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60 Abstract

61 1. Forest ecosystem functioning generally benefits from higher tree species richness, but within 

62 richness levels variation is typically large, mostly due to the contrasting performances of 

63 communities with different compositions. Evidence-based understanding of composition effects on 

64 forest productivity as well as on multiple other functions has large practical relevance, because 

65 forest managers are more likely to be concerned with the selection of species that maximize 

66 functioning rather than with diversity per se.

67 2. Here we used a dataset of thirty ecosystem functions measured in stands with different species 

68 richness and composition in six European forest types. First, we quantified whether the compositions 

69 that maximize annual aboveground wood production (productivity) generally also fulfil the multiple 

70 other ecosystem functions (multifunctionality). Then, we quantified the species identify effects and 

71 strength of interspecific interactions, to identify the “best” and “worst” species composition for 

72 multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst 

73 mixtures, using harmonized data from multiple national forest inventories.

74 3. The most productive tree species combinations also tended to express relatively high 

75 multifunctionality, although we found a relatively wide range of compositions with high or low 

76 average multifunctionality for the same level of productivity.  Monocultures were distributed among 

77 the highest as well as the lowest performing compositions. The variation in functioning between 

78 compositions was generally driven by differences in the performance of the component species and, 

79 to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent 

80 species compositions in inventory data were monospecific stands and that the most common 

81 compositions showed below-average multifunctionality and productivity.

82 4.  Synthesis and applications. While a management focus on productivity does not necessarily trade-

83 off against other ecosystem functions, it matters considerably which particular tree species and 
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84 combinations are promoted. These identity and composition effects are essential in the context of 

85 developing high-performing production systems, for instance in forestry and agriculture, and deserve 

86 much more attention in the analysis and design of functional biodiversity studies if the aim is to 

87 inform ecosystem management.

88 Keywords: forest management, FunDivEUROPE, multifunctionality, overyielding, species interactions, 

89 tree species mixtures
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90 1 Introduction

91 During the last 25 years, a wealth of studies aimed to answer the question: does plant biodiversity 

92 matter for the functioning of ecosystems and for their potential to deliver services to humanity? In 

93 essence, these studies showed that changes in species diversity usually result in changes in multiple 

94 ecosystem processes, including those related to productivity, nutrient cycling, and stability, as well as to 

95 trophic interactions and associated biodiversity (e.g., Schulze & Mooney 1993; Tilman et al. 2014; Isbell 

96 et al. 2017). These general patterns were mainly derived from comparisons of mean values of ecosystem 

97 functioning among different levels of species richness. However, within each level of richness, there is 

98 typically a high variation in functioning, mostly due to different species composition providing different 

99 levels of functioning.  This compositional variation may have a similar or even greater impact on 

100 ecosystem functioning compared with variation in diversity (Hector et al., 2011; Ratcliffe et al., 2017), 

101 but it is often overlooked or even considered to be unwanted noise. Species differ strongly in their 

102 functional effects, meaning that compositions containing different species provide different levels of 

103 function (“species identity effect”; Kirwan et al. 2009). In addition, functional effects of mixtures may 

104 differ from the expected effects of the individual species monocultures due to interspecific interactions 

105 (“species interaction effect”), which can be synergistic, neutral, or antagonistic depending on the 

106 particular species involved. If we can identify which identity and interaction effects provide highest 

107 function, then we could deliberately select certain species combinations that optimize one or multiple 

108 ecosystem functions (Storkey et al., 2015). In this context, biodiversity-ecosystem functioning research 

109 could help to develop high-performing production systems, for instance in multifunctional low-input 

110 agriculture (Barot et al. 2017), in carbon plantings (Hulvey et al. 2013) and in the context of sustainable 

111 forest management (Mori, Lertzman & Gustafsson 2017).

112 By favouring different tree species through management (e.g., selective thinning), foresters have been 

113 following this approach for centuries. However, forestry has traditionally focused on wood production as 
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114 the main management goal, rather than on the simultaneous provision of multiple ecosystem functions 

115 or services (ecosystem function or service “multifunctionality”; Manning et al. 2018). It is often assumed 

116 that a focus on wood production will, quasi automatically, fulfil all other functions as well. This reasoning 

117 even has its own name in German forestry (the "Kielwassertheorie" or "wake theory"; Rupf 1961), where 

118 habitat, regulation, and recreation functions are assumed to be boosted in the “wake” of use functions, 

119 i.e. wood production. Yet, this premise has been challenged by studies showing trade-offs between 

120 different functions or services. For example, a focus on tree biomass production was found to be 

121 detrimental for dead wood occurrence, bilberry production and food for game in boreal and temperate 

122 production forests (Gamfeldt et al., 2013). In general, species effects on different functions are not well 

123 correlated, so that no “super-species” fulfils many functions at the same time and under all conditions 

124 (van Der Plas et al., 2016). In sum, there is a need for evidence-based understanding of how different 

125 tree species compositions promote multiple ecosystem functions and services, including, but not 

126 restricted to, wood production. Such insights will help to bridge the gap between fundamental 

127 biodiversity-functioning theory and ecosystem management and could, for instance, better inform forest 

128 managers about which trees should be planted together in order to maximize forest multifunctionality 

129 within stands.

130 Research on biodiversity-ecosystem functioning relationships, as well as on tree species mixture effects 

131 in forestry (reviewed in Pretzsch, Forrester & Bauhus 2017), still often relies on single-site experiments 

132 or case-studies, limiting our capacity for synthesis and generalisation across spatial and temporal scales. 

133 The FunDivEUROPE exploratory platform was established as a network of research plots in six European 

134 forest types, selected to differ in tree species richness and different species compositions (Baeten et al., 

135 2013). The platform provided a common hypothesis-driven design in different geographical locations, 

136 used standardised methodology and measurements protocols and coordinated data acquisition and 

137 management. Using data on thirty ecosystem functions measured in this platform, we can perform an in-

Page 7 of 52

Confidential Review copy

Journal of Applied Ecology



7

138 depth analysis of tree composition effects on forest ecosystem multifunctionality. We aim to (i) assess to 

139 what degree a management focus on tree productivity also boosts other ecosystem functions or whether 

140 there are trade-offs between production and other functions; (ii) quantify the individual species effects 

141 and strength of interactions among particular species and species groups to identify the “best” and 

142 “worst” species compositions for multifunctionality; and (iii) evaluate the frequency of occurrence of 

143 best and worst mixtures based on National Forest Inventories. We hypothesize that (i) tree productivity 

144 is not strongly positively related with ecosystem multifunctionality, refuting the wake theory; (ii) 

145 interspecific interactions can explain ecosystem functioning better than species identity effects alone, 

146 and that these interactions are species specific; (iii) tree compositions supporting high ecosystem 

147 multifunctionality are rare in European forests due to the historical focus on production forests.

148 2 Methods

149 2.1 FunDivEUROPE exploratory platform design

150 The FunDivEUROPE exploratory platform is a coordinated network of 209 forest plots in six European 

151 regions, covering a gradient of different climates and forest types (Fig. S1.1 in Appendix S1). It was 

152 established in 2011 to study the effect of tree diversity on ecosystem multifunctionality 

153 (www.fundiveurope.eu). The field sites include boreal forests in Finland, hemi-boreal forests in Poland, 

154 beech forests in Germany, mountainous beech forests in Romania, thermophilous deciduous forests in 

155 Italy and Mediterranean mixed forests in Spain. In each forest type, plots with locally dominant and 

156 economically important tree species were selected to cover a range in species richness from 1 to 3 in 

157 boreal (number of plots: 28), 1 to 4 in mountainous beech (28), beech (38) and Mediterranean mixed 

158 (36), and 1 to 5 in thermophilous deciduous (36) and hemi-boreal (43) (Table S1.1). Each richness level 

159 was replicated with different species compositions. Furthermore, the tree species had similar 

160 abundances in mixtures (high evenness), all species were represented in all species richness levels, and 
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161 none of the species was present in every plot so that species identity and diversity effects could be 

162 separated. The study plots were located in mature forests stands and shared similar environmental 

163 conditions within forest types (e.g., geology, soil type, topography), so that covariation between these 

164 factors and species richness levels was minimized. Thus, the diversity gradient mainly resulted from 

165 historical management or stochastic events. More details about the study sites, the selection procedure, 

166 and plot-level information can be found in Baeten et al. (2013).

167 2.2 Ecosystem property and function measurements

168 We used plot-level measurements of 30 ecosystem properties, functions or service proxies, which for 

169 simplicity we refer to as "functions" or properties hereafter (Table S1.2). These include the set of 26 

170 functions analysed in a previous study looking at the relative importance of composition versus diversity 

171 effects (Ratcliffe et al. 2017). Four additional functions, representing diversity measurements of four 

172 taxonomic groups, were added to the data set: bat, bird, earthworm, and understorey plant diversity. As 

173 a measure of tree productivity, we used the mean annual aboveground wood production estimated from 

174 wood cores (Jucker, Bouriaud, Avacaritei, & Coomes, 2014). To aid in the interpretation, the functions 

175 were a priori classified into six groups reflecting basic ecological processes (Table S1.2): nutrient and 

176 carbon cycling related drivers (e.g., earthworm biomass, microbial biomass), nutrient cycling related 

177 processes (e.g., litter decomposition, nitrogen resorption efficiency), primary production (including tree 

178 productivity, but also photosynthetic efficiency and tree biomass), regeneration (e.g., tree seedling 

179 regeneration, sapling growth), resistance to disturbance (e.g. resistance to drought, resistance to insect 

180 damage), and the value of the forest stands as habitat for other species (e.g., bat and bird diversity).  A 

181 major strength of the FunDivEUROPE project was the general philosophy to measure all ecosystem 

182 functions in all plots, following the same protocol by the same observers across the six forest types. 

183 Measurements are thus directly comparable across plots and show high coverage; 24 functions were 

184 measured in at least 207 of the 209 plots. Details on the measurements of the various functions can be 
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185 found in previous synthesis papers of the FunDivEUROPE project (e.g., van der Plas et al., 2016; Ratcliffe 

186 et al., 2017).

187 2.3 National Forest Inventory Data

188 Within the FunDivEUROPE project we compiled harmonised forest plot data from the national forest 

189 inventories of Finland, Sweden, Germany, Belgium (Wallonia) and Spain (for details see Ratcliffe et al. 

190 2016). These inventories included three forest types from the exploratory platform: boreal forest, 

191 beech(-dominated) forest, and Mediterranean mixed forest (which comprised Mediterranean 

192 coniferous, broadleaved evergreen, and thermophilous deciduous forest).  Determination of the forest 

193 type was based on the EEA Technical Report 9  (Barbati, Corona & Marchetti 2017). In each inventory, we 

194 used the two most recent surveys and extracted basal area (BA, m² ha-1) for all trees with a diameter at 

195 breast height of more than 10 cm. Plots with single measurements or any indication of harvest activities 

196 between surveys were omitted from the dataset. For each of the remaining plots, we calculated the 

197 proportional BA per tree species. Tree species names were harmonized following the Atlas Florae 

198 Europaeae. In order to identify the species composition of a plot, we adopted the following approach: 

199 only species with a BA exceeding 10 % were considered and only plots in which the summed proportion 

200 of all component species exceeded 90% were included.  Plots that did not meet these criteria were 

201 discarded from the dataset. This approach is in agreement with the selection criteria of the 

202 FunDivEUROPE exploratory platform. Furthermore, we only retained the plots with compositions that 

203 could be assigned to one of the three forest types mentioned above. No distinction was made between 

204 planted and spontaneously regenerated stands. Our final dataset included 64.8% (boreal), 22.3% (beech) 

205 and 70.8% (Mediterranean mixed) of the available NFI plots.
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206 2.4 Data analyses

207 2.4.1 Quantifying multifunctionality and its relationship with productivity across different 

208 species compositions 

209 We quantified the multifunctionality of each tree species composition with a model-based approach. In 

210 each plot, we have a value for each of the 30 functions. These estimates were modelled together in a 

211 hierarchical meta-analytic model with group-level effects for plot identity (209 plots) and species 

212 composition (103 compositions). We considered species combinations occurring in multiple forest types 

213 as different compositions, because the same species combination may have different functioning when 

214 growing on different soils or in different climates and we wanted to account for the fact that the same 

215 composition may behave differently among forest types. In addition, compositions within the same 

216 forest type were related to each other because they were measured more closely together in time and 

217 space. However, only eight out of 92 unique species compositions occurred in multiple forest types: six 

218 were represented in two forest types and monocultures of Pinus sylvestris and Picea abies were present 

219 in three and four types, respectively. 

220 The estimated effects of composition from the hierarchical model were used here as measure of 

221 multifunctionality for a given tree species composition. The effect quantifies the degree to which the 

222 functioning of a particular composition deviates from the average, taking all functions into account. 

223 Positive and negative values express above-average and below-average functioning of that species 

224 combination, respectively. An alternative, single threshold approach (Byrnes et al., 2014) provided a very 

225 similar measure of multifunctionality, so we expect qualitatively similar results when using alternative 

226 measures (Fig. S2.1). The model-based approach was preferred here because it directly quantifies the 

227 dependency of functioning on composition (without the need to derive a metric first) and allows us to 

228 extend the analyses to diversity-interaction models (see below Diversity interaction models). A full model 

229 description is given in Appendix S2 and additional sensitivity analyses are provided in Appendix S4 (e.g., 
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230 reducing the number of functions to calculate the multifunctionality measure, either randomly or by 

231 ecosystem function group).

232 We related the multifunctionality to the mean productivity of each composition with a linear regression 

233 model, to test whether selecting composition for high productivity also ensures high multifunctionality. 

234 In this analysis, we quantified the measure of multifunctionality after excluding productivity, i.e. 

235 multifunctionality was calculated with 29 functions. This analysis was first performed on the full data set 

236 and then for each forest type separately. Differences in productivity and multifunctionality between 

237 compositions with different species richness values (monoculture vs mixed) or different leaf phenologies 

238 (pure evergreen, pure deciduous or mixed) were tested with an analysis of variance.

239 2.4.2 Diversity interaction models

240 To identify the individual species and pairs of species that increased functioning, we used a diversity-

241 interaction modelling framework (Kirwan et al., 2009). This tests how the abundance of individual tree 

242 species, and the interactions between them, affect ecosystem functioning. The approach uses a linear 

243 model of the form , with  an estimate of functioning in a plot,  the 𝑓 = 𝐼𝐷 + 𝐷𝐸 + 𝐵𝐴 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓 𝐼𝐷

244 species identity effects,  the diversity effects,  the effect of variation in plot-level basal area 𝐷𝐸 𝐵𝐴

245 (average centred to zero within forest types), and a residual error term. The species identity effects 

246 equal the average monoculture performances, weighted by the species’ relative abundances. The 

247 diversity effects result from species interactions, which causes mixture functioning to differ from that 

248 expected from monoculture functioning. Kirwan et al. (2009) proposed alternative patterns of 

249 interactions based on different ecological assumptions, corresponding to different formulations of the 

250 diversity effects term. See Appendix S2 for a full model description and explanation of the alternative 

251 diversity terms.
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252 We confronted five alternative models with the data. A first null model assumes that all species identity 

253 effects are equal (model 0), while a second assumes that monoculture functioning differs and only the 

254 relative abundances of the species influence functioning in mixtures (identity-effect model; model 1). 

255 Three additional models combine the identity effect with different diversity effects, corresponding to the 

256 alternative types of species interactions: a pairwise-interactions effect (model 2), an additive species-

257 specific contributions effect (model 3), or a functional-group effect (model 4). The importance of the 

258 different types of interactions was then explored by comparing the models differing in their ecological 

259 assumptions (Kirwan et al., 2009). We used AIC values and likelihood ratio tests to compare models. 

260 Firstly, we fitted the alternative models for each ecosystem function and forest type separately. 

261 Secondly, we modelled the 30 functions together, using a similar meta-analytic model described above 

262 (§2.4.1), replacing the composition effect with the identity and diversity effects of the diversity-

263 interaction models. The values for each function were normalized before modelling.

264 2.4.3 Relationship between multifunctionality and frequency of occurrence of tree species 

265 compositions

266 We calculated the frequency of occurrence of all tree species compositions for each of the three forest 

267 types (boreal, beech, and Mediterranean mixed forest) from the national forest inventory data. So, for 

268 each of the compositions of these three forest types studied in the exploratory platform, we have a 

269 measure of their frequency among all other compositions in the same forest type. We drew graphs 

270 ranking compositions by frequency, multifunctionality, and productivity to explore whether 

271 compositions supporting high ecosystem multifunctionality were rare in a given forest type. We are 

272 aware that the species combinations encountered in the exploratories may have different effects on 

273 multifunctionality in the different contexts (e.g., climates, soil types or stand development stages) 

274 encountered in the inventories (Ratcliffe et al., 2017). Nevertheless, our assessment provides an 
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275 indication of whether compositions likely to promote high multifunctionality occur more often in the 

276 inventories than those with low multifunctionality.

277 3 Results

278 3.1.1 Relationship between productivity and ecosystem multifunctionality

279 Across all plots, the multifunctionality (excluding productivity) of tree species compositions was 

280 positively related to their mean productivity (Fig. 1; slope = 0.028, P < 0.001, R² = 0.22), although for a 

281 given level of productivity there was a considerable range in multifunctionality between compositions. 

282 Within the forest types, the productivity-multifunctionality relationship was significantly positive in three 

283 types (beech, thermophilous deciduous, Mediterranean mixed) and positive but non-significant in the 

284 three others (Fig. S3.1). Patterns at the level of individual ecosystem functions were consistent: in beech, 

285 thermophilous deciduous and Mediterranean mixed forest, the most productive compositions also had 

286 above-average (within region) values of the majority of the other functions (> 20 out of 29 functions), 

287 whereas less than half of the functions exceeded the average in the least productive compositions (Fig. 

288 S3.2 and S3.3). Monocultures were not consistently different from mixtures: they were distributed 

289 among the highest as well as the lowest performing compositions, both in terms of productivity (F = 

290 0.62, P = 0.43) and multifunctionality (F = 2.19, P = 0.14). Similarly, the leaf phenology (evergreen, 

291 deciduous or mixed) was not important in explaining differences in productivity (F = 1.83, P = 0.17) or 

292 multifunctionality (F = 1.09, P = 0.34). 

293 Sensitivity analyses showed that the tree productivity – multifunctionality relationship did not change 

294 when we classified all species combinations occurring in different forest types as the same, e.g. rather 

295 than considering P. abies monocultures as being four separate compositions because they occurred in 

296 four forest types, we regrouped them as a single composition (Fig. S4.1). While the productivity-

297 multifunctionality relationship remained the same if we randomly excluded functions from our 
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298 multifunctionality measure (Fig. S4.2), when we excluded particular ecosystem function groups then the 

299 strength of the relationship altered (Fig. S4.3). For instance, excluding all functions supporting primary 

300 production weakened the productivity – multifunctionality relationship, however it remained 

301 significantly positive.

302 3.1.2 Identifying the best mixtures

303 Looking at individual functions, diversity-interaction models showed that pairwise species interactions 

304 often influenced functioning, positively as well as a negatively (Fig. 2). Interactions indicate, for particular 

305 species pairs, whether growing the two species in a mixture increased or decreased functioning 

306 compared with growing them in separate monocultures. Ecosystem function groups did not show 

307 consistent patterns: production-related functions were more often found to benefit from mixing (26 

308 positive versus 11 negative interaction effects) and positive interactions also outnumbered negative 

309 interactions in resistance- and regeneration-related functions (27 versus 17 and 10 versus 3, 

310 respectively). Interactions tended to be positive in thermophilous deciduous and Mediterranean mixed 

311 and negative in boreal forest. Results for the individual functions are shown in Fig. S3.4.

312 When multifunctionality was modelled with all 30 functions together, including productivity, we often 

313 found tree species to have very different effects on functioning (identity-effects model; Fig. S3.5). 

314 Furthermore, functioning levels generally also increased with plot-level basal area. We also looked at 

315 variation in functioning across forest types, for the small number of composition present in multiple 

316 types. We found that Picea abies had higher functioning, compared with the average monoculture, in 

317 hemi-boreal and mountainous beech forest, but below average functioning in boreal and beech forests 

318 (Fig. S3.5). Pinus sylvestris had higher (Mediterranean mixed), lower (boreal) or average (hemi-boreal) 

319 monoculture performance. In contrast, monocultures of Quercus robur/petraea tended to have 

320 consistently lower multifunctionality than other monocultures, across forest types (hemi-boreal, beech, 

321 thermophilous deciduous).
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322 Species interactions were important in explaining multifunctionality in all forest types except for 

323 mountainous beech (likelihood ratio tests of models with interaction effects versus identity-effects 

324 models; P < 0.05). We found that mixing evergreen and deciduous species reduced functioning in boreal 

325 (functional group versus identity model; P = 0.029) but increased functioning in hemi-boreal forest (P = 

326 0.025). In boreal forests, the negative effect was mainly because of an antagonistic interaction between 

327 Picea abies and Betula pendula leading to lower multifunctionality than expected based on their 

328 monoculture functioning. In beech, thermophilous deciduous and Mediterranean mixed forest, there 

329 was no such functional group effect, as here the species interacted similarly with all others, illustrating 

330 that the main effect of mixing was the contrast between intra- and interspecific interactions (additive 

331 contributions versus identity model; P < 0.05).

332 The list of top five compositions in each forest type in terms of their multifunctionality (Table 1), 

333 reflected this: only six out of the total 28 best compositions listed in Table 1 were monocultures. Some of 

334 the best compositions included up to four species and in some types none of the five best compositions 

335 were monocultures (hemi-boreal and thermophilous deciduous). Finally, the compositions with the 

336 highest multifunctionality were also not dominated by pure evergreen or deciduous compositions and 15 

337 out of the 22 multi-species compositions were mixtures of deciduous and evergreen species. The species 

338 combinations with the highest multifunctionality were also among the most productive ones.

339 3.1.3 Frequency of the best mixtures in forest inventory data

340 The species compositions studied in the exploratory platform were also well represented in the national 

341 forest inventories of the three studied forest types (boreal, beech, and Mediterranean mixed forest) (Fig. 

342 3). In all three types, the most widely occurring tree species compositions were monospecific stands. 

343 Furthermore, the most frequent compositions had below-average multifunctionality scores, that is, 

344 below zero. Especially in beech forest, the compositions with above-average multifunctionality were rare 
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345 (frequency < 1 %). We found essentially the same pattern when focussing on productivity rather than 

346 multifunctionality (Fig. S3.6): the most productive compositions were not the most frequent ones.

347 4 Discussion

348 Despite the importance of species composition in explaining variation in ecosystem functioning (Hector 

349 et al., 2011; Ratcliffe et al., 2017), species identity effects are generally not the focus of biodiversity and 

350 ecosystem functioning studies, where they are instead treated as a nuisance variable to be accounted 

351 for. Here we aimed to unpack the variation in functioning between compositions and to understand 

352 which particular species or species pairs sustained the highest multifunctionality. Our findings show that 

353 it matters considerably which particular combinations are promoted within a given richness level. This is 

354 critical from an applied perspective, as forest managers are much more likely to focus on species 

355 selection (e.g., when replanting after a regeneration cut) rather than diversity per se.

356 4.1 Managing for productivity can also promote multifunctionality

357 A fundamental management goal in forestry is to produce wood, and so, many studies looking at the 

358 functional importance of mixing tree species focused on tree productivity. There is evidence that tree 

359 species diversity increases the productivity of forests globally (Piotto 2008; Liang et al., 2016). In closed 

360 canopy forests, this is primarily due to more efficient light use when species with contrasting canopy 

361 traits co-occur (Fichtner et al., 2017; Pretzsch, 2014; Zhang, Chen, & Reich, 2012). These insights provide 

362 relevant information for making informed tree species choices in forestry but they do not indicate 

363 whether selecting species to maximize high productivity also benefits multiple other functions. While 

364 trade-offs between productivity and other functions have previously been reported in boreal forests 

365 (Gamfeldt et al., 2013), our study evaluated a greater number of functions across a broad range of forest 

366 types, and showed that the most productive tree species combinations also tend to provide relatively 

367 high multifunctionality. In the context of recent discussions about the sensitivity of multifunctionality 
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368 measures to the number and identity of their component functions (e.g. Gamfeldt & Roger 2017; Meyer 

369 et al. 2018), we showed that our findings were robust when randomly reducing the number of functions 

370 considered. Deleting particular groups of functions did change the strength of the relationship between 

371 productivity and multifunctionality, although it was always positive. Since previous analyses of our data 

372 showed few trade-offs between a range of multifunctionality measures reflecting alternative stakeholder 

373 objectives (sensu Allan et al. 2015; van der Plas et al. 2018), changing our multifunctionality measure to 

374 represent specific management scenario’s is also unlikely to change the conclusions.

375 Ranking the species compositions within forest types, based on either productivity or multifunctionality, 

376 resulted in a similar set of best compositions (Table 1, Fig. S3.1). A notable pattern to emerge from our 

377 analysis is that for four of the six forest types we identified at least one species that repeatedly occurred 

378 across the best compositions that characterise that particular forest type (hemi-boreal: Picea abies, 

379 beech: Fraxinus excelsior, thermophilous deciduous: Quercus ilex and Quercus cerris, Mediterranean 

380 mixed: Pinus sylvestris) (Table 1). In beech forests, the combination F. excelsior – A. pseudoplatanus even 

381 appeared four times in this top five. At the same time, mixtures containing these particular species were 

382 not always the most productive ones. This information may already provide useful empirical evidence 

383 when deciding among several management options, such as the selection (or exclusion) of species when 

384 planting or regenerating new stands.

385 We do not propose to use tree productivity as an integrated measure of forest performance in a general 

386 way, because for the same level of productivity we found a relatively wide range of compositions with 

387 high or low average performance across functions. For instance, in Mediterranean mixed forest, 

388 monocultures of P. sylvestris and Pinus nigra had nearly the same productivity, but varied strongly in 

389 multifunctionality. Furthermore, the most productive compositions had above-average values for many, 

390 but certainly not all functions (Fig. S3.2, S3.3). The relative importance of these existing trade-offs 

391 between individual ecosystem functions need to be evaluated based on socio-ecological perspectives, 
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392 including the desired management goals and land-use schemes (Mori, Lertzman & Gustafsson 2017), and 

393 in this respect our data can help inform these decisions. Thus, our results should not be used as a general 

394 confirmation of the “wake theory” that all forest functions are automatically fulfilled by a focus on 

395 timber production only. Rather, we conclude that a management focus on productivity does not 

396 necessarily trade-off against other ecosystem functions and high productivity and multifunctionality can 

397 be combined with an informed selection of tree species combinations.

398 4.2 The identity of co-occurring tree species matters

399 We found that the variation in functioning between compositions was generally driven by identify effects 

400 and, to a lesser extent, by particular interspecific interactions. In trying to explain what makes up a high-

401 performing species combination, we looked at differences between pure deciduous, pure evergreen and 

402 mixed deciduous-evergreen mixtures. While heterogeneity of canopy traits related to light capture and 

403 use, including leaf phenology, is often found to increase productivity (Jucker, Bouriaud, Avacaritei, 

404 Dǎnilǎ, et al., 2014; Lu, Mohren, den Ouden, Goudiaby, & Sterck, 2016; Zhang, Chen, & Taylor, 2015), 

405 mixing species from these broad functional groups did not always increase multifunctionality. Many of 

406 the ecosystem properties included here are not directly related to light availability (e.g., nutrient cycling 

407 related drivers or processes; Rothe & Binkley 2001) and our findings show that the mechanisms 

408 responsible for overyielding of mixtures (for an overview see Forrester & Bauhus 2016), do not 

409 necessarily increase other functions. More generally, while studies on identity effects have mostly 

410 looked at community-weighted means of traits as a way of generalizing results (Ratcliffe et al., 2016), 

411 such an approach is not the best choice when searching for high performing tree species compositions 

412 because we lack theory linking traits to multifunctionality. In addition, many species interactions are not 

413 related to commonly measured traits (such as pathogens or herbivory), and it would be difficult to 

414 translate trait-based identity effects into concrete management decisions with real species.
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415 Our study was designed using a pool of regionally abundant and economically important tree species 

416 (Baeten et al., 2013) and therefore provides comprehensive data on multifunctionality values in many 

417 relevant species combinations. A next step would be to explore when and where specific combinations 

418 of interest provide maximum multifunctionality, so that managers can make informed decisions as to 

419 which combinations of species to favour on their land. This requires determining the variation in 

420 multifunctionality for particular species compositions across different environments (e.g., climates, soil 

421 types) and trying to explain the principal environmental drivers of this variation. Another comprehensive 

422 analysis in our study plots showed that tree diversity effects on various ecosystem functions are highly 

423 context dependent: stronger diversity effects on multifunctionality were found in forest types in drier 

424 climates, with longer growing seasons, and more functionally diverse tree species pools (Ratcliffe et al., 

425 2017). A similar analysis of the context dependency of species composition effects is not straightforward 

426 because compositions are not easily replicated in very different environments and forest types, unlike 

427 diversity gradients that can be replicated with very different species pools. Focusing on productivity, 

428 Pretzsch et al. (2010, 2013) already showed that specific two-species combinations (oak-beech, spruce-

429 beech) change from overyielding, due to facilitation, to underyielding, driven by competitive 

430 interference, along a gradient from poor to rich soils across central Europe. Focusing on multiple other 

431 functions, here we showed that for the subset of species that occurred in multiple types, that their 

432 identity effects on multifunctionality tended to vary considerably. The presence of Picea abies and Pinus 

433 sylvestris, for instance, increased or decreased mixture performance, depending on the forest type.

434 This calls for a new generation of forestry-oriented scientific experiments or silvicultural trials tailored to 

435 study species identity and composition effects in different environments (e.g., Paquette et al. 2018), 

436 especially focusing on the drivers of the context dependency in diversity effects (water availability, 

437 growing season length; Ratcliffe et al. 2017). Compositions can be replicated within forest types under 

438 different soil conditions and levels of water supply, but also across different forest types to cover 
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439 regional-scale gradients such as climate (see Bruelheide et al. 2014 for a diversity-oriented example). Of 

440 course, the geographic scope of a multi-site experiment will not be global and should stay within the 

441 current or predicted distributional range of the species involved (e.g., Verheyen et al. 2013), as studying 

442 functioning well outside the species range is probably not relevant for foresters. Setting up practical 

443 trials obviously requires the involvement of foresters, policy makers, resource managers, and 

444 conservationists. They can use our identification of the best species combinations as a good starting 

445 point to carefully select compositions from the large pool of available species.

446 4.3 Low multifunctionality of the most common species compositions

447 By ranking tree species compositions of three forest types according to how often they occurred in 

448 inventory data, we showed that the most frequent compositions were monospecific stands and that the 

449 most frequent species combinations mostly showed below-average performance in terms of 

450 multifunctionality and productivity based on the exploratory platform data. Several mixtures with high 

451 performance were very rare in the national inventories or even absent from our selection. We should 

452 acknowledge, however, that the inventory data span much larger environmental gradients than the 

453 exploratory platform and that the same mixture may perform differently under different environmental 

454 conditions. Compositions showing poor performance in the exploratory platform may thus perform 

455 better in different climatic or soil conditions. While this may limit the generality of any conclusions 

456 regarding specific mixtures, the under-representation of numerous above-average performing mixtures 

457 in today’s forests and the high proportion of monocultures is a clear indication that the potential of 

458 mixing different tree species in forest stands has not yet have been fully realized in Europe.
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585 Tables

586 Table 1 Top five species composition for each forest type, ranked according to decreasing 

587 multifunctionality (from the top down). Compositions with an asterisk were also identified among the 

588 best five in case ranking was done based on productivity only. Underlined species are evergreen trees. 

589 The number of different compositions studied in each type is given in brackets. In boreal forest, only 

590 seven compositions were studied, so that only three performed above average.

boreal (7) hemi-boreal 
(25)

beech (18) mountainous 
beech (14)

thermophilous 
deciduous (27)

Mediterranean 
mixed (12)

*P. abies *C. betulus, P. abies A. pseudoplatanus, F. 
sylvatica, F. excelsior

P. abies *C. sativa, O. 
carpinifolia, Q. cerris, 
Q. ilex

*P. nigra, P. sylvestris

B. pendula B. pendula, C. betulus, 
P. abies, Q. robur

A. pseudoplatanus, F. 
sylvatica, F. excelsior, 
Q. petraea

A. alba, A. 
pseudoplatanus, F. 
sylvatica, P. abies

*Q. cerris, Q. ilex *P. sylvestris, Q. 
faginea

*B. pendula, P. abies, 
P. sylvestris

*P. abies, P. sylvestris *F. excelsior *F. sylvatica, P. abies O. carpinifolia, Q. 
cerris, Q. ilex

*P. sylvestris

*C. betulus, P. abies, 
Q. robur

*A. pseudoplatanus, F. 
excelsior, Q. petraea

*A. alba *C. sativa, Q. cerris *P. nigra, P. sylvestris, 
Q. faginea

B. pendula, P. abies, P. 
sylvestris, Q. robur

*A. pseudoplatatnus, 
F. syvaltica, F. 
excelsior, P. abies

A. pseudoplatanus,  F. 
sylvatica

C. sativa, O. 
carpinifolia, Q. ilex, Q. 
petraea

*P. nigra, P. sylvestris, 
Q. faginea, Q. ilex

591 Full species names. Coniferous species: Abies alba, Picea abies, Pinus nigra, Pinus sylvestris. Broadleaved species: Acer 

592 pseudoplatanus, Betula pendula, Carpinus betulus, Castanea sativa, Fagus sylvatica, Fraxinus excelsior, Ostrya carpinifolia, 

593 Quercus robur, Quercus petraea, Quercus cerris, Quercus faginea, Quercus ilex
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594 Figures

595

596 Fig. 1 Relationships between the tree productivity and multifunctionality of different tree species 

597 compositions across six European forest types. Points show the performance of individual compositions 

598 (N = 103): filled points represent monocultures and colouring represents functional composition in terms 

599 of leaf phenology (only deciduous species, only evergreen species, or a mixture of both). The full line 

600 shows the fit of a linear model, with the dashed lines delimiting the 95% confidence interval. Productivity 

601 corresponds to the annual aboveground wood production and was normalized within forest types to 

602 allow for a cross-regional comparison; absolute mean productivity values are presented in Fig. S3.1. The 

603 multifunctionality expresses the degree to which the functioning of a particular composition deviates 

604 from the average, taking all functions into account (positive values indicate above-average performance). 

605 For this analysis, the productivity was excluded from the multifunctionality measure.
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606

607 Fig. 2 Synthesis of tree species interaction effects on ecosystem functioning (30 functions) in six 

608 European forest types. For each function, pairwise species interaction models were fitted to quantify the 
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609 degree to which tree species interactions cause mixture performance to differ from that expected from 

610 the monoculture species performances. For each species pair, the graph shows the total number of 

611 positive (and negative) effects, indicating the number of times the species mixture is providing more (or 

612 less) functioning than the corresponding monocultures (only effects with  P < 0.1 were counted). 

613 Functions were grouped into a priori classes to aid in the interpretation; see methods and Table S1.2. For 

614 results for single functions, see Fig. S3.4. Note that the graph compares within tree species combinations 

615 (performance of mixtures versus the monocultures of two particular species) and does not allow a direct 

616 comparison between compositions, because the species identity effects were not accounted for in this 

617 analysis. Full species names are given below Table 1.
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618

619 Fig. 3 Frequency of occurrence of particular tree species compositions in national forest inventory data 

620 for boreal forests, beech forest, and Mediterranean mixed forests. Grey bars indicate the compositions 

621 that were also studied in the corresponding forest types in the FunDivEUROPE exploratory platform; the 

622 white bars represent compositions that were not included in the exploratory platform. The coloured 
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623 circles indicate the degree of multifunctionality of the compositions based on the estimates in the 

624 exploratory platform (so only for grey bars). This multifunctionality expresses the degree to which the 

625 functioning of a particular composition deviates from the average, taking all 30 functions into account 

626 (positive values indicate above average performance). The dotted lines indicate a threshold frequency of 

627 0.01 below which rare combinations of tree species are not shown, unless they were studied in the 

628 exploratory platform.
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Supporting information to the paper 

Baeten et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of 

Applied Ecology 

 

Appendix S1 – FunDivEurope exploratory platform: study locations, tree 

species, and functions 

 

 

Figure S1.1. Location and local names of the six forest types included in the FunDivEUROPE exploratory 

platform. The study locations were selected to represent six major European forest types: boreal 

(North Karelia, Finland, N = 28 research plots), hemi-boreal (Białowieza, Poland, N = 43), beech 

(Hainich, Germany, N = 38), mountainous beech (Râsca, Romania, N = 28), thermophilous deciduous 

(Colline Metallifere, Italy, N = 36), Mediterranean mixed (Alto Tajo, Spain, N = 36). Details on the design 

can be found in Baeten et al. (2013).  

North Karelia

Białowieża

Hainich

Râșca

Colline Metallifere

Alto Tajo

200 km

N
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Table S1.1. Overview of the study species for each of the six forest types of the FunDivEUROPE 

exploratory platform. The last three rows provide summaries of the number of species richness levels, 

total number of plots, and number of plots per richness level. See Baeten et al. (2013) for additional 

environmental variables. 
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Study species in each forest type (indicated with “x“) 

(1) Coniferous 

  Abies alba 

  Picea abies 

  Pinus nigra 

  Pinus sylvestris 

(2) Broadleaved 

  Acer pseudoplatanus 

  Betula 

pendula/pubescens 

  Carpinus betulus 

  Castanea sativa 

  Fagus sylvatica 

  Fraxinus excelsior 

  Ostrya carpinifolia 

  Quercus robur/petraea 

  Quercus cerris 

  Quercus faginea  

  Quercus ilex 

(evergreen)  
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Species richness levels 3 5 4 4 5 4 

Number of plots 28 43 38 28 36 36 

Plots per richness level 12/12/4 10/10/11/10/2 6/10/16/6 8/10/7/3 10/9/9/7/1 12/15/6/3 
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Table S1.2. Overview of the 30 ecosystem functions and their classification into a priori groups. For 

full details on their measurement see Ratcliffe et al. (2017) and van der Plas et al. (2018). Table 

adapted from Ratcliffe et al. (2017). 

Ecosystem function Description 

Nutrient and carbon cycling related drivers 

 
Earthworm biomass Biomass of all earthworms (g m-2) 

 
Fine woody debris Snags and standing dead trees shorter than 1.3 m and thinner 

than 5 cm DBH, and all stumps and other dead wood pieces 

lying on the forest floor 

 Microbial biomass Mineral soil (0-5cm layer) microbial biomass carbon (mg C kg-1) 

 
Soil carbon stock Total soil carbon stock (Mg ha-1) in forest floor and 0-10 cm 

mineral soil layer combined 

Nutrient cycling related processes 

 
Litter decomposition Decomposition of leaf litter using the litterbag methodology (% 

daily rate) 

 
Nitrogen resorption efficiency Difference in N content between green and senescent leaves 

divided by N content of green leaves (%) 

 Soil C/N ratio Soil C/N ratio in forest floor and 0-10 cm mineral soil layer 

combined 

 
Wood decomposition Decomposition of flat wooden sticks placed on forest floor  (% 

daily rate) 

Primary production 

 
Fine root biomass Total biomass of living fine roots in forest floor and 0-10 

mineral soil layer combined (g m-2) 

 
Photosynthetic efficiency Chlorophyll fluorescence methodology (ChlF) 

 Leaf mass Leaf Area Index (LAI) 

 
Litter production Annual production of foliar litter dry mass (g) 

 
Tree biomass Aboveground biomass of all trees (Mg C ha-1) 

 
Tree productivity Annual aboveground wood production (Mg C ha-1 yr-1) 

 
Understorey biomass Dry weight of all understorey vegetation in a quadrant (g) 

Regeneration 

 
Sapling growth  Growth of saplings up to 1.60 m tall (cm) 

 
Tree juvenile regeneration Number of saplings up to 1.60 m tall 

 
Tree seedling regeneration Number of tree seedlings less than a year old 

 

Page 37 of 52

Confidential Review copy

Journal of Applied Ecology



Resistance to disturbance 

 
Resistance to drought Difference in carbon isotope composition in wood cores 

between dry and wet years (‰) 

 
Resistance to insect damage Foliage not damaged by insects (%) 

 
Resistance to mammal browsing Twigs not damaged by browsers (%) 

 
Resistance to pathogen damage Foliage not damaged by pathogens (%) 

 Tree growth recovery Ratio between post-drought growth and growth during the 

respective drought period 

 Tree growth resilience Ratio between growth after and before the drought period 

 Tree growth resistance Ratio of tree growth during a drought period and growth during 

the previous five year high-growth period 

 Tree growth stability Mean annual tree growth divided by standard deviation in 

annual tree growth between 1992 and 2011 

Habitat for species 

 Bird diversity Shannon-Wiener diversity of bird species estimated with 

standardized point-counts 

 Bat diversity Total number of species (or species pairs) of bats per forest plot 

recorded with an automatic bat recorder 

 Earthworm richness Total number of earthworm species in the litter and 20 cm 

topsoil (mustard extraction and hand sorting) 

 Understorey plant diversity Mean Shannon-Wiener diversity of plants in the understorey 

community 
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Appendix S2 – Quantifying multifunctionality and species identity and diversity 

effects 

A MODEL-BASED MEASURE OF MULTIFUNCTIONALITY 

We quantified the multifunctionality of each tree species composition with a model-based approach. In 

each of the 209 plots, we have a quantitative estimate for each of the 30 functions. These estimates were 

modelled together in a hierarchical meta-analytic model �� = � + ���[�] + 
�[�] + �
[�] + ��  (Nakagawa & 

Santos 2012). In this model, ��  is an estimate of a function in a plot, � is the global intercept, ���[�] denotes 

the effect of the jth function (� = 1, …, 30 functions), 
�[�] is an effect of plot (� = 1, …, 209 plots), and �
[�] is 

the effect of tree species composition (� = 1,…, 103). Species combinations occurring in multiple forest 

types were considered different compositions. These effects were assumed to come from a zero-mean 

normal distribution with group-specific variance (e.g., between-plot variance ��²). The residual term ��  was 

also assumed to be normally distributed around zero with variance �². To remove the differences in 

measurement scale, the values for each function were normalized before modelling by subtracting the 

mean and dividing by the standard deviation. In this case, the effect ���[�] becomes redundant, because 

functions are centred on zero. Models were fitted with the lmer function in the lme4 package called from 

R3.4.1 (Bates et al. 2015; R Core Team 2017). 

We used the composition effect �
  as a measure of multifunctionality for each tree species composition. 

This effect quantifies the degree to which the functioning of a particular composition deviates from the 

average, taking all functions into account. Positive values express above-average performance of that 

species combination and negative values show below-average performance. Note that this approach is 

related to an unweighted averaging approach to quantify multifunctionality (Byrnes et al. 2014). We also 

calculated an alternative threshold-based measure according to the approach described in Byrnes et al. 

(2014). Here we used a threshold of 50 % of the maximum observed value of each function. The model-

based and threshold-based approach were clearly related (Fig. S2.1), so that the rankings of the 

compositions according to the two multifunctionality measures were quite similar. We can therefore 

assume that the results presented in the main text are robust to the choice for a particular 

multifunctionality measure. 
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Fig. S2.1.  Relationship between a model-based measure of forest multifunctionality and a threshold-based 

measure of multifunctionality. The measures were calculated for each of the different tree species 

compositions (combinations within forest types), expressing the performance of each composition when 

considering all 30 functions together. The regression line shows the linear regression (± 95 % CI) between 

the two measures and shows that they are clearly related (R² = 0.62; regression slope 25.3, P < 0.001). We 

can therefore assume that the results presented in the main text are robust to the choice for a particular 

multifunctionality measure. 

 

DIVERSITY INTERACTION MODELS: SPECIES IDENTITY AND DIVERSITY EFFECTS 

We used a diversity-interaction modelling framework (Kirwan et al. 2009) to quantity species identity and 

diversity effects. The approach uses a linear model of the form �� = �� + �� + ���� + ��, with ��  an 

estimate of functioning in a plot �, �� the species identity effects, �� the diversity effects, � the effect of 

variation in plot-level basal area (BA; average centred to zero within forest types), and a normally 

distributed residual error term ��. The species identity effects equal the average monoculture 

performances, weighted by the species’ relative abundance: �� = ∑ ����� , where �� is the estimated 

performance of species   in a monoculture and �� its relative basal area in a plot. The diversity effects 

results from species interactions, which causes mixture performance to differ from that expected from 

monoculture species performances. Kirwan et al. (2009) proposed alternative patterns of interactions 

based on different biological assumptions, corresponding to different formulations of the diversity effects 

term. Firstly, pairwise interactions between species   and ! lead to a diversity effect: �� =
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∑ "�#���#�$# , with  "�# the strength of the interspecific interaction (pairwise interactions assumption). 

Positive interaction terms indicate higher performance than expected based on the abundance-weighted 

average of the monoculture performance (overyielding in the context of productivity). Negative values 

similarly indicate antagonistic effects and thus lower performance than expected (underyielding). Secondly, 

under the assumption that species interact similarly with any other species and that the main effect of 

mixing is the contrast between intra- and interspecific interactions, the diversity effects can be simplified: 

�� = ∑ %���(1 − ��)� , with %� the interaction effect of species   with any other species (additive 

contribution assumption). Thirdly, interactions between trees from different functional groups may 

principally cause the diversity effect. Here we analysed the interaction between deciduous versus 

evergreen tree species: �� =  "+,�+�, , with "+,  the interaction between deciduous and evergreen species 

when they co-occur in a mixture, with relative basal areas �+  and �,, respectively (functional group 

assumption). The within functional-group interaction effects were assumed to be zero here. 

We confronted five alternative models with the data to explore the importance of the identity effects and 

the different types of interactions. Combining the variables and effects described above, this resulted in the 

following models: 

Null model; identity effects are equal (model 0) 

�� = � + ���� + ��  

Identity-effects model, no species interactions (model 1) 

�� = - �����
�

+ ���� + ��  

Pairwise-interactions effect model (model 2) 

�� = - �����
�

+ ���� + - "�#�����#
�$#

+ ��  

Additive contributions model (model 3) 

�� = - �����
�

+ ���� + - %����(1 − ���)
�

+ ��  

Functional-groups effect model (model 4) 
�� = - �����

�
+ ���� + "+,��+��, + ��  

All models were fitted in R3.4.1 (R Core Team 2017) and model comparisons were performed based on AIC 

and likelihood ratio tests.  
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Appendix S3 – Supplementary results 

 

Fig. S3.1. Relationship between the mean productivity and multifunctionality of each composition in 

the six forest types. The productivity is derived from the annual aboveground wood production and 

conversion of 0.5 g C per gram of biomass (Jucker et al. 2014). A tree productivity of 1 Mg C ha-1 yr-1 

thus corresponds to an annual production of two tons of aboveground woody biomass per hectare. 

The regression line shows the linear relationship (± 95 % CI) between the two measures of 

composition performance for each forest type. Slopes were significantly positive (P < 0.05) for 

beech, thermophilous deciduous, and Mediterranean mixed forest. For this analysis, the function 

productivity was excluded from the multifunctionality measure. Results for the global model are 

shown in the main text. 
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Fig. S3.2. Mean performance of each tree species composition for the 29 individual ecosystem 

functions (excluding tree productivity). Within each forest type, the species compositions were 

ranked from the lowest (left) to the highest (right) mean productivity. Measurements of each 

funtion were normalized within forest types and are represented on a colour scale: green values 

represent compositions that show above-average (within forest types) performance for a particular 

function (values > 0). Red values are for compositions with below-average performance (values < 0). 

The darker the colour the stronger the deviation from the average; maximum values were ±4 and 

represent ecosystem functions with a performance of four standard deviations higher or lower 

compared with the average. The general pattern across forest types (except mountainous beech) are 

prevailing green colours on the right-hand side and red colours on the left-hand side, showing that 

compositions with higher productivtiy on the right are also associated with high levels of other 

functions. 
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Fig. S3.3. Relationship showing for each species composition (ranked from lowest to highest 

productivity within forest types) the total number of ecosystem functions with above-average 

performance (total 29 functions). The lines are fitted values from linear models; slopes were 

significant for beech, thermophilous deciduous and Mediterranean mixed forest (P < 0.05; consistent 

with Fig. S3.1). The present graph is actually a condensed representation of Fig. S3.2: the ranking of 

compositions on the x-axis is the same and the response on the y-axis equals the number of colums 

in Fig. S3.2 with values > 0. 
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Fig. S3.4. Overview of tree species interaction effects on the 30 individual ecosystem functions in six 

European forest types. For each function, pairwise species interaction models were fitted to quantify 

the degree to which tree species interactions cause mixture performance to differ from that 

expected from the monoculture species performances. For each species pair and function, the graph 

shows the significant (P < 0.1) positive (green) or negative (red) effects, indicating whether the 

species mixture is doing better or worse than expected. The summary of this graph is shown in the 

main text (Fig. 2). Note that the graph compares within tree species combinations (performance of 

mixtures versus the monocultures of two particular species) and does not allow a direct comparison 

between compositions, because the species identity effects were not accounted for in this analysis. 

Full species names are given below Table 1.  

Page 47 of 52

Confidential Review copy

Journal of Applied Ecology



 

 

 

Fig. S3.5. Estimated coeficients (± 50% and 95% confidence interval) for the identity effects model 

quantifying differences in species monoculture multifunctionality in each forest type (model 1; 

species performance across 30 ecosystem functions). Positive and negative estimates represent 

higher and lower monoculture performance compared with the average within a forest type, 

respectively. These are considered significant in the main text if the 95% intervals do not overlap 

with zero. Note that the ecosystem functions were normalized, so that a one-unit change 

corresponds to a change from one standard deviation below/above the mean. The basal area effect 

quantifies how functioning changes with increasing stand density. Basal area was centred to average 

to zero within forest types, so that species effects are estimated at average basal area. See main text 

for more details on the identity model.  

Page 48 of 52

Confidential Review copy

Journal of Applied Ecology



 

 

Fig. S3.6. Frequency of occurrence of particular tree species compositions in national forest 

inventory data for boreal forests, beech forest, and Mediterranean mixed forests. Grey bars indicate 

the compositions that were also studied in the corresponding forest types in the FunDivEUROPE 

exploratory platform; the white bars represent compositions that were not included in the 

exploratory platform. The degree of productivity of the compositions is indicated by coloured circles, 

based on the estimates in the exploratory platform (so only for grey bars). The dotted lines indicate 

a threshold frequency of 0.01 below which rare combinations of tree species are not shown, unless 

they were studied in the exploratory platform.  
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Appendix S4 – Results sensitivity analyses 

 

Fig. S4.1. Relationships between the tree productivity and multifunctionality of different tree species 

compositions across six European forest types. This is a reanalysis of Fig. 1 in the main text, but we 

now assume a particular species mixture occurring in multiple regions to be the same composition 

(N = 92 compositions instead of 103). For instance, Picea abies monocultures were studied in four 

forest types and were therefore represented as four different points (compositions) in Fig. 1. The 

present graph only includes one point for P. abies monocultures, because its multifunctionality and 

mean productivity was calculated across types. The multifunctionality was calculated based on 29 

functions, that is, excluding tree productivity. The slope of the relationships now equals 0.027 (P < 

0.001, R² = 0.20), which is nearly identical to the slope in Fig. 1. The caption of Fig. 1 provides more 

information on the axes and legends. 
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Fig. S4.2. Change in the slope of the relationships between the tree productivity and 

multifunctionality when the number of ecosystem functions considered in the multifunctionality 

measure was reduced from 29 to 5 (from right to left). The slope at 29 functions, that is, considering 

all functions except tree productivity, corresponds to the relationship shown in Fig. 1 and is 

indicated by the horizontal line. For each number of functions, we randomly selected functions, 

calculated the model-based multifunctionality, and fitted the slope of a linear producitivity-

multifunctionality relationship. This was done 100 times for each number of functions; the points 

show the averages and the vertical lines mark the range between the 2.5% and 97.5% quantiles. 

While the relationship becomes slightly lower when fewer functions are considered, it is consistently 

positive (95% intervals only start to include zero when <10 functions are considered). 
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Fig. S4.3. Differences in the slope of the relationship between the tree productivity and 

multifunctionality when excluding one of the ecosystem function groups (Table S1.2) from the 

multifunctionality measure. For example, the ‘- nutrient driver’ category shows the relationship in 

case no functions from the ‘Nutrient and carbon cycling related drivers’ group were used for 

calculating the multifunctionality measure. The ‘all groups’ category considers all 29 functions and 

corresponds to the slope of the relationship shown in Fig. 1 (dashed horizontal line). The tree 

productivity was always excluded from the multifunctionality measure. Points are the estimates of 

the slopes ± 95 % confidence intervals. 

Page 53 of 52

Confidential Review copy

Journal of Applied Ecology


