
GLL Parsing with Flexible Combinators

L. Thomas van Binsbergen,
Elizabeth Scott, and Adrian Johnstone

Royal Holloway, University of London
ltvanbinsbergen@acm.org

5 November, 2018

http://hackage.haskell.org/package/gll

http://hackage.haskell.org/package/gll

Simple, efficient, sound and complete

combinator parsing for all context-free

grammars, using an oracle

Tom Ridge

University of Leicester

Abstract. Parsers for context-free grammars can be implemented di-
rectly and naturally in a functional style known as “combinator pars-
ing”, using recursion following the structure of the grammar rules. Tra-
ditionally parser combinators have struggled to handle all features of
context-free grammars, such as left recursion.
Previous work introduced novel parser combinators that could be used
to parse all context-free grammars. A parser generator built using these
combinators was proved both sound and complete in the HOL4 theorem
prover. Unfortunately the performance was not as good as other parsing
methods such as Earley parsing.
In this paper, we build on this previous work, and combine it in novel
ways with existing parsing techniques such as Earley parsing. The result
is a sound-and-complete combinator parsing library that can handle all

context-free grammars, and has good performance.

1 Introduction

In previous work [13] the current author introduced novel parser combinators
that could be used to parse all context-free grammars. For example, a parser for
the grammar E -> E E E | "1" | ǫ can be written in OCaml as:

let rec parse_E = (fun i -> mkparser "E" (

(parse_E **> parse_E **> parse_E) ||| (a "1") ||| eps) i)

In [4] Barthwal and Norrish discuss this work:

[Ridge] presents a verified parser for all possible context-free grammars,
using an admirably simple algorithm. The drawback is that, as presented,
the algorithm is of complexity O(n5).

Existing techniques such as Earley parsing [5] take time O(n3) in the length of
the input in the worst case. Therefore, as far as performance is concerned, [13]
is not competitive with such techniques. In this work, we seek to address these
performance problems. We have three main goals for our parsing library.

– The library should provide an interface based on parser combinators.

Library Architecture (Ridge 2014)

Combinator expression

Grammar

Sentence Parsing proc Oracle Evaluator Semantic values

−→ input
99K output

• Parser is replaceable

• Similar suggestion by [Ljunglöf, 2002]

Contributions

1 Functional description and implementation of GLL parsing:

All datastructures are basic sets/relations
Recursive descent extended to GLL

2 Grammar combinators without grammar binarisation:

Combinator expressions evaluate to a grammar object
This grammar is an argument to parsing procedure

3 Emperical evaluation on real-world grammars:

Demonstrates “acceptable” runtimes on ANSI-C, Caml Light, CBS
Significant speed-ups achieved by avoiding binarisation

GLL parsing

1) Recursive descent parsing

• Every nonterminal is implemented by a parse function

• Every parse function has a branch for every alternate of the nonterminal

• Every branch is a sequence of:

calls to parse functions

code matching terminals

GLL parsing

1) Recursive descent parsing

• Every nonterminal is implemented by a parse function

• Every parse function has a branch for every alternate of the nonterminal

• Every branch is a sequence of:

calls to parse functions

code matching terminals

2) We consider parse functions that:

have a parameter holding an index k into the input string (pivot)

have a local variable remembering the initial pivot value l (left extent)

return the value r (right extent) held by the parameter at the end of a branch

GLL parsing

2) We consider parse functions that:

have a parameter holding an index k into the input string (pivot)

have a local variable remembering the initial pivot value l (left extent)

return the value r (right extent) held by the parameter at the end of a branch

3) Abstract representation

A descriptor (X ::= α · β, l , k) models the state of a parse

A commencement (X , l) models a (parse) function call

A continuation (X ::= αY · β, l) models a return context

GLL parsing

3) Abstract representation

A descriptor (X ::= α · β, l , k) models the state of a parse

A commencement (X , l) models a (parse) function call

A continuation (X ::= αY · β, l) models a return context

4) Descriptor processing

Process encountered descriptors in any order, exactly once, starting with (S ::= ·α, 0, 0)

There are three forms of descriptors:

(X ::= α · tβ, l , k) with t terminal match action

(X ::= α · Y β, l , k) with Y nonterminal descend/skip action

(Y ::= δ·, l , r) ascend action

GLL parsing

4) Descriptor processing

Process encountered descriptors in any order, exactly once, starting with (S ::= ·α, 0, 0)

There are three forms of descriptors:

(X ::= α · tβ, l , k) with t terminal match action

(X ::= α · Y β, l , k) with Y nonterminal descend/skip action

(Y ::= δ·, l , r) ascend action

5) GLL datatypes

The set U contains all descriptors processed so far

The relation P pairs commencements with right extents

The relation G pairs commencements with continuations

GLL parsing

5) GLL datatypes

The set U contains all descriptors processed so far

The relation P pairs commencements with right extents

The relation G pairs commencements with continuations

match

(X ::= α · tβ, l , k) → (X ::= αt · β, l , k + 1)

pre-conditions:

t is the k ’th terminal in the input string

post-conditions:

(X ::= α · tβ, l , k) ∈ U

GLL parsing

descend

(X ::= α · Y β, l , k) → (Y ::= ·δ1, k , k)

. . .

→ (Y ::= ·δi , k, k)

pre-conditions:

Y ::= δi is in the grammar, for all i

There is no r such that ((Y , k), r) ∈ P
post-conditions:

Possible new continuation: ((Y , k), (X ::= αY · β, l)) ∈ G
(X ::= α · Y β, l , k) ∈ U

GLL parsing

skip

(X ::= α · Y β, l , k) → (X ::= αY · β, l , r1)

. . .

→ (X ::= αY · β, l , rj)

pre-conditions:

For all 1 6 i 6 j , we have ((Y , k), ri) ∈ P (at least one)

post-conditions:

Possible new continuation: ((Y , k), (X ::= αY · β, l)) ∈ G
(X ::= α · Y β, l , k) ∈ U

GLL parsing

ascend

(Y ::= δ·, l , r) → (X ::= α1Y · β1, l1, r)

. . .

→ (X ::= αiY · βi , lj , r)

pre-conditions:

For all 1 6 i 6 j , we have ((Y , l), (X ::= αiY · βi , li)) ∈ G
post-conditions:

Possible new right extent: ((Y , l), r) ∈ P
(Y ::= δ·, l , r) ∈ U

Oracle construction

(X ::= α · sβ, l , k) ∈ U & (X ::= αs · β, l , r) ∈ U

gives

(X ::= αs · β, l , k , r) ∈ O

(Y ::= δ·, l , r) with l = r , δ = ε

gives

(Y ::= δ·, l , l , l) ∈ O

Contributions

1 Functional description and implementation of GLL parsing:

All datastructures are basic sets/relations
Recursive descent extended to GLL

2 Grammar combinators without grammar binarisation:

Combinator expressions evaluate to a grammar object
This grammar is an argument to parsing procedure

3 Emperical evaluation on real-world grammars:

Demonstrates “acceptable” runtimes on ANSI-C, Caml Light, CBS
Significant speed-ups achieved by avoiding binarisation

Parser combinators

term :: Eq t ⇒ t → Parser
epsilon :: Parser
(〈∗〉) :: Parser → Parser → Parser
(〈|〉) :: Parser → Parser → Parser

Example T ::= (A) A ::= ε | M a M ::= ε | M a ,

pT = term ’(’ 〈∗〉 pA 〈∗〉 term ’)’

pA = epsilon 〈|〉 pM 〈∗〉 term ’a’

pM = epsilon 〈|〉 pM 〈∗〉 term ’a’ 〈∗〉 term ’,’

Grammar combinators

term :: Eq t ⇒ t → Grammar
epsilon :: Grammar
(〈∗〉) :: Grammar → Grammar → Grammar
(〈|〉) :: Grammar → Grammar → Grammar

Grammar extraction

• Expressions yield at most two productions with at most two symbols in rhs

nt(x) = "(" ++ nt(l) ++ "*" ++ nt(r) ++ ")" if x = l 〈∗〉 r

nt(y) = "(" ++ nt(p) ++ "|" ++ nt(q) ++ ")" if y = p 〈|〉 q

productions: nt(x) ::= nt(l)nt(r), nt(y) ::= nt(p), nt(y) ::= nt(q)

Grammar combinators

nterm :: String → Grammar
term :: Eq t ⇒ t → Grammar
epsilon :: Grammar
(〈∗〉) :: Grammar → Grammar → Grammar
(〈|〉) :: Grammar → Grammar → Grammar

Grammar extraction

• Expressions yield at most two productions with at most two symbols in rhs

nt(x) = "(" ++ nt(l) ++ "*" ++ nt(r) ++ ")" if x = l 〈∗〉 r

nt(y) = "(" ++ nt(p) ++ "|" ++ nt(q) ++ ")" if y = p 〈|〉 q

productions: nt(x) ::= nt(l)nt(r), nt(y) ::= nt(p), nt(y) ::= nt(q)

BNF combinators

(〈::=〉) :: String → Choiceex → Symbex

term :: Eq t ⇒ t → Symbex

(〈∗∗〉) :: Seqex → Symbex → Seqex

seqStart :: Seqex

(〈||〉) :: Choiceex → Seqex → Choiceex
altStart :: Choiceex

Example T ::= (A)

gT = "T" 〈::=〉 altStart 〈||〉 seqStart 〈∗∗〉 term ’(’ 〈∗∗〉 gA 〈∗∗〉 term ’)’

gA = ...

Flexible BNF combinators

(IsSeq seq, IsCh ch, IsSymb symb)⇒
(〈::=〉) :: String → ch→ Symbex

term :: Eq t ⇒ t → Symbex

(〈∗∗〉) :: seq → symb → Seqex

seqStart :: Seqex

(〈||〉) :: ch→ seq → Choiceex
altStart :: Choiceex

Example T ::= (A)

gT = "T" 〈::=〉 term ’(’ 〈∗∗〉 gA 〈∗∗〉 term ’)’

gA = ...

Conversions

Symbex

SeqexChoiceex

(a)

(b)

(c)

instance IsSeq Seqex where ... -- id
instance IsSeq Symbex where ... -- (a)
instance IsSeq Choiceex where ... -- (a) ◦ (c)

instance IsCh Choiceex where ... -- id
instance IsCh Seqex where ... -- (b)
instance IsCh Symbex where ... -- (b) ◦ (a)

instance IsSymb Symbex where ... -- id
instance IsSymb Choiceex where ... -- (c)
instance IsSymb Seqex where ... -- (c) ◦ (b)

Contributions

1 Functional description and implementation of GLL parsing:

All datastructures are basic sets/relations
Recursive descent extended to GLL

2 Grammar combinators without grammar binarisation:

Combinator expressions evaluate to a grammar object
This grammar is an argument to parsing procedure

3 Emperical evaluation on real-world grammars:

Demonstrates “acceptable” runtimes on ANSI-C, Caml Light, CBS
Significant speed-ups achieved by avoiding binarisation

Evaluation

Claims

• Running times show that the approach is practical
Although the emphasis has been on correctness

• Avoiding binarisation improves running times
Syntax descriptions have not been manipulated to benefit evaluation

Binarising BNF combinators

(〈::=〉bin) :: String → Symbex → Symbex

(〈::=〉bin) = (〈::=〉)

(〈||〉bin) :: Symbex → Symbex → Symbex

p 〈||〉bin q = toSymb (p 〈||〉 q)

(〈∗∗〉bin) :: Symbex → Symbex → Symbex

p 〈∗∗〉bin q = toSymb (p 〈∗∗〉 q)

Parsing: ANSI-C

Binarised: 690 nonterminals, 848 alternates
Flexible: 71 nonterminals, 229 alternates 2.4-2.6x speed-up (with lookahead)

Parsing: Caml Light

Binarised: 580 nonterminals, 731 alternates
Flexible: 134 nonterminals, 285 alternates 1.3-1.4x speed-up (with lookahead)

Parsing and printing: Component-Based Semantics

Binarised: 640 nonterminals, 771 alternates
Flexible: 126 nonterminals, 257 alternates 1.7-2.1x speed-up (with lookahead)

Practical reflection

• An EDSL for describing context-free grammars based on ‘BNF combinators’

• Parsers with on-the-fly semantics available for described grammars

• Generalised parsing certainly simplifies SLE

• Library suitable for our purpose: reference interpreters for programming languages

• Caveats:

Disambiguation mostly ad-hoc

Manual nonterminal insertion problematic in some cases

GLL Parsing with Flexible Combinators

L. Thomas van Binsbergen,
Elizabeth Scott, and Adrian Johnstone

Royal Holloway, University of London
ltvanbinsbergen@acm.org

5 November, 2018

http://hackage.haskell.org/package/gll

http://ltvanbinsbergen.nl/thesis

http://hackage.haskell.org/package/gll
http://ltvanbinsbergen.nl/thesis

parsec

Parser Combinators UU-lib

. . .
Explicit Nonterminals Scheme recognisers (Johnson 1995)

Meerkat (Izmaylova/Afroozeh 2015/16)
P3 (Ridge 2014)

Grammar Combinators GLL.Combinators (2015/16)
grammar-combinators (Devriese 2011/12)

Meta-Programming BNFC-meta (Duregard 2011)
Bison

Parser Generators yacc

Happy

. . .

