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ABSTRACT 19 

The provenance of Cretaceous sandstones in the Banda Arc islands 20 

differs from west to east. Sandstones in Sumba and West Timor contain significant 21 

amounts of feldspar (K-feldspar and plagioclase) and lithic fragments, suggesting a 22 

recycled to magmatic arc origin. In comparison, East Timor and Tanimbar 23 

sandstones are quartz rich, and suggest a recycled origin and/or continental affinity. 24 

Heavy mineral assemblages in Sumba and West Timor indicate metamorphic and 25 

minor acidic igneous sources and include a mixture of rounded and angular zircon 26 

and tourmaline grains. In East Timor, Babar and Tanimbar, an ultimate origin from a 27 

mainly acid igneous and minor metamorphic source is interpreted, containing a 28 

mixture of rounded and angular zircon and tourmaline grains. 29 

Detrital zircon ages in all sandstones range from Archean to Mesozoic, 30 

but variations in age populations indicate local differences in source areas. Sumba 31 

and West Timor are characterised by zircon age peaks at 80-100 Ma, 200-240 Ma, 32 

550 Ma, 1.2 Ga, 1.5 Ga and 1.8 Ma. East Timor and Tanimbar contain 80-100 Ma, 33 

160-200 Ma, 240-280 Ma, 550 Ma and 1.5 Ga zircon peaks. Most populations are 34 

also common in Triassic and Jurassic formations along the Outer Banda Arc and in 35 

many other areas of SE Asia. However, the abundance of Jurassic and Cretaceous 36 

populations was unexpected. We interpret Cretaceous sandstones from Sumba, 37 

Timor and Tanimbar to have been deposited in SE Sundaland. Syn-sedimentary 38 

Cretaceous (68-140 Ma) sources are suggested to include the Schwaner Mountains 39 

in SW Borneo and Sumba. Material derived mainly from older recycled sediments 40 

that had their main sources in the Bird’s Head, Western and Central Australia, and 41 

local sources close to Timor. 42 
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1. Introduction 43 

SE Asia is composed of fragments of continental crust, oceanic crust 44 

and volcanic arcs, as a result of subduction-related processes in the region, that now 45 

form a complex tectonic assemblage (e.g. Hamilton, 1979; Metcalfe, 1998; 46 

Hutchison, 1989; Bowin et al., 1980; Hall, 1996, 2011, 2012; Packham, 1996; 47 

Charlton, 2001; Hinschberger et al., 2005). Since the Palaeozoic, rifting led to 48 

separation of fragments from the Gondwana margin, that were later successively 49 

accreted to Sundaland at different times (Fig. 1) (Audley-Charles et al., 1988; Hall, 50 

2012; Barber and Crow, 2009; Metcalfe, 2011, 2013). 51 

During the Mesozoic, large rivers drained the Australian continent and 52 

filled the major offshore basins of the NW Shelf, within a fluvial to marginal marine 53 

setting (Bishop, 1999; Barber et al., 2003), creating important offshore hydrocarbon 54 

reservoirs. The southern Outer Banda Arc islands of Sumba, Timor, Babar and 55 

Tanimbar (Fig. 2) are assumed to include the onshore equivalents of these 56 

sediments. Mesozoic sandstones have been exposed on these islands due to 57 

subduction and collision processes in a complicated tectonic history. Based on 58 

heavy minerals and detrital zircon geochronology, Triassic and Jurassic sandstones 59 

were interpreted to contain detritus derived from Western and Central Australia, but 60 

also an important component previously not recognised, from the Bird’s Head region 61 

(Fig. 3), and some material from local Jurassic volcanism within the Inner Banda 62 

Block (Zimmermann and Hall, 2016). 63 

Late Jurassic rifting of continental slivers from the Australian margin 64 

has been described by various researchers (e.g. von Rad et al., 1982; Longley et al., 65 

2002; Heine and Müller, 2005; Hall et al., 2009; Hall, 2012; Heine et al., 2012; 66 

Gibbons et al., 2012). Tectonic blocks rifted from areas between the Exmouth 67 
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Plateau in the west and the Arafura Sea in the east, where separation of the 68 

continental blocks formed the Banda embayment north of Australia (Hall, 2002, 69 

2012; Charlton, 2012; Spakman and Hall, 2010), and left the Sula Spur (Klompé, 70 

1954) northeast of Australia. The clastic sediments deposited in the Outer Banda Arc 71 

islands before the Late Jurassic rifting were discussed by Zimmermann and Hall 72 

(2016). During the Cretaceous, the Australian-derived continental fragments moved 73 

northwards and were accreted to the Sundaland (Fig. 1) margin (e.g. Audley-74 

Charles, 1968; Hamilton, 1979; Wensink, 1994; Wakita et al., 1996; Parkinson et al., 75 

1998; Abdullah et al., 2000; Harris, 2006; Hall et al., 2009; Metcalfe, 2011; Hall, 76 

2012) and clastic sediments were deposited on this continental crust during their 77 

northward movement and after their arrival in SE Asia. During Australia–SE Asia 78 

collision, since the Early Miocene, slices of the SE Asian margin were thrust back 79 

onto the Australian continental margin and are now found in the Outer Banda Arc 80 

islands.  81 

The Cretaceous sandstones discussed in this paper were deposited 82 

after separation of blocks from the Gondwana margin in the Late Jurassic and before 83 

their Neogene thrusting onto the Australian margin in the Outer Banda Arc islands. 84 

Details are still not completely understood and are partly the subject of on-going 85 

research. We present petrology, heavy mineral analyses and U–Pb ages of detrital 86 

zircons from sandstones, siltstones and meta-sandstones. These data help to 87 

identify the origin and possible sources of detrital material and to consider previously 88 

debated tectonic fragmentation in the Banda Arc. 89 
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2. Post-Triassic Sundaland margin history 90 

The continental blocks rifted in the Late Jurassic were added to 91 

Sundaland in the Cretaceous to form what is now much of Borneo, East Java and 92 

West Sulawesi. Three principal blocks have been identified (Hall et al., 2009; 93 

Metcalfe, 2009; Hall, 2012): the Banda, Argo and Inner Banda blocks, which rifted to 94 

leave the oceanic Banda embayment in the northwest Australian margin. 95 

The Banda block was the first to be accreted to the Sundaland margin 96 

and is now identified with SW Borneo. For many years SW Borneo was interpreted 97 

as a fragment of Asian/Cathaysian origin (e.g. Hutchison, 1989; Metcalfe, 1988, 98 

1990, 1996). The area of the Schwaner Mountains and further south was described 99 

as the ‘Basement Complex’, ‘Continental Core’ or ‘Sunda Shield’ (van Bemmelen, 100 

1949) or the West Borneo Basement (Haile, 1974). It was considered to be an 101 

ancient continental area, but metamorphic rocks suggested to be Triassic or older 102 

(e.g. van Bemmelen, 1949; Haile, 1974; Tate, 1991; Tate and Hon, 1991) were 103 

undated and known only to be intruded by Cretaceous granitoids. SW Borneo 104 

includes Cretaceous and Jurassic granites in the Schwaner Mountains (Haile et al., 105 

1977; Davies et al., 2014) and the metamorphic rocks are now known to be 106 

Cretaceous (Davies et al., 2014). Recent work in Sarawak has identified the 107 

boundary of Triassic Sundaland and suggests the Banda/SW Borneo block arrived in 108 

the Early Cretaceous at c. 130 Ma (Hennig et al., 2017). 109 

SW Borneo is bounded on its southeast side by the Meratus suture, 110 

which can be traced from SW to NE from West Java to the Meratus Mountains of SE 111 

Borneo, considered by Hamilton (1979) to be the approximate southeastern 112 

boundary of Cretaceous continental crust. The Meratus suture separates SW Borneo 113 

from  other continental fragments added to the Sundaland margin later in the 114 
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Cretaceous. In the suture zone in Java and SE Borneo are ophiolitic, arc rocks and 115 

high pressure-low temperature metamorphic rocks which record subduction beneath 116 

Sundaland in the Early Cretaceous. Accretionary-collision complexes in SE Borneo 117 

and Java (Katili, 1971, 1973; Sukamto, 1975a,b; Sikumbang, 1986, 1990; Schiller et 118 

al., 1991; Wakita et al., 1994a,b, 1998; Parkinson et al., 1998; Wakita, 2000; 119 

Clements et al., 2009) include rocks formed by oceanic spreading, arc volcanism, 120 

oceanic and forearc sedimentation, and subduction-related metamorphism. K-Ar 121 

ages from metamorphic rocks summarised by Parkinson et al. (1998) indicate high 122 

pressure-low temperature metamorphism between 117 and 124 Ma, and radiolaria 123 

associated with pillow lavas in Java are Early Cretaceous (Wakita et al., 1994b). 124 

Based on evidence from SE Borneo, Sikumbang (1986, 1990) and Wakita et al. 125 

(1998) concluded that ophiolite emplacement and arc-continent collision was 126 

completed by about 90 Ma. 127 

Several authors (e.g. Luyendyk, 1974; Ricou, 1994;  Wakita et al., 128 

1996; Parkinson et al., 1998; Sribudiyani et al., 2003; van Leeuwen et al., 2007; 129 

Smyth et al., 2007) have suggested that continental fragments accreted to 130 

Sundaland in the Cretaceous, outboard of the Meratus suture, had a Gondwana 131 

origin. The identification of different blocks in Java, SE Borneo and Sulawesi and 132 

interpretation of their former position on the Australian margin are based largely on 133 

zircon age data from different areas. 134 

The Argo block forms the area that now includes much of East Java 135 

and West Sulawesi. Studies in East Java show that the southern part of the island is 136 

underlain by continental crust (Smyth et al., 2007) and suggest that there is similar 137 

crust beneath the Java Sea and in the forearc south of East Java (Deighton et al., 138 

2011; Granath et al., 2011; Nugraha and Hall, 2012). Inherited zircons in Cenozoic 139 
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sedimentary and igneous rocks of East Java range in age from Archean to Cenozoic. 140 

The distribution of zircons reveals two different sources. Clastic rocks in north and 141 

west parts of East Java contain Cretaceous zircons, which probably came from the 142 

Meratus suture or from SW Borneo. In contrast, the Early Cenozoic Southern 143 

Mountains volcanic arc of East Java includes abundant acid volcanic and intrusive 144 

rocks which contain only Archaean to Cambrian zircons. These indicate deep 145 

continental Gondwana crust below East Java which originated close to western 146 

Australia (Smyth et al., 2007, 2008). Australian-origin continental crust is also 147 

considered to underlie parts of the southern Makassar Straits and East Java Sea 148 

between Borneo and Java based on basement rocks encountered in exploration 149 

wells (e.g. Manur and Barraclough, 1994; Satyana, 2015). Deep seismic data 150 

suggest there is similar crust beneath the Java Sea south of Pulau Laut in SE 151 

Borneo (Emmet et al., 2009; Granath et al., 2011) and south of East Java (Deighton 152 

et al., 2011; Nugraha and Hall, 2012). 153 

Initial reconstructions (Hall et al., 2009; Hall, 2012) of the rifted blocks 154 

suggested that the Argo block included all of present-day East Java–West Sulawesi. 155 

Hennig et al. (2016) have since shown that zircon age data from NW Sulawesi 156 

indicate that the underlying continental crust originated in a position east of the Argo 157 

block, and formed part of an Inner Banda block. There are other indications that a 158 

single Argo block may be an over-simplification of the deep continental crust east of 159 

the Meratus suture, but reconstruction is difficult because basement rocks are limited 160 

to small areas and mainly overlain by Cenozoic rocks. Jurassic ammonites and 161 

bivalves reported from South Sulawesi (Sukamto et al., 1990; Sukamto and 162 

Westermann, 1993) suggest an Australian continental fragment at depth. Elsewhere 163 

in western Sulawesi there is evidence from inherited zircons, and from chemical 164 
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characteristics of Cenozoic igneous rocks, of underlying continental basement 165 

(Priadi et al., 1993, 1994; Bergman et al., 1996; Polvé et al., 1997, 2001; Elburg and 166 

Foden, 1999; Elburg et al., 2003). There are blueschists and other high pressure-low 167 

temperature metamorphic rocks known from inliers in the Bantimala and Barru areas 168 

in South Sulawesi (Sukamto and Supriatna, 1982; Miyazaki et al., 1996, 1998; 169 

Parkinson et al., 1998; Maulana et al., 2010, 2013) suggesting sutures between 170 

continental  blocks. Neogene potassic volcanics in SW Sulawesi do not show the 171 

Australian continental isotopic signatures shown by similar volcanic rocks further 172 

north in Sulawesi (Elburg et al., 2003) which may indicate an underlying suture. All 173 

the supposed suture rocks are very far east of the Meratus suture and cannot be 174 

connected to it; they could indicate the Argo block is actually made up of multiple 175 

continental fragments separated by sutures or alternatively the observations could 176 

be reconciled by postulating the Argo block was hyper-extended continental crust 177 

within which were zones of exhumed mantle and deep marine sediments. 178 

The character of the deep crust remains uncertain because there are 179 

so few areas exposing rocks older than Cenozoic. Geochemistry and 180 

palaeomagnetic studies suggest that Sumba formed part of the Sundaland margin by 181 

the Late Cretaceous (Wensink, 1994; Abdullah et al., 2000) but the character of the 182 

deep crust is unknown. 3He/4He ratios suggest that Australian continental crust was 183 

involved in genesis of magmas throughout the inner Banda arc from the Banda 184 

Ridges to Flores (Hilton et al., 1992). Similar isotope geochemical studies could help 185 

identify if the deep crust beneath Sumba is ancient continental or of younger arc 186 

origin. 187 

After the arrival of the Argo and Inner Banda blocks, subduction 188 

ceased around the Sundaland margin at c.90 Ma. Thus, the outer part of the SE 189 
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Sundaland margin was underlain largely by Australian-origin continental crust (Fig. 190 

4). Subsequently, there was a short-lived episode of subduction between the latest 191 

Cretaceous and Eocene. Extension in the Eocene formed the Makassar Straits, 192 

although the amount of extension in the South Makassar Straits was small (e.g. 193 

Situmorang, 1982; Johansen, 2007; Kupecz et al., 2013; Armandita et al., 2015), and 194 

there has been major extension of the eastern part of the region which includes 195 

Sulawesi and Sumba during Banda rollback from the Middle Miocene (Rigg and Hall, 196 

2012; Camplin and Hall, 2014; Nugraha and Hall, 2018). 197 

3. Stratigraphic background 198 

Fig. 2 shows a simplified stratigraphy of the Cretaceous siliciclastic 199 

sedimentary rocks investigated (sampling locations in supplementary data file 1). 200 

 201 

3.1 Sumba 202 

Upper Cretaceous (Coniacian to Campanian) turbidites of the Lasipu 203 

Formation (Fig. 5) in Sumba were described by Burrolet and Salle (1982) and von 204 

der Borch et al. (1983). Cretaceous ages were determined by fossil fragments, 205 

bivalves, molluscs and gastropods (Exogyra sp., Mytilidae sp., Parainoceramus sp., 206 

Platyceramus sp. and Actaeonella sp.) (von der Borch, 1983). Abdullah et al. (2000) 207 

described three magmatic episodes during the Cretaceous to Paleogene, generating 208 

pyroclastic rocks, basaltic–andesitic lava flows and granodioritic intrusions. 209 

Rocks collected in Sumba during this study were assigned to the Upper 210 

Cretaceous Lasipu Formation. Localities sampled are divided into the central, south-211 

central, western and eastern regions. This newly proposed subdivision highlights 212 
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important differences in diagenetic processes and low-grade metamorphism of the 213 

sediments: the key differences are massive highly indurated metamorphosed rocks, 214 

with the absence of mudstone in the north, thick siltstone beds interbedded with thin 215 

mudstone layers in the west, and cyclic siltstone-mudstone interbedded sequences, 216 

with intercalated sandstone beds in the south and east. A sedimentary log in Fig. 5 217 

shows an example of the well-bedded siltstone-sandstone intercalations (Fig. 5A) at 218 

Konda beach in south central Sumba, locally with channel structures (Fig. 5B) and 219 

layers up to 10-centimetre-thick of medium to coarse-grained sandstone (Fig. 5C). 220 

13 samples from various locations in Sumba were analysed petrologically, 9 for 221 

heavy minerals and 7 for zircon geochronology. SUM 06 contains recrystallised Late 222 

Cretaceous foraminifera (Globotruncana sp.) from a shallow inner neritic 223 

environment (M. BouDagher‐Fadel, pers. comm., 2012). 224 

 225 

3.2 Timor 226 

Timor consists predominantly of Mesozoic sedimentary rocks and 227 

exotic fragments, that were described as tectonically distributed over the island 228 

(Audley-Charles, 1986). An important feature is the suggested subdivision of units 229 

into 1) autochthonous components derived from the Australian continent (lower 230 

nappes) and 2) allochthonous units of non-Australian origin (upper nappes). These 231 

have been discussed by many researchers and termed the Banda Allochthon (e.g. 232 

Audley-Charles & Harris, 1990; Harris, 1991; Audley-Charles, 2011) and commonly 233 

explained by an alpine-style “overthrust model” (e.g. Carter et al., 1976; Barber, 234 

1979; Norvick, 1979; Brown and Earle, 1983; Audley-Charles, 1986; Harris, 1989; 235 

Audley-Charles and Harris, 1990). 236 
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Cretaceous sandstones in West Timor belong to the Oe Baat 237 

Formation (Sawyer et al., 1993) (Fig. 1) which is a massive calcareous sandstone of 238 

grey-green colour (Samples SZ 26, SZ 27 and SZ 47). In East Timor, Cretaceous 239 

sandstones have been assigned to the evenly bedded and finely laminated Seical 240 

Formation (ET 17). The Seical Formation was not previously recognised at the 241 

sampling location, and sandstones there had been interpreted to be Triassic as they 242 

resemble rocks of the Babulu Formation in West Timor (Audley-Charles (1968). 243 

However, the samples collected contain Late Albian‐Early Cenomanian foraminifera 244 

(Hedbergella sp., Favusella washitensis, Favusella sp.) from a shallow inner neritic 245 

environment (M. Boudagher-Fadel, pers. comm., 2012) and Cretaceous zircons. 246 

 247 

3.3 Babar 248 

The island of Babar is a typical mud volcano. Before this research no 249 

Cretaceous rocks had been reported from Babar. However, in central Babar there is 250 

a steep cliff of hard and dense fine-grained siltstone/meta-sandstone with common 251 

thick bedding (sample BAB 25). No fossils have been found. The hard and dense 252 

meta-sedimentary character of the siltstone closely resembles Cretaceous lithologies 253 

seen in Sumba and, like the Lasipu Formation, lithologies were associated with 254 

igneous intrusions. As discussed later, detrital zircon ages proved the maximum 255 

depositional age of these rocks to be Late Cretaceous. 256 

 257 

3.4 Tanimbar 258 

Mesozoic sandstones in Tanimbar are exposed on the western islands 259 

(Fig. 6A) that are tectonically separated from the main island to the south-southeast 260 
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(Kaye, 1989; Charlton et al., 1991). Cretaceous sandstones were assigned to the 261 

Ungar Formation and divided informally into two members (Charlton et al., 1991). 262 

We recognise the same sandstone members, but include a third intermediate red 263 

shale member, which contains radiolarian cherts dated by Jasin and Haile (1996) as 264 

uppermost Jurassic to Lower Cretaceous (Zimmermann and Hall, 2016). This 265 

member was informally named the Arumit Member (Charlton, pers. comm., 1996, in 266 

Jasin and Haile, 1996). The Ungar Formation members are: (1) Lower Sandstone 267 

Member, (2) Arumit Member, and (3) Upper Sandstone Member. Neither of the 268 

sandstone members has previously been dated. Palynomorphs indicate the Lower 269 

Sandstone Member is Upper Jurassic (Zimmermann and Hall, 2016). The Upper 270 

Sandstone Member must be Early Cretaceous or younger, based on the work of 271 

Jasin and Haile (1996). 272 

The Arumit Member forms an estimated 60m thick clear marker 273 

throughout the islands (Fig. 6B). It consists of well‐bedded thin red 274 

siltstone‐mudstone interbeds that dip steeply to the southwest (Fig. 6C and Fig. 6D). 275 

Four distinctive chert horizons were recognised within the member and are 276 

highlighted in the sedimentary log in Fig. 7. Cherts are between 7 and 15 cm thick 277 

and yield radiolaria that were dated by Jasin and Haile (1996). Two horizons were 278 

identified as Upper Jurassic (upper Tithonian‐Berriasian) and Lower Cretaceous 279 

(Valanginian‐Barremian) age. The contact of the Arumit Member with the Upper 280 

Sandstone Member is indicated in Fig. 6C, which is characterised by mud lenses 281 

and imbricated mud clasts within the sandstones. 282 

The Upper Sandstone Member of the Ungar Formation includes fine to 283 

medium-grained arkosic sandstones. Rocks are commonly massive bright yellowish-284 

brown. INPEX (pers. comm., 2012) provided comprehensive information for some 285 
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sandstones from the islands, based on microfossil analyses (foraminifera, 286 

nanoplankton, palynomorphs and radiolaria). The rocks collected for this research 287 

were correlated with these previously dated (Upper Jurassic - Lower Cretaceous) 288 

samples. 8 samples from various islets were analysed petrologically, 5 for heavy 289 

minerals and 4 for zircon geochronology. 290 

 291 

4. Methodology 292 

4.1 Petrology 293 

Point counting of at least 300 grains of quartz, feldspar and lithic rock 294 

fragments (>0.0625 mm) by standard methods (Galehouse, 1971) was used to 295 

acquire light mineral modes, shown on ternary plots for each unit (Dickinson and 296 

Suczek, 1979; Dickinson et al., 1983). The fields in the diagrams for QFL (Quartz-297 

Feldspar-Lithics) and QmFLt (Quartz monocrystalline-Feldspar-Lithic total) indicate 298 

possible derivation from a ‘continental block’, ‘recycled orogen’ or ‘magmatic arc’. 299 

Textural categories from 1 to 4 were assigned to qualitatively show 300 

sorting and roundness of grains. Sorting categories are (1) poorly sorted, (2) 301 

moderately sorted, (3) well sorted and (4) very well sorted. Rounding categories are 302 

(1) angular, (2) sub-angular, (3) sub-rounded and (4) rounded. 303 

 304 

4.2 Heavy Minerals 305 

Detrital heavy minerals were analysed using standard methods after 306 

Mange and Maurer (1992). Samples collected were crushed, decarbonated in 10% 307 

acetic acid, sieved and washed (meshes of 0.063mm and 0.250mm) and separated 308 
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in a funnel using sodium polytungstate (SPT: 3Na2WO4.9WO3.H2O) or the lithium 309 

equivalent lithium polytungstate (LST), which have densities between 2.82–2.95 g/ml 310 

at room temperature. Identification of heavy minerals was performed manually by 311 

using an optical polarising microscope (NIKON Eclipse Lv 100) and additional SEM 312 

analyses were performed to confirm selected grains. The ribbon count method used 313 

was described by Galehouse (1971). 314 

Common heavy minerals were grouped by their most likely protoliths, 315 

based on suggested source rock associations (Feo-Codecido, 1956; Mange, 2002; 316 

Nichols, 2009). Zircon, tourmaline, anatase, monazite, topaz and xenotime are 317 

considered to indicate acid igneous (granitic) sources. Pyroxene (Ortho–OPX and 318 

Clino–CPX), titanite (sphene) and chromium spinel represent basic igneous and 319 

ultrabasic (commonly arc-related) sources. Rutile, garnet, epidote, andalusite, 320 

sillimanite, kyanite, chlorite, staurolite and corundum are interpreted to indicate 321 

metamorphic sources, mainly of continental character. Other minerals, such as 322 

amphibole, baryte, brookite, zoisite, clinozoisite, sphalerite, prehnite, chloritoid, 323 

cassiterite, allanite and vesuvianite are present, either in very low percentages or 324 

can be assigned to more than one group. Apatite is a very common mineral and 325 

abundant in all samples of this study (up to 50%). Since it can be found in different 326 

groups (acid igneous, granite pegmatite, contact metamorphic and basic igneous), it 327 

is treated separately. 328 

Varietal studies of zircon (colourless: euhedral, subhedral, subrounded, 329 

rounded, anhedral, elongate, zoned; purple: rounded, euhedral; brown, matrix-330 

attached) and tourmaline (brown: rounded, euhedral; blue: rounded, euhedral; green: 331 

all shapes) were performed during counting. Three types of grain shapes were 332 

recognised: 1) euhedral, subhedral, anhedral, elongated and zoned zircons were 333 
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grouped into an ‘euhedral’ group; 2) rounded and subrounded zircons were grouped 334 

into a ‘rounded’ group; 3) grains with matrix attached represent the third group. 335 

Tourmaline grains were classified as either rounded or euhedral. 336 

 337 

4.3 Zircon geochronology 338 

Geochronology, using detrital zircons, is a powerful method to assess 339 

provenance and correlate sedimentary units (e.g. Goldstein et al., 1997; Cawood et 340 

al., 1999, 2003; Fedo et al., 2003; Gehrels et al., 2006; Sevastjanova et al., 2010; 341 

Schoene, 2014). The maximum depositional age (MDA) of sedimentary rocks can be 342 

determined (Dickinson and Gehrels, 2009) and geochronology is a valuable tool to 343 

improve tectonic models and palaeogeographic reconstructions (Murphy et al., 344 

2004). 345 

Selected samples were imaged with scanning electron microscope 346 

cathodoluminescence (SEM-CL) at University College London. U-Pb ages were 347 

acquired at University College London using Laser Ablation Inductively Coupled 348 

Plasma Mass Spectrometry (LA-ICPMS). U and Pb isotopes were analysed, using 349 

the following parameters: spot sizes of the ablation pits: 20-35μm; pulse repetition: 8-350 

10Hz; dwell time: 25s; warm-up: 10-15s; wash-out: 18s. The ablated material was 351 

carried in helium gas into the plasma. A quadrupole mass spectrometer (Agilent 352 

Technologies 7700 Series ICP-MS) was used. Standards that were used were the 353 

Plešovice zircon (337.13±0.37 Ma) by Sláma et al. (2008) and a reference glass 354 

NIST SRM 612 (Pearce et al., 1997). 355 

987 selected zircons (Sumba 321, West Timor 133, East Timor 141, 356 

Tanimbar 392) were chosen to investigate the relationship of grain shapes and the 357 
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analysed ages. The aim was to distinguish optically between rounded grains with 358 

recycled histories and euhedral grains, which could have formed close to the time of 359 

deposition. A simplified classification scheme was applied, using CL images of the 360 

mounted zircons. Morphologies were subdivided into four groups: 1) euhedral; 2) 361 

subhedral; 3) subrounded; 4) rounded. 362 

 363 

5. Results 364 

5.1 Light Minerals: Textures and petrography 365 

Fig. 8 shows the results of point counting and textural analysis of 366 

sandstones from the various islands (tables in supplementary data 2). In general, 367 

samples are dominated by quartz, with varying abundances of feldspar and lithic 368 

fragments. Sorting and rounding vary between the islands.  369 

13 samples from the Cretaceous Lasipu Formation in Sumba were 370 

analysed. Grains are angular to subrounded (2-3) and moderately to very well-sorted 371 

(2-4). Compositions are dominated by quartz (24-67%), lithic fragments (17-59%) 372 

and feldspar (14-26%). However, samples show slight variations of the modal 373 

composition between the different areas (Fig. 8). Central and western Sumba are 374 

characterised by high volcanic quartz and K-feldspar contents, while south central 375 

and eastern Sumba sandstones are dominated by polycrystalline quartz. Samples 376 

studied, commonly show a ‘recycled orogen’ to ‘magmatic arc’ modal composition on 377 

the QFL diagram and a strong magmatic arc origin on the QmFLt diagram (Fig. 8). 378 

Textures contain high rounding and sorting values, which plot across the mature 379 

field. 380 
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In West Timor sandstones, the grains are sub-angular and moderately 381 

to well sorted. Compositions are dominated by quartz (50-66%), with varying content 382 

of feldspar (16-27%) and lithic fragments (18-23%). Quartz types are dominated by 383 

polycrystalline quartz (QFL-total: 50% Qp vs 29% Qv vs 21% Qm). As shown in Fig. 384 

8, samples plot in the recycled orogen field on the QFL diagram and within the 385 

dissected magmatic arc on the QmFLt diagram. On the textures plot, samples 386 

scatter across the immature to mature field boundary (Fig.8). 387 

East Timor sandstones contain well sorted (3) sub-angular to rounded 388 

(2-4) grains. Marked predominance of quartz (80-89%) is characteristic (Fig. 8). 389 

There are also feldspars (5-11%) and lithic fragments (6-9%). The QFL and QmFLt 390 

diagrams indicate a ‘quartzose recycled orogen’ modal composition. 391 

Cretaceous samples from the Upper Sandstone Member of the Ungar 392 

Formation in Tanimbar are quartz-rich (77-97%) arenites (Fig. 8). Grains are 393 

commonly sub-rounded to rounded (3-4) and moderately to very well sorted (2-4). 394 

Lithic fragments (max. 9%) and feldspar (max. 14%) are insignificant. Modal 395 

compositions plot in the ‘recycled orogen’/’continental block’ (QFL) to a ’quartzose 396 

recycled’ (QmFLt) fields. Rounding and sorting indicate a texturally mature polycyclic 397 

character (Fig. 8). 398 

 399 

5.2 Heavy Minerals and their protoliths 400 

Heavy minerals are mainly ultra-stable minerals zircon, tourmaline and 401 

rutile, accompanied by apatite, garnet, subordinate andalusite and minor chlorite 402 

(tables in supplementary files 3). Fig. 9 summarises heavy mineral assemblages, 403 

protoliths and zircon and tourmaline morphology types. 404 
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The Lasipu Formation in Sumba has a significant metamorphic signal 405 

(39-82%) that reflects the abundance of mainly garnet and andalusite (Fig. 9). 406 

Sandstones contain on average 14% acid igneous and 2% basic igneous grains. 407 

There is a mixture of rounded (17-67%) and euhedral zircon grains (12-48%). An 408 

average of 36% of zircon grains are attached to a matrix. Tourmaline is generally 409 

less abundant, but dominated by euhedral grains. 410 

The West Timor sandstone contains a metamorphic (38%) and acidic 411 

igneous (29%) signal indicated by chlorite and zircon (Fig. 9). Zircon grains are a 412 

mixture of rounded (48%), euhedral (25%) and attached to matrix (27%). 413 

The East Timor sandstone is dominated by grains from an acidic 414 

igneous protolith (49%), based on zircon and tourmaline, and a metamorphic source 415 

(33%) mainly based on rutile and andalusite (Fig. 9). Zircon grains are mainly 416 

rounded (~65%) and tourmalines are dominated by euhedral grain shapes (~74%). 417 

The Babar sandstone does not contain a significant amount of ultra-418 

stable heavy minerals. The strong metamorphic signal (Fig. 9) is based on chlorite 419 

which represents 81% of the sample. 420 

Tanimbar sandstones consist on average of 52% acid igneous grains 421 

(mainly zircon and tourmaline). 32% metamorphic sources are mainly based on 422 

rutile, andalusite and garnet. Morphologies of zircons are dominantly euhedral (42-423 

66%) and rounded (34-54%). Tourmalines on average are 57% euhedral and 43% 424 

rounded. 425 

 426 
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5.3 Zircon Geochronology 427 

The numerical ages assigned here to periods, epochs and stages are 428 

based on Gradstein et al. (2012). Data tables of LA-ICP-MS analyses are provided in 429 

the supplementary data 4, which contains 207Pb/235U ratios, 206Pb/238U ratios, 430 

calculated ages and preferred ages, considering exclusion of discordant grains. 431 

Histograms of detrital zircon ages and according grain morphologies of Cretaceous 432 

sandstones in the Banda Arc show generally a mixture of different age populations 433 

(Fig. 10), with similar proportions of Precambrian to Phanerozoic grains. 434 

In Sumba 583 concordant LA‐ICP‐MS U‐Pb detrital zircon ages were 435 

obtained from samples SUM 1, SUM 6, SUM 10, SUM 21, SUM 22, SUM 24 and 436 

SUM 30. The youngest zircon ages (71.9±1 Ma in SUM 6 to 84.7±1.6 Ma in SUM 10) 437 

constrain the maximum depositional age (MDA) as Campanian to Maastrichtian 438 

(mean age of three youngest overlapping zircon ages 69.3 Ma). Samples contain 439 

zircons with 48.5% Phanerozoic, 47.9% Proterozoic and 3.6% Archean ages. Most 440 

abundant age populations (Fig. 10A) are Neoproterozoic (20.6%), Cretaceous 441 

(19.9%) and Mesoproterozoic (14.9%). The main peaks are at 80-100, 230, 550, 442 

1200 and 1600 Ma. Zircon grain morphologies of Cretaceous grains are dominated 443 

by euhedral and subhedral grains, Permian-Triassic zircons are euhedral and 444 

subhedral, Cambrian to Carboniferous zircons are subhedral to subrounded and 445 

Precambrian grains are mainly subrounded and rounded (Fig. 10B). 446 

Sample SZ 47 from West Timor was sampled at a location mapped as 447 

the Oe Baat Formation which has a Tithonian to Berriasian age (Charlton, 1987; 448 

Sawyer et al., 1993). It contains 132 concordant zircon ages. However, the sample 449 

contains 16 Cretaceous grains and the youngest zircon age (75.5±1.4 Ma) indicates 450 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

a Campanian (Late Cretaceous) MDA, which means that it cannot be part of the Oe 451 

Baat Formation. This shows the value of the detrital zircon ages which indicate that a 452 

sandstone mapped previously as an older formation belongs to a different, so far 453 

unnamed, formation. SZ 47 contains 40.9% Phanerozoic, 55.3% Proterozoic, and 454 

3.8% Archean ages. There are no Jurassic grains. The most abundant age 455 

populations are Neoproterozoic (22.7%), Paleoproterozoic (16.7%) and 456 

Mesoproterozoic (15.9%). The main peaks are at 85, 220‐240, 550 and 1600 Ma 457 

(Fig. 10A). Zircon grains with Cretaceous ages are dominated by euhedral and 458 

subhedral grains. Paleozoic zircons show a mix of subrounded/rounded and 459 

euhedral/subhedral grain morphologies. Proterozoic zircons are mainly rounded and 460 

subrounded (Fig. 10B). It is not clear to which formation this sandstone should be 461 

assigned, but, there are clearly Cretaceous or younger sandstones in southern West 462 

Timor. Sample SZ 37 was collected in the Kolbano area and also mapped as the Oe 463 

Baat Formation and contains belemnites supporting this assignment. However, it 464 

contains a single Cretaceous zircon, with one Permian grain, and abundant 465 

Proterozoic zircons, but also contains Eocene foraminifera (M. BouDagher‐Fadel, 466 

pers. comm., 2015). The belemnites must therefore be reworked. The Eocene rocks 467 

in Kolbano were all previously assumed to be carbonates only and clearly need 468 

remapping (A.J. Barber, pers. comm., 2018). 469 

ET 17 in East Timor provided 144 concordant analyses. The youngest 470 

zircon age (97.3±1.3 Ma) constrains the MDA to the Late Cretaceous (Cenomanian). 471 

Zircon populations include 58.9% Phanerozoic, 39.7% Proterozoic and 1.4% 472 

Archean ages. The most abundant age populations are Cambrian to Carboniferous 473 

(23.6%), Neoproterozoic (22.2%) and Permo‐Triassic (18.8%). There is a small 474 

population of Cretaceous zircons (6.9%) and a greater number of Jurassic grains 475 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(10.4%) The main peaks are at 95, 170, 260, 280 and 550 Ma (Fig. 10A). There is no 476 

1800 Ma peak. It is striking that most zircons have subhedral and euhedral grain 477 

morphologies for most populations. The predominance of euhedral and subhedral 478 

grains for Cretaceous, Jurassic, Permo‐Triassic and Cambrian‐Carboniferous 479 

suggests little recycling of most zircons (Fig. 10B). 480 

No Cretaceous rocks have previously been described from Babar. As 481 

mentioned earlier, sandstones are unfossiliferous and undated. The youngest zircon 482 

(104.7±1Ma) in sample BAB 25 from Babar indicates an Early Cretaceous (Albian) 483 

MDA. Sample BAB 25 yielded only 17 concordant analyses and the ages must be 484 

interpreted with care as some populations are likely to have been missed but the 485 

ages are comparable to populations in Cretaceous sandstones from Tanimbar and 486 

East Timor (Fig. 10A). The sample consists of 70.6% Phanerozoic, 23.5% 487 

Proterozoic and 5.9% Archean ages. Most abundant ages are Permo‐Triassic 488 

(41.2%), Paleoproterozoic (23.5%) and Cretaceous (11.8%). 489 

Cretaceous samples from Tanimbar belong to the Upper Sandstone 490 

Member of the Ungar Formation. Charlton et al. (2009) suggested an Early 491 

Cretaceous age which is supported by palynomorph analyses (INPEX, pers. comm., 492 

2012). Combined Cretaceous samples yielded 429 concordant analyses from 493 

samples TAN 11 (MDA 84.6±1 Ma), TAN 28 (MDA 83.7±1 Ma), TAN 31 (89.5±1 Ma) 494 

and TAN 45 (103.6±2 Ma). The youngest zircon ages within this group indicate an 495 

MDA of Santonian (Late Cretaceous), and an age range of Santonian to Albian, 496 

which is younger than previously suggested. Cretaceous samples contain zircons of 497 

54.3% Phanerozoic, 43.8% Proterozoic and 1.9% Archean ages. The most abundant 498 

age populations are Permo‐Triassic (21.2%), Neoproterozoic (20.3%) and Cambrian 499 

to Carboniferous (15.6%). Important Cretaceous (10.3%) and Jurassic (~8%) 500 
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populations are also present. The main peaks are at 100, 150‐170, 240‐280, 550, 501 

1200 and 1800 Ma (Fig. 10A). It is striking that most zircons show subhedral and 502 

euhedral grain morphologies for Mesozoic and Paleozoic populations (Fig. 10B). 503 

 504 

6. Discussion 505 

Quartz‐rich sandstones from Sumba, West Timor, East Timor, Babar 506 

and Tanimbar vary in light and heavy mineral compositions, which generally indicate 507 

mixed sources (Fig. 8). Slight differences in the modal compositions and textural 508 

analyses suggest derivation from a magmatic arc for Sumba and West Timor 509 

(immature to mature character with a mix of euhedral and rounded grains) and a 510 

recycled orogen for East Timor and Tanimbar, where morphologies are 511 

predominantly rounded. 512 

Heavy mineral compositions are dominated by high concentrations of 513 

metamorphic minerals (mainly garnet and andalusite) in Sumba and West Timor 514 

(Fig. 9). In contrast, East Timor and Tanimbar contain high abundances of rounded 515 

zircon and tourmaline which supports the multiply recycled sedimentary character of 516 

grains from an acidic igneous source. 517 

Zircon populations in Cretaceous sandstones of the Banda Arc islands 518 

resemble each other (Fig. 10). All islands contain Cretaceous zircons that are 519 

predominantly euhedral and subhedral, which suggests nearby volcanic sources at 520 

the time of deposition. The general distribution of age populations and corresponding 521 

grain morphologies suggest a mixture of different sources. However, differences 522 

between Sumba–West Timor (SWT) and Tanimbar–East Timor (TET) are 523 

noteworthy. SWT shows common Paleoproterozoic (1.5‐1.8 Ga), Mesoproterozoic 524 
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(1.2 Ga) and Neoproterozoic (500‐650 Ma) peaks, but in TET the 1.8 Ga population 525 

is significantly lower. The most striking feature in TET is the abundance of Jurassic 526 

zircons that are missing in SWT and in Jurassic sandstones, such as the Lower 527 

Sandstone Member of the Ungar Formation, shown in Fig. 11 (from Zimmermann 528 

and Hall, 2016). The 550 Ma peak is present in all Cretaceous samples, but missing 529 

in most Triassic and Jurassic formations. The Cretaceous sandstone from Babar 530 

yielded only 17 concordant grains, including 2 Cretaceous ages. Lithologically it 531 

resembles the Sumba Lasipu Formation, but the small number of zircons includes a 532 

Jurassic grain, and this sample therefore resembles East Timor and Tanimbar 533 

sandstones more closely rather than those from Sumba and West Timor. 534 

Furthermore, there are abundant Permian‐Triassic and Cambrian to Carboniferous 535 

populations in TET, but grains of this age are of minor significance in SWT (Fig. 10 536 

and Fig. 11). 537 

 538 

6.1 Possible Sources 539 

Fig. 12 shows zircon age histograms for SE Asian units that contain 540 

Cretaceous and Jurassic zircons, such as the Schwaner Mountains in Borneo 541 

(Davies et al., 2014) and Central Sulawesi, including inherited ages from 542 

metamorphic and S-type granitoids (Hennig et al., 2016). In contrast, autochthonous 543 

Cretaceous deposits that remained in Australia, such as well samples from the 544 

Exmouth Plateau and Caswell Plateau (Southgate et al., 2011; Lewis and Sircombe, 545 

2013), do not contain any, or very few, Phanerozoic zircons. 546 

 547 
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6.1.1 Pre-Breakup sources 548 

Provenance and geochronology studies of Triassic and Jurassic 549 

sandstones from autochthonous formations in the Banda Arc, shown in Fig. 11 550 

(Zimmermann and Hall, 2016), together with studies along the Australian NW Shelf 551 

(Southgate et al., 2011; Lewis and Sircombe, 2013) (Fig. 12), the Bird’s Head 552 

(Gunawan et al., 2012) and Central Sulawesi (Hennig et al., 2016) are a useful guide 553 

to linking sandstones to likely sources in Western Australia, Central Australia and the 554 

Bird’s Head region (Fig. 13). 555 

 556 

6.1.2 Post- Breakup sources 557 

Continental fragments rifted from the northern Australian continent in 558 

the Late Jurassic (Fig. 3). Collision of these allochthonous fragments in the 559 

Cretaceous added the Argo, Banda and Inner Banda Blocks to the Sundaland 560 

margin (Fig. 4). After their arrival, the siliciclastic sediments deposited had sources in 561 

SE Asia including igneous rocks and reworked older crust. Australian material 562 

(igneous, metamorphic and sedimentary) that had been transported with the 563 

fragments and included inherited Precambrian zircons from continental crust with a 564 

west Australian origin (e.g. beneath East Java), as reported by Smyth et al. (2007, 565 

2008) and Hall et al. (2009). Jurassic volcanic activity was suggested by 566 

Zimmermann and Hall (2016), based on zircons in West Timor sandstones, with a 567 

source along the NW Shelf of Australia within the southern Banda Block–Inner 568 

Banda Block (Hennig et al., 2016). Volcanic activity was driven by the break-up of 569 

Gondwana and the subsequent fragmentation and drift of continental Australian 570 

blocks. 571 
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The most common Cretaceous age peaks in this study are different in 572 

SWT and TET; they are c. 90-80 Ma in Sumba and West Timor (SWT), and c. 110-573 

90 Ma (minor 130 Ma) in East Timor, Babar and Tanimbar (TET). Gunawan et al. 574 

(2012) interpreted Late Cretaceous ages from the Sirga Formation (c. 88 Ma) in the 575 

Bird's Head as most likely to have been derived from a local source. Abundant 576 

granites of Cretaceous age in the Borneo Schwaner Mountains (Banda Block) were 577 

interpreted as having been derived from pulses of magmatic activity around 112, 98, 578 

84 and 76 Ma (Davies et al., 2014). Common populations in the granitoids are 579 

120‐100 Ma and 90‐80 Ma. In contrast, Cretaceous granodiorite intrusions from 580 

Sumba are younger and were dated at 86-77 Ma and 71-56 Ma (Abdullah et al., 581 

2000). 582 

Fig. 13 shows a map that is based on previous studies in greater 583 

Australia and SE Asia, highlighting the islands investigated and possible main 584 

regions (i.e. granitoid bodies, cratons and fragments) that could have supplied 585 

material to the Banda region. 586 

 587 

6.2 Provenance of Cretaceous sandstones in the Banda Arc 588 

The Schwaner Mountains in Borneo (granites generally older than c. 86 589 

Ma) and granodiorite intrusions from Sumba (younger than c. 86 Ma) are the most 590 

probable sources of contemporaneous Cretaceous zircons (Fig. 10 and Fig. 12). 591 

However, older zircons must have come from other places since pre-Cretaceous 592 

zircons are absent in the north Schwaner Mountains, although a few Jurassic 593 

granites are known form the south Schwaner Mountains, and pre-Cretaceous rocks 594 

are not known from Sumba. Significant Archean, Neo and Meso‐Proterozoic 595 
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populations show similarities to autochthonous Triassic-Jurassic and Cretaceous 596 

sandstones in the Banda Arc (Fig. 11) and the Australian NW Shelf (Fig. 12). These 597 

were mainly derived from Western and North/Central Australia and the Bird’s Head. 598 

This also explains abundant Permian‐Triassic and Cambrian to Carboniferous 599 

populations in TET and SWT. Cretaceous zircons are missing in the autochthonous 600 

Australian units and support a SE Asian setting for the Banda Arc Cretaceous 601 

sandstones that form part of the Banda Allochthon (BA) or Banda Terrane (Audley-602 

Charles, 2011) for the individual islands: BA West Timor, BA East Timor, BA Babar 603 

and BA Tanimbar. 604 

In order to estimate the possible contribution of different sources, a 605 

cumulative percentage plot in Fig. 14A highlights relative abundances of ages and 606 

probable sources. TET contains abundant Jurassic zircons that are missing in SWT 607 

and in Jurassic sediments within the Argo Block (e.g. origin of the Lower Sandstone 608 

Member of the Ungar Formation in Fig. 11). Hence, a geographical separation with 609 

different provenance is necessary (Fig. 14B). The ultimate Jurassic source was 610 

probably located within the Banda Block/Inner Banda Block. 611 

A Cretaceous palaeogeographic reconstruction with major sediment 612 

transport directions (Fig. 14B) shows suggested sources for Cretaceous formations 613 

in the Banda Arc that are now part of the Banda Allochthon, including West Timor 614 

(BA-WT), East Timor (BA-ET), Babar (BA-B), and Tanimbar (BA-T). The heavy 615 

mineral and zircon age data suggest a syn-sedimentary Cretaceous source in the 616 

Schwaner Mountains and Sumba, together with recycling of Permian-Triassic and 617 

Jurassic pre-rift units. 618 

Data from the Northwest Shelf of Australia (Southgate et al., 2011; 619 

Lewis and Sircombe, 2013), Java (Smyth et al., 2003, 2007), Borneo (Davies et al., 620 
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2014) and Sulawesi (Hennig et al., 2016) were included (Fig. 14A) to highlight age 621 

similarities and assess possible reconstructions. Trends can be recognized by 622 

decreasing or increasing percentages of single zircon populations. Ultimate main 623 

sources for the Banda Allochthon sandstones are a mix of Cretaceous populations 624 

derived from Sundaland (Schwaner Mountains) and zircons derived from pre-625 

Cretaceous rocks formed, or deposited before separation from greater Australia. 626 

Single grain morphologies of zircons analysed (Fig. 10B) support interpretations of 627 

contemporaneous first cycle Cretaceous grains and a Permian‐Triassic signal. 628 

Rounded Proterozoic (Australian) grains are also mixed with subhedral grains 629 

indicating differences in recycling of Australian cratons.  630 

In Sumba, the principal zircon populations indicate sources in Western 631 

Australia (33%), North/Central Australia (26%), Borneo/Sumba (24%) and the Bird’s 632 

Head region (16%) (Fig. 14A). 57% of Cretaceous zircons have ages less than c. 86 633 

Ma, indicating a relationship to the Sumba granodiorites and/or the later eruptive 634 

stages of the Schwaner Mountains. Based on previous research (Sallé, 1982; von 635 

der Borch et al., 1983) and new field observations the rocks are interpreted as 636 

turbidites deposited in deep water. The variation in rocks in the central part of the 637 

island and around the south and southwest coast suggest facies changes along the 638 

shelf and slope. West Timor (BA-WT) contains similar population percentages as 639 

Sumba, mainly from Western Australia (36%), North/Central Australia (33%), 640 

Borneo/Sumba (12%) and the Bird’s Head (19%) (Fig. 14A). 31% of the Cretaceous 641 

population are younger than 86 Ma indicating input from Sumba granodiorites and/or 642 

the later eruptive stages of the Schwaner Mountains. 643 

East Timor (BA-ET) is sourced by Western Australia (35%), the Bird’s 644 

Head (31%), North/Central Australia (17%), the Banda Block (10%) and Borneo 645 
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(7%), of which >100 Ma old zircons dominate (80%), indicating a probable source in 646 

the Schwaner Mountains, whereas younger (<86 Ma) Sumba ages are absent. 647 

In Tanimbar (BA-T), the main sources are similar to East Timor, 648 

deriving from Western Australia (31%), the Bird’s Head (28%), North/Central 649 

Australia (23%), the Banda Block (8%) and Borneo (10%) (Fig. 14A). The 650 

Cretaceous population is strongly dominated by >86 Ma zircons (95%), indicating a 651 

likely source in the Schwaner Mountains with very minor possible contribution from 652 

Sumba. Thus, we suggest that sediment was transported to the site of deposition 653 

mainly from the west but also from the east (Fig. 14B). 654 

As noted before, one Cretaceous sample from Babar (BA-B) yields 655 

only 17 concordant U‐Pb zircon ages and it is not likely that such a small number of 656 

grains provides a representative sample. However, the few ages do suggest possible 657 

provenance trends. The main features are similarities to Cretaceous samples from 658 

East Timor and Tanimbar, suggesting the geographical location of the BA-B 659 

fragment was where it is now, between BA-ET and BA-T (Fig. 14B). 660 

 661 

6.3 Tectonic Evolution of the Banda Allochthon 662 

Previous researchers (e.g. Wensink, 1994; Abdullah et al., 2000; Hall 663 

et al., 2009; Hall, 2012; Metcalfe, 2013) proposed models with fragments derived 664 

from Australia colliding with Sundaland. Modifications of previous palaeogeographic 665 

and tectonic reconstructions (Hall, 2012) are suggested here to locations of 666 

individual fragments and evolution of sediment supply, following Triassic and 667 

Jurassic reconstructions by Zimmermann and Hall (2016). Fig. 15A displays the 668 

rifting of fragments (Argo, Banda and Inner Banda) from the Early Cretaceous (130 669 
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Ma) and the situation within the Sundaland margin in the Late Cretaceous (75 Ma). 670 

The figures show the drift history to the north and collision with Sundaland with 671 

interpreted locations of the Banda Allochthon fragments in the Sundaland margin at 672 

75 Ma. Sumba and BA-WT (SWT) are situated at the southern edge of Sundaland 673 

and were supplied by sediment from the north (Borneo) and east by local erosion of 674 

the Argo Block. BA-ET, BA-B and BA-T (TET) were situated at the eastern margin. 675 

Sediment was mainly derived from the east (Borneo and West Sulawesi) and from 676 

the north (reworking of the southern edge of the inner Banda Block). 677 

Interpreted Cenozoic movements to the present-day locations of 678 

different fragments are shown in Fig. 15B. At around 23 Ma, the most northerly part 679 

of Australia (Sula Spur) collided with Sundaland, followed by subduction hinge 680 

rollback into the Banda Embayment (Spakman and Hall, 2010) and initial 681 

fragmentation of the Sula Spur (from c. 15 Ma). 682 

The 5 Ma palaeogeographic map shows the setting shortly before the 683 

collision of the Banda volcanic arc with the Australian continent and the resulting 684 

emplacement of the Banda Allochthon. The present-day configuration was reached 685 

by overthrusting of these units on top of Mesozoic and pre‐Triassic autochthonous 686 

(Gondwanan) sediments and basement, coupled with rapid uplift that created the 687 

Outer Banda Arc Islands. 688 

 689 

7. Conclusions 690 

Earlier studies of the Northwest Shelf of Australia identified sources for 691 

Permian-Triassic and Jurassic sandstones in Central and Western Australia and the 692 

Bird’s Head, depositing the pre-breakup sequence. From the Late Jurassic, rifting of 693 
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the Australian Gondwana margin caused fragmentation and separation into blocks 694 

which were accreted to Sundaland in the Early and Late Cretaceous. 695 

Cretaceous sandstones were deposited unconformably on top of the 696 

pre-breakup sequence at the southeastern margin of Sundaland in what was to 697 

become the Banda Allochthon. The sandstones commonly contain significant 698 

contents of volcanic quartz, feldspar and lithic fragments, indicating mixed sources 699 

for the fragments that later became Sumba, BA-West Timor, BA-East Timor, BA-700 

Babar and BA-Tanimbar. The principal source rocks are suggested to be of 701 

metamorphic origin in Sumba and West Timor (SWT), and acidic igneous and 702 

recycled sedimentary rocks in East Timor and Tanimbar (TET). Contemporaneous 703 

Cretaceous igneous sources include Sumba and the Schwaner Mountains within 704 

Sundaland. Variations between the SWT and TET fragments suggest differences in 705 

provenance, most likely due to geographical separation along the southern shelf of 706 

Sundaland. Neogene extension further isolated these Cretaceous sandstones and 707 

Neogene collision processes moved these fragments into the Outer Banda Arc 708 

Islands, where they are overthrust and now re-incorporated in the Australia margin. 709 

 710 
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Figure Captions 1153 

Fig. 1: Simplified map of SE Asia showing the Banda Arc Islands and blocks that 1154 

rifted from Gondwana and were added by accretion to Sundaland (modified from Hall 1155 

and Sevastjanova, 2012). 1156 

Fig. 2: The Banda Arc Islands discussed in this paper: Sumba, Timor, Babar and 1157 

Tanimbar, showing key features of the stratigraphy of each island and the Mesozoic 1158 

formations (Fm=Formation) that were analysed, with sample locations. Deep marine 1159 

samples are highlighted in yellow and shallow marine samples in blue. 1160 

Fig. 3: Pre-breakup reconstruction in the Triassic showing the principal blocks rifted 1161 

in the Jurassic with interpreted major sediment transport directions and suggested 1162 

sources (from Zimmermann and Hall, 2016). Dark coloured areas are potential 1163 

sources of zircon age populations. 1164 

Fig. 4: Reconstruction of Sundaland margin in the Cretaceous at c. 90 Ma after 1165 

accretion of continental blocks rifted from the Banda embayment, based on Smyth et 1166 

al. (2007), Hall et al. (2009), Hall (2012), and Hennig et al. (2016). The Banda block 1167 

is present-day SW Borneo, the Argo block includes East Java and parts of West 1168 

Sulawesi, and the Inner Banda block includes NW Sulawesi, and parts of NE 1169 

Borneo. 1170 

Fig. 5: Sedimentary log of the well-bedded siltstone-sandstone intercalations at 1171 

Konda Beach in south central Sumba; A) Interbedded sandstones and siltstones with 1172 

up to 5 centimetres thick sandstone layers and internal fining upwards units; B) 1173 

Small channel in siltstone sequence; C) Layer of a 10 centimetres thick medium to 1174 

coarse-grained sandstone. 1175 

Fig. 6: A) Simplified geological map of the Tanimbar Islands, based on data collected 1176 

in the field and structural interpretations modified from Kaye (1989); B) Panoramic 1177 

view of the Arumit Member on Ungar Island; C) Well-bedded interbedded siltstones 1178 

and mudstones; D) Contact of red shales of the Arumit Member with the Upper 1179 

Sandstone Member. 1180 

Fig. 7: Sedimentary log of the Arumit Member of the Ungar Formation, showing 1181 

details of the succession on Ungar Island and its interpreted relationship to the 1182 
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Lower and Upper Sandstone Members. Chert layers are highlighted in red and 1183 

radiolarian ages are based on Jasin and Haile (1996). 1184 

Fig. 8: Summary of light mineral point counting of Cretaceous sandstones from the 1185 

various islands. Ternary plots after Dickinson et al. (1983) showing possible 1186 

provenance affiliation (Q – Quartz, F – Feldspar, L – Lithic fragments, Qm – 1187 

Monocrystalline quartz, Lt – Total lithic fragments). Textures show assessments of 1188 

sorting and rounding using simple number schemes which were used to estimate 1189 

maturity. 1190 

Fig. 9: Summary plots of heavy mineral percentages, interpreted protoliths and 1191 

varietal morphology of Cretaceous sandstones from the various islands. 1192 

Fig. 10: Histograms showing grouped zircon ages for Cretaceous formations from 1193 

islands in the Banda Arc with possible sources. Bin width on the left (0-500 Ma) is 10 1194 

Ma, on the right (500-4000 Ma) is 50 Ma. Total numbers of zircons for each group 1195 

are highlighted (red indicates the greater numbers, green the smaller). Percentages 1196 

of Precambrian zircon grains that are older than 541 Ma are indicated; B) Bar charts 1197 

for samples grouped according to age showing zircon morphology types for different  1198 

age groups (Cr = Cretaceous, J = Jurassic, P/T = Permian-Triassic, C/C = 1199 

Cambrian–Carboniferous, Neo = Neoproterozoic, Meso = Mesoproterozoic, Paleo =  1200 

Paleoproterozoic, Arch = Archean). 1201 

Fig. 11: Kernel density estimation plots of Cretaceous formations from this study 1202 

compared to Triassic and Jurassic formations from Zimmermann and Hall (2016). 1203 

Colours indicate individual population ages (Cr=Cretaceous, J=Jurassic, P-1204 

T=Permian-Triassic, C-C=Ordovician-Carboniferous). 1205 

Fig. 12: Histograms summarizing the main features of zircon ages for the Schwaner 1206 

Mountains of Borneo, Central Sulawesi and offshore Australia with colour bands 1207 

marking likely sources. Bin width on the left (0-500 Ma) is 10 Ma, on the right (500-1208 

4000 Ma) is 50 Ma. Total numbers of zircons for each group are highlighted (red 1209 

indicates the greater numbers, green the smaller). Percentages of Precambrian 1210 

zircon grains that are older than 541 Ma are indicated. 1211 

Fig. 13: Map showing possible source areas in Australia and SE Asia with ages that 1212 

resemble age populations found in the Banda Arc Islands and the NW Shelf of 1213 

Australia (modified from Zimmermann and Hall, 2016). 1214 
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Fig. 14: A) Summary of zircon ages in Cretaceous sandstones of SE Asia and 1215 

equivalents in the Australian NW Shelf (below) and possible source areas in 1216 

Australia and SE Asia (above). B) Cretaceous palaeogeographic reconstruction with 1217 

tectonic elements and age provinces with major interpreted sediment transport 1218 

directions (arrows) showing suggested sources for Cretaceous formations in the 1219 

Banda Arc that are now the Banda Allochthon (BA). BA-WT=Cretaceous West 1220 

Timor, BA-ET=Cretaceous East Timor, BA-B=Cretaceous Babar, BA-T=Cretaceous 1221 

Tanimbar. The provenance features suggest distant syn-sedimentary Cretaceous 1222 

sources in the Schwaner Mountains and Sulawesi, with additional proximal sources 1223 

in Sumba and other parts of the outer Sundaland margin, with recycling of Permian-1224 

Triassic and Jurassic pre-rift units (purple and blue). 1225 

Fig. 15: A) Tectonic reconstructions for SE Asia (based on Hall, 2012) with focus on 1226 

the rifting Argo and Banda terranes from the Late Jurassic to Early Cretaceous; B) 1227 

Tectonic reconstructions of the Banda Allochthon (BA) at 23 Ma showing the initial 1228 

collision between the Sula Spur and Sundaland; at 15 Ma showing subduction hinge 1229 

rollback and early stage of fragmentation of the Sula Spur; at 5 Ma showing location 1230 

of allochthonous fragments before Timor arc-continent collision; and present-day 1231 

configuration highlighting the outer Banda Arc Islands with overthrust fragments. 1232 
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Fig. 1: Simplified map of SE Asia showing the Banda Arc Islands and blocks that rifted from Gondwana 
and have been added by accretion to Sundaland (modified from Hall and Sevastjanova, 2012).
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Fig. 10: Histograms showing grouped zircon ages for Cretaceous formations from islands in the Banda Arc with possible 
sources. Bin width on the left (0-500 Ma) is 10 Ma, on the right (500-4000 Ma) is 50 Ma. Total numbers of zircons for each 
group are highlighted (red indicates the greater numbers, green the smaller). Percentages of Precambrian zircon grains that 
are older than 541 Ma are indicated; B) Bar charts for samples grouped according to age showing zircon morphology types 
for different  age groups (Cr = Cretaceous, J = Jurassic, P/T = Permian-Triassic, C/C = Cambrian–Carboniferous, Neo = 
Neoproterozoic, Meso = Mesoproterozoic, Paleo =  Paleoproterozoic, Arch = Archean).
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Banda Arc

Fig. 11: Kernel density estimation plots of Cretaceous formations from this study compared to 
Triassic and Jurassic formations from Zimmermann and Hall (2016). Colours indicate individual 
population ages (Cr=Cretaceous, J=Jurassic, P-T=Permian-Triassic, C-C=Ordovician-Carbonif-
erous).
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Fig. 12: Histograms summarizing the main features of zircon ages for the Schwaner Mountains of 
Borneo, Central Sulawesi and offshore Australia with colour bands marking likely sources. Bin 
width on the left (0-500 Ma) is 10 Ma, on the right (500-4000 Ma) is 50 Ma. Total numbers of zircons 
for each group are highlighted (red indicates the greater numbers, green the smaller). Percentag-
es of Precambrian zircon grains that are older than 541 Ma are indicated.
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(modified from Zimmermann and Hall, 2016).
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Fig. 14: A) Summary of zircon ages in Cretaceous sandstones of SE Asia and equivalents in the 
Australian NW Shelf (below) and possible source areas in Australia and SE Asia (above). B) Creta-
ceous palaeogeographic reconstruction with tectonic elements and age provinces with major 
interpreted sediment transport directions (arrows) showing suggested sources for Cretaceous 
formations in the Banda Arc that are now the Banda Allochthon (BA). BA-WT=Cretaceous West 
Timor, BA-ET=Cretaceous East Timor, BA-B=Cretaceous Babar, BA-T=Cretaceous Tanimbar. The 
provenance features suggest distant syn-sedimentary Cretaceous sources in the Schwaner 
Mountains and Sulawesi, with additional proximal sources in Sumba and other parts of the outer 
Sundaland margin, with recycling of Permian-Triassic and Jurassic pre-rift units (purple and 
blue).
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Fig. 15: A) Tectonic reconstructions for SE Asia (based on Hall, 2012) with focus on the rifting Argo and Banda terranes 
from the Late Jurassic to Early Cretaceous; B) Tectonic reconstructions of the Banda Allochthon (BA) at 23 Ma showing 
the initial collision between the Sula Spur and Sundaland; at 15 Ma showing subduction hinge rollback and early stage 
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