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Abstract. To protect control into critical infrastructures against sin-
gle component-dependency attacks or failures, we analyse the impor-
tance of any given dependency in maintaining controllability with a
minimum set of inputs. Since people use critical, redundant and ordi-
nary categories to clarify how an edge maintains controllability of linear
time-invariant(LTI) dynamical networks, according to graph-based mod-
els of infrastructures and the minimum input theorem, we firstly use a
Erdős-Rényi random digraph with a precomputed maximum matching
to model some LTI and controllable infrastructures by a minimum set of
inputs. We then efficiently analyse any given arc’s category before and
during single-arc removals, as a way to further confirm how related de-
pendency keeps control into infrastructures. After running our label oper-
ations with linear time and space complexity, any edge-category analysis
can be thus executed in O(1) time in both cases.
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1 Introduction

Malicious attacks or random failures on pairwise dependencies among critical in-
frastructure components might make critical infrastrucutres out of control, and
may lead unavailability of purposed products and services in a large region for a
significant length of time, which would cause severe economic impacts or life loss
and limb [7]. Thus, efficient analysis on any given pairwise dependency between
components in terms of keeping control into infrastructures is forward-looking
to protect critical infrastructures. Given a controllable and linear time-invariant
(LTI) critical infrastructure by a minimum set of inputs, according to the graph-
based models of critical infrastructures [8] and the minimum input theorem used
to control networks with LTI dynamics, to protect its controllability, we model
this given infrastructure by a large, sparse Erdős-Rényi random digraph, which
also contains a precomputed maximum matching, as an input graph [1]. Then,
we solve the problem of efficient edge-category analysis on the input graph to
classify any given edge into critical, redundant or ordinary categories before and
during single-edge removals[6], so that how related pairwise dependency keeps
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control into critical infrastructure can be known. Specifically, removing a crit-
ical edge increases the minimum number of inputs; the absence of an ordinary
edge only changes control strucutre rather than the minimum number of inputs;
removing a redundant edge changes nothing [6]. Our edge-category analysis is
executed through a bipartite graph mapped by the input graph. With this bi-
partite graph, we firstly introduce a generally static analysis, on which there is
no edge removals. Based on our previous work [9], searching and labelling alter-
nating cycles and paths related to a given maximum matching helps to confirm
any edge’s category. During the single-edge removal process, in addition of edge-
category analysis, control into the residual network per edge removal should be
recovered as well. With constrains on degree distribution of the input graph, la-
bel operations and control recovery are executed in O(1) amortized time per edge
removal. For our contribution, excluding the precomputed maximum matching
of the input graph, by label operations executed in linear time and space com-
plexity, category of any given edge of the input graph can be confirmed in O(1)
time. In the following paper: section 2 models critical infrastructures and formu-
lates research question; section 3,4 executes static and dynamic edge-category
analysis respectively; section 5 gives conclusion.

2 Modelling

By control theory [4, 5], an linear time-invariant infrastructure with external
inputs can be described by a differential equation:

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) ∈ RN is the system state vector holding the state of each in-
frastructure component at time t, and x(t) = (x1(t), x2(t), . . . , xN (t))T . u(t) ∈
RM (M ≤ N) is the control input vector, and u(t) = (u1(t), u2(t), . . . , uM (t))T .
System matrix A ∈ RN×N shows the interactions among N components, while
input matrix B ∈ RN×M shows interactions among M inputs and N compo-
nents. A system described by equation 1 is fully controllable if and only if the
rank of the matrix C ∈ RN×NM , where C = [B,AB, A2B, . . ., AN−1B], has
full rank, noted by rank(C) = N . Concerning graph-based model of the critical
infrastrucutres [8], we model the infratructure by a digraph defined below:

Definition 1 (Modelling Digraph). Given a A of equation 1, let G(A) =
(V1, E1) be a digraph, and α : {A} → G(A) be a bijection. For each non-zero

entry aij ∈ A, there are α : aij →
−−−−→
〈vj , vi〉, where

−−−−→
〈vj , vi〉 ∈ E1 and {vi, vj} ⊆ V1.

And controllability of G(A) with a minimum set of inputs is confirmed by
following theorem:

Theorem 1 (The Minimun Input Theorem [6]). The minimum number of
inputs to fully control a modelling digraph is one, if it has a perfect matching,
where the input can directly drive any vertex. Otherwise, it equals to the number
of unmatched nodes, which must be directly driven by the same number of inputs.
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In digraphs, a maximum matching is a set of arcs neither sharing common
heads nor tails with highest cardinality [1]. When all nodes of a digraph are
heads of arcs of a maximum matching, this digraph has a perfect matching. Also,
there might be multiple maximum matchings in a same graph. By contrast, a
maximum matching of a bipartite digraph is a set of vertex-disjoint edges with
the highest cardinality. Above all, we define our modelling digraph, which is our
input graph of following edge classification:

Definition 2 (Input Graph). Let D = (V,E) be a large, sparse and finite

Erdős-Rényi digraph, where V = {vi|1 ≤ i ≤ N}(N > 3), E = {
−−−−→
〈vi, vj〉|i 6=

j, vi, vj ∈ V }(|E| > 3). D excludes selfloops, parallel arcs and isolated nodes.
Also, let MD be a precomputed maximum matching of D by the algorithm of [3].

With D = (V,E) of definition 2, efficiently analysing how any given de-
pendency among infrastructure components maintains the control into the in-
frastructure with a minimum set of inputs, can be modelled into efficient edge-
category analysis on D to confirm its any edge’s category. Further more, we solve
such analysis before and during the process of single-edge removals.

3 Generally Static Edge Analysis

This section confirms the category of any given arc of D = (V,E) of definition
2, when no arc is removed from D. A bipartite graph defined below to execute
following edge-category analysis with items of defintion 4 and corollary 1, 2:

Definition 3 (B = (VB , EB)). Given D = (V,E) with MD of definition 2, let
B = (VB , EB) be an undirected bipartite graph, β be a bijection. Also, let V −

B , V +
B

be two independent sets, where VB = V +
B ∪V

−
B and MB be a maximum matching

of B. For any
−−−−→
〈vi, vj〉 ∈ E, β :

−−−−→
〈vi, vj〉 → (v+i , v

−
j ), where v+i ∈ V

+
B , v

−
j ∈ V

−
B

and (v+i , v
−
j ) ∈ EB. Besides, let MB mapped by MD.

Definition 4 (Alternating Cycle & Alternating Path [9]). Given B =
(VB , EB) with MB of definition 3, a set of edges is either an alternating path or
cycle, iff it alternatively involves the same number of edges of MB and EB \MB.

Corollary 1. In D = (V,E), let e be an edge of E, given B = (VB , EB) and
MB, let e

′
be an edge of EB and mapped by e. Then, e is a critical edge iff

e
′ ∈MB and out of any alternating cycles or paths related to MB [9].

Corollary 2. In D = (V,E), let e be an edge of E, given B = (VB , EB) and
MB, let e

′
be an edge of EB and mapped by e. Then, e is an ordinary edge iff

e
′ ∈MB and involved into an alternating cycle or path related to MB [9].

Thus, static analysis depends on finding all alternating paths and cycles
related to MB . Specifically, each identified edge is a mapped by an ordinary
edge related to MD of D, while each edge of MB not identified corresponds to
a critical edge of D. And any edge out of MB and not identified is related to a
redundant edge of D. To view related algorithms, please ask for the first author.
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4 Conditionally Dynamic Edge Analysis

This section confirms the category of any given arc of residual network after
removing single edges from D = (V,E) of definition 2, where control recovery
per single-edge removal is also implemented. Solving this problem also depends
on B = (VB , EB) of definition 3 during removing p(1 ≤ p < |EB |) single edges.
To increase efficiency, we assume that: (i)the number of in-degree and out-degree
of any node of D should be less than or equal to 2; (ii) the average degree
of D is bigger than one. By these assumptions, all paths and cycles can not
share common vertex incident to MB . Even though, several cases still should be
concerned and related algorithms can be asked for the first author.

5 Conclusion

We use a digraph with a precomputed maximum matching to model a LTI
controllable critical infrastructure with a minimum set of inputs, and execute
efficient edge-category analysis, to confirm the importance of any given pairwise
dependency in keeping controllability against removing single infrastructure de-
pendency. We find and label alternating paths and cycles of a bipartite graph
mapped by the graph model during continuous single-edge removals to support
edge-category analysis. As a result, our entire operations cost linear time and
space in the worst case for both static and conditionally dynamic edge analysis.
Also, based on the aggregate analysis [2], an label operation per single-edge re-
moval for conditionally dynamic edge analysis costs O(1) amortized time. With
those operations, category of any given arc can be confirmed in O(1) time in
both cases, which excludes label operations.
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