
Pseudo Constant Time Implementations of TLS
Are Only Pseudo Secure

Eyal Ronen

Weizmann Institute of Science

eyal.ronen@weizmann.ac.il

Kenneth G. Paterson

Royal Holloway, University of London

kenny.paterson@rhul.ac.uk

Adi Shamir

Weizmann Institute of Science

adi.shamir@weizmann.ac.il

ABSTRACT
Today, about 10% of TLS connections are still using CBC-mode

cipher suites, despite a long history of attacks and the availability

of better options (e.g. AES-GCM). In this work, we present three new

types of attack against four popular fully patched implementations

of TLS (Amazon’s s2n, GnuTLS, mbed TLS and wolfSSL) which

elected to use “pseudo constant time” countermeasures against

the Lucky 13 attack on CBC-mode. Our attacks combine several

variants of the PRIME+PROBE cache timing technique with a new

extension of the original Lucky 13 attack. They apply in a cross-VM

attack setting and are capable of recovering most of the plaintext

whilst requiring only a moderate number of TLS connections. Along

the way, we uncovered additional serious (but easy to patch) bugs

in all four of the TLS implementations that we studied; in three

cases, these bugs lead to Lucky 13 style attacks that can be mounted

remotely with no access to a shared cache. Our work shows that

adopting pseudo constant time countermeasures is not sufficient to

attain real security in TLS implementations in CBC mode.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Security protocols; Symmetric cryptography and hash

functions;

KEYWORDS
Lucky 13 attack, TLS, Side-channel cache attacks, Plaintext recovery

1 INTRODUCTION
“All secure implementations are alike; each insecure implementation
is buggy in its own way.” – after Leo Tolstoy, Anna Karenina.

1.1 Background
The celebrated Lucky 13 attack on TLS [3] builds on Vaudenay’s

padding oracle attack [9, 33] and exploits small timing variations

present in implementations of TLS’s decryption processing for

CBC-mode cipher suites. The attack enables remote plaintext re-

covery of TLS-protected data that is sent repeatedly in predictable

locations in a connection, such as HTTP cookies. The exploited

timing variations were endemic in TLS implementations due to

TLS’s reliance on a MAC-then-pad-then-encrypt construction in

CBC mode: reversing these steps requires removal of padding before
robust integrity checks have been performed. An attacker could

exploit CBC-mode’s “cut and paste” property to place target cipher-

text blocks at the end of TLS records so that they were interpreted

as containing padding. The timing differences between good and

bad padding could then be translated into leakage about target

plaintext blocks. Under an assumption about the presence of mali-

cious client-side JavaScript, an attacker could arrange for arbitrary

plaintext bytes to be recovered. Similar techniques were exploited

in the POODLE attack [29] which was specific to SSL’s padding con-

struction. Implementation-specific variants of the Lucky 13 attack

were also discovered, see for example [2, 4, 5].

The TLS developer community responded in a variety of differ-

ent ways to Lucky 13.
1

OpenSSL, used in Apache and NGINX, its

BoringSSL fork used by Google in Chrome and server-side, as well

as NSS used in Mozilla Firefox, added roughly 500 new lines of

code to implement the decryption processing required in a fully

constant-time, constant-memory-access fashion. The code is com-

plex and difficult to understand for developers not fully conversant

in constant-time programming techniques.
2

Even this was not fully

successful at first, as a code-branch in OpenSSL taking advantage

of AES hardware support was not properly patched, and an even

worse attack was enabled [32].

Other implementations (e.g. Amazon’s s2n, GnuTLS, wolfSSL)

took an easier route by adopting “pseudo constant time” solutions

to address Lucky 13. For example, s2n attempted to equalise the

MAC verification time by adding dummy HMAC computations and

also included a random timing delay. This kind of approach was

perhaps justified given the small timing differences involved in

Lucky 13 (on the order of 1 microsecond, making the attack difficult

to mount in practice, especially remotely) and the complexity of

the OpenSSL patch. However, soon after, Irazoqui et al. [5] showed

how to re-enable the Lucky 13 attack in a cross-VM setting, by

presenting cache-based “FLUSH+RELOAD" attacks that detect the

dummy function calls that only occur when bad padding is encoun-

tered. Their attacks work on deduplication-enabled platforms (e.g.

those implementing Kernel SamePage Merging, KSM, or related

technologies). In this setting, their attacks apply to those implemen-

tations which take the simplest approach to remediation, that of

adding dummy computations via new function calls. Irazoqui et al.
showed that the PolarSSL (now mbed TLS), GnuTLS and CyaSSL

(now wolfSSL) implementations were all vulnerable to attack in

their specific deduplication-enabled, cross-VM setting. PolarSSL

patched against this attack, but GnuTLS and wolfSSL chose not

to. However, as deduplication is currently disabled across differ-

ent VMs by Infrastructure-as-a-service (IaaS) providers [23], no

practical cross-VM attack against any implementation is currently

known.
3

1
A partial list of vendor responses can be found at http://www.isg.rhul.ac.uk/tls/

Lucky13.html.

2
See https://www.imperialviolet.org/2013/02/04/luckythirteen.html for a detailed dis-

cussion of this patch.

3
More recently Xiao et al. [35] used an automated differential analysis framework

to find cache-based side channels to re-enable the Lucky 13 attack against GnuTLS

and mbed TLS code that runs directly inside an Intel Software Guard Extension (SGX)

secure enclave. However, they require root permissions for their “man in the kernel”

attack.

1

http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://www.isg.rhul.ac.uk/tls/Lucky13.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

ECDHE_RSA_AES_256_CBC_SHA384 4.4%

RSA_AES_256_CBC_SHA 1.7%

RSA_AES_128_CBC_SHA 1.2%

ECDHE_RSA_AES_256_CBC_SHA 1.2%

ECDHE_RSA_AES_128_CBC_SHA 1.1%

ECDHE_RSA_AES_128_CBC_SHA256 1.1%

Table 1: Distribution of CBC-mode TLS cipher suites.
Source: ICSI Certificate Notary, 24/04/2018 [1]

More broadly, the Lucky 13 attack, and the vulnerabilities in the

alternative RC4-based cipher suites discovered around the same

time, nudged developers into finally implementing and deploying

TLS 1.2 with its support for more modern AES-GCM-based cipher

suites. These have risen in popularity to the point today where

more than 80% of TLS connections rely on AES-GCM. Yet still today,

more than 10% of TLS traffic is protected with CBC-mode cipher

suites in the original MAC-then-pad-then-encrypt construction,

see Table 1.
4

Notably, CBC-mode cipher suites relying on HMAC

with SHA-384 for integrity have risen in popularity over SHA-256

and SHA-1 (this might be due to the fact that on modern 64-bit

CPUs, SHA-384 is faster per byte than SHA-256). This 10% figure

makes the security of CBC-mode cipher suites of enduring interest

and means that their continued study (and elimination in the event

of new vulnerabilities being found) is still of considerable value.

1.2 Our contributions
Our main contribution is to present novel cache timing attacks on a

representative set of implementations of TLS that did not adopt the

fully constant-time/constant-memory-access approach to address

Lucky 13, but which instead used pseudo constant time fixes. We

are thus able to mount practical attacks on TLS implementations

that have been fully patched against all previously known variants

of Lucky 13, including previous cache-based attacks such as [5].

As usual for such attacks, we assume the existence of a co-located

adversary running on the same CPU as the victim’s process or VM,

and a shared cache. However, in contrast to [5], we do not rely on

memory deduplication technologies like KSM, that are currently

disabled across different VMs by IaaS providers [23]. Instead, we

only assume a shared Last Level Cache (LLC) side-channel as in [23].

Our attacks are capable of plaintext recovery with low complex-

ity. We use 3 different LLC side-channel based attack techniques to

target the s2n, GnuTLS, mbed TLS and wolfSSL implementations,

giving for each technique a proof of concept (PoC) attack.

The attacks were developed through manual code inspection of

the different implementations. We show that each implementation

provides some leakage to the adversary about the amount of TLS

padding present in a plaintext underlying a chosen ciphertext. Using

by-now standard “JavaScript in the browser” methods (see, for

example, [3]), such leakage can be leveraged to perform plaintext

recovery for TLS cookies, for example. Naive exploitation of some

of the leakages requires a large number of TLS connections, but we

show how to fine-tune them to improve their performance by three

orders of magnitude. We also introduce a novel variant of Lucky 13

4
RFC 7366 [18] specifies an alternative “Encrypt-then-MAC” construction, but figures

obtained from the ICSI Certificate Notary indicate that it is barely used.

that uses long TLS padding patterns. These enhancements should

be of independent interest.

1.2.1 Implementation Bugs in Lucky13 Countermeasures. As a

secondary contribution, we point out that all the reviewed pseudo

constant time implementations of TLS (s2n, GnuTLS, mbed TLS,

wolfSSL) have bugs in their pseudo-constant-time code that come

into play when SHA-384 is selected as the hash algorithm in HMAC.

These bugs are easy to fix by changing some constants related to

the SHA-384 hash size, but render the decryption operations non-

constant time and therefore vulnerable to relatively simple plaintext

recovery attacks. Moreover, we show that GnuTLS is still vulnerable

to a novel variant of the original Lucky 13 attack even for SHA-256,

despite having been specifically patched against Lucky 13.

1.2.2 New variants of the PRIME+PROBE attack:

(1) The synchronized probe PRIME+PROBE attack can sense the

time between an event controlled by the attacker (e.g. sending a

message to the target) and a non-constant-time memory access.

We send the message at time t
send

and assume that the memory

access will occur either at time t
send
+ t1 or t

send
+ t2 depending

on some secret value. We synchronize the cache probing to

occur at time t
send
+ t

probe
(where t1 < t

probe
< t2). We create

a “race condition” between our probe and the target’s memory

access. From the result of the cache probing, we get a timing

oracle. This attack technique is especially useful in LLC side-

channels like those in [23], in a scenario where the side-channel

probing resolution is not high enough to time the event by

continuous probing. The delay t
probe

is both code and machine

specific.

(2) The synchronized prime PRIME+PROBE attack can distinguish

between two different memory access patterns after an event

controlled by the attacker (e.g. sending a message to the target).

We send the message at time t
send

and assume that the target

code will access the memory at time t
send
+ t1. Depending on

some secret value, the target code might access the memory

again at time t
send
+ t2. We synchronize the cache priming

to occur at time t
send
+ tprime (where t1 < tprime < t2). We

probe the cache at some time t
probe

> t2. From the result of

the cache probing, we get an oracle for the secret value. Again

this attack technique is especially useful a scenario where the

side-channel probing resolution is not high enough to perform

multiple measurements in the interval of length t1 − t2. The

delay tprime is both code and machine specific.

(3) The “PostFetch” attack can help to overcome large cache lines

that reduce the cache attack resolution. We would like to dis-

tinguish between the cases of accessing just the first few bytes

of an array inside a cache line, and accessing most of the array.

However, due to the cache line size, the whole array will be

read into the cache in both cases. In some scenarios, if a large

part of a cache line is accessed (near the cache line boundary),

then the next cache line will also be read into the cache. This

can be caused by either hardware memory prefetching or by

speculative execution. In those scenarios, we can distinguish

between the two types of access by probing the cache line that

contains the bytes after the array.

2

1.2.3 Implications of Our Results. We consider our complete set

of results surprising in the light of the huge amount of effort spent

on correcting and verifying CBC-mode and HMAC implementa-

tions in TLS over the last 5 years. For example, s2n was repeatedly

patched in response to Lucky 13 style attacks [2, 4]. Its principal au-

thor, Colm MacCarthaigh wrote a detailed and thoughtful blogpost

explaining AWS’s selected approach to defending against this kind

of attack [24], focussing on the argument that a balance needs to be

struck between code simplicity and security. Moreover, the vulner-

able s2n HMAC code had also passed formal verification [10, 13].

At its core, our work shows that nothing short of the full “belt

and braces" approach adopted in OpenSSL is sufficient to provide a

robust defence against Lucky 13 style attacks in all their forms, and

in fact the approach taken in OpenSSL is immune to our attacks.

While our cache-based timing attacks are different from the meth-

ods used in previous attacks against s2n [2, 4] and mbed TLS [5],

cache-based attack scenarios have been well-known and broadly ac-

cepted as being realistic in the security community for some years.

In retrospect, the developers of the TLS implementations which we

target in this work might have better invested their code develop-

ment effort in adopting fully robust approaches from the beginning,

rather than being forced to incrementally patch against each new

generation of attack (or to have to expend energy defending the

decision not to patch at all).

1.3 Disclosure
We have disclosed the vulnerabilities to all vendors mentioned in

the paper, and suggested a coordinated public disclosure on the

25th of July 2018. The status of these disclosures at the time of

writing is as follows:

• The wolfSSL team followed our recommendation and switched

to the full constant time solution in release 3.15.3
5

(released 20th

June 2018).

• The mbed TLS team released a security advisory
6

on July 25th

2018. CVEs 2018-0497 and 2018-0497 were assigned to the SHA-

384 bug and to the cache-based timing attacks, respectively. Both

CVEs were rated “high severity” and users were advised to up-

grade to new releases of the code, or to disable the CBC-mode

cipher suite if this is not possibles. Our understanding is that the

new releases provide interim fixies, with a full solution to follow

in due course.

• The GnuTLS team made a number of changes to their code on

June 12th 2018 and then in releases 3.6.3, 3.5.19 and 3.3.30 on July

16th 2018. These changes address the bugs in SHA-384 constants

and adopt a new variant of the pseudo constant time approach,

roughly equalising the running time of decryption processing

by ensuring a constant number of hash compression function

calls is made. However, we believe that the GnuTLS code is

still vulnerable to variants of the attacks presented in our paper

due to its padding-dependent memory accesses. We notified the

GnuTLS team of our concerns about this on June 13th 2018. Our

understanding is that the GnuTLS team does not plan to address

the issues, but prefers to promote the use of Encrypt-then-MAC

5
https://www.wolfssl.com/docs/wolfssl-changelog/.

6
https://tls.mbed.org/tech-updates/security-advisories/

mbedtls-security-advisory-2018-02.

(as specified in RFC 7366) when legacy cipher suites are required.

Red Hat assigned CVEs 2018-10844, 2018-10845 and 2018-10846

to the issues.

• Amazon’s s2n team plans to remove CBC-mode cipher suites

from their list of preferred ciphers, and will replace their imple-

mentation of CBC-mode decryption with the fully constant time

one from BoringSSL.

1.4 Paper Structure
Section 2 gives further background on the Lucky 13 attack and

cache attacks, and Section 3 describes the bugs we found in the

various implementations of the lucky 13 countermeasures. Next we

describe the main contribution of our paper: Section 4 describes our

synchronized probe PRIME+PROBE attack on Amazon’s s2n imple-

mentation and Section 5 provides details on how to optimize the

full byte plaintext recovery. Section 6 describes our synchronized

prime PRIME+PROBE attack on mbed TLS, GnuTLS and wolfSSL.

In Section 7 we introduce our novel “PostFetch” attack on the mbed

TLS implementation. Finally, Section 8 discusses the results and

raises some open questions.

2 FURTHER BACKGROUND
2.1 TLS Record Processing and the Lucky 13

Attack
For a detailed account of how TLS is processing records in CBC-

mode cipher suites and how this enables the Lucky 13 attack, see [2,

3]. We present here a highly compressed version of this information

heavily based on [2] in order to make the paper self-contained.

A TLS record R (viewed as a byte sequence) is processed as

follows. The sender has an 8-byte per-record sequence number

SQN, and forms a 5-byte field HDR consisting of a 2-byte version

field, a 1-byte type field, and a 2-byte length field. The sender

then calculates a MAC over the bytes SQN| |HDR| |R; let T denote the

resulting MAC tag. The size t of the MAC tag depends on the hash

function specified for use in HMAC in the cipher suite.

The record is encoded by setting P = R | |T | |pad. Here pad is a

sequence of padding bytes chosen such that the length of P in bytes

is a multiple of the block-size b of the selected block cipher (b = 16

for AES). In TLS, the padding must consist of p + 1 copies of some

byte value p, where 0 ≤ p ≤ 255. Implementations typically use the

last byte of pad as an indicator of the padding length to determine

how many padding bytes should be present in a record and what

values those bytes should take.

In the encryption step, the encoded record P is encrypted using

CBC-mode of the selected block cipher. TLS 1.1 and 1.2 mandate

an explicit IV, which should be randomly generated. TLS 1.0 (and

SSL) use a chained IV. Thus, the ciphertext blocks are computed as:

Cj = EKe (Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the key for the

block cipher E. The final ciphertext data has the form:

HDR| |C

where C is the concatenation of the blocks Ci (including or exclud-

ing the IV depending on the particular SSL or TLS version). Note

that the sequence number is not transmitted as part of the message.

3

https://www.wolfssl.com/docs/wolfssl-changelog/
https://tls.mbed.org/tech-updates/security-advisories/mbedtls-security-advisory-2018-02
https://tls.mbed.org/tech-updates/security-advisories/mbedtls-security-advisory-2018-02

At a high level, the decryption process reverses this sequence

of steps: first the ciphertext is decrypted block by block to recover

the plaintext blocks:

Pj = DKe (Cj) ⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher.

Then the padding is checked and removed, and finally, the MAC

is checked. However, these operations must be performed without

leaking any information about what the make-up of the plaintext

blocks is in terms of message, MAC field and padding, and whether

the format is valid. Prior literature including [2–5, 9] illustrates the

difficulties of doing this securely.

As a flavour of what can go wrong, consider an attacker that

wishes to decrypt a target ciphertext block C∗; let C∗
−1

denote the

preceding block in the sequence of ciphertext blocks. The attacker

intercepts a ciphertext HDR| |C and injects HDR′ | |C | |C∗
−1
⊕ ∆| |C∗ so

that it is received in the sequence of TLS records. Here HDR′ is

a modified header containing the correct length field and ∆ is a

block-size mask. A naive implementation might treat the last block

of this ciphertext as containing padding, check its validity, and then

either send a padding error message or extract and verify the MAC.

By construction, the last block is equal to P∗ ⊕ ∆, where P∗ is the

(unknown) target plaintext block. Whether or not the padding is

valid therefore leaks information about P∗ ⊕ ∆, and thence about

P∗. By varying the value of ∆ across different injected TLS records,

the attacker can gradually build up information about P∗, possibly

recovering it in its entirety.

In reality, attacks against CBC-mode in TLS are more complex

than this:

• First, all errors are fatal, meaning that the connection is termi-

nated and the key is thrown away. However, an attacker can aim

to recover plaintext blocks that are repeated in predictable loca-

tions over many connections, e.g. HTTP cookies, with client-side

malicious JavaScript being used to initiate the required connec-

tions and the cookies being automatically injected into connec-

tions by the victim’s web browser.

• Second, the error messages are encrypted, so the attacker cannot

directly learn whether or not the padding is valid. Instead, the

leakage typically comes from timing information. For example,

in the above discussion, we assumed that the MAC was only

checked if the padding is good; of course the MAC verification

will fail with overwhelming probability, and the error condition

will then leak through the timing of the error message, which

can be measured by an attacker located on the network.

• Third, such large timing differences are no longer present in

implementations, due to patching. In particular, in view of the

attacks of [9, 33], the TLS 1.1 and 1.2 specifications recommend

checking the MAC even if the padding is bad, and doing so on a

synthetic message whose length is equal to that of the plaintext

(i.e. as if the padding had zero length). This reduces, but does

not completely eliminate the timing differences; the remaining

timing variation was exploited in Lucky 13 [3].

• Fourth, as the timing differences have become smaller through

patching, so network noise has made mounting the attacks re-

motely progressively harder. This in part motivates cache-based

attacks with a co-located attacker, like those in [5] and here.

2.2 Cache attacks
Cache attacks have become one of the most prolific types of attack

against cryptographic primitives, using different techniques for

measuring leakage of secret values (e.g. [16, 23, 30, 38]). Those

different techniques were used to break real world cryptographic

implementations (e.g. [6, 8, 15, 17, 19, 37, 39]). The assumption that

the attacker can run code on the same platform as the target’s

process is now widely accepted and used, including in the recent

Meltdown [22] and Spectre [20] attacks.

Some cache attacks (e.g. [38] required shared memory between

the attacker and target processes. Memory might be shared between

different processes or even VMs due to memory deduplication.

Memory deduplication optimizations (e.g. KSM), allow two or more

processes or VMs to share identical memory pages (e.g. shared

library code or constants). However, due to the discovered security

implications, today they are disabled between different VMs by IaaS

providers [23]. Using more advanced techniques such as those in [16,

21, 23] cross-VM attacks are now practical even when memory

deduplication is disabled.

Our cache attack techniques are based on the PRIME+PROBE [30]

attack variant of Liu et al. [23] that allows cross-VM attacks. The

Mastik [36] toolkit contains an implementation of this attack. We

will give a short description of the general PRIME+PROBE attack

(for a detailed account of the techniques see [23]). The main idea

is that the access time to data that is stored in the cache is much

smaller than for data that is stored in main memory. In the first

PRIME phase of the attack, the attacker fills the part of the cache

that will hold the target’s data by accessing its own data in specific

memory locations. In the second PROBE phase, the attacker tests if

part of its data was evicted from the cache by measuring the access

time to its own data. If all of the data is still in the cache, the tar-

get’s data was not accessed. Otherwise, either the target’s data was

accessed, or some other code forced the eviction of the attacker’s

data. If the target’s code access pattern to its data is determined by

some secret value, the attacker can learn this value.

3 IMPLEMENTATION BUGS IN LUCKY13
COUNTERMEASURES

Pseudo constant time countermeasures are very hard to get right

and maintain over time. This is due both to the possibility of finding

novel variants of the original attacks, and the need to manually

check the timing implications of adding new features. In contrast,

real constant time implementations are more robust against novel

attack variants, and bugs created by supporting new features will

likely be found by unit-testing. TLS 1.2 [12] added new ciphers

suites based on CBC-mode for encryption and HMAC-SHA-384 for

integrity. The SHA-384 hash function is considered more secure,

and also has better performance on 64-bit processors, than the pre-

viously supported SHA-1 and SHA-256 algorithms. We tested if

TLS implementations supporting HMAC-SHA-384 are vulnerable

to timing attacks similar to the one described in [2]. All of the

constant-time implementations that we checked (OpenSSL, Bor-

ingSSL, NSS) were secure. However, all of the "pseudo" constant

time implementations (i.e. those only ensuring a constant number

of compression function calls) had bugs making them vulnerable

to attack. The reason for the bugs is that, although the SHA-384

4

cipher suites were added, the code responsible for adding dummy

compression function calls was not updated correctly. Specifically,

SHA-384 has a 128-byte block size (compared to the 64-byte blocks

of SHA-256), and encodes the message length using 16 bytes (com-

pared to 8 bytes in SHA-256). All of the extra compression function

call calculations have hard-coded values appropriate for SHA-256

but not SHA-384, resulting in them using a non-constant number

of calls to the SHA-384 compression function. We explain in more

detail below for each of the four "pseudo" constant time implemen-

tations we studied; since the bugs are easily fixed, we do not go into

great detail on how each bug leads to a plaintext recovery attack.

3.1 GnuTLS Implementation
Although the function dummy_wait (see Listing 3 in Appendix A)

uses the correct hash block size, it also uses the hard-coded number

"9". This comes from at least 1 byte for the the hash function padding

and the 8 bytes used to encode the hashed message length for SHA-

256. However, in SHA-384, the message length is encoded using

16 bytes, and so the correct value should be "17" rather than "9".

The code includes a comment warning that this is a hash-specific

fix, but it was apparently not corrected when the SHA-384 cipher

suites were added.

Even more surprisingly, we discovered that the GnuTLS Imple-

mentation is vulnerable to a timing attack when SHA-256 is selected

as the hash algorithm in HMAC, despite this having been patched

in response to Lucky 13 [27]. The function dummy_wait can add

at most one call to the hash compression function. However, the

attack described in Section 6.3 creates a padding oracle that distin-

guishes between a valid pad of a large length (PadLen > 240) and

an invalid padding (PadLen = 0). In that case, for GnuTLS, there

will be a timing difference of 3 calls to the compression function

of SHA-256, that is 3 times larger than the timing difference in the

original Lucky 13 attack [3].

3.2 mbed TLS Implementation
The function ssl_decrypt_buf (see Listing 8 in Appendix A) uses

the hard-coded value "64" (for block size) and "8" (for message length

encoding). These should be "128" and "16", respectively, for SHA-

384. For example, HMAC verification of a decrypted TLS record of

length 512 and valid padding of length in the range PadLen = 229

will result in 3 more compression functions call than same length

TLS record with invalid padding (PadLen = 0). Again we can use

the attack described in Section 6.3 to create a padding oracle to

distinguish between the two cases, resulting in a timing difference

much larger than the one in the original Lucky 13 attack [3].

3.3 WolfSSL Implementation
The function GetRounds (see Listing 5 in Appendix A) uses the

hard-coded numbers "64" and "55" (64-8-1). These should be "128"

and "111", respectively, for SHA-384. The same attack described in

Section 3.2can also be used against the WolfSSL implementation.

3.4 Amazon’s s2n Implementation
The s2n_hmac_digest_two_compression_rounds function (see

Listing 1) can add one dummy compression function call. The calcu-

lation of the condition uses the hard-coded number 9 as the minimal

number of bytes to add, whereas 17 would be appropriate for SHA-

384. This bug was not detected during the formal verification of the

HMAC code carried out by Galois [13]. However, unlike our new

cache attack for s2n presented in Section 4, the attack arising from

this bug (modeled on that in [2]) is likely to be impractical due to

the random delay protection in s2n.

4 A CACHE-BASED PADDING ORACLE IN
AMAZON’S S2N IMPLEMENTATION

Amazon’s s2n TLS implementation is responsible for protecting all

of the traffic to Amazon’s S3 cloud storage service [31]. This imple-

mentation was previously analysed by Albrecht and Paterson [2]

and found vulnerable to a variant of the Lucky 13 attack. The cur-

rent protection includes a pseudo constant time implementation,

and the inclusion of a very high resolution and large random delay

after detecting any error in TLS decryption. This causes previous

timing attacks to become impractical. Moreover, the correctness of

s2n’s patched HMAC implementation was formally verified [13].

However, as we will see, the memory access pattern in s2n de-

pends on the padding length byte (i.e. the last byte of the decrypted

TLS record). We will use a PRIME+PROBE [30] cache attack to build

a new padding oracle for s2n. We assume a cache side-channel as

in Liu et al. [23], and describe two versions of our attack on s2n: In

a simplified version, we target the specific code written to block

the attack in [2]. However, this attack is not practical due to an ad
hoc programming decision in s2n. In our full synchronized probe

PRIME+PROBE attack, we exploit the same programming decision,

but using the probability of cache hits and misses as an indicator of

padding length. Our full attack works on HMAC using both SHA-

384 and SHA-256, even if the simple bug described in Section 3.4 is

fixed.

4.1 Attack Preliminaries
In both attacks the cache side-channel arises from the access pattern

to a dynamically allocated memory location, more specifically a

buffer used to store part of the key in the HMAC calculation. We

first have to find the mapping of this location to the right cache

set, by exploiting a design decision of the s2n developers: All the

structures and memory buffers required for a specific connection

in s2n are allocated in the handshake phase and are reused for

all messages. We can then find the right cache set in the same

manner as in [23]. For each handshake, we trace the cache set while

processing valid messages, and find the cache set exhibiting the

activity pattern we expect for the HMAC code.

4.2 Simplified Attack
The attack described in [2] is based on the following fact: If we split

a message into two parts, and hash each of them separately, the

number of calls to the internal hash compression function might

vary depending on the split point. This is due to the padding and

length bytes added internally by the hash function. A new func-

tion s2n_hmac_digest_two_compression_rounds (see Listing 1

in Appendix A) was added to the HMAC API in s2n to block this

attack vector. This function makes two calls to the internal hash

compression function, even if the hash padding doesn’t necessitate

it. The function checks if the hash padding will require another

5

Algorithm 1 s2n Simplified Attack

1: function SimplifiedS2NPadOracle(valid_msд,attack_msд)

2: xor_pad ← FindXorPadCache(valid_msg)

3: Prime(xor_pad) ▷ evict xor_pad set from cache

4: Send attacker’s TLS record to target

5: Wait for verification error

6: if Probe(xor_pad) then
7: return 1 ▷ buffer was accessed

8: else
9: return 0 ▷ buffer was not accessed

10: end if
11: end function

compression call. If not, it will reset the hash context and call an-

other update function. In that case, the buffer that is sent to the

update function is the HMAC state buffer called xor_pad. The only

other place this buffer is used is in the HMAC initialization function,

and that is called only once, in the TLS handshake.

Our attack (see Algorithm 1) is now straightforward. The attack

code runs on a different VM on the same CPU socket. We start by

finding the cache set of the xor_pad buffer. This is done by sending

valid TLS records to the target (for example, by using malicious

JavaScript running in a remote victim’s browser), and using the

PRIME+PROBE technique of [23] to find the correct cache set. We

then prime the xor_pad buffer, and send the attacker-constructed

TLS record for decryption. After the TLS record is rejected (due to

a MAC failure) we probe the cache set. If we get a cache miss, we

assume that with high probability the xor_pad buffer was accessed,

and so the TLS record’s padding length (as determined by s2n from

PadLen, the value of the last byte of the decrypted TLS record

P = R | |T | |pad) is such that the length of R mod hash_block_size
is between hash_block_size − 9 − 13 and hash_block_size −
13 (here, 13 comes from the TLS header length and "9" would be

replaced by "17" for SHA-384 if the bug identified in Section 3.4

were to be fixed). By setting the attacker’s TLS record so that its

last blocks areC∗
−1
⊕ ∆| |C∗, as in Section 2.1, information about the

value of the last byte of P∗ ⊕ ∆ is thereby leaked to the attacker.

4.3 Full synchronized probe PRIME+PROBE
Attack

The simplified attack is not practical due to the following ad hoc
programming decision in the verification function s2n_verify_cbc

(see Listing 2 in Appendix A). After finishing the HMAC calculation,

the s2n code hashes the rest of the TLS record padding bytes, to

ensure a constant number of compression function calls. In this

specific solution it is required to “remember” the number of bytes di-

gested up to this point. To allow this, the function s2n_hmac_copy
was added to the HMAC API. This function (used only in CBC-

mode processing) copies all of the state buffers of the HMAC cal-

culation, so that the copy can be used to digest the remaining

padding bytes. The copy function also copies the xor_pad buffer

(although it is not required for the calculation), and so it acciden-

tally causes it to be read into the cache. For the simplified attack

to work, we would need to arrange for the probing of the xor_pad
buffer to happen exactly in-between the call to s2n_hmac_copy
and s2n_hmac_digest_two_compression_rounds. This requires

too fine a control over timing.

Algorithm 2 s2n synchronized probe PRIME+PROBE Attack

1: function S2NPadOracle(valid_msд,attack_msд)

2: copy_xor_pad ← FindCopyXorPadCache(valid_msg)

3: Prime(copy_xor_pad) ▷ evict copy_xor_pad set from cache

4: Send attacker’s TLS record to target

5: Delay to synchronize the probe

6: if Probe(copy_xor_pad) then
7: return 1 ▷ buffer was accessed

8: else
9: return 0 ▷ buffer was not accessed

10: end if
11: end function

However, we can use the fact that the HMAC copy buffer is only

accessed in the s2n_hmac_copy function, just after finishing the

HMAC calculation over the message. The time elapsed until this

buffer is accessed is actually the same as the time taken for HMAC

verification in the Lucky 13 attack.

The full synchronized probe PRIME+PROBE attack (see Algo-

rithm 2) tries to approximate the HMAC execution time by using

a “race condition” between the message verification and the cache

probing. We start again by finding the correct cache set for the

copy_xor_pad , using valid messages. Then we prime the cache set,

and send the TLS record for decryption. We use a short delay to

synchronize the attack, as our probing step should run at approxi-

mately the same time as the HMAC verification code would finish

hashing a short message (corresponding to a long TLS padding

pattern).

We assume that there will be small timing variations due to the

behaviour of the operating system. So we run the attack multiple

times, and use the probability of a cache miss as an indicator of

the HMAC execution time. If the probability of a cache miss is

high (so Algorithm 2 outputs "0" frequently), it indicates that we

have probed before the call to s2n_hmac_copy. This means that the

HMAC execution took longer, and so we can infer that PadLen was

small. On the other hand, if the probability of a cache hit is high, it

indicates that PadLen was large. We will shortly make this analysis

more precise.

4.4 s2n’s Timing Blinding Mitigation
Amazon added a general mitigation to protect s2n from attacks

targeting their non-constant time implementation. In the event of a

decryption error, the function s2n_connection_kill adds a very

large random time delay before killing the connection and sending

the error message. This is supposed to add a large amount of noise

to any timing-based attack, making it impractical [24]. While this

random delay can indeed block regular timing attacks, it offers no

protection against our cache-based attack, as the cache access that

we target is made before the random delay is added. Moreover, since

a server running s2n can support many concurrent connections, the

random delay does not significantly slow down the rate at which

we can send attack TLS records.

4.5 s2n Proof of Concept
We experimentally implemented a PoC for the attack. We ran our

attack on an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz running

Ubuntu 17.10. We used the code from the master branch of the

6

Hash Message PadLen Cache hit

function Length range probability

SHA-384 720 0 − 44 ≈ 0.68

SHA-384 720 45 − 172 ≈ 0.75

SHA-384 720 173 − 255 ≈ 0.97

SHA-256 576 0 − 44 ≈ 0.63

SHA-256 576 45 − 108 ≈ 0.65

SHA-256 576 109 − 172 ≈ 0.66

SHA-256 576 173 − 236 ≈ 0.90

SHA-256 576 237 − 255 ≈ 0.95

Table 2: Cache hit probabilities for s2n attack

official s2n git repository on 14/2/2018 (commit hash f742802), and

compiled with the provided make files and GCC version 7.2.0. We

targeted the code of the s2n_verify_cbc function (including the

code for hashing the header and sequence number called before the

function). The function is called to verify multiple messages that

differ only in the last byte of the decrypted TLS record (which is

used to set PadLen). Another thread was run in parallel to evaluate

the cache hit/miss probability.

We studied HMAC verification for both SHA-384 and SHA-256.

We chose a random 720-byte string (576 bytes for SHA-256) as our

decrypted TLS record (the record length must be a multiple of the

cipher block-size, and these sizes are optimal for our attack), and

ran 2000 trials of the attack for all 256 possible padding length

values in the last byte. As expected the hit probability changes on

the 128-byte boundaries of the hashed data (64-byte boundaries

for SHA-256). Since the number of bytes hashed until the call to

s2n_hmac_copy is made is:

HashLen = InnerHashKeyLen + SeqNumLen + HdrLen

+ DecMsgLen −MacLen − PadLen − 1, then

HashLenSHA-384 = 128 + 8 + 5 + 720 − 48 − PadLen − 1

= 812 − PadLen, and

HashLenSHA-256 = 64 + 8 + 5 + 576 − 32 − PadLen − 1

= 620 − PadLen

Due to the inclusion of the underlying hash length field and

padding in this hashing operation, we expect to see an increase in

the cache hit probability when PadLen ≡ 45 mod 128 (45 mod 64

for SHA-256). The experimental results in Table 2 show these ex-

pected changes. We synchronized the attack so that the cache probe

is expected to happen after ≈ 5 calls to the SHA-384 compression

function (≈ 7 for SHA-256). So we should get a cache hit with high

probability if the value of PadLen is greater than 172, and with low

probability otherwise. This can be seen in the table. There is also a

smaller change in the probability at value 44 (48, 108 and 236 for

SHA-256). When the pad length is less than 44, there is one less

compression function call, which causes the probability of a cache

hit to be even lower.

4.6 Creating the Padding Oracle
Our experiments show that s2n permits a single-bit oracle that

can distinguish if PadLen > 172 or not. Recall that PadLen is set

from the last byte of the decrypted TLS record P = R | |T | |pad,

and the method described in Section 2.1 can use such an oracle to

learn information about the value of the last byte of P∗ ⊕ ∆ for

attacker-controlled values ∆. We build this oracle by repeatedly

running Algorithm 2 and estimating the cache hit probability p.

We then use this estimate to decide whether PadLen > 172 or not.

The accuracy of this process is determined by the difference in

probabilities and the number of iterations n of Algorithm 2 that

we perform; we are effectively trying to distinguish between two

binomial distributions, one with p = 0.75 (p = 0.66 for SHA-256)

and the other with p = 0.97 (p = 0.90 for SHA-256). We set a

threshold probability of pt = 0.86 (pt = 0.78 for SHA-256) and set a

desired error probability of β . We can then calculate n, the required

number of iterations, such that Pr(Bin(n, 0.75) > 0.86n) < β and

Pr(Bin(n, 0.97) < 0.86n) < β . We can calculate the required n for

any chosen β by using the CDF of the binomial distribution.

In fact, we can generate different oracles by changing the length

of the TLS records that we send to our target. The body of the

records must have lengths that are multiples of the block-size. This

allows us to obtain oracles of the form PadLen > 12+ 16k mod 256

for any k . In Section 5 we will show how to choose n, β and the

optimal k to use in the oracle for achieving full plaintext recovery.

5 FROM S2N PADDING ORACLE TO FULL
PLAINTEXT RECOVERY

The attack in Section 4 on s2n provides us with one-bit linear

condition oracles on the padding length byte that is located at the

end of the decrypted TLS record.
7

However, our goal is to recover multiple, full bytes of plaintext.

Fortunately, we can select the last blocks of the attacker’s TLS record

as C∗
−1
⊕ ∆| |C∗ for different values of mask ∆, and post-process

the results to gain information about the values of plaintext block

P∗; more precisely, since the linear conditions are always on the

very last byte p∗ of P∗, we need only vary ∆ in its last byte position

δ , and we can only gain information about p∗. In this section, we

describe two strategies for selecting the different single-byte masks

δ to try: a naive approach, and a more sophisticated one.

We remark here that going from single-byte recovery to many-

byte recovery can be achieved in the main application scenario of

recovering HTTP cookies. The idea is to use progressively longer

padding of pathnames in HTTP requests to move the target HTTP

cookie bytes one-by-one into the last position p∗ in the target block

P∗. The HTTP requests are produced by malicious JavaScript run-

ning in the victim’s browser; the browser automatically generates

the required TLS connections in response to the requests. This

is a known technique that we borrow from the literature on TLS

attacks [3, 14, 29], and we do not comment on it further here.

5.1 Naive Algorithm
The naive algorithm is described in Algorithm 3. The algorithm

receives the following parameters:

(1) OracleFunc(δ): a function that implements a padding oracle

attack for mask value δ . This function carries out one of the

padding oracle attacks from the previous sections, targeting

a particular fixed byte p∗ in the last position in some target

plaintext block P∗. This involves repeatedly intercepting TLS

7
We actually have several different conditions and oracles, depending on the attacker-

controlled TLS record length.

7

Algorithm 3 Padding Oracle to Plaintext Byte — Naive Algorithm

1: function NaiveOracleToByte(OracleFunc,

OracleCondition)

2: ValList← [0..255] ▷ all possible values for PadLen

3: MaskList← [0..255] ▷ all possible one-byte mask values δ
4: for all δ in MaskList do
5: OracleRes← OracleFunc(δ)
6: for all val in ValList do
7: ValRes← OracleCondition(val ⊕ δ)
8: if ValRes , OracleRes then
9: remove val from ValList

10: end if
11: end for
12: if Length(ValList)==1 then
13: return ValList[0]

14: end if
15: end for
16: end function

records containing the target byte/block p∗/P∗ in ciphertext

block C∗, building fixed-length TLS records ending with C∗
−1
⊕

∆| |C∗ where the last byte of ∆ is set to δ , and recovering the

result of evaluating the oracle’s one-bit linear condition on

input p∗ ⊕ δ . We assume that the oracle has error probability β
when n iterations are carried out.

(2) OracleCondition(PadLen): returns the result of the linear con-

dition executed by the above oracle, assuming that the value

PadLen is used as input (along with some fixed TLS record

length). For example, the oracle may return the value of the

predicate “PadLen > 172”.

The algorithm starts by initializing two byte-lists ValList and MaskList

with all possible byte values. We iterate over all possible single-byte

mask values δ . For each possible δ , we get the result of the oracle

by running OracleFunc(δ). We then iterate over the possible values

in ValList. For each possible val, we check if the linear condition

on val ⊕ δ is equal to the result of the oracle. If not, the value

is discarded (and this will be a correct decision with probability

1 − β). The algorithm ends when there is only one possible value

remaining in ValList.

The complexity of the algorithm is dominated by the number

of calls to the OracleFunc(·) function. The expected number is 128,

with a worst case of 256. Recall, however, that each call to this oracle

involves some number n executions of the underlying cache timing

attack, giving an average of 128n executions of the cache timing

attack. Moreover, each execution of the underlying attack consumes

a TLS connection (since the attacker’s constructed ciphertext will

always fail HMAC verification). For example, as we will see in

Section 5.3, this results in roughly 13000 runs of the synchronized

probe PRIME+PROBE attack in Algorithm 2 for the attack on s2n.

This figure of 128n might make the attack impractical. For this

reason, we developed an improved greedy algorithm which can

reduce the attack complexity by a factor of more than 50. We present

this next.

5.2 Greedy Algorithm
Our greedy algorithm optimizes the way in which we choose the

masks δ that we use in our oracle calls. Instead of iterating over all

Algorithm 4 Padding Oracle to Plaintext Byte — Greedy Algorithm

1: function GetBestMask(MaskList, ValList, OracleCondition)

2: HalfLenValList← Length(ValList)/2

3: MinMaskCount← 256 ▷ maximum possible value

4: BestMask← 0

5: for all δ in MaskList do
6: OneCount← 0

7: for all val in ValList do
8: ValRes← OracleCondition(val ⊕ δ)
9: if ValRes == 1 then

10: OneCount← OneCount + 1

11: end if
12: end for
13: Count = |HalfLenValList − OneCount| ▷ how far are

we from half the values returning 1 and half returning 0?

14: if Count ≤ MinMaskCount then
15: BestMask← δ
16: MinMaskCount← Count

17: end if
18: end for
19: end function

possible values, in each iteration of the attack we choose as the next

mask the one that will give us the most information (maximizing

the entropy of each oracle call). Algorithm 4 chooses the "best"

mask in a greedy manner. It takes as input a list of all remaining

possible byte values (ValList) and mask values (MaskList). For each

mask it simulates all the oracle responses on the possible values

remaining, and chooses the mask that maximizes the entropy of

this experiment. Since we only consider single bytes at a time, the

algorithm is efficient. In a further optimization, we can also remove

the masks with zero entropy from MaskList in each iteration.

5.3 Application to Amazon s2n
In our attack we can obtain oracles of the form “PadLen > 12 +

16k mod 256” for any k . We will analyze the run time complexity

of the SHA-384 version of the attack.

5.3.1 Attack complexity of the naive algorithm. For the naive

algorithm, the expected number of runs is 128, with a worst case of

256. We focus for the moment on successfully recovering a single

byte of plaintext with probability pB > 0.5 (a standard requirement

for success probability in cryptanalysis). In the worst case we will

require 256 correct calls to the oracle. So we would need each oracle

call to return the correct result with β = 0.51/256 = 0.9973. Based

on our experiments, we model the s2n SHA-384 attack cache hit

distribution as a binomial distribution with p = 0.75 for PadLen ≤

172 and p = 0.97 for PadLen > 172. We would then need n =
100 executions of the cache attack to distinguish between the two

distributions with probability larger than β = 0.9973. The expected

total number of cache attack executions needed for the naive attack

is then 12800 with a worst case of 25600.

5.3.2 Attack complexity of the greedy algorithm. We simulated

the complexity of the greedy algorithm for all oracles of the form

PadLen > 12+16k mod 256. The oracle with the lowest complexity

is the one with k = 10, where the condition is PadLen > 172,

having an expected number of 8.5 runs and a worst case of 11.

8

This is very close to the information theoretical lower bound of 8

runs.. To achieve pB > 0.5 this requires β = 0.51/11 = 0.939, which

translates to n = 28. So the expected total number of cache attack

executions needed for the greedy attack is only 238, with a worst

case of 308. This is more than 50 times less than needed in the naive

attack.

5.3.3 Recovering multiple bytes. We are typically interested in

recovering multiple plaintext bytes, e.g. an entire 16-byte cookie,

with good probability. To achieve success probability greater than

0.5 across 16 bytes, we need a per-byte probability of pB ≈ 0.96,

which in the greedy attack yields β = 0.51/11·16 = 0.996. In turn,

this translates to n = 92 and an expected total number of TLS

connections of 782 per byte. For comparison, the naive algorithm

requires an expected total of 21900 TLS connections per byte.

6 A PADDING ORACLE BASED ON TLS
RECORD CACHE ACCESS PATTERN

The original Lucky 13 attack [3] exploited the time difference of the

TLS record verification process for valid and invalid padding. As a

mitigation, all the pseudo constant time TLS implementations added

dummy compression function calls that cause the total number of

compression function calls to be independent of the padding length.

However, unlike proper constant time TLS implementations, the

cache access pattern to the data structure holding the TLS record is

still dependent on the padding length. We can exploit this cache

access pattern with our novel synchronized prime PRIME+PROBE

attack to restore the original padding oracle of [3] in several TLS

implementations – mbed TLS , GnuTLS and wolfSSL . All imple-

mentations were patched against Lucky 13 [3]. Moreover, mbed TLS

was also patched against a second cache-based attack by Irazoqui

et al. [5], targeting the code of the first patch. We will again use a

PRIME+PROBE [30] cache attack, assuming a cache side channel as

in Liu et.al. [23]. Our attack works on HMAC using both SHA-384

and SHA-256, even if all the bugs in Section 3were fixed, and all

the previous variants of Lucky 13 were patched correctly.

6.1 Attack Preliminaries
All of the vulnerable implementations follow this general code flow

for constant time decryption:

(1) Decrypt the message, accessing all the bytes in the TLS record.

(2) Perform constant time checking of the TLS record padding,

assuming zero-length padding if the padding is not valid. All

of the final 256 bytes of the TLS record are accessed.

(3) Calculate HMAC on the decrypted TLS record payload (exclud-

ing the padding). All bytes in the decrypted TLS record are

accessed, except for the padding bytes at the end.

(4) Add extra dummy compression function calls to make the num-

ber of calls the same in every case. The data input to these

function calls is obtained from the start of the TLS record or

from a dummy memory buffer. The padding bytes of the TLS

record are not accessed (except for messages that are shorter

than the hash block size).

In our attack, we will try to distinguish between two cases: long

valid padding and long invalid padding. We will explain in Sec-

tion 6.3 how an oracle yielding this information can be used to

Algorithm 5 Message Access Attack

1: functionMessageAccessPadOracle(Valid TLS records, At-

tack TLS record)

2: LastBytesCache← FindPtrCache(Valid TLS record[End])

3: Send attacker’s TLS record to target

4: Delay to synchronize to the start of the HMAC verification

5: Prime(MsgCache) ▷ evict end of record from cache

6: Delay till maximum time for HMAC calculation

7: if Probe(MsgCache) then ▷ end of record was accessed

8: return 0 ▷ padding was invalid

9: else
10: return 1 ▷ padding was valid

11: end if
12: end function

recover plaintext bytes. Consider the cache access pattern from the

beginning of the HMAC verification. In the case of invalid padding,

the code typically assumes zero-length padding, and the HMAC

verification will access all of the TLS record bytes (possibly exclud-

ing the last byte). However, if the padding is valid and long (e.g.

PadLen = 255, in which case there are 256 bytes of padding), the

HMAC verification will not access the last PadLen + 1 bytes of the

TLS record.

6.2 synchronized prime PRIME+PROBE Attack
Description

Our synchronized prime PRIME+PROBE attack exploits this differ-

ence in the access pattern using a PRIME+PROBE [30] cache attack.

We synchronize the PRIME part of the attack to run in parallel to

the HMAC verification process, that is, after the padding check but

before the HMAC verification is done. The maximum TLS record

size is ca. 2
14

bytes, corresponding to about 2
8

compression func-

tion calls for a 64-byte hash block size. By working with ciphertexts

of this size, we can force the HMAC verification to take a long time

to complete. This makes the synchronization of the attack relatively

easy.

The attack (described in Algorithm 5) has four main parts:

(1) Finding the cache sets containing the last bytes of the TLS

record.

(2) Sending the attack TLS record. The TLS record is constructed

to have long valid padding, except possibly in the first padding

byte. This is the byte we try to recover in the attack.

(3) Delaying till the HMAC verification begins. This occurs af-

ter the decryption and padding check is finished (and takes a

constant amount of time regardless of the padding).

(4) In parallel to the HMAC verification, we Prime the end of the

TLS record to evict it from the cache.

(5) After the end of the HMAC verification calculation, we probe

the cache set that contains the last few bytes of the TLS record.

If it was accessed, then with high probability the padding was

invalid; otherwise it was valid.

6.3 Constructing an Attack on TLS Records
It remains to explain how we construct the TLS records used in the

attack, and how we use the results of the oracle to recover plaintext

bytes (HTTP cookie bytes in this case). We rely on techniques first

9

explained in [14]: we use HTTP pathname padding and the ability to

choose plaintext bytes that are placed after the cookie in the HTTP

request to ensure that the plaintext in the TLS record contains 16

consecutive blocks in which the first block has the form:

p∗ | |“\r”| |“\n”| |0xFF| | . . . | |0xFF,

and the remaining 15 blocks consist solely of values 0xFF. Here p∗

is the last byte of the cookie and the target of the first step of the at-

tack, while “\r′′, “\n′′ represent ASCII characters inserted after the

cookie by HTTP. Note that these plaintext blocks are almost correct

padding of maximum length; of course they are incorporated into a

TLS record containing an HMAC tag and correct TLS padding. Let

C∗
0
, . . . ,C∗

15
denote the matching ciphertext blocks in the resulting

TLS record, and let C∗
−1

denote the preceding ciphertext block.

The attack TLS record is then constructed as:

HDR| |L| |C∗−1 ⊕ ∆| |C∗
0
| | . . . | |C∗

15

where HDR is a suitable header, L is a long random block sequence

that brings the TLS record up to the maximum size, and ∆ is a mask

with bytes:

δ | |(“\r” ⊕ 0xFF)| |(“\n” ⊕ 0xFF)| |0x00| | . . . | |0x00.

Here, the first mask byte creates a value p∗ ⊕ δ in the first position

of the block decrypting C∗
0
, while the second and third mask bytes

force values 0xFF in the corresponding positions. Clearly, when

decrypted, this TLS record will have correct padding of length 256

if and only if p∗ ⊕ δ = 0xFF. The attacker then uses TLS records

of this form with distinct values of δ in the attack of Algorithm 5;

after 128 attempts on average and 256 in the worst case, the value

of δ producing correct padding will be identified.

This description explains how to recover the last byte of the

cookie. Further bytes can be recovered by shifting the position of

the cookie by altering the length of the pathname in the HTTP

request so that the last 2, 3, . . . bytes are present at the start of the

block underlying C∗
0
. We also update ∆ as needed to force correct

padding 0xFF in all but the first byte of this block. This approach will

recover up to 14 bytes of the cookie; the remaining bytes seems to

remain inaccessible using these techniques (trying to extend further

would push the “\r” and “\n” characters into the next block, where

they could not be turned into correct padding by XOR masking).

We close this description by noting that the above attack with

long padding patterns can be applied to the original Lucky 13 set-

ting, quadrupling the timing differences there and so making them

substantially easier to detect (at the cost of limiting how much

plaintext can be recovered). This enhancement to Lucky 13 seems

to have been missed by the authors of [3], though they used a

similar idea in their distinguishing attack.

6.4 Proof of Concept for synchronized prime
PRIME+PROBE attack

We implemented a PoC for the above attack for wolfSSL, to verify

the presence of the cache side-channel. We ran our attack on an

Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz running Ubuntu 17.10.

We used the version 3.14 code taken from the master branch of the

official git repository on 20/4/2018 (commit hash 7d425a5c), and

compiled with the provided make files and GCC version 7.2.0.

6.4.1 wolfSSL code. The TLS record verification is done in func-

tion TimingPadVerify (see Listing 5 in Appendix A). First, the

padding is checked by the function PadCheck. If the padding check

fails, the branch taken by the code implicitly assumes PadLen = 0

and HMAC is calculated over the whole TLS record excluding the

last byte (that is assumed to be the minimal length padding). How-

ever, if the padding is valid, HMAC is calculated on the TLS record

excluding all of the padding bytes. To achieve constant time, the

extra compression function CompressRounds is called. However,

this is done with the dummy array, which points to the start of the

ssl context. So in case of valid padding the last bytes of the TLS

record are not accessed.

6.4.2 Attack results. We prepared two types of decrypted TLS

records. The first one with 256 bytes of valid padding and the sec-

ond one being identical, except for the first byte of padding which

was changed to a different value. We called the TimingPadVerify
function multiple times with both types of data. Before each call to

the function, another “attack” thread was run in parallel to perform

the cache priming during the HMAC verification. After the function

returned, we checked if the cache line of the last bytes in the TLS

record is in the cache or not. For TLS records with valid padding

we saw a hit probability of ≈ 0.025. For TLS records with invalid

padding we saw a hit probability of ≈ 0.998. Using the same calcu-

lations as in Section 5.3.3 this translates to n = 4 and an expected

total number of TLS connections of 512 per byte.

6.4.3 mbed TLS. The same vulnerability also applies to the

mbed TLS code in function ssl_decrypt_buf (see Listing 8 in

Appendix A). If the padding is invalid the function sets the variable

padlen to 0. For constant time, the extra compression function

mbedtls_md_process is called multiple times with pointer in_msg
pointing to the start of the TLS record.

6.4.4 GnuTLS. The same vulnerability also applies to the GnuTLS

code in function decrypt_packet (see Listing 4 in Appendix A).

If the padding is invalid the function sets pad to 0. For constant

time, extra compression functions are executed via dummy_wait
(see Listing 3 in Appendix A). If the padding was invalid, the func-

tion does nothing and returns. If the padding was valid, but the

HMAC verification fails, the extra compression function _gnutls_

auth_cipher_add_auth is called multiple times with the pointer

data, pointing to the start of the TLS record.

Note that unlike other implementations, the extra compression

functions are only called when the verification process fails, so

the decryption time on valid messages is not constant. This may

leak the real size of the encrypted messages, but cannot be used to

recover plaintext bytes.

7 A CACHE-BASED PADDING ORACLE IN
THE MBED TLS IMPLEMENTATION

We will describe another novel attack on mbed TLS targeting the

inner hash function execution in HMAC. This attack is more robust

than the one described in Section 6 as it does not require the syn-

chronization between the attack and target code. At first we will

describe a simplified version that assumes a small cache line size.

The full “PostFetch” attack will show how we can deal with mod-

ern cache line sizes and memory prefetching. Our attack works on

10

HMAC with both SHA-384 and SHA-256, even if the bug described

in Section 3.2is fixed.

7.1 Attack Preliminaries
HMAC makes two hashing passes over its input message, which

we refer to as the inner and outer hashes. The inner hash processes

a string of the form K1 | |M to produce a hash value h; the outer

hash processes an input K2 | |h. Here K1,K2 are keys derived from a

single key by XOR offsets and M is the message input. The hash

functions used in HMAC in TLS are based on the Merkle-Damgård

construction [28]. This construction pads the message being pro-

cessed to a multiple of the hash function’s block size. The usual

hash function padding scheme is to always add the byte 0x80 and

then zero bytes up to the required length.
8

In mbed TLS the hash padding is implemented by defining a con-

stant array containing the maximum possible length hash padding

pattern, and passing this array with the required padding length to

the hash update function (see Listing 7 in Appendix A; SHA-384

is simply a truncated output of SHA512). Our cache attack targets

the access pattern to this constant array to create a padding oracle.

A maximum hash padding length will cause the entire array to

be saved in the cache, while a short hash padding will cause only

the beginning of the array to be saved in the cache. To check if

parts of the array are in the cache or not we can use cache attacks

that exploit shared memory pages. If the attack code runs on the

same core as the target code we can use a simple PRIME+PROBE

attack on the L1 cache [30]. However, if the code runs on different

cores (as is the case in most cross-VM attacks) we can use more

advanced cross-core attacks [16, 21, 23]. For brevity and without

loss of generality we will use the PRIME+PROBE notation.

7.2 Hash Padding Length for SHA-384
For the inner hash calculation of HMAC-SHA-384, the length of the

hash padding for an encrypted message with length EncMsgLen is

calculated in the following way:

HashLen = InnerHashKeyLen + SeqNumLen + HdrLen

+ EncMsgLen −MacLen − IVLen − PadLen − 1

= 128 + 8 + 5 + EncMsgLen − 48 − 16 − PadLen − 1

= EncMsgLen + 76 − PadLen, hence:

HashPadLen = 112 − HashLen mod 128

= 36 − EncMsgLen + PadLen mod 128 (1)

Note that if HashPadLen = 0 mod 128 then HashPadLen = 128.

The length of the hash padding for the outer hash calculation in

HMAC-SHA-384 is calculated via:

HashLen = OuterHashKeyLen + HashLen = 128 + 48 = 176

HashPadLen = 112 − HashLen mod 128 = 64

So the the number of hash padding bytes accessed in the HMAC

calculation is given by:

HashPadLen = max(36 − EncMsgLen + PadLen mod 128, 64)

8
This hash padding is distinct from the padding added by TLS in CBC-mode and which

is actually transmitted as part of TLS records.

Algorithm 6 mbed TLS – Simplified Attack

1: function SimplifiedMbedPadOracle(attack_msд)

2: ProbeOffset← 64 ▷ 32 for SHA-256

3: Prime shaX_paddinд + ProbeOffset ▷ evict from cache

4: Send attacker’s TLS record to target

5: if Probe(shaX_paddinд + ProbeOffset) then
6: return 1 ▷ last part of the array was accessed

7: else
8: return 0 ▷ last part of the array was not accessed

9: end if
10: end function

7.3 Hash Padding Length for SHA-256
For the inner hash calculation of HMAC based on SHA-256, the

length of the hash padding for an encrypted message with length

EncMsдLen is calculated in the following way:

HashLen = InnerHashKeyLen + SeqNumLen + HdrLen

+ EncMsgLen −MacLen − IVLen − PadLen − 1

= 64 + 8 + 5 + EncMsgLen − 32 − 16 − PadLen − 1

= EncMsgLen + 28 − PadLen, hence:

HashPadLen = 56 − HashLen mod 64

= 28 − EncMsgLen + PadLen mod 64 (2)

Note that if HashPadLen = 0 mod 64 then HashPadLen = 64.

For the outer hash calculation of HMAC-SHA-256, we have:

HashLen = OuterHashKeyLen + HashLen = 64 + 32 = 96

HashPadLen = 56 − HashLen mod 64 = 24

So the number of hash padding bytes accessed in the HMAC calcu-

lation is given by:

HashPadLen = max(28 − EncMsgLen + PadLen mod 64, 24)

7.4 Simplified Attack
The simplified attack on mbed TLS is described in Algorithm 6.

The start of the pad array is always accessed by the outer hash

calculation of HMAC. We prime a cache set that contains the array

at an offset, targeting the first cache line that is not always accessed

(offset of 64 for SHA-384 and 32 for SHA-256). We send the attacker’s

TLS record to the target, and then probe the cache set. If the cache

set was accessed, then with high probability HashPadLen > 64 (32

for SHA-256). Otherwise we know that HashPadLen ≤ 63 (31 for

SHA-256). From this we can infer a possible range for the value of

PadLen. Using the attack described in Section 6.3 we can create a

padding oracle to distinguish between invalid padding of length

PadLen = 0, and a large padding value.

For this simplified attack to work, we need the following assump-

tions to hold:

(1) The cache line size is 32.

(2) The padding array is aligned with the cache line.

(3) There are no prefetching optimizations used.

Clearly these assumptions are unrealistic, and we show next how

they can be relaxed.

11

7.5 Full “PostFetch” Attack
The full “PostFetch” attack is the same as the one described in

Algorithm 6, but the way that we choose the values of ProbeOffset

and the resulting condition on HashPadLen are different. This is

due to the following real world conditions:

(1) In most modern CPUs, the cache line size is 64 bytes. This

makes the simplified attack on SHA-256 impractical.

(2) The padding array is not always aligned with a 64-byte cache

line. As the alignment keyword is not used in the array declara-

tion, it can vary from compilation to compilation. On our test

platform, the padding arrays were either aligned to a cache line,

or had a 32-byte offset. The alignment was changed between

compilations by minor code changes (e.g. adding or removing

a printf function call).

(3) In the hash implementation, the padding array is always copied

to the hash function’s internal buffer using the memcpy function.

Due to the cache line size the array is read into the cache in

cache line resolution even if just a single byte in the cache line

has been accessed. On our test platform, we observed that the

bytes after the array are also read into to cache (the next cache

line), if we read a large enough part of the array (near the end

of the cache line). For example, if the SHA-384 padding array

is aligned to the cache line, the outer hash call of HMAC (that

uses a hash padding of length 64) will cause a cache hit on

the next cache line, so the entire 128 bytes padding array will

be in the cache regardless of the TLS record padding length.

This causes the simplified attack on SHA-384 to also become

impractical.

Although each of the above conditions can cause our attack

to fail, the combination of these conditions actually allows the

attacks to work! Instead of probing the cache line at an offset

ProbeOffset = 64 (32 for SHA-256), we probe the next cache line us-

ing ProbeOffset = 128 (64 for SHA-256). In fact we probe a memory

location that is just after the padding array itself. In some cases this

memory location will be read into the cache due to either hardware

memory prefetching mechanism or speculative execution. For our

attack to work we require that the probed memory location is not

accessed by any other code in the verification process. As we will

show, this is indeed the case in mbed TLS (see Section 7.7).

In case the hash padding array is aligned to the cache line, the

last cache line for the array will be always accessed due to the

memcpy call in the outer hash of HMAC. However the cache line

after that will not be accessed, unless we read most of the bytes

of the padding array (a very large value of HashPadLen). In case

the array has a 32-byte offset to the cache line, the cache line at

location ProbeOffset = 128 (64 for SHA-256), includes both the end

of the array and some data that is stored afterwards. This cache

line will only be accessed if HashPadLen is large.

7.6 Proof of Concept
We implemented a PoC for the above attack, to verify the pres-

ence of the cache side-channel. We ran our attack on an Intel(R)

Core(TM) i7-7500U CPU @ 2.70GHz running Ubuntu 17.10. We use

the version 2.7 code taken from the mbedtls-2.7 branch of the official

git repository on 4/4/2018 (commit hash be97c9cc), and compiled

with the provided makefiles and GCC version 7.2.0. We targeted the

Hash Array offset Hash Padding Cache Hit

function from cache line length range probability

SHA-384 32 1 − 72 ≈ 0.026

SHA-384 32 73 − 128 ≈ 0.998

SHA-256 32 1 − 32 ≈ 0.002

SHA-256 32 32 − 64 ≈ 0.998

SHA-384 0 1 − 104 ≈ 0.028

SHA-384 0 105 − 128 ≈ 0.999

SHA-256 0 1 − 64 ≈ 0.999

Table 3: Cache hit probabilities for mbed TLS attack

HMAC function call sequence that is used in the ssl_decrypt_buf
function (see Listing 8 in Appendix A). This HMAC code is the

latest pseudo constant time version, designed to protect against

previous timing and cache attacks.

We ran the code multiple times with different lengths for the

decrypted TLS record. We primed the memory before the HMAC

execution, and probed it afterwards. We attacked both the SHA-384

and SHA-256 implementations, with the hash padding array both

aligned and not aligned (i.e. with a 32-byte offset) relative to the

cache line. The experimentally obtained cache hit probabilities

are given in Table 3. Because of the differing probabilities, we

obtain reliable hash padding length oracles for three out of the

four combinations, the exception being when SHA-256 is combined

with a cache-aligned padding array.

7.7 Analysis of the Proof of Concept
As we described in Section 7.5, our full cache attack targets a cache

line that contains the data stored just after the hash padding array.

For this attack to work, the data after the array must not be accessed

by the targeted code (otherwise we will always get a cache hit).

When analyzing the PoC results we can see that this requirement

is indeed fulfilled, except for the case of SHA-256 with a cache-

aligned array. By analyzing the compiled program in this case, we

discovered that the data the compiler stores just after the array is

an array of round constants used in the SHA-256/SHA-384 compres-

sion function. This function is called in the finalization of the hash

calculation just after accessing the hash padding array. In theory,

our attack shouldn’t work on this specific build of the code.

To get a better understanding we looked at a dump of the com-

piled assembly code of the compression function, taken from the

mbed TLS server example program ssl_server2 (see Listing 9 in

Appendix A). In both the SHA-384 and SHA-256 code, the program-

mer unrolled the first 8 rounds of the compression function. To

optimise performance, the GCC compiler uses hard-coded assembly

movabs commands to push the first 8 round constants into registers.

For the remaining rounds, the code uses the constants stored in

the array. So although the first 8 round constants are stored in the

array, they are never accessed. Since SHA-384 constants are 64 bits

each, storing the first 8 round constants requires 64 bytes. So the 64

bytes after the hash padding array are never accessed. This means

that, regardless of the array alignment, the cache line we target is

only accessed due to the hash padding array and the attack can

work. However, in the SHA-256 case, the round constants are only

32 bits long. So storing the first 8 constants requires just 32 bytes.

The attack then works when the hash padding array has a 32-byte

12

offset to the cache line. In this case, the targeted cache line holds

the end of the hash padding array, and the first 8 round constants;

then the cache line is only accessed due to the hash padding array

and our attack succeeds. In the other case, the hash padding array

is aligned with the cache line and the targeted cache line holds

the first 16 round constants. Since the constants of round 9 to 16

are accessed by the compression function, this cache line is always

accessed and our attack fails.

7.8 Creating the Padding Oracle
Combining the results from Table 3 and equations 1 and 2, we obtain

a CBC-mode padding oracle in the mbed TLS implementation of the

form PadLen > 4 + 16k mod 128 for any k (mod64 for SHA-256).

We use this padding oracle with the attack described in Section 6.3

to get a much more robust attack. Using the same calculations as

in Section 5.3.3 we get an expected total number of cache attack

executions (and TLS connections) of 384 per byte for SHA-256.

8 CONCLUSION
We have conducted an in-depth analysis of the security of pseudo

constant time countermeasures to the Lucky 13 attack on CBC-

mode in TLS. We examined a representative set of implementations,

and found them all to be vulnerable to cache timing attacks. We

developed three new techniques for exploiting leakage from cache

timing and access patterns, and a novel variant of Lucky 13 with

increased timing differences. These ideas may be applicable in at-

tacking other cryptographic schemes. We produced PoCs for most

of the attacks and evaluated the number of iterations of the basic

cache timing step (and consequently the number of TLS connec-

tions) needed for the attacks to succeed. The requirements of the

attacks are modest, especially in view of our novel greedy algorithm

for selecting which mask value to use at each stage.

The main takeaway from our work is encapsulated in the title

of our paper: pseudo constant time protections only give "pseudo

security". CBC-mode in TLS seems destined to stay with us for some

years to come, despite the growth in usage of AES-GCM and the

impending arrival of TLS 1.3, due to the need to support legacy code

and devices. The “Encrypt-then-MAC” countermeasure from RFC

7366 is supported in mbed TLS and GnuTLS, but requires client-side

support and has seen little uptake elsewhere (e.g. neither Firefox

nor Chrome supports the EtM extension). We suggest that all the

pseudo constant time implementations should seriously consider

adopting a fully constant time, constant memory access approach to

defending against Lucky 13 and its variants – only this can provide

robust security across a broad range of deployment (and thereby

attack) scenarios.

The paper opens up several avenues for future work. Our greedy

algorithm for selecting masks has good performance (coming close

to the information theoretic lower bound in some cases), but it

would be of interest to seek optimal algorithms. These may be of

independent interest in other areas of cryptanalysis. We use only

a single oracle condition, whereas we can often obtain multiple

conditions by carefully varying the length of ciphertexts. It may be

possible to exploit the availability of multiple conditions to further

reduce the number of TLS connections needed. Our results with a

single condition in combination with our greedy algorithm already

illustrate the dangers of settling for pseudo constant time code. Fi-

nally, when considering the recovery of multiple plaintext bytes, we

used a simple byte-by-byte analysis to estimate plaintext recovery

rates. A more sophisticated approach would be to design attacks

that produce likelihood values for each plaintext byte candidate,

and then combine these across multiple bytes using enumeration

techniques from the side-channel literature [7, 11, 25, 26, 34].

9 ACKNOWLEDGMENTS
The authors would like to thank Yuval Yarom for his helpful com-

ments and insights. The authors would also like to thank the anony-

mous reviewers for their constructive suggestions that greatly im-

proved the paper.

REFERENCES
[1] 2017. ICSI Certificate Notary. (2017). https://notary.icsi.berkeley.edu/

[2] Martin R. Albrecht and Kenneth G. Paterson. 2016. Lucky Microseconds: A

Timing Attack on Amazon’s s2n Implementation of TLS. In Advances in Cryp-
tology – EUROCRYPT 2016, Part I (Lecture Notes in Computer Science), Marc Fis-

chlin and Jean-Sébastien Coron (Eds.), Vol. 9665. Springer, Heidelberg, 622–643.

https://doi.org/10.1007/978-3-662-49890-3_24

[3] Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking

the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 526–540.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupres-

soir. 2016. Verifiable Side-Channel Security of Cryptographic Implementations:

Constant-Time MEE-CBC. In Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers
(Lecture Notes in Computer Science), Thomas Peyrin (Ed.), Vol. 9783. Springer,

163–184. https://doi.org/10.1007/978-3-662-52993-5_9

[5] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk

Sunar. 2015. Lucky 13 Strikes Back. In ASIACCS 15: 10th ACM Symposium on
Information, Computer and Communications Security, Feng Bao, Steven Miller,

Jianying Zhou, and Gail-Joon Ahn (Eds.). ACM Press, 85–96.

[6] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh

Aah... Just a Little Bit”: A Small Amount of Side Channel Can Go a Long Way. In

Cryptographic Hardware and Embedded Systems – CHES 2014 (Lecture Notes in
Computer Science), Lejla Batina and Matthew Robshaw (Eds.), Vol. 8731. Springer,

Heidelberg, 75–92. https://doi.org/10.1007/978-3-662-44709-3_5

[7] Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and

Marc Witteman. 2016. Fast and Memory-Efficient Key Recovery in Side-Channel

Attacks. In SAC 2015: 22nd Annual International Workshop on Selected Areas in
Cryptography (Lecture Notes in Computer Science), Orr Dunkelman and Liam

Keliher (Eds.), Vol. 9566. Springer, Heidelberg, 310–327. https://doi.org/10.1007/

978-3-319-31301-6_19

[8] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.

2016. Flush, Gauss, and Reload - A Cache Attack on the BLISS Lattice-

Based Signature Scheme. In Cryptographic Hardware and Embedded Systems
– CHES 2016 (Lecture Notes in Computer Science), Benedikt Gierlichs and Axel Y.

Poschmann (Eds.), Vol. 9813. Springer, Heidelberg, 323–345. https://doi.org/10.

1007/978-3-662-53140-2_16

[9] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. 2003.

Password Interception in a SSL/TLS Channel. In Advances in Cryptology –
CRYPTO 2003 (Lecture Notes in Computer Science), Dan Boneh (Ed.), Vol. 2729.

Springer, Heidelberg, 583–599.

[10] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman,

Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Serdar Tasiran,

Aaron Tomb, and Eddy Westbrook. 2018. Continuous Formal Verification of

Amazon s2n. In Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II (Lecture Notes in Computer Science),
Hana Chockler and Georg Weissenbacher (Eds.), Vol. 10982. Springer, 430–446.

https://doi.org/10.1007/978-3-319-96142-2_26

[11] Liron David and Avishai Wool. 2017. A Bounded-Space Near-Optimal Key

Enumeration Algorithm for Multi-subkey Side-Channel Attacks. In Topics in
Cryptology – CT-RSA 2017 (Lecture Notes in Computer Science), Helena Handschuh

(Ed.), Vol. 10159. Springer, Heidelberg, 311–327.

[12] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246 (Proposed Standard). (Aug. 2008), 104 pages. https://doi.

org/10.17487/RFC5246 Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627,

7685, 7905, 7919.

13

https://notary.icsi.berkeley.edu/
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-52993-5_9
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC5246

[13] Joey Dodds. 2016. Verifying s2n HMAC with SAW. (2016). https://galois.com/

blog/2016/09/verifying-s2n-hmac-with-saw/

[14] Thai Duong and Juliano Rizzo. 2011. Here come the ⊕ Ninjas. Unpublished

manuscript. (2011).

[15] Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the Fourth Be With

You: A Microarchitectural Side Channel Attack on Several Real-World Applica-

tions of Curve25519. In ACM CCS 17: 24th Conference on Computer and Com-
munications Security, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

Dongyan Xu (Eds.). ACM Press, 845–858.

[16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings (Lecture Notes in Computer
Science), Juan Caballero, Urko Zurutuza, and Ricardo J. Rodríguez (Eds.), Vol. 9721.

Springer, 279–299. https://doi.org/10.1007/978-3-319-40667-1_14

[17] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games -

Bringing Access-Based Cache Attacks on AES to Practice. In 2011 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 490–505.

[18] P. Gutmann. 2014. Encrypt-then-MAC for Transport Layer Security (TLS) and

Datagram Transport Layer Security (DTLS). RFC 7366 (Proposed Standard). (Sept.

2014), 7 pages. https://doi.org/10.17487/RFC7366

[19] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar. 2016. Cache Attacks Enable Bulk Key Recovery on the Cloud. In

Cryptographic Hardware and Embedded Systems – CHES 2016 (Lecture Notes in
Computer Science), Benedikt Gierlichs and Axel Y. Poschmann (Eds.), Vol. 9813.

Springer, Heidelberg, 368–388. https://doi.org/10.1007/978-3-662-53140-2_18

[20] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-

tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).
[21] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Ste-

fan Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-
12, 2016., Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 549–

564. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/lipp

[22] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In 27th USENIX Security Symposium (USENIX Security 18).
[23] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, 605–622. https://doi.org/10.

1109/SP.2015.43

[24] Colm MacCarthaigh. 2015. AWS Security Blog - s2n and Lucky 13. (2015).

https://aws.amazon.com/blogs/security/s2n-and-lucky-13/

[25] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. 2016.

Characterisation and Estimation of the Key Rank Distribution in the Context

of Side Channel Evaluations. In Advances in Cryptology – ASIACRYPT 2016,
Part I (Lecture Notes in Computer Science), Jung Hee Cheon and Tsuyoshi Tak-

agi (Eds.), Vol. 10031. Springer, Heidelberg, 548–572. https://doi.org/10.1007/

978-3-662-53887-6_20

[26] Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam.

2015. Counting Keys in Parallel After a Side Channel Attack. In Advances in
Cryptology – ASIACRYPT 2015, Part II (Lecture Notes in Computer Science), Tetsu

Iwata and Jung Hee Cheon (Eds.), Vol. 9453. Springer, Heidelberg, 313–337.

https://doi.org/10.1007/978-3-662-48800-3_13

[27] Nikos Mavrogiannopoulos. 2013. Time is money (in CBC ciphersuites). (2013).

https://nikmav.blogspot.co.uk/2013/02/time-is-money-for-cbc-ciphersuites.

html

[28] Ralph Charles Merkle, Ralph Charles, et al. 1979. Secrecy, authentication, and

public key systems. (1979).

[29] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE Bites:

Exploiting The SSL 3.0 Fallback. (September 2014). https://www.openssl.org/

~bodo/ssl-poodle.pdf

[30] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Counter-

measures: The Case of AES. In Topics in Cryptology – CT-RSA 2006 (Lecture Notes
in Computer Science), David Pointcheval (Ed.), Vol. 3860. Springer, Heidelberg,

1–20.

[31] Stephen Schmidt. 2017. AWS Security Blog - s2n Is Now Handling 100 Percent

of SSL Traffic for Amazon S3. (2017). https://aws.amazon.com/blogs/security/

s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/

[32] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In

ACM CCS 16: 23rd Conference on Computer and Communications Security, Edgar R.

Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi (Eds.). ACM Press, 1492–1504.

[33] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications

to SSL, IPSEC, WTLS.... In Advances in Cryptology – EUROCRYPT 2002 (Lecture
Notes in Computer Science), Lars R. Knudsen (Ed.), Vol. 2332. Springer, Heidelberg,

534–546.

[34] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier

Standaert. 2013. An Optimal Key Enumeration Algorithm and Its Applica-

tion to Side-Channel Attacks. In SAC 2012: 19th Annual International Workshop
on Selected Areas in Cryptography (Lecture Notes in Computer Science), Lars R.

Knudsen and Huapeng Wu (Eds.), Vol. 7707. Springer, Heidelberg, 390–406.

https://doi.org/10.1007/978-3-642-35999-6_25

[35] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. STACCO:

Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnera-

bilities in Secure Enclaves. In ACM CCS 17: 24th Conference on Computer and
Communications Security, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, 859–874.

[36] Yuval Yarom. 2016. Mastik: A Micro-Architectural Side-Channel Toolkit. (2016).

http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

[37] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces

Using the FLUSH+RELOAD Cache Side-channel Attack. Cryptology ePrint

Archive, Report 2014/140. (2014). http://eprint.iacr.org/2014/140.

[38] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014., Kevin Fu and

Jaeyeon Jung (Eds.). USENIX Association, 719–732. https://www.usenix.org/

conference/usenixsecurity14/technical-sessions/presentation/yarom

[39] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-

VM side channels and their use to extract private keys. In ACM CCS 12: 19th
Conference on Computer and Communications Security, Ting Yu, George Danezis,

and Virgil D. Gligor (Eds.). ACM Press, 305–316.

14

https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.17487/RFC7366
https://doi.org/10.1007/978-3-662-53140-2_18
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-48800-3_13
https://nikmav.blogspot.co.uk/2013/02/time-is-money-for-cbc-ciphersuites.html
https://nikmav.blogspot.co.uk/2013/02/time-is-money-for-cbc-ciphersuites.html
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://doi.org/10.1007/978-3-642-35999-6_25
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://eprint.iacr.org/2014/140
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

A SOURCE CODE

Listing 1: s2n HMAC digest for CBC verify
int s2n_hmac_ d i g e s t _two_compress ion_rounds (s t ruc t s2n_hmac_ s t a t e ∗ s t a t e ,

void ∗ out , u i n t 3 2 _ t s i z e) {

/ ∗ Do t h e " r e a l " work o f t h i s f u n c t i o n . ∗ /
GUARD(s2n_hmac_ d i g e s t (s t a t e , out , s i z e)) ;

/ ∗ I f t h e r e were 9 o r more b y t e s o f s p a c e l e f t i n t h e c u r r e n t hash b l o c k
∗ t h en t h e s e r i a l i z e d l e n g t h , p l u s an 0 x80 by te , w i l l have f i t i n t h a t b l o c k .
∗ I f t h e r e were f ewe r than 9 th en add ing t h e l e n g t h w i l l have c au s e d an e x t r a
∗ c omp r e s s i o n b l o c k round . Th i s d i g e s t f u n c t i o n a lways d o e s two c omp r e s s i o n rounds ,
∗ even i f t h e r e i s no need f o r t h e s e c o nd .
∗ /
i f (s t a t e −> c u r r e n t l y _ i n _hash_ b l o c k > (s t a t e −>hash_ b l o c k _ s i z e − 9))

return 0 ;

/ ∗ Can ' t r e u s e a hash a f t e r i t has been f i n a l i z e d ,
s o r e s e t and push an o t h e r b l o c k i n ∗ /
GUARD(s2n_hash_ r e s e t (& s t a t e −> i n n e r)) ;

/ ∗ No−op s2n_hash_upda t e t o n o rma l i z e t im ing and guard a g a i n s t Lucky13 . Th i s
d o e s no t a f f e c t t h e v a l u e o f ∗ ou t . ∗ /
return s2n_hash_update (& s t a t e −>inner , s t a t e −>xor_pad , s t a t e −>hash_ b l o c k _ s i z e) ;

}

Listing 2: s2n CBC verification function
int s2n_ v e r i f y _cbc (s t ruc t s2n_ c o n n e c t i o n ∗ conn , s t ruc t s2n_hmac_ s t a t e ∗ hmac ,

s t ruc t s2n_ b l o b ∗ d e c r y p t e d) {

/ ∗ S e t up MAC copy work spa c e ∗ /
s t ruc t s2n_hmac_ s t a t e ∗ copy = &conn−> c l i e n t −> r e c o r d _mac_copy_workspace ;

. . .

/ ∗ Update t h e MAC ∗ /
GUARD(s2n_hmac_update (hmac , dec ryp ted −>data , pay load_ l e n g t h)) ;

GUARD(s2n_hmac_copy (copy , hmac)) ;

/ ∗ Check t h e MAC ∗ /
u i n t 8 _ t check_ d i g e s t [S2N_MAX_DIGEST_LEN] ;

l t e _check (mac_ d i g e s t _ s i z e , s i z eo f (check_ d i g e s t)) ;

GUARD(s2n_hmac_ d i g e s t _two_compress ion_rounds (hmac , check_ d i g e s t , mac_ d i g e s t _ s i z e)) ;

Listing 3: GnuTLS’s extra compression call calculation
s t a t i c void dummy_wai t (r e c o r d _ p a r a m e t e r s _ s t ∗ params , g n u t l s _datum_ t ∗ p l a i n t e x t ,

unsigned pad_ f a i l e d , unsigned int pad , unsigned t o t a l) {

. . .

/ ∗ Th i s i s r e a l l y s p e c i f i c t o t h e c u r r e n t hash f u n c t i o n s .
∗ I t s h o u l d be removed onc e a p r o t o c o l f i x i s i n p l a c e .
∗ /
i f ((pad + t o t a l) % l e n > l e n − 9 && t o t a l % l e n <= l e n − 9) {

i f (l e n < p l a i n t e x t −> s i z e) _

g n u t l s _auth_ c i p h e r _add_auth (& params−> read . c i p h e r _ s t a t e ,

p l a i n t e x t −>data , l e n) ;

15

Listing 4: GnuTLS’s pad check and HMAC verification
d e c r y p t _ p a c k e t (g n u t l s _ s e s s i o n _ t s e s s i o n , g n u t l s _datum_ t ∗ c i p h e r t e x t ,

g n u t l s _datum_ t ∗ p l a i n , c o n t e n t _ type_ t type , r e c o r d _ p a r a m e t e r s _ s t ∗ params ,

g n u t l s _ u i n t 6 4 ∗ sequence) {

. . .

pad = p l a i n −>data [c i p h e r t e x t −> s i z e − 1] ; / ∗ pad ∗ /
. . .

for (i = 2 ; i <= MIN (2 5 6 , c i p h e r t e x t −> s i z e) ; i ++) {

tmp_pad_ f a i l e d | = (p l a i n −>data [c i p h e r t e x t −> s i z e − i] != pad) ;

pad_ f a i l e d | = ((i <= (1 + pad)) & (tmp_pad_ f a i l e d)) ;

}

i f (u n l i k e l y (pad_ f a i l e d != 0 | | (1 + pad > ((in t) c i p h e r t e x t −> s i z e − t a g _ s i z e)))) {

/ ∗ We do no t f a i l h e r e . We ch e c k be l ow f o r t h e
∗ t h e pad_ f a i l e d . I f z e r o means s u c c e s s .
∗ /
pad_ f a i l e d = 1 ;

pad = 0 ;

}

length = c i p h e r t e x t −> s i z e − t a g _ s i z e − pad − 1 ;

. . .

r e t = _ g n u t l s _auth_ c i p h e r _add_auth (& params−> read . c t x . t l s 1 2 , p l a i n −>data , length) ;

i f (u n l i k e l y (g n u t l s _memcmp (tag , t a g _pt r , t a g _ s i z e) != 0 | | pad_ f a i l e d != 0)) {

/ ∗ HMAC was no t t h e same . ∗ /
dummy_wai t (params , p l a i n , pad_ f a i l e d , pad , length + preamble_ s i z e) ;

Listing 5: WolfSSL’s extra compression call calculation
COMPRESS_UPPER = 5 5 , / ∗ c omp r e s s i o n c a l c numera to r ∗ /
COMPRESS_LOWER = 6 4 , / ∗ c omp r e s s i o n c a l c d enomina t o r ∗ /

/ ∗ g e t c omp r e s s i o n e x t r a r ound s ∗ /
s t a t i c INLINE in t GetRounds (in t pLen , in t padLen , in t t) {

. . .

L1 −= COMPRESS_UPPER ;

L2 −= COMPRESS_UPPER ;

i f ((L1 % COMPRESS_LOWER) == 0)

roundL1 = 0 ;

i f ((L2 % COMPRESS_LOWER) == 0)

roundL2 = 0 ;

Listing 6: WolfSSL’s pad checke and HMAC verification
/ ∗ t im ing r e s i s t a n t pad / v e r i f y check , r e t u r n 0 on s u c c e s s ∗ /
s t a t i c int TimingPadVer i fy (WOLFSSL ∗ s s l , const b y te ∗ input , in t padLen , in t t ,

in t pLen , in t c o n t e n t) {

b y te v e r i f y [WC_MAX_DIGEST_SIZE] ;

b y te dmy[s i z eo f (WOLFSSL) >= MAX_PAD_SIZE ? 1 : MAX_PAD_SIZE] = { 0 } ;

b y t e ∗ dummy = s i z eo f (dmy) < MAX_PAD_SIZE ? (b y te ∗) s s l : dmy ;

. . .

i f (PadCheck (i n p u t + pLen − (padLen + 1) , (b y t e) padLen , padLen + 1) != 0) {

WOLFSSL_MSG(" PadCheck ␣ f a i l e d ") ;

PadCheck (dummy , (b y t e) padLen , MAX_PAD_SIZE − padLen − 1) ;

16

s s l −>hmac (s s l , v e r i f y , input , pLen − t , con ten t , 1) ; / ∗ s t i l l compare ∗ /
ConstantCompare (v e r i f y , i n p u t + pLen − t , t) ;

. . .

PadCheck (dummy , (b y t e) padLen , MAX_PAD_SIZE − padLen − 1) ;

r e t = s s l −>hmac (s s l , v e r i f y , input , pLen − padLen − 1 − t , con ten t , 1) ;

CompressRounds (s s l , GetRounds (pLen , padLen , t) , dummy) ;

. . .

}

Listing 7: MBedTLS’s SHA512 finish function
s t a t i c const unsigned char sha512_padding [1 2 8] = {

0 x80 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

. . .

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

in t mbedt l s_sha512_ f i n i s h _ r e t (mbed t l s_sha512_ c o n t e x t ∗ c tx ,

unsigned char o u t p u t [6 4]) {

s i z e _ t l a s t , padn ;

. . .

l a s t = (s i z e _ t) (c tx −> t o t a l [0] & 0 x7F) ;

padn = (l a s t < 112) ? (112 − l a s t) : (240 − l a s t) ;

i f ((r e t = mbed t l s_sha512_update_ r e t (c tx , sha512_padding , padn)) != 0)

return (r e t) ;

Listing 8: MBedTLS’s CBC HMAC verification
s t a t i c int s s l _ d e c r y p t _buf (mbed t l s_ s s l _ c o n t e x t ∗ s s l) {

. . .

padlen = 1 + s s l −> i n _msg [s s l −> i n _msglen − 1] ;

. . .

for (i = 1 ; i <= 2 5 6 ; i ++) {

r e a l _count &= (i <= padlen) ;

pad_count += r e a l _count ∗ (s s l −> i n _msg [padding_ i d x + i] == padlen − 1) ;

}

c o r r e c t &= (pad_count == padlen) ; / ∗ Only 1 on c o r r e c t padd ing ∗ /
padlen &= c o r r e c t ∗ 0 x1FF ;

. . .

∗ Known t i m i n g a t t a c k s :

∗ − Lucky T h i r t e e n (h t t p : / /www. i s g . r h u l . ac . uk / t l s / TLS t iming . pd f)
∗

∗ We use ((Lx + 8) / 64) t o hand le ' n e g a t i v e ␣ Lx ' v a l u e s

∗ c o r r e c t l y . (We round down i n s t e a d o f up , so −56 i s the c o r r e c t

∗ v a l u e for our c a l c u l a t i o n s i n s t e a d o f −55)

∗ /

s i z e _ t j , e x t r a _run = 0 ;

e x t r a _run = (13 + s s l −> i n _msglen + padlen + 8) / 64 −

(13 + s s l −> i n _msglen + 8) / 6 4 ;

. . .

mbed t l s_md_hmac_update (&s s l −> t r a n s f o r m _in −>md_ c t x _dec , s s l −> i n _ c t r , 8) ;

mbed t l s_md_hmac_update (&s s l −> t r a n s f o r m _in −>md_ c t x _dec , s s l −> i n _hdr , 3) ;

mbed t l s_md_hmac_update (&s s l −> t r a n s f o r m _in −>md_ c t x _dec , s s l −> i n _len , 2) ;

mbed t l s_md_hmac_update (&s s l −> t r a n s f o r m _in −>md_ c t x _dec , s s l −> i n _msg ,

17

s s l −> i n _msglen) ;

mbed t l s_md_hmac_ f i n i s h (&s s l −> t r a n s f o r m _in −>md_ c t x _dec , mac_ e x p e c t) ;

/ ∗ C a l l mb ed t l s_md_ p r o c e s s a t l e a s t on c e due t o c a ch e a t t a c k s ∗ /
for (j = 0 ; j < e x t r a _run + 1 ; j ++)

mbed t l s_md_ p r o c e s s (&s s l −> t r a n s f o r m _in −>md_ c t x _dec , s s l −> i n _msg) ;

mbed t l s_md_hmac_ r e s e t (&s s l −> t r a n s f o r m _in −>md_ c t x _dec) ;

Listing 9: MBedTLS’s internal SHA512 process function assmebly code
48690 < mbed t l s_ i n t e r n a l _sha512_ p r o c e s s > :

. . .

4 8 7 9 7 : 49 b f 18 81 6d da d5 movabs $0xab1c5ed5da6d8118 ,% r15

4879 e : 5 e 1 c ab

487 a1 : 48 bd 2 f 3b 4d ec c f movabs $ 0 x b 5 c 0 f b c f e c 4 d 3 b 2 f ,% rbp

487 a8 : f b c0 b5

487 ab : 4 c 89 7 c 24 20 mov %r15 , 0 x20 (% r s p)

487 b0 : 49 b f 9b 4 f 19 a f a4 movabs $ 0 x 9 2 3 f 8 2 a 4 a f 1 9 4 f 9 b ,% r15

487 b7 : 82 3 f 92

487 ba : 49 bd cd 65 e f 23 91 movabs $ 0 x 7 1 3 7 4 4 9 1 2 3 e f 6 5 c d ,% r13

487 c1 : 44 37 71

487 c4 : 4 c 89 7 c 24 18 mov %r15 , 0 x18 (% r s p)

487 c9 : 49 b f 19 d0 05 b6 f 1 movabs $ 0 x 5 9 f 1 1 1 f 1 b 6 0 5 d 0 1 9 ,% r15

487 d0 : 11 f 1 59

487 d3 : 49 bc 22 ae 28 d7 98 movabs $ 0 x 4 2 8 a 2 f 9 8 d 7 2 8 a e 2 2 ,% r12

487 da : 2 f 8 a 42

. . .

4 8 8 0 2 : 49 b f 38 b5 48 f 3 5b movabs $ 0 x 3 9 5 6 c 2 5 b f 3 4 8 b 5 3 8 ,% r15

4 8 8 0 9 : c2 56 39

4880 c : 48 89 74 24 30 mov % r s i , 0 x30 (% r s p)

4 8 8 1 1 : 4 c 89 7 c 24 08 mov %r15 , 0 x8 (% r s p)

4 8 8 1 6 : 49 b f bc db 89 81 a5 movabs $0xe9b5dba58189dbbc ,% r15

4881 d : db b5 e9

18

	Abstract
	1 Introduction
	1.1 Background
	1.2 Our contributions
	1.3 Disclosure
	1.4 Paper Structure

	2 Further Background
	2.1 TLS Record Processing and the Lucky 13 Attack
	2.2 Cache attacks

	3 Implementation Bugs in Lucky13 Countermeasures
	3.1 GnuTLS Implementation
	3.2 mbed TLS Implementation
	3.3 WolfSSL Implementation
	3.4 Amazon's s2n Implementation

	4 A Cache-based Padding Oracle in Amazon's s2n Implementation
	4.1 Attack Preliminaries
	4.2 Simplified Attack
	4.3 Full synchronized probe PRIME+PROBE Attack
	4.4 s2n's Timing Blinding Mitigation
	4.5 s2n Proof of Concept
	4.6 Creating the Padding Oracle

	5 From s2n Padding Oracle to Full Plaintext Recovery
	5.1 Naive Algorithm
	5.2 Greedy Algorithm
	5.3 Application to Amazon s2n

	6 A Padding Oracle Based on TLS Record Cache Access Pattern
	6.1 Attack Preliminaries
	6.2 synchronized prime PRIME+PROBE Attack Description
	6.3 Constructing an Attack on TLS Records
	6.4 Proof of Concept for synchronized prime PRIME+PROBE attack

	7 A Cache-Based Padding Oracle in the mbed TLS Implementation
	7.1 Attack Preliminaries
	7.2 Hash Padding Length for SHA-384
	7.3 Hash Padding Length for SHA-256
	7.4 Simplified Attack
	7.5 Full ``PostFetch'' Attack
	7.6 Proof of Concept
	7.7 Analysis of the Proof of Concept
	7.8 Creating the Padding Oracle

	8 Conclusion
	9 Acknowledgments
	References
	A Source Code

