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ABSTRACT: A multi-wirescanner for diagnostics of ionizing particle beams (e.g. both non-

relativistic and ultra-relativistic charged particles; X-ray and gamma photons) is proposed and 

discussed in the paper. The scanner is based on measurement of yield of characteristic X-rays 

generated during the particle interaction with the wires made of different materials. The 

proposed scanner is developed and tested on the beam of electrons with energy of 40 keV. The 

quasimonochromatic characteristic X-rays and continuous background are clearly identified. 

The results of measurements of the transverse size, emittance, position and direction of beam 

propagation are presented and discussed. 
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1. Introduction 

Diagnostics equipment is an important element of any accelerator. There are a huge number of 

devices working on different physical principles and designed to measure such parameters of 

charged particle beams as transverse and longitudinal size, angular divergence, emittance, 

position, trajectory, arrival time, energy spread, etc. [1–3]. These sensors represent a diagnostics 

family capable of visualizing the particle beam behavior in an accelerator aiding its operation, 

optimization and manipulation. 

Beam size measurement is crucial to evaluate the performance of an accelerator facility. In 

circular machines synchrotron radiation, appearing when a charged particles is bent in a dipole 

magnet, is utilized [4–6]. However, in linear accelerators one needs to introduce a mechanism of 

interaction with the particle beam that reveals its parameters. Scintillator screen monitors were 

initially introduced [7]; however, due to limited resolution and quick saturation by a high power 

beam, they were replaced by optical transition radiation (OTR) screens [8]. OTR screen 

monitors provided 2D beam profile measurements reaching micron-scale resolution [9], 

however, due to emission of coherent light these monitors malfunction at very short bunches of 

X-ray free electron lasers [10]. Furthermore, at non-relativistic energies the OTR intensity is 

rather low. 

The state-of-the-art in transverse beam size and emittance diagnostics is the so-called 

laser-wire. In this case a thin laser beam is scanned across a particle beam. The secondary 

particles (e.g. backscattered gamma-photons [11] or photo-detached electrons or neutral 

hydrogen atoms from H
–
 particles [12]) are detected downstream. This is a rather complicated 

system requiring an expensive laser, sophisticated laser beam transport line, and a team of 

people to operate. 

Solid wire scanners were also introduced in a very early period of accelerator 

development. Due to simplicity of construction, high-enough resolution and relatively low cost 

wire scanners are still used to measure transverse position, direction, profile, emittance, and 

energy spread of the particle beams. The wire scanners are used for beam monitoring at low 

[13–15], medium [16–18] and high energies [19–20], as well as in sources of photons [21]. 

During the measurement, the wire is scanned across the particle beam, while the electrical 
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current induced by the beam [22] or the intensity of the secondary particles [23] are registered. 

In long linear accelerators the detector has to be placed at a very large distance from the 

interaction region. Moreover, it also picks up background photons generated by the beam halo 

particles co-propagating with the beam. 

In this paper we present a modification of the wire scanner, which makes it possible to 

measure the trajectory, dimensions and emittance of a particle beam at an arbitrary location of 

the detector using the characteristic X-ray radiation generated by the beam in a set of wires 

made of different materials. It enables to distinguish signals from different wires and subtract 

background from the same measurement. 

2. Characteristic X-ray emission 

Characteristic X-rays (CXR) are generated during relaxation of an atom ionized by either a fast 

charged particle or an energetic X-ray or gamma photon. The atoms of different elements emit 

unique spectra of characteristic X-ray lines. The characteristic radiation of an atom has isotropic 

distribution for different particles and energies. If the wires are made of different materials then 

the measured spectra allow to separate the signal from the wires. It is evident that the intensity 

of the signal at each step of the wire is proportional to the number of particles directly 

interacting with the wire. It is an important detail that the X-ray detector can be placed under 

different observation angles relative to the direction of the particles propagation in contrast with 

the scanners based on detection of bremsstrahlung propagating at a small angle (typical angles 

are less than γ
–1

, where γ is the Lorenz-factor of a charged particle) relative to the particle 

direction. This detail is convenient in an 

experiment because the detector can be 

placed in the area where background has the 

lowest level. 

Figure 1 shows the calculation of the 

ionization cross-sections of atomic shells 

(we used in an experiment) by fast electrons 

with energies from 10 keV to 1 GeV [24]. It 

is a great advantage that in such a wide 

range of energies of incident particles the 

ionization cross section changes by no more 

than an order of magnitude for each shell. 

This feature makes it possible to use CXR 

to monitor the particle beam parameters at 

both low and high energies. 

 

3. Experimental setup 

An experimental station for investigation of various mechanisms of EM radiation generation by 

a continuous electron beam was designed and manufactured at Radiation Physics Laboratory of 

Belgorod National Research University [25]. The scheme of an experimental setup is presented 

in Figure 2.  

The setup consists of the DC electron gun, beam transport system, vacuum chamber with 

the wire scanner and equipment for measurement of X-ray spectra and electron beam current. 

 
Figure 1. Example of cross sections for 

ionization K, L and M shells of different atoms 

by electron impact 
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The DC electron gun with thermionic tungsten filament produces an electron beam with energy 

in the range from 10–100 keV and beam current of up to 500 µA. The beam transport system 

includes two solenoid lenses and two pairs of dipole correctors. In the focal point of the 1
st
 lens 

a metal diaphragm with an aperture diameter of 3 mm is mounted. The 2
nd

 lens is located inside 

the experimental vacuum chamber. The vacuum chamber has an internal diameter of 400 mm. 

The second lens enables us to adjust the position of the beam waist at the wire assembly for 

emittance measurement. A Faraday cup and microammeter are used to measure the beam 

current. A scintillator screen at the end of the beam trajectory is used to observe the beam 

position. 

 

 
Figure 2. The experimental station: DC beam is produced by the electron gun, formed by two 

solenoid lenses and transported to the experimental vacuum chamber; the wires in the holder 

can simultaneously move across the beam axis as shown by the black arrows; the spectra of 

CXR photons are registered by the X-ray detector. 

 

The scanner consists of five wires of different materials mounted on a holder, which is an 

aluminum frame of 220 × 100 mm
2
. To avoid the overlapping of the wires, the holder plane is 

positioned at an angle of 11° to the axis of the electron beam channel. During the beam scan the 

holder moves in horizontal direction perpendicular to the beam axis. The wires scan across the 

electron beam at different points along the beam axis. When particles of the beam interact with 

the wires, bremsstrahlung and characteristic X-rays are generated with intensity depending on 

the transverse position of the wire with respect to the electron beam centroid [26]. At this 

energy of electrons both CXR and bremsstrahlung mechanisms produce radiation with isotropic 

angular distribution. However, bremsstrahlung has a continuous spectrum which does not allow 

separating the signal from different wires and the background. Moreover, in case of relativistic 

beams, bremsstrahlung is directed along the particle trajectory within an open angle of order of 

1/. Due to isotropic angular distribution at high energies CXR is even more promising because 

of monochromatic spectrum that depends on the wire material [27]. A possibility to measure the 

CXR spectra by a semiconductor detector under the influence of the radiation background was 

demonstrated for different particle beams [28–29]. 
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The schematic diagram for measuring the beam parameters by wire scanner (WS) is shown 

in Figure 3. To separate signals we used the following wires: 45-μm titanium wire, 100-μm 

tungsten wire, 100-μm molybdenum wire, 85-μm copper wire and 95-μm thick platinum wire. 

A silicon drift X-ray detector Amptek XR100SDD FAST with 12.5 µm thick beryllium window 

and 500 µm thick silicon crystal was used to measure the radiation spectra. The effective area of 

the input detector window was 17 mm
2
. Measured energy resolution of the detector at 5.9 keV 

was about 170 eV. The efficiency in the energy 

range form 1–25 keV was more than 20 %. 

The detector signal is processed in the 

digital pulse processor (DPP) Amptek PX5 

controlled by a PC. The position of the scanner 

is controlled by a motorized linear translation 

stage (MT) Standa 8MT175-100-VSS42 and a 

stepper motor controller (SMC) Standa 

8SMC1-USBhF-B2-4 with accuracy of about 

2.5 µm. To control the wire scanner, we 

created the software in the LabVIEW 

integrated development environment. 

 

 

 

4. Results and Discussion 

This section presents experimental results obtained for electrons with energy of 40 keV and 

beam current of 1 μA. Low current was chosen to avoid the detector saturation and the thermal 

damage of the wires after long exposure. Nevertheless short test has demonstrated that the beam 

size does not change when increasing the beam current. That is because the charge density of 

our DC beam is not high enough to trigger the space charge effect. Figure 4 shows an example 

of X-ray spectra produced in the wires made of different materials. The peaking time of the 

spectroscopic system is 0.4 μs. The acquisition time is chosen to get clear spectra. However, as 

it is shown later, even at this low beam current the acquisition time can be reduced down to a 

few seconds to shorten the beam profile measurement duration. To avoid overloads, a lead 

collimator with aperture diameter of 1.7 mm was installed in front of the detector window (the 

average solid angle is about 6×10
–5

 sr). 

It can be seen that the spectra contain CXR, radiation from the holder (aluminum) and the 

vacuum chamber (iron) materials, as well as the continuous bremsstrahlung contribution from 

the wire itself. The background spectrum is obtained with the wires removed from the beam. 

One may see the background generated upstream or downstream the wire assembly is 

significantly smaller than the bremsstrahlung contribution from the wire itself. However, if this 

methodology is applied at relativistic energies the bremsstrahlung contribution can be 

significantly smaller. The contribution at large observation angles will be negligible, which will 

certainly improve the signal-to-noise ratio. On the other hand the background from the beam 

can be much larger. Therefore a separate experimental test at high energies is needed. 

 
Figure 3. Schematic diagram for beam 

parameter measurements 
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Figure 4. X-ray spectra of the wires (black line) and background (gray line). 

 

To obtain the transverse profile of the beam it is required to measure the dependence of the 

CXR intensity of a particular wire (Kα for titanium and copper, Lα for molybdenum and 

tungsten, and Mα for platinum) on the position of the scanner. It is necessary to exclude the 

contribution of background to improve the signal to noise ratio. The CXR photon yield strongly 

depends on the wire materials. However, the continuous pedestal in Figure 5 contains both 

bremsstrahlung and background photons. We assume that the pedestal under the CXR peak 

varies linearly in the vicinity of the mean values in the border areas Δ as shown in Figure 5, and, 

therefore, can be subtracted. This procedure simplifies the calculation of the peak area and is 

suitable for quick automatic measurements. Figure 6 shows how the X-ray spectrum of 

molybdenum wire changes during the scan. The acquisition time for each spectrum is about 1 s, 

which is enough to collect proper statistics. One may see that the continuous level also depends 

on the wire position. However, subtracting it from the main signal we isolate CXR photons, to 

obtain clear beam profiles. 

The results of measurements of the beam profiles are shown in Figure 7. The 

measurements are performed in steps of 50 μm and exposure time of 1 s for each point on the 

graphs. The total scan time was about 1 hour, but each wire was exposed to the electron beam 

for 3 minutes. Therefore the total scan time can be reduced down to 20 minutes optimizing the 

scan methodology. Moreover, the maximum number of events in the measured profiles allows 

to further reduce the scan time by a factor of 10. 
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Figure 5. Example of background 

subtraction for tungsten Lα-line 

Figure 6. Molybdenum X-ray spectrum 

change during scanning 

 

 

  

 
Figure 7. Measured profiles of the electron beam (points) and result of fitting by Gaussian 

function (lines) 
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It is clear that the electron beam is not Gaussian, but consists of the main part (the core) 

and a satellite part. In order to extract the beam dimensions from the measured profiles, a sum 

of two Gaussian functions (one for the core and one for the satellite) was used to fit the 

experimental data: 

𝑁CXR(𝑥) = 𝑁0 +
𝐴1

√2𝜋𝜎1
𝑒
−
(𝑥−𝑥1)

2

2𝜎1
2

+
𝐴2

√2𝜋𝜎2
𝑒
−
(𝑥−𝑥2)

2

2𝜎2
2

, 

where NCXR is the number of photons in CXR peak, N0 is the offset, A1 and A2 are the areas, and 

x1 and x2 are the positions of the core and the satellite respectively, σ1 and σ2 are the widths of 

the core and satellite peaks, x is the position of the scanner. The fitting parameters for each 

profile and the corresponding coefficients of determination (R
2
) are summarized in Table 1. 

 

Table 1. Fitting parameters for beam profiles 

  Core Satellite  

Wire N0 A1 (mm) x1 (mm) σ1 (mm) A2 (mm) x2 (mm) σ2 (mm) R2 

Ti –16±15 1686±85 52.154±0.005 0.195±0.006 885±103 52.85±0.05 0.41±0.06 0.987 

W –32±36 1209±65 40.935±0.007 0.153±0.008 271±114 41.78±0.14 0.40±0.17 0.931 

Mo 22±7 1382±46 29.336±0.006 0.242±0.005 658±52 30.10±0.03 0.40±0.03 0.994 

Cu 25±24 1628±141 17.277±0.031 0.337±0.026 398±128 16.59±0.06 0.23±0.05 0.953 

Pt 0±10 547±37 3.675±0.026 0.614±0.037 — — — 0.846 

 

Figure 8 shows how the size of the beam core σ1 varies along its axis. The minimum size 

of the beam core σmin = 0.148 ± 0.013 mm is reached at the location of the tungsten wire. Also, 

from the data in Figure 8, we can extract values of the beam divergence of 0.46° ± 0.06° and 

normalized emittance 𝜀𝑛 = 𝜀𝛽𝛾 = 0.22 ± 0.03 π mm mrad (where β is the speed of particle in 

units of the speed of light and ε is the physical beam emittance). In addition, the results of 

measurements make it possible to determine the real trajectory of electrons in the experimental 

chamber, as shown in Figure 9. The curved path comes from the fact that the beam profile 

changes while propagating through the chamber. The analysis has been performed for the beam 

core only. One may see that the emittance is by a factor of 4 smaller than previously reported 

in [25]. The reason is that previously were unable to separate the core from the satellite beam. 

  
Figure 8. Measured transverse beam size of 

the beam core as function of distance along 

the beam axis (points) and parabola fitting 

(line); dashed line – axis of the experimental 

chamber 

Figure 9. Measured beam position in the 

experimental vacuum chamber (points) and 

linear fitting (line); dashed line – axis of the 

electron beam channel 
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5. Conclusion 

In the article, we propose a modified version of a wire scanner based on measurements of CXR 

spectra generated by fast particles in solid wires. The proposed wire scanner differs from the 

conventional one by the fact that the wires are made from different materials (or wires coated by 

different materials) and an energy dispersive semiconductor detector for measuring X-ray 

spectra. This scanner allows quick subsequent measurements of the transverse profiles of the 

particle beam at different longitudinal positions. Since the CXR energy depends on the material 

of the wire, the signals from different wires are not overlapped and can be easily separated. At 

these energies simultaneous measurements are not possible because all electrons interacting 

with wires are absorbed. At relativistic energies it might be possible. Since CXR has an 

isotropic angular distribution, there are no restrictions on the location of the X-ray detector, e.g. 

the measurements can be done in backward direction minimizing the background contribution 

and making the entire scanner compact and self-sufficient. The scanning time depends on the 

detector performance and the beam intensity. In the case of high beam currents, the CXR 

intensity can be reduced using collimators and (or) attenuators. The proposed wire scanner can 

be used to measure the main characteristics (position, divergence, size, emittance, direction) of 

beams of charged or neutral particles (e.g. X-ray or gamma photons) at both low and high 

energies. The measurements can be carried out both in vacuum and at atmospheric pressure. 
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