h € Q(x,4) such that
h & V. Therefore by definition of y(fsp), it must be the case that hrg € V, for
some F C {1,2,...,s}. However 7g transposes the Ras-orbits

{G-Dp+1,....5p}

for each j € E, and fixes all other Rog-orbits. As p is odd, it follows that A must
act trivially on these orbits. The only elements in Ng,,s,,(R,) that do this are
contained in V,, which is a contradiction.

As Q(x¢,u) is the largest p-subgroup that is contained in both Xy ; .y and Vi, x
C2 1 Stp X Co 1 Sy, the statement of the lemma now follows by applying Lemma
2.2. O

Third step: Proof of Theorem 1.1. Given r € N such that rp < n, recall that
T. ={(\t,u): A€ A(2,8),2s+t+u=r and sp < a,tp < b,up < c}.

We now prove Theorem 1.1. We restate the result for the reader’s convenience.

Theorem 1.1. Let (a,b,¢) € N} be such that 2a + b+ ¢ = n, and let U be a

non-projective indecomposable summand of M(a, 3, 0. Then U has a vertex equal
to a Sylow p-subgroup of

‘/p)\ X 02 ZStp X 02 ZSup7
for some r € N, where rp < n, and (\,t,u) € T}.
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Proof of Theorem 1.1. Let r € N be maximal such that R, is contained in a vertex
of U. By Lemma 4.4, Lemma 4.11 and the Krull-Schmidt theorem, there exists
T C T}, and for each (X, t,u) € T, a summand Wy ;) of M(2(a—sp),b—tp,c—up) SUCh
that

UR,) = @ Novtw) KWt )
(N tuw)eT

where s = |A|.

Let (2s,t,u) € T be such that s is minimal. Suppose there exists (25,%,4) € T"
such that § > s. Given w € Q1% and @ € Q@58 the subgroup Ry cannot
contain a conjugate of R,,. Therefore N5 ; ;) (R.,) = 0 for all Al = 3.

We therefore now consider U(R,,), where w € Q5% By Lemma 2.4, there is
an isomorphism U(R,,) = U(R,)(R,), and so there exists S C T such that

UR,)= P Notw (Ro) BWin i),
(M tu)es

where |[A| = s. Let L = Ngys,,(Ry). By Lemma 4.13, each N() ¢, (R.) has a
vertex equal to Q(x ¢,u)- Let Q(x ¢,y be maximal such that (A, ¢,u) € S. By Lemma
2.4,

UQtw) ZURL)Qr b))

4.4
= @B x.i.a) Novtw (Ba)(Qintuw) BWin ), (44)

where that the sum runs over the (S\,f, ) € S such that Q(;’ﬂﬂ) is a conjugate
of Qxt,u)- Indeed as Niia (Ro)(Qxt,w)) # 0, Lemma 2.2 says that Q¢ is
contained in a conjugate of Q(S\,fﬂl)’ say P. If Q(S\,E,a) is not a conjugate of Q¢ u),
then it strictly contains P. However this is a contradiction to the maximality of
Q\tu)-

As Nixtu) (Ro)(Qatwy) # 0, it follows from Lemma 2.2 that U has a vertex
Q) containing Q). Suppose that @ strictly contains Q). As Q(tu) 18 a
p-group, there exists g € Ng(Q(x,¢,4)) such that g & Q(x ¢.4). The orbits of Q(» ¢.4)
have length at least p on {1,1,...,rp,7p}, whereas the orbits of Q(x¢,.) on

{rp+1,rp+1,...,n,7}

have length 1. As g cannot permute an element in an orbit of length strictly
greater than 1 with elements in an orbit of length 1, we can write ¢ = hhT,
where h € Neys,, (Qaew) and bt € C2 2 Sprpy1,.. 0y The only elements in
Q(xt,u) With cycle type either one positive p-cycle, or two positive p-cycles are
those that are contained R,,. Therefore Ng,,s,,(Qxt,0)) < News,, (Ro) = L, and
80 (Qxtu), B) < NL(Qatu))-

Let C be a p-permutation basis of Ny ;) (R.) with respect to (Q(xtu),9)- By
Lemma 2.2, the group (Q(x.+,4),9) has a fixed point in C. It follows from (4.4) that
there exists some Ny ¢ (R, ) that has a vertex containing (Q( +,), h). However, we
have already seen that each Ny .)(R.) has vertex equal to Q(x ¢,y Therefore h €
Q(\t,u)> and so h is a non-identity p-element of Q. Therefore there exists a power of
h* that is product of positive p-cycles with support outside {1,1,...,rp,7p}. This
contradicts the hypothesis that r is maximal, and so the theorem is proved. (Il
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Example 4.14. In this example, we suppose that p = 3. The module M54 9,0 is
spanned by the conjugates of

for = (1 28)(2 29) ... (27 54)(1 28)(2 29) ... (27 54)

in C30554. In the notation of Theorem 1.1, we have that » = 9 and Tj = A(2,9). By
Theorem 1.1, a non-projective indecomposable summand of Ms4 0,0y has a vertex
containing a Sylow 3-subgroup of Vsy, for some A € A(2,9). In fact we can say
more: for every A € A(2,9), a Sylow 3-subgroup of V3, contains a conjugate of a
Sylow 3-subgroup of V35 4y, chosen with the following permutations in its centre:

010105 ---,09018-

5. DECOMPOSITION NUMBERS OF (5.5,

In this section we prove Theorem 1.2. In order to do this, we first need to
understand how the blocks of FC21.S,, and the blocks of F'N¢,,s, (R,) are related.
We therefore require a description of the blocks of FN¢ys, (R,), which we give in
the following section.

5.1. The blocks of FN¢,s, (R;). Recall from (4.1) that
Negs, (Rr) = Noys,, (Rr) X C2 0US(rpi1,.. )
By Proposition 2.11 the blocks of F'N¢,,s, (R,.) are therefore of the form
b® B((v,v—7), (0, w —w)),

where b is a block of F'N¢ys,,(R,), and 7,d are p-core partitions such that |y| +
(v=0)p+|6|+(w—w)p = n—rp. It remains to describe the blocks of F'N¢,,s,,(R;).
Proposition 5.1. The blocks of F'Nc,,s,,(R,) are labelled by pairs (v, w) such that
v+w=r.
Proof. Using the presentation of Ng,,s,,(R,) given in §4.1, we have that

Negs,, (Br) = C5 x Ng, (R;).
In this case C§ = (71,...,7). Let x5 € Lin(C7) be the character such that

Xo(m1) = =xz(5) =1

Xo(To41) =+ = xa(r) = —1.
Let w = r — v. Then the stabiliser of x7 in Ng,(R,) is isomorphic to

He,z) = Cs g 4, (Br) ¥ Cp_1,
and so Theorem 2.10 states that F Ncy,s,, (R,) and @5 _ FH ) are Morita equiv-

alent. The result now follows as F'H ) has a unique block by Lemma 2.6 in [7]
forall0<v <. O

We can therefore write b(v, w) for the block of FN¢,s,, (R;) labelled by (v,w).
Given a p-core partition v = (y1,72, .. .,7:) and v € Ny, define v + vp to be the
partition
(71 +vp, 72, )
It is proved in [14, Lemma 7.1] that the Specht module S7T*? is a p-permutation
FS|,|4yp-module. If § is also a p-core partition, then [6, Proposition 0.2(2)] says
that S(v+vp.d+wp) jg o p-permutation module for all v, w € Ny.
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Proposition 5.2. Fiz v,w € Ng. Let v,w € Ny be such that v < v,w < w, and
U4 @ = 1. The FNgys, (R,)-module SOTUPS+UP)(R) contains a summand lying
in the block

b(v,w) @ B((y,v — ), (6, w — w)).
Moreover the blocks b such that b>'S» = B((v,v), (§,w)) are precisely those of this
form.

We prove Proposition 5.2 by applying Lemma 2.5 to SO HvP:0+wp) with respect
to R,. Given a p-subgroup @ of C21 Sy, let Uy denote the kernel of the Brauer
morphism from (SOFvP0+wr))Q to §OrHvr.d+wr) (). We describe a polytabloid e;,
that is not contained in Ug. We require the dominance order on standard tableaux,
details of which can be found in [11, Definition 3.11] and [14, §3.1].

Given a (y+wvp, 0+wp)-tableau t, let t+ denote the tableau obtained by replacing
each entry {z,Z} in ¢* with x, and define t~ in the analogous way. We write t for
the disjoint union of t+ and #~. Define t, to be the tableau such that ﬂ+ is the
greatest 7 + vp-tableau in the dominance order with entries in {1,2,..., |vy| + vp},
and £, is the greatest § + wp-tableau in the dominance order with entries in
{vl+vp+1,...,n}.

Lemma 5.3. Let Q be a p-subgroup of Ca 1S, with support size 2rp. Then the
polytabloid e;, is not contained in Uq.

Proof. Let t = t,. Also by definition of the Brauer morphism, we have that Ug is
contained in the subspace V of S(r+vr.d+wp) where

V= (es+esg+---+esgP ' : s astandard tableau, g € Q).

We show that e; € V. Suppose, for a contradiction, that e; € V. Then there exists
some 0 < i < p — 1 such that e; has non-zero coefficient in the expression of e,g*
as a linear combination of standard polytabloids. Given g € ), we can factorise
9 = g+9-, where g4 € C20S(12, . |y|+vp}, ad g— € C2 US|y |4up1,...,n}-

Using the bilinearity of the outer tensor product, the polytabloid e;+ has non-
zero coefficient in the expression of e + (g4 ) as a linear combination of standard
polytabloids. The analogous statement also holds for e,~ and e, (g_)*. The action
of @ on e;+ (resp. e;-) is equivalent to the action of Q on ez (resp. e;- ). Therefore
it suffices to prove that the polytabloid corresponding to t+ is not contained in the
kernel of the Brauer morphism from (S7+%7)@ to $77P(Q), and that the analogous
property holds for the polytabloid corresponding to t~. This follows from Lemma
5.2 in [14]. O

Before we prove Proposition 5.2, we introduce one more piece of notation. Let
M? be the FS|y-module corresponding to the action on the cosets of Sy. Given
partitions (\, ) € P?(n), we define

(Ap) — C2US|x| 5 rA @\l C21S)u) 4 rpy 1 C215n
M (InfsW M*X N ®Inf$lu| M )TCﬂS(MLWD'
Proof of Proposition 5.2. Let R g) be a conjugate of R, in the top group, with
support such that exactly v non-trivial orbits of ﬁ(g@) are contained at the end of
the first row of tAj', and exactly w non-trivial orbits of R ) are contained at the
end of the first row of ¢, .
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By Lemma 5.3, the polytabloid e;, is not contained in Ug ;. Therefore the
submodule of S(“V*””"”wp)(R(g@)) generated by e;,, denoted W, is non-zero.

Let s, be the (y+ (v —0)p,d + (w — w)p)-tableau such that 5} and 5, are the
greatest v + (v — U)p-tableau and § + (w — w)p-tableau in the dominance orders on
the tableaux with entries

{17 2a teey |7| + vp}\supp(ﬁ(ﬁ,ﬁ)) =R
{|’Y| +vp + 1, "Y| +vp+ 2,... 7n}\supp(R(5,ﬂF))7

respectively. Let s be the (vUp,wp)-tableau with entries in the row of length vp
agreeing with those at the end of the first row of ¢J, and with entries in the row of
length wp agreeing with those at the end of the first row of ¢, . The extension of the
map {s'} ® e, > e; + U, denoted 0, is an F[Ng,,s,, (R@,5)) X C2 1 Sn—rp]-module
homomorphism from

M = M(('ﬁp),(ﬁp))(R@ 7)) K S('y+(v—5)P,5+(w—ﬁ)P)’

to W. The extension of the map e; + U — {s'} ® eg, denoted ¢, is a well-defined
morphism of F[Ng,,s,, (R@,5)) X C2 1 Sp—rpl-modules such that ¢f = idys. There-
fore S(y+vp.0+wp) (R,w)) has a submodule isomorphic to M. As M lies in the block
b(v, ) ® B((v,v — 1), (6, w — @)), there exists a summand of SOHvPo+wP) (R o)
lying in this block, which proves the first statement of the proposition. That
B((v,v), (6,w)) corresponds to b(v,w) ® B((y,v — V), (§,w — w)) now follows im-
mediately from Lemma 2.5.
Observe that we have shown if

(b, w') @ B((,0"), (8,u”))) %25 = B((y,v), (5, w)),

then v’ +v” = v and w’ + w” = w. In particular v < v and w’ < w. Moreover
~" =~ and ¢ = ¢. This completes the proof of the proposition. O

5.2. Proof of Theorem 1.2. Assume that M(z4,, ) is defined over the field F),
as the results in this section then follow by change of scalars. We define x(24,5,c)

to be the ordinary character of My, ;) and x* ) to be the ordinary character of

the hyperoctahedral Specht module S*+#). In the following lemma, we decompose
the character x(24,5,) into its irreducible constituents.

Lemma 5.4. Let n = 2a + b+ c¢. The constituents of the character X(2a,p,c) are

precisely those xM*) such that the partition \ has exactly b odd parts, and the
partition p has exactly ¢ odd parts, each occuring with multiplicity one.

Proof. This follows from Propositions 1 and 2 in [3], and by multiplying through
by the ordinary character of the module Infgjzsn sgng . (Il

Proposition 5.5. Let b,c € Ny. Given p-core partitions v and 8, let n = |y| +
wy(Y)p + 19| + we(0)p. Suppose that if b,c > p, then wp—p(y) # wp(y) — 1 and
We—p(6) # we(8) — 1. Then every summand of Maqp,¢) lying in the FCy 0 Sy, -block
B((y,ws(y)), (6,we(8))) is projective.

Proof. Suppose for a contradiction that there exists a non-projective indecompos-
able summand U of M(g4y,) in the block B((y,wy(7)), (d,wc(0))). By Theorem
1.1 U has a vertex equal to a subgroup of the form Q5 ¢,.), where A = (A1, A2) s
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and sp < a, tp < b, up < c. Let r = 25+t +u, and so R, < Q(x¢,u)- It follows from
Lemma 4.4 and Lemma 4.10 that

M2q.,p,0)(Ry) = @ Noxtw) B Ma(a—|Alp)b—tp,c—up)>

where the sum runs over all (A, t,u) € T/ It follows from the Krull-Schmidt theorem
that

N()\,t,u) X W | U(Rr)a
for some indecomposable summand W of M(a(a—|\|p),b—tp,c—up)- By Lemma 2.5,
the block B((y,wu (7)), (6, w.(d))) therefore corresponds to the block containing
Nxt,u) W, The second statement of Proposition 5.2 then implies that W lies in
a block of the form

B := B((y,wp(y) — 1), (6, we(0) — (r —14))),

for some 0 < i < r. By Lemma 5.4 there exists S lying in B such that A has
exactly b — tp odd parts, and p/ has exactly ¢ — up odd parts. Adding tp parts of
size 1 to X results in a partition A with p-core v, weight wy(v) — i + t and exactly
b odd parts. Similarly adding up parts of size 1 to u' results in a partition p with
p-core J, weight w.(d) — (r — i) + u and exactly ¢ odd parts. This contradicts the
minimality of either wy(7y) or w.(d), unless (¢,u) = (i, — 7).

When (t,u) = (i,7 — 1), we distinguish two cases. First suppose that ¢ # 0. Then
adding (¢ — 1)p parts of size 1 to A results in a partition with p-core ~y, weight
wy(y) — 1 and b — p odd parts. Therefore wy_p,(y) = wp(y) — 1, contradicting
the hypothesis of the theorem. In the case that ¢« = 0, we argue in a similar way
by adding (r — 1)p parts of size 1 to p’, and contradicting the hypothesis that
We—p(0) # we(0) — 1. O

Given p-regular partitions v; and 7;, let P(*+”) denote the projective indecom-
posable module corresponding to the simple module D®i:¥)). Also let Pg:"ji) be
the module such that

Py @, Fy = PO,
By Brauer reciprocity for projective modules (see for instance [13, §9.4]), the ordi-
nary character of Pél:'”m is

¢(Vi7’7i) — Z dAthﬁi’X(/\,u)7
A p

where the decomposition number dy,, 7 is defined in §1.2. It follows from Propo-
sition 2.11 and [11, Corollary 12.2] that that the sum can be taken over the
(A, 1) € P%(n) such that |v;| = |\ with A <, and |p| = |7| with p < 7;.

Proposition 5.6. Let b,c € Ny. Given p-core partitions v and 9§, let n = |y| +
wy(Y)p + 18] + we(8)p. Suppose that if b,c > p, then wy_,(y) # wp(y) — 1 and
We—p(0) # we(0) — 1. Let A and p be mazimal partitions in E(y) and E.(5), respec-
tively. Then A and p are both p-regular.

Proof. Tt follows from Proposition 5.5 that every summand of the module M, )
in the block B((y,ws(7y)), (§, we(d))) is projective. Moreover by Lemma 5.4, there
exists a summand in this block. Therefore let

1:)12‘21751)7 . 7PI<(‘Zt’V~t)
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be the summands of Mz4 ) in the block B((v,wy(7)), (6, wc(0))). Let M denote
M 24,p,c) when defined over Z,. It follows from Scott’s lifting theorem (see [4, Corol-
lary 3.11.4]) that the summands of M 24 ) can be lifted to summands of M. The
ordinary character of the summand of Mzq4,¢) in B((7, ws(7))(6, wc(5))) is equal
to ) .o 4 (o) Tt follows from Lemma 5.4 that

YWrT) ) = 3 ) (5.1)

(WV,u)
where the sum is over all (X, ') € E(v) x &:(0). By Brauer reciprocity, for each
1 the constituents X(X’”/) of Y% are such that N <v; and i/ < ;. As X and
are maximal, (5.1) gives that (14, 7;) = (A, 1) for exactly one 4, and so the result is
proved. ([

Each pair of maximal partitions in & () x £.(0) therefore labels a summand of
M 24,p,c) lying in the block B((y,ws(7)), (J,wc(d))); moreover, every such summand
is labelled by a pair of this form. We now prove Theorem 1.2.

Proof of Theorem 1.2. Let ng”l), ceey PISZ"’JC) be the summands of Mz, 5, lying
in the block B((v,wp(7)), (6, w:(d))), all of which are projective. It follows from
(5.1) that there exists a set partition Ay, ..., As of () X E.(9) such that (v;,7;) €

A; for each i and
Yoo = 3 W),

(Vo) eN;
It now follows again using Brauer reciprocity that the column of the decomposition
matrix labelled by (v;, 7;) has ones in the rows labelled by pairs in A; and zeros in
all other rows. ]
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