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Abstract

In 2010, Silva, Kschischang and Kötter studied certain classes of finite field matrix
channels in order to model random linear network coding where exactly t random
errors are introduced.

In this paper we consider a generalisation of these matrix channels where the
number of errors is not required to be constant, indeed the number of errors may
follow any distribution. We show that a capacity-achieving input distribution can
always be taken to have a very restricted form (the distribution should be uniform
given the rank of the input matrix). This result complements, and is inspired by, a
paper of Nobrega, Silva and Uchoa-Filho, that establishes a similar result for a class
of matrix channels that model network coding with link erasures. Our result shows
that the capacity of our channels can be expressed as a maximisation over probability
distributions on the set of possible ranks of input matrices: a set of linear rather than
exponential size.

1 Introduction

Network coding, first defined in [1], allows intermediate nodes of a network to com-
pute with and modify data, as opposed to the traditional view of nodes as ‘on/off’
switches. This can increase the rate of information flow through a network. It is
shown in [13] that linear network coding is sufficient to maximise information flow in
multicast problems, that is when there is one source node and information is to be
transmitted to a set of sink nodes. Moreover, in [10] it is shown that for general mul-
tisource multicast problems, random linear network coding achieves capacity with
probability exponentially approaching 1 with the code length.

In random linear network coding, the source injects packets into the network;
these packets can be thought of as vectors of length m with entries in a finite field Fq

(where q is a fixed power of a prime). The packets flow through a network of un-
known topology to a sink node. Each intermediate node forwards packets that are
random linear combinations of the packets it has received. A sink node attempts to
reconstruct the message from these packets. In this context, Silva, Kschischang and
Kötter [18] studied a channel defined as follows. We write Fn×m

q to denote the set of
all n ×m matrices over Fq, and write GL(n, q) for the set of all invertible matrices
in Fn×n

q .

Definition 1.1. The Multiplicative Matrix Channel (MMC) has input set X and
output set Y, where X = Y = Fn×m

q . The channel law is

Y = AX

where A ∈ GL(n, q) is chosen uniformly at random.
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Here the rows of X correspond to the packets transmitted by the source, the
rows of Y are the packets received by the sink, and the matrix A corresponds to the
linear combinations of packets computed by the intermediate nodes.

Inspired by Montanari and Urbanke [14], Silva et al modelled the introduction
of random errors into the network by considering the following generalisation of the
MMC. We write Fn×m,r

q for the set of all n×m matrices of rank r.

Definition 1.2. The Additive Multiplicative Matrix Channel with t errors (AMMC)
has input set X and output set Y, where X = Y = Fn×m

q . The channel law is

Y = A(X + B)

where A ∈ GL(n, q) and B ∈ Fn×m,t
q are chosen uniformly and independently at

random.

So the matrix B corresponds to the assumption that exactly t linearly indepen-
dent random errors have been introduced. The MMC is exactly the AMMC with
zero errors.

We note that the AMMC is very different from the error model studied in the
well-known paper by Kötter and Kschischang [12], where the errors are assumed to
be adversarial (so the worst case is studied).

In [18] the authors give upper and lower bounds on the capacity of the AMMC,
which are shown to converge in certain interesting limiting cases. The exact ca-
pacity of the AMMC for fixed parameter choices is hard to determine due to the
many degrees of freedom involved: the naive formula maximises over a probability
distribution on the set of possible input matrices, and this set is exponentially large.

In this paper we consider a generalisation of these matrix channels that allows
the modelling of channels were the number of errors is not necessarily fixed. (For
example, it enables the modelling of situations when at most t errors are introduced,
or when the errors are not necessarily linearly independent, or both.) To define our
generalisation, we need the following notation which is due to Nobrega, Silva and
Uchoa-Filho [15].

Definition 1.3. Let R be a probability distribution on the set {0, 1, . . . ,min{m,n}}
of possible ranks of matrices M ∈ Fn×m

q . We define a distribution on the set Fn×m
q

of matrices by choosing r according to R, and then once r is fixed choosing a matrix
M ∈ Fn×m,r

q uniformly at random. We say that this distribution is Uniform Given
Rank (UGR) with rank distribution R. We say a distribution on Fn×m

q is Uniform
Given Rank (UGR) if it is UGR with rank distribution R for some distribution R.

We write R(r) for the probability of rank r under the distribution R. So a
distribution on Fn×m

q is UGR with rank distribution R if and only if each M ∈ Fn×m
q

of rank r is chosen with probability R(r)/|Fn×m,r
q |.

Definition 1.4. Let R be a probability distribution on the set {0, 1, . . . ,min{m,n}}
of possible ranks of matrices M ∈ Fn×m

q . The Generalised Additive Multiplicative
MAtrix Channel with rank error distribution R (the Gamma channel Γ(R)) has input
set X and output set Y, where X = Y = Fn×m

q . The channel law is

Y = A(X + B)

where A ∈ GL(n, q) is chosen uniformly, where B ∈ Fn×m
q is UGR with rank distri-

bution R, and where A and B are chosen independently.

We see that the AMMC is the special case of Γ(R) when R is the distribution
choosing rank t with probability 1. In [18, §VI-D] the authors consider a generalisa-
tion of the AMMC which is exactly the Gamma channel in the case when the error
rank is bounded by t, that is they consider Γ(R) when R is any distribution with
R(r) = 0 for all r > t. For t = n this channel is identical to the Gamma channel.
However, the authors consider t as a maximum value for the error rank (thus will be
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taken to be less than n), whereas we consider any full rank distribution, with high
rank having low probability.

Our model covers several very natural situations (some of which are also covered
by the generalised AMMC with t < n). For example, we may drop the assumption
that the t errors are linearly independent by defining R(r) to be the probability that
t vectors span a subspace of dimension r, when the vectors are chosen uniformly and
independently. We can also extend this to model situations when the number t of
vectors varies according to natural distributions such as the binomial distribution
(which arises when, for example, a packet is corrupted with some fixed non-zero
probability). In practice, given a particular network, one may run tests on the
network to see the actual error patterns produced and define an empirical distribution
on ranks. One could also define an appropriate distribution by considering some
combination of the situations described.

We are interested in the capacity of the Gamma channel. In the generalised
AMMC [18, §VI.D] the authors establish a lower bound on the capacity that is at
most logq(t + 1) lower than the capacity of the AMMC with the same value of t.
Therefore in the limiting cases considered their generalised channel performs at least
as well as the AMMC. This is a very useful result when t is significantly smaller than
n. However, if we take t = n then the expressions [18, Eq. 19 & 20] for the capacity
in the limiting cases considered evaluate to zero.

Throughout this paper, we assume that q, n, m andR are fixed by the application.
We will refer to these values as the channel parameters.

We note that the Gamma channel assumes that the transfer matrix A is always
invertible. This is a realistic assumption in random linear network coding in standard
situations: the field size q is normally large, which means linear dependencies between
random vectors are less likely.

In both [15] and [16] the authors consider (different) generalisations of the MMC
channel that do not necessarily have a square full rank transfer matrix. Such channels
allow modelling of network coding when no erroneous packets are injected into the
network, but there may be link erasures. In [15], Nobrega, Silva and Uchoa-Filho
define the transfer matrix to be picked from a UGR distribution. One result of [15]
is that a capacity-achieving input distribution for their class of MMC channels can
always be taken to be UGR.

A main result of this paper (Theorem 5.5) is that a capacity-achieving input
distribution for Gamma channels can always be taken to be UGR. Theorem 5.5 is
a significant extension of the result of [15] to a new class of channels; the exten-
sion requires new technical ideas. This result is in contrast to the coding schemes
proposed in [18], which restrict input matrices to have a specific form, and achieves
capacity in the limiting cases considered. Their restrictions on the input allows for
straightforward decoding, whereas it is not immediately obvious of how to construct
an efficient UGR coding scheme which achieves capacity for any given parameters,
indeed this is a problem of interest for future research.

Corollary 6.2 to the main result of the paper provides an explicit method for
computing the capacity of Gamma channels which maximises over a probability
distribution over the set of possible ranks of input matrices, rather than the set of all
input matrices itself. Thus we have reduced the problem of computing the capacity
of a Gamma channel to an explicit maximisation over a set of variables of linear
rather than exponential size. As examples of the results of this approach, the table
below gives the computed capacity C of the AMMC channel with 2 errors for n× 2n
matrices over F2; the capacity C ′ of the Gamma channel for n × 2n matrices over
F2 when the number of errors is binomially distributed with expected number of
errors equal to 2; and the capacity C ′′ when the number of errors is 0, 1 or 2 with
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Figure 1: Capacity (in bits) of the AMMC channel with 2 errors for n×2n matrices over
F2. The three curves are: the upper bound from [18, Theorem 6]; the capacity computed
using methods in this paper; the lower bound from [18, Theorem 7].
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Figure 2: Capacity C ′′ (in bits) of the matrix channel with 0, 1 and 2 errors for n× 2n
matrices over F2 specified in the text, together with the lower bound on the capacity
from [18, § VI.D].

probabilities 1/7, 2/7 and 4/7 respectively.

n 3 4 5 6 7 8 9 10
C 1.731 5.586 11.644 18.807 30.050 42.381 56.798 73.290
C ′ 1.117 4.633 10.422 18.368 28.395 40.491 54.676 70.996
C ′′ 2.765 7.354 14.090 23.003 34.032 47.094 62.177 79.274

Figure 1 plots the capacity C of the AMMC channel together with general upper
and lower bounds on the capacity. (These bounds are due to Silva et al. [18, Theo-
rem 6 and 7]. We comment that an improved upper bound due to Claridge [5, Equa-
tion 6.6.2] is very similar to [18, Theorem 6] for these parameters.) Similarly, Figure 2
plots the capacity C ′′ of the third example channel together with the lower bound
on the capacity due to Silva et al. [18, § VI.D].

The remainder of the paper is organised as follows. Section 2 proves some pre-
liminary results needed in what follows. In Section 3 we state results from matrix
theory that we use. Section 4 establishes a relationship between the distributions
of the ranks of input and output matrices for a Gamma channel. Section 5 proves
Theorem 5.5, and Section 6 proves Corollary 6.2, giving an exact expression for the
capacity of the Gamma channels. In Section 7 we prove the results from matrix theory
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that we use in earlier sections. Finally, Section 8 contains some concluding remarks.

2 Preliminaries on finite-dimensional vector spaces

In this section we discuss finite-dimensional vector spaces and consider several count-
ing problems involving subspaces and quotient spaces.

The Gaussian binomial coefficient, denoted
[
m
d

]
q
, is defined to be the number of d-

dimensional subspaces of anm-dimensional space over Fq. It is given by (e.g. [4, §9.2])

[
m

d

]
q

=


d−1∏
i=0

(qm − qi)
(qd − qi)

, for d ≤ m

0, for d > m.

(1)

Let V1 be a subspace of V . The following lemma gives the number of subspaces
U of V where the intersection of U and V1, and the image of U in the quotient space
V/V1, are both fixed.

Lemma 2.1. Let V be a dV -dimensional vector space. Let V1, V2 be subspaces of
V , of dimensions dV1 and dV2 respectively, such that V2 ⊆ V1. The number of dU -
dimensional subspaces U ⊆ V such that U ∩ V1 = V2 and the image of U in the
quotient space V/V1 is the fixed dU − dV2

dimensional space U ′, is given by

q(dU−dV2
)(dV1

−dV2
).

Proof. Fix a basis for V2, say {b1,1, . . . , b1,dV2
}. Let π : V → V/V1 be the map which

takes vectors in V to their image in V/V1. For dU ′ = dU − dV2
, let {y1, . . . ydU′} be

a basis for U ′, and let {b2,1, . . . , b2,dU′} be some vectors in V such that π(b2,i) = yi,
for i = 1, . . . , dU ′ .

It is easy to check that every subspace U of the form we are counting has a basis

B = {b1,1, . . . , b1,dV2
, v1 + b2,1, . . . , vdU′ + b2,dU′}

where v1, . . . , vdU′ ∈ kerπ = V1. Moreover, all bases of this form span a subspace U
of the form we are counting, and a basis

B′ = {b1,1, . . . , b1,dV2
, v′1 + b2,1, . . . , v

′
dU′

+ b2,dU′ }

spans the same subspace as B if and only if [vi] = [v′i] for i = 1, . . . , dU ′ , where [v]
denotes the image of a vector v in the quotient space V1/V2. Therefore there is a
bijection between spaces U of the required form and ordered sets {[v1], . . . , [vdU′ ]} of
elements in the quotient space V1/V2.

For i = 1, . . . dU ′ , there are qdV1
−dV2 choices for [vi] ∈ V1/V2, thus there are

qdU′ (dV1
−dV2

) = q(dU−dV2
)(dV1

−dV2
). (2)

choices for the ordered set {[v1], . . . , [vdU′ ]}. The result follows.

Given a vector space V and a subspace V1 ⊆ V , Lemma 2.1 can be used to count
subspaces U of V when either U ∩ V1 is fixed, or the image of U in V/V1 is fixed, or
when only the dimensions of these spaces are fixed. These results are given in the
following three corollaries.

Corollary 2.2. Let V be a dV -dimensional vector space. Let V1, V2 be subspaces
of V , of dimensions dV1

and dV2
respectively, such that V2 ⊆ V1. The number of

dU -dimensional subspaces U ⊆ V such that U ∩ V1 = V2, is given by

q(dU−dV2
)(dV1

−dV2
)

[
dV − dV1

dU − dV2

]
q

.
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Proof. The quotient space V/V1 is a space of dimension dV − dV1
. Let U ′ be a

(dU − dV2)-dimensional subspace of V/V1. There are[
dV − dV1

dU − dV2

]
q

possible choices for U ′. For each such space U ′, there are q(dU−dV2
)(dV1

−dV2
) possibil-

ities for a space U with whose image in the quotient V/V1 is U ′, by Lemma 2.1.

Corollary 2.3. Let V be a dV -dimensional vector space. Let V1 be a dV1
-dimensional

subspace of V . The number of dU -dimensional subspaces U ⊆ V such that the image
of U in the quotient space V/V1 is some fixed dU ′ dimensional space U ′, is given by

qdU′ (dV1
−(dU−dU′ ))

[
dV1

dU − dU ′

]
q

. (3)

Proof. There are [
dV1

dU − dU ′

]
q

possible choices for a (dU − dU ′)-dimensional subspace V2 of V1. For each choice of
V1, there are q(dU−(dU−dU′ ))(dV1

−(dU−dU′ )) = qdU′ (dV1
−(dU−dU′ )) possibilities for the

space U whose intersection with V1 is the fixed space V2, by Lemma 2.1.

Corollary 2.4. Let V be a dV -dimensional vector space. Let V1 be a dV1
-dimensional

subspace of V . For a subspace U of V , let [U ] denote the image of U in the quotient
space V/V1. The number of dU -dimensional subspaces U ⊆ V such that dim(U∩V1) =
dUV1

is equal to the number of dU -dimensional subspaces U such that dim([U ]) =
dU − dUV1

. This number is equal to

q(dU−dUV1
)(dV1

−dUV1
)

[
dV − dV1

dU − dUV1

]
q

[
dV1

dUV1

]
q

.

Proof. Note that dim(U ∩ V1) = dUV1 if and only if dim([U ]) = dU − dUV1 hence the
first statement of the lemma holds. Let V2 be a (dUV1

)-dimensional subspace of V1.
There are [

dV1

dUV1

]
q

possible choices for V2, and [
dV − dV1

dU − dUV1

]
q

possible choices for a (dU − dUV1)-dimensional subspace U ′ of V/V1. For each choice
of V2 and U ′, Lemma 2.1 implies there are q(dU−dUV1

)(dV1
−dUV1

) possibilities for the
space U whose intersection with V1 is the fixed space V2, and image in the quotient
V/V1 is the fixed space U ′.

3 Matrices over finite fields

This short section describes the notation and results we use from the theory of
matrices over finite fields.

Let q be a non-trivial prime power, that is q = pn for some prime p and integer
n ≥ 1. Let Fq be the finite field of order q. In the introduction we defined Fn×m

q to
be the set of n×m matrices with entries in Fq, we defined Fn×m,r

q to be the matrices
in Fn×m

q of rank r, and we defined GL(n, q) to be the set of invertible matrices in
Fn×n
q .

For a matrix M , we write rk(M) for the rank of M and we write Row(M) for
the row space of M .
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Lemma 3.1. Let U be a subspace of Fm
q of dimension u. The number f0(u) of

matrices M ∈ Fn×m
q such that Row(M) = U can be efficiently computed; it depends

only on q, n, m and u. For 0 ≤ u ≤ min{n,m},

f0(u) =

u−1∏
i=0

qn − qi (4)

=

u∑
v=0

(−1)u−vqnv+(u−v
2 )
[
u

v

]
q

. (5)

By an efficient computation, we mean a polynomial (in max{n,m}) number of
arithmetic operations. Gabidulin [7, Theorem 4] establishes (4), and (5) follows
from [7, Equation 13]. Therefore Lemma 3.1 immediately follows.

The following results will be proved in Section 7.

Lemma 3.2. Let U and V be subspaces of Fm
q of dimensions u and v respectively.

Let h = dim(U ∩ V ). Let M ∈ Fn×m
q be a fixed matrix such that Row(M) = U .

Let r be a non-negative integer. The number of matrices B ∈ Fn×m,r
q such that

Row(B + M) = V can be efficiently computed; it depends only on q, n, m, r, u, v
and h. We write f1(u, v, h; r) for the number of matrices B of this form.

Lemma 3.3. Let r, rB and rX be non-negative integers. Let X be a fixed matrix such
that rk(X) = rX . The number of matrices B ∈ Fn×m,rB

q such that rk(X + B) = r
can be efficiently computed; it depends only on q, n, m, r, rB and rX . We write
f2(r, rX , rB) for the number of matrices B of this form.

In Section 7, Theorems 7.3 and 7.4 we give exact expressions for the functions f1
and f2 respectively in terms of their inputs and the values q, n and m, from which
Lemmas 3.2 and 3.3 follow immediately.

We comment that the function f2 has connections with rank metric codes (see
e.g. [8], [17] for example). For a fixed matrix X of rank rX , the function f2(rX , rB , r)
gives the number of matrices B of rank rB such that rk(X+B) = r. This is equal to
the number of matrices B′ of rank rB such that rk(X −B′) = r (setting B′ = −B).
The rank distance is a metric defined for two matrices M1,M2 ∈ Fn×m

q to be

dR(M1,M2) = rk(M1 −M2).

Therefore, the value f2(rX , rB , r) gives the number of matrices of rank rB , that have
rank distance r from some fixed matrix of rank rX . Or equivalently, considering
the space of all n ×m matrices over Fq, f2(rX , rB , r) is the volume of intersection
of two spheres with rank radii rX and rW with centres at rank distance r. The
analysis of the volume of intersection of spheres in the rank metric space can lead
to the development of covering properties for rank metric codes, as explored by
Gadouleau and Yan [9]. In [9, Lemma 1], the authors give an expression for the
function f2, showing that indeed it is efficiently computable. The expression they
give was developed using the theory of association schemes. In Section 7 we give an
expression for f2 that avoids this theory, using direct counting arguments. Thus our
new formula and proof give extra insight.

4 Input and output rank distributions

A distribution PX on the input set X of the Gamma channel induces a distribution
(the input rank distribution) RX on the set of possible ranks of input matrices. Let
RY be the corresponding output rank distribution, induced from the distribution on
the output set of the Gamma channel. A key result (Lemma 4.2) is that RY depends
on only the channel parameters and RX (rather than on PX itself). This section
aims to prove this result: it will play a vital role in the proof of Theorem 5.5 below.
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Definition 4.1. Let r, rX , rB ∈ {0, . . . ,min{n,m}}. Define

ρ(r; rX , rB) =
f2(r, rX , rB)

|Fn×m,rB
q |

,

where f2 is as defined in Lemma 3.3. For any fixed matrix X ∈ Fn×m,rX
q , we see that

ρ(r; rX , rB) gives the proportion of matrices B ∈ Fn×m,rB
q with rk(X +B) = r. Let

R be a probability distribution on the set {0, 1, . . . ,min{n,m}} of possible ranks of
n×m matrices. Define

ρ(r; rX) =

min{n,m}∑
rB=0

R(rB)ρ(r; rX , rB),

so that ρ(r; rX) gives the weighted average of this proportion over the possible ranks
of matrices B.

Lemma 4.1. Let X be an n×m matrix sampled from some distribution PX on Fn×m
q .

Let B be an n ×m matrix sampled from a UGR distribution with rank distribution
R, where X and B are chosen independently. Let r, rX , rB ∈ {0, . . . ,min{n,m}}.
Then

ρ(r; rX , rB) = Pr(rk(X + B) = r| rk(X) = rX and rk(B) = rB), (6)

and
ρ(r; rX) = Pr(rk(X + B) = r| rk(X) = rX). (7)

Proof. Let X be a fixed n × m matrix of rank rX . Then, since B has a UGR
distribution,

Pr(rk(X + B) = r| rk(B) = rB)

=
|{B ∈ Fn×m,rB

q : rk(X +B) = r}|
|Fn×m,rB

q |

=
f2(r, rX , rB)

|Fn×m,rB
q |

= ρ(r; rX , rB). (8)

Note that (8) only depends on rk(X), not X itself. Hence

Pr(rk(X + B) = r| rk(X) = rX , rk(B) = rB)

=
∑
X

Pr(X = X) Pr(rk(X + B) = r| rk(B) = rB)

=
∑
X

Pr(X = X)ρ(r; rX , rB)

= ρ(r; rX , rB),

where the sums are over matrices X ∈ Fn×m,rX
q . Thus (6) holds. Also

Pr(rk(X + B) = r| rk(X) = rX)

=

min{n,m}∑
rB=0

R(rB)ρ(r; rX , rB) (by (6))

= ρ(r; rX).

Thus (7) holds, and so the lemma follows.
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Lemma 4.2. For the Gamma channel Γ(R) with input rank distribution RX , the
output rank distribution is given by

RY (r) =

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)
f2(r, rX , rB)

|Fn×m,rB
q |

for r = 1, . . . ,min{n,m}. In particular, RY depends only on the input rank distri-
bution (and the channel parameters), not on the input distribution itself.

Proof. We have that Pr(rk(X) = rX) = RX(rX) and Pr(rk(B) = rB) = R(rB).
Hence, by (6),

RY (r) = Pr(rk(Y ) = r)

=

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)ρ (rY ; rX , rB)

=

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)
f2(r, rX , rB)

|Fn×m,rB
q |

.

5 A UGR input distribution achieves capacity

This section shows (Theorem 5.5) that there exists a UGR input distribution to the
Gamma channel that achieves capacity.

Lemma 5.1. Let M and M ′ be fixed n×m matrices of the same rank. Let B be an
n×m matrix picked from a UGR distribution, and let A be an n× n matrix picked
uniformly from GL(n, q), with B and A picked independently. Let Y = A(M + B)
and let Y ′ = A(M ′ + B). Then

H(Y ) = H(Y ′).

Proof. Let A be a fixed n×n invertible matrix. Since the matrices AM and AM ′ have
the same rank, there exist invertible matrices R and C such that AM ′ = RAMC.
Consider the linear transformation ϕ : Fn×m

q → Fn×m
q defined by ϕ(Y ) = RY C. It

is simple to check that ϕ is well defined and a bijection. Note that

ϕ(A(M + B)) = RAMC +RABC

= A(M ′ +A−1RABC).

Since B is picked uniformly once its rank is determined, pre- and post-multiplying
B by fixed invertible matrices gives a uniform matrix of the same rank, therefore B
and A−1RABC have the same distribution. Now

Pr (Y = Y |A = A)

= Pr (A(M + B) = Y )

= Pr (ϕ(A(M + B)) = ϕ(Y ))

= Pr
(
A(M ′ +A−1RABC) = ϕ(Y )

)
= Pr (A(M ′ + B) = ϕ(Y )) (9)

= Pr (Y ′ = ϕ(Y )|A = A) , (10)

where (9) holds since the distributions of B and A−1RABC are the same. Since
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(10) is true for any fixed matrix A, it follows that

Pr(Y = Y ) =
∑

A∈GL(n,q)

Pr(A = A) Pr(Y = Y |A = A)

=
∑

A∈GL(n,q)

Pr(A = A) Pr(Y ′ = ϕ(Y )|A = A)

= Pr(Y ′ = ϕ(Y )). (11)

Thus Y and Y ′ have the same distribution, up to relabeling by ϕ. In particular, we
find that H(Y ) = H(Y ′).

Definition 5.1. Let M be any n×m matrix of rank r. Let A be an n×n invertible
matrix chosen uniformly from GL(n, q). Let B be an n ×m matrix chosen from a
UGR distribution with rank distributionR, where A and B are picked independently.
We define

hr = H (A(M + B)) .

Lemma 5.1 implies that the value hr does not depend on M , only on the rank r
and the channel parameters q, n,m and R. The exact value of hr will be calculated
later, in Theorem 6.1.

Lemma 5.2. Consider the Gamma channel Γ(R). Let the input matrix X be sam-
pled from a distribution PX with associated rank distribution RX , and let Y be the
corresponding output matrix. Then

H(Y |X) =

min{n,m}∑
r=0

RX(r)hr.

In particular, H(Y |X) depends only on the associated input rank distribution RX

and the channel parameters.

Proof. Choosing A and B as in the definition of the Gamma channel, we see that

H(Y |X) =
∑
X∈X

P (X = X)H(A(X + B))

=
∑
X∈X

P (X = X)hrk(X)

=

min{n,m}∑
r=0

RX(r)hr,

which establishes the first assertion of the lemma. The second assertion follows since
hr depends only on r and the channel parameters.

The following lemma is a well known result, see for example [6, Ex. 2.28].

Lemma 5.3. Let Y1 and Y2 be two random n ×m matrices, sampled from distri-
butions with the same associated rank distribution RY . If the distribution of Y2 is
UGR then H(Y2) ≥ H(Y1).

Lemma 5.4. Consider the Gamma channel Γ(R). If the input distribution PX is
UGR then the induced output distribution PY is also UGR.

Proof. Suppose the input distribution is UGR, with rank distribution RX . We start
by showing that the distribution of X + B is UGR. Let D be any n × m matrix.
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Then

Pr(X + B = D)

=
∑

X∈Fn×m
q

Pr(X = X) Pr(X + B = D|X = X)

=
∑

X∈Fn×m
q

RX(rk(X))

|Fn×m,rk(X)
q |

Pr(X + B = D),

since X is sampled from a UGR distribution. Hence

Pr(X + B = D)

=

min{n,m}∑
r=0

RX(r)

|Fn×m,r
q |

∑
X∈Fn×m,r

q

Pr(B = D −X)

=

min{n,m}∑
r=0

RX(r)

|Fn×m,r
q |

∑
X∈Fn×m,r

q

R(rk(D −X))

|Fn×m,rk(D−X)
q |

,

since X and B are independent, and since B has a UGR distribution with rank
distribution R. Now∑

X∈Fn×m,r
q

R(rk(D −X))

|Fn×m,rk(D−X)
q |

=

min{n,m}∑
rB=0

|{X ∈ Fn×m,r
q : rk(D −X) = rB}|

R(rB)

|Fn×m,rB
q |

=

min{n,m}∑
rB=0

f2(rB , rk(D), r)
R(rB)

|Fn×m,rB
q |

and so

Pr(X + B = D)

=

min{n,m}∑
r=0

RX(r)

|Fn×m,r
q |

min{n,m}∑
rB=0

f2(rB , rk(D), r)
R(rB)

|Fn×m,rB
q |

.

So Pr(X +B = D) does not depend on the specific matrix D, only its rank. There-
fore, given any two n×m matrices D1, D2 of the same rank,

Pr(X + B = D1) = Pr(X + B = D2).

Hence X + B has a UGR distribution.
Let A be a fixed n× n invertible matrix. Since X + B is picked uniformly once

its rank is determined, multiplying X + B by the invertible matrix A will give a
uniform matrix of the same rank, therefore A(X + B) has a UGR distribution. So,
defining Y = A(X + B) to be the output of the Gamma channel, we see that for
any n×m matrix Y

Pr(Y = Y |A = A) = Pr(A(X + B) = Y )

=
Pr (rk(A(X + B)) = rk(Y ))

|Fn×m,rk(Y )
q |

=
Pr (rk(Y ) = rk(Y )|A = A)

|Fn×m,rk(Y )
q |

,

11



where the second equality follows since A(X + B) has a UGR distribution. Thus

Pr(Y = Y ) =
∑

A∈GL(n,q)

Pr(A = A) Pr(Y = Y |A = A)

=
∑

A∈GL(n,q)

Pr(A = A)
Pr(rk(Y ) = rk(Y )|A = A)

|Fn×m,rk(Y )
q |

=
1

|Fn×m,rk(Y )
q |

Pr(rk(Y ) = rk(Y )). (12)

Since (12) holds for all Y ∈ Fn×m
q it follows that Y has a UGR distribution.

Theorem 5.5. For the Gamma channel Γ(R), there exists a UGR input distribution
that achieves channel capacity. Moreover, given any input distribution PX with
associated rank distribution RX , if PX achieves capacity then the UGR distribution
with rank distribution RX achieves capacity.

Proof. Let X1 be a channel input, with output Y1 such that PX1 is a capacity
achieving input distribution. That is maxPX

{I(X,Y )} = I(X1,Y1). Then define
the input X2 with output Y2 to be distributed such that PX2 is the UGR distribution
with RX2 = RX1 . To prove the theorem it suffices to show I(X2,Y2) ≥ I(X1,Y1).

By Lemma 4.2, RY2 = RY1 and by Lemma 5.4, Y2 has a UGR distribution.
Therefore, by Lemma 5.3,

H(Y2) ≥ H(Y1). (13)

Also, since RX2 = RX1 , Lemma 5.2 implies that

H(Y2|X2) = H(Y1|X1). (14)

Using (13) and (14), it follows that

I(X2,Y2) = H(Y2)−H(Y2|X2)

≥ H(Y1)−H(Y2|X2)

= H(Y1)−H(Y1|X1)

= I(X1,Y1).

6 Optimal input distributions and channel capacity

Theorem 5.5 reduces the problem of computing the Gamma channel capacity to a
maximisation over a set of variables of linear rather than exponential size, since the
UGR distribution is determined by the distributionRX on a set of size min{n,m}+1.
In this section we give an expression for this maximisation problem in terms of the
channel parameters and the efficiently computable functions f0, f1 and f2 defined
in Section 3. Since the mutual information is concave when considered as a func-
tion over possible input distributions (see e.g. [6, Theorem 2.7.4]), this is a concave
maximisation problem and hence efficiently computable (see e.g. [3]). Therefore the
expression obtained provides a means for efficiently computing the exact channel
capacity, and determining an optimal input rank distribution.

We begin by computing the value of hr, as defined in Definition 5.1. This is
needed to compute the maximisation problem in Corollary 6.2 that gives rise to the
channel capacity.

12



Theorem 6.1. The value hr, as defined in Definition 5.1, is given by

hr =

min{n,m}∑
v=0

min{r,v}∑
h=0

q(v−h)(r−h)
[
r

h

]
q

[
m− r
v − h

]
q

·

min{n,m}∑
rB=0

R(rB)
f1(r, v, h; rB)

|Fn×m,rB
q |

 log

 f0(v)∑min{n,m,v+h}
rB=h R(rB) f1(r,v,h;rB)

|Fn×m,rB
q |

 .

where f0 is as defined in Lemma 3.1 and f1 is as defined in Lemma 3.2.

Proof. Let M be a fixed n ×m matrix of rank r. Let Y = A(M + B), where A is
picked uniformly from GL(n, q) and B has a UGR distribution with rank distribution
R. Then

hr = H(A(M + B)| rk(M) = r) = H(Y ).

Since Row(Y ) is fully determined by Y , it follows that H(Y ,Row(Y )) = H(Y ).
Therefore, using the chain rule for entropy (e.g. [6, Thm. 2.2.1]), we have

H(Y ) = H(Y ,Row(Y ))

= H(Y |Row(Y )) +H(Row(Y )). (15)

Now, multiplying (M + B) by a uniformly picked invertible matrix will result in a
uniform matrix of the same rowspace as (M + B). That is, the distribution of Y is
uniform given the rowspace of Y . Thus (see [6, Thm. 2.6.4])

H(Y |Row(Y ) = V ) = log
(
|{Y ′ : Y ′ ∈ Fn×m

q ,Row(Y ′) = V }|
)

= log (f0(dim(V ))) , (16)

where f0 is as defined in Lemma 3.1. Therefore

H(Y |Row(Y )) =
∑

V⊆Fm
q

Pr(Row(Y ) = V )H(Y |Row(Y ) = V )

=
∑

V⊆Fm
q

Pr(Row(Y ) = V ) log (f0(dim(V ))) . (17)

Hence

hr = H(Y )

= H(Y |Row(Y )) +H(Row(Y ))

=
∑

V⊆Fm
q

Pr(Row(Y ) = V ) log (f0(dim(V )))

−
∑

V⊆Fm
q

Pr(Row(Y ) = V ) log (Pr(Row(Y ) = V ))

=
∑

V⊆Fm
q

Pr(Row(Y ) = V ) log

(
f0(dim(V ))

Pr(Row(Y ) = V )

)
. (18)

Now, we calculate the probability of Y having a particular rowspace V . Set U =
Row(M), so dimU = r. For V ⊆ Fm

q , let dUV = dim(U ∩ V ). Using the function f1

13



defined in Lemma 3.2, we obtain the following result.

Pr(Row(Y ) = V )

= Pr(Row(M + B) = V )

=

min{n,m}∑
rB=0

Pr(rk(B) = rB) Pr(Row(M + B) = V | rk(B) = rB)

=

min{n,m}∑
rB=0

R(rB)
|{B : rk(B) = rB ,Row(M +B) = V }|

|Fn×m,rB
q |

(19)

=

min{n,m}∑
rB=0

R(rB)
f1(r, dim(V ), dUV ; rB)

|Fn×m,rB
q |

, (20)

where (19) follows since B has a UGR distribution.
Substituting (20) into (18) we get

hr =
∑

V⊆Fm
q

min{n,m}∑
rB=0

R(rB)
f1(r, dim(V ), dUV ; rB)

|Fn×m,rB
q |


· log

 f0(dim(V ))∑min{n,m}
rB=0 R(rB) f1(r,dim(V ),dUV ;rB)

|Fn×m,rB
q |

 (21)

In (21), for a given subspace V ⊆ Fm
q , the corresponding term in the sum depends

only on dim(V ) and dUV = dim(Row(M)∩V ). Clearly 0 ≤ dUV ≤ min{dimU,dimV }.
Moreover, Corollary 2.4 implies that the number of spaces V with dim(V ) = v and
dim(Row(M) ∩ V ) = h for fixed integers v and h is

q(v−h)(r−h)
[
r

h

]
q

[
m− r
v − h

]
q

.

Combining this with (21) proves the theorem.

Now we give the result of this section: an efficiently computable expression for
the Gamma channel capacity as a maximisation over the set of possible input rank
distributions.

Corollary 6.2. The capacity of the Gamma channel Γ(R) is given by

C = max
RX


min{n,m}∑

rY =0

RY (rY ) log

( |Fn×m,rY
q |
RY (rY )

)− min{n,m}∑
rX=0

RX(rX)hrX

 ,

where hrX may be computed using Theorem 6.1, and RY (rY ) may be computed using
Lemma 4.2.

Proof. The capacity C of the channel is defined to be

C = max
PX

{I(X;Y )} = max
PX

{H(Y )−H(Y |X)}. (22)

By Theorem 5.5, to achieve capacity we can chose the input distribution PX to
be UGR. By Lemma 5.4, the output distribution will also be UGR. Therefore the
output distribution is given by

PY (Y ) = Pr(Y = Y ) =
1

|Fn×m,rk(Y )
q |

RY (rk(Y )) (23)
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for any Y ∈ Fn×m
q . Thus the entropy of Y is given by

H(Y ) = −
∑

Y ∈Fn×m
q

Pr(Y = Y ) log Pr(Y = Y )

= −
∑

Y ∈Fn×m
q

(
1

|Fn×m,rk(Y )
q |

RY (rk(Y ))

)
log

(
1

|Fn×m,rk(Y )
q |

RY (rk(Y ))

)

= −
min{n,m}∑

rY =0

RY (rY ) log

(
1

|Fn×m,rY
q |

RY (rY )

)
.

Since H(Y |X) =
∑min{n,m}

rX=0 RX(rX)hrX by Lemma 5.2, the result follows from (22).

7 Matrix function proofs

The aim of this section is to derive efficiently computable expressions for the functions
f1 and f2, thus proving Lemmas 3.2 and 3.3 respectively and providing a method for
computing the capacity formula given in Corollary 6.2.

We approach this problem by first exploring several combinatorial results. In
Subsection 7.1 we establish a counting result we need later, using Möbius theory. In
Subsection 7.2, we use this result to derive expressions for the functions f1 and f2.

7.1 A counting lemma

In this subsection, we prove an ‘inversion’ lemma, Lemma 7.1, that we need in the
following subsection. We use Möbius theory (a generalisation of inclusion–exclusion)
to establish this lemma: see Bender and Goldman [2], for example, for a nice intro-
duction to this theory and an exposition of all the results we use here.

Let Po(Fm
q ) denote the poset of all subspaces of Fm

q ordered by containment. Let
P and Q be two posets. Recall that the direct product P × Q is the poset where
(p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 and q1 ≤ q2, where p1, p2 ∈ P and q1, q2 ∈ Q.

Lemma 7.1. Let f((U, V )) be a real valued function defined for all pairs (U, V ) ∈
Po(Fm

q )× Po(Fm
q ). If

g((U, V )) =
∑

(U ′,V ′)≤(U,V )

f((U ′, V ′))

then

f((U, V )) =
∑

(U ′,V ′)≤(U,V )

(−1)u−u
′+v−v′q(

u−u′
2 )+(v−v′

2 )g((U ′, V ′)),

where dim(U) = u,dim(U ′) = u′,dim(V ) = v and dim(V ′) = v′.

Proof. By the Möbius inversion formula (see [2, Theorem 1], for example)

f((U, V )) =
∑

(U ′,V ′)≤(U,V )

µ((U ′, V ′), (U, V ))g((U ′, V ′)), (24)

where µ is the Möbius function of Po(Fm
q ) × Po(Fm

q ). But (see [2, Theorem 3], for
example),

µ((U ′, V ′), (U, V )) = µ′(U ′, U)µ′(V ′, V )

where µ′ is the Möbius function of Po(Fm
q ). Moreover (see, for example, [2, §5]) the

Möbius function of Po(Fm
q ) may be written explicitly as

µ′(X,Y ) = (−1)dim(Y )−dim(X)q(
dim(Y )−dim(X)

2 )

for any X,Y ∈ Po(Fm
q ) with X ⊆ Y . So the lemma follows.
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7.2 Computing f1 and f2

By ‘basic dimension properties’, we mean that all specified dimensions are non-
negative integers, and if dimensions dU and dV of subspaces U ⊆ V are specified,
then dU ≤ dV .

Lemma 7.2. Let z be a non-negative integer. Let X and Y be subspaces of Fz
q of di-

mensions dX and dY respectively such that X∩Y = {0}. Let c(dX , dY , z, dR, dRX , dRY )
be the number of dR-dimensional subspaces R of Fz

q such that dim(R ∩ X) = dRX ,
dim(R ∩ Y ) = dRY and such that X ⊆ Y +R. If the basic dimension properties are
satisfied then c(dX , dY , z, dR, dRX , dRY ) is given by the formula[
dX
dRX

]
q

[
dY
dRY

]
q

[
z − dX − dY
dR − dRY − dX

]
q

q(dY −dRY )(dR−dX−dRY )
dX−dRX−1∏

i=0

(qdY −dRY − qi),

otherwise c(dX , dY , z, dR, dRX , dRY ) = 0.

We remark that, in this case, the basic dimension properties are that 0 ≤ dRX ≤
min{dR, dX}, 0 ≤ dRY ≤ min{dR, dY } and dX + dY ≤ z.

Proof. Suppose that dX > dR−dRY . The condition that X ⊆ Y +R is equivalent to
the condition that the subspace (X+Y )/Y is contained in the subspace (R+Y )/Y .
The dimensions of these subspaces are dX and dR − dRY respectively, and so our
count is zero in this case. But

[
z−dX−dY

dR−dRY −dX

]
q

= 0 when dR − dRY − dX < 0 and so

the lemma follows in this case. So we may assume that dX ≤ dR − dRY .
There are

[
dX

dRX

]
q

choices for the subspace R ∩ X and
[

dY

dRY

]
q

choices for the

subspace R∩Y . Assume that these subspaces are fixed. The quotient Q = (R+Y )/Y
of R in Fz

q/Y has dimension (dR − dRY ). The condition that X ⊆ Y + R implies
that (X + Y )/Y ⊆ Q. Since (X + Y )/Y has dimension dX , the number of choices
for Q is therefore

[
z−dY −dX

dR−dRY −dX

]
q
. Assume that Q is now also fixed.

Fix u1, u2, . . . , udR−dRY −dX
∈ Fm

q with the property that {ui + Y : 1 ≤ i ≤ dR −
dRY −dX} spans a complement to (X+Y )/Y in Q. Fix a basis x1, . . . , xdRX

of R∩X,
and extend this basis to a basis x1, x2, . . . , xdX

of X. Fix a basis y1, y2, . . . , ydRY
of

R ∩ Y . Every subspace R we are counting has a basis of the form

{yi : 1 ≤ i ≤ dRY } ∪ {xi : 1 ≤ i ≤ dRX} ∪ {xi + εi : dRX + 1 ≤ i ≤ dX}
∪ {ui + δi : 1 ≤ i ≤ dR − dRY − dX}

for some εi, δi ∈ Y . Note that all subspaces with a basis of this form intersect Y
in precisely the space spanned by {yi : 1 ≤ i ≤ dRY }, and all subspaces are equal
to Q after taking a quotient by Y . Moreover, a subspace of this form intersects X
in precisely the subspace spanned by {xi : 1 ≤ i ≤ dRX} if and only if the vectors
εi+(R∩Y ) are linearly independent in Y/(R∩Y ). Finally, two subspaces of this form
are distinct if and only if the ordered set of vectors εi and δi are different modulo
R∩Y . There are q(dY −dRY )(dR−dX−dRY ) choices for vectors δi+(R∩Y ) ∈ Y/(R∩Y ),

and there are
∏dX−dRX−1

i=0 (qdY −dRY − qi) choices for linearly independent vectors
εi + (R ∩ Y ) ∈ Y/(R ∩ Y ). So the lemma follows.

We define a function f1(dU , dV , dUV ; r) as follows. When r < (dU − dUV ), we
define f1(dU , dV , dUV ; r) = 0. Otherwise we proceed as follows. For integers dV ′ ,
dW ′ and dV ′W ′ , define

κ1(dV ′ , dW ′ , dV ′W ′) = (−1)(r−dW ′ )q(
r−d

W ′
2 )(−1)(dV −dV ′ )q(

dV −d
V ′

2 )qndV ′W ′ .

For integers dV ′ , dW ′ , dV ′W ′ , dUW ′ , dVW ′ and dUVW ′ , define

κ2(dV ′ , dW ′ , dV ′W ′ , dUW ′ , dVW ′ , dUVW ′) = ν1ν2ν3
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where

ν1 = c(dU − dUV , dV − dUV ,m− dUV , dW ′ − dUVW ′ , dUW ′ − dUVW ′ , dVW ′ − dUVW ′)

ν2 =

[
dUV

dUVW ′

]
q

[
dVW ′

dV ′W ′

]
q

[
(dV − dVW ′)− (dU − dUW ′)

(dV ′ − dV ′W ′)− (dU − dUW ′)

]
q

[
m− dW ′
r − dW ′

]
q

and

ν3 = q(dW ′−dUV W ′ )(dUV −dUV W ′ )q(dV W ′−dV ′W ′ )(dV ′−dV ′W ′ ),

where c is the function defined in Lemma 7.2. Then f1(dU , dV , dUV ; r) is equal to

r∑
dW ′=0

dV∑
dV ′=0

min{dV ′ ,dW ′}∑
dV ′W ′=0

min{dU ,dW ′}∑
dUW ′=0

min{dV ,dW ′}∑
dV W ′=0

min{dUV ,dV W ′ ,dUW ′}∑
dUV W ′=0

κ1κ2,

where κ1 = κ1(dV ′ , dW ′ , dV ′W ′) and κ2 = κ2(dV ′ , dW ′ , dV ′W ′ , dUW ′ , dVW ′ , dUVW ′).

Theorem 7.3. Let f1 be as defined in Lemma 3.2. That is, if U and V are subspaces
of Fm

q of dimensions dU and dV respectively, with dUV = dim(U ∩V ) and M ∈ Fn×m
q

is a fixed matrix such that Row(M) = U ; then f1(dU , dV , dUV ; r) gives the number of
matrices B ∈ Fn×m,r

q such that Row(M+B) = V . Then the value f1(dU , dV , dUV ; r)
is as given above.

Proof. We begin the proof with a simpler counting problem, and then use this result
to establish the formula we are aiming for.

For a subspace W of Fm
q , let g(V,W ) be the number of n ×m matrices B with

Row(B) ⊆W and Row(M +B) ⊆ V . We claim that

g(V,W ) =

{
qndV W if U ⊆ V +W

0 otherwise.

To see this, we proceed as follows. Let x1, x2, . . . , xn ∈ Fm
q be the rows of M .

Suppose that U 6⊆ V + W . Then (xi + W ) ∩ V = ∅ for some i, and so we must
have g(V,W ) = 0, since there is no valid choice for the ith row of B in this case.
Now suppose that U ⊆ V +W , so for all i we have (xi +W ) ∩ V 6= ∅ and therefore
there exist w1, w2, . . . , wn ∈ W such that xi + wi ∈ V . It is not hard to check that
a matrix B with rows bi has the property that Row(B) ⊆W and Row(M +B) ⊆ V
if and only if bi − wi ∈ V ∩W . Hence there are qdV W choices for each row bi of B.
Since B has n rows, the claim follows.

Let f(V,W ) be the number of n×m matrices B with Row(B) = W and Row(M+
B) = V . Now g(V,W ) =

∑
(V ′,W ′) f(V,W ), where the sum is over all pairs of

subspaces (V ′,W ′) with V ′ ⊆ V and W ′ ⊆W . So, by Lemma 7.1,

f(V,W ) =
∑

(V ′,W ′)

(−1)(dW−dW ′ )+(dV −dV ′ )q(
dW−d

W ′
2 )+(dV −d

V ′
2 )g(V ′,W ′)

=
∑

(V ′,W ′)
U⊆V ′+W ′

(−1)(dW−dW ′ )+(dV −dV ′ )q(
dW−d

W ′
2 )+(dV −d

V ′
2 )qndV ′W ′

=
∑

(V ′,W ′)
U⊆V ′+W ′

κ1(dV ′ , dW ′ , dV ′W ′),

where again V ′ ⊆ V and W ′ ⊆W in our sums.
The number of matrices B of rank r such that Row(M +B) = V is∑

W⊆Fm
q

dimW=r

f(V,W ).
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So we can express this count as

r∑
dW ′=0

dV∑
dV ′=0

min{dV ′ ,dW ′}∑
dV ′W ′=0

min{dU ,dW ′}∑
dUW ′=0

min{dV ,dW ′}∑
dV W ′=0

min{dUV ,dV W ′ ,
dUW ′}∑

dUV W ′=0

∑
V ′,W ′,W

κ1(dV ′ , dW ′ , dV ′W ′),

(25)
where the last sum is over all triples (V ′,W ′,W ) of subspaces of Fm

q with V ′ ⊆ V ,
W ′ ⊆ W , U ⊆ V ′ + W ′, dim(W ′) = dW ′ , dim(W ) = r, dim(V ′) = dV ′ , dim(V ′ ∩
W ′) = dV ′W ′ , dim(U ∩W ′) = dUW ′ , dim(V ∩W ′) = dVW ′ and dimU ∩ V ∩W ′ =
dUVW ′ .

We aim to count the number of possibilities for a subspaceW ′ such that dim(W ′) =
dW ′ , dim(U ∩W ′) = dUW ′ , dim(V ∩W ′) = dVW ′ and dimU ∩ V ∩W ′ = dUVW ′ and
that satisfy the weaker condition that U ⊆ V + W ′. We will show (see below) that
the number of such subspaces W ′ is

c

[
dUV

dUVW ′

]
q

q(dW ′−dUV W ′ )(dUV −dUV W ′ ), (26)

where c = c(dU − dUV , dV − dUV ,m − dUV , dW ′ − dUVW ′ , dUW ′ − dUVW ′ , dVW ′ −
dUVW ′) is defined in Lemma 7.2.

Once we have fixed such a subspace W ′, we choose V ′ and W as follows. We
first choose the subspace V ′ ∩ W ′. There are

[
dV W ′
dV ′W ′

]
q

choices for this subspace.

The quotient space (V ′ +W ′)/W ′ of V ′ by W ′ is a space of dimension dV ′ − dV ′W ′ .
It is contained in the (dV − dVW ′)-dimensional space (V + W ′)/W ′ and contains
the (dU − dUW ′)-dimensional space (U + W ′)/W ′. So the number of choices for
(V ′ +W ′)/W ′ is [

(dV − dVW ′)− (dU − dUW ′)

(dV ′ − dV ′W ′)− (dU − dUW ′)

]
q

.

Once this quotient space is also fixed, there are q(dV W ′−dV ′W ′ )(dV ′−dV ′W ′ ) choices
for V ′. Finally we choose the r-dimensional subspace W containing W ′: there are[
m−dW ′
r−dW ′

]
q

choices for W .

Combining the formula (26) with (25) and the counting argument of the previous
paragraph, the theorem follows. So it remains to establish (26).

The number of choices (26) for W ′ may be found as follows. There are
[

dUV

dUV W ′

]
q

choices for the subspace T = (U ∩ V ) ∩W ′. Suppose that T is now fixed. We now
consider the images X, Y and R of U , V and W ′ respectively in the quotient by U∩V .
So X = (U+(U∩V ))/(U∩V ) has dimension dU−dUV and Y = (V +(U∩V ))/(U∩V )
has dimension dV −dUV . Moreover R is a subspace of dimension dW ′−dUVW ′ which
intersects X and Y in subspaces of dimension dUW ′ − dUVW ′ and dVW ′ − dUVW ′

respectively. The subspaces X and Y intersect trivially. Since U ⊆ V + W ′, we see
that X ⊆ Y + R. Hence, by Lemma 7.2, the number of choices for the subspace R
is c(dU − dUV , dV − dUV ,m − dUV , dW ′ − dUVW ′ , dUW ′ − dUVW ′ , dVW ′ − dUVW ′).
Suppose now that R is fixed. There are q(dW ′−dUV W ′ )dUV W ′ subspaces W ′ with
(W ′ + (U ∩ V ))/(U ∩ V ) = R and (U ∩ V ) ∩W ′ = T . Since all of these subspace
have the property that U ⊆W ′ + V , the formula (26) follows, and so the theorem is
proved.

Theorem 7.4. Let f2 be as defined in Lemma 3.3. That is, for a fixed matrix X
with rk(X) = rX , f2(r, rX , rB) gives the number of matrices B ∈ Fn×m,rB

q such that
rk(X +B) = r. Then,

f2(r, rX , rB) =

min{r,rX}∑
h=0

q(r−h)(rX−h)
[
m− rX
r − h

]
q

[
rX
h

]
q

f1(rX , r, h; rB).
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Proof. Using the definition of f1 given above Theorem 7.3, we see that

f2(r, rX , rB)

=
∑

V⊆Fm
q :dim(V )=r

f1(rX , r,dim(V ∩ Row(X)); rB) (27)

=

min{r,rX}∑
h=0

|{V ⊆ Fm
q : dim(V ) = r, dim(V ∩ Row(X)) = h}|f1(rX , r, h; rB) (28)

where (27) follows since the number of matrices B with rk(X + B) = r is equal to
the number of matrices B with Row(X + B) = V , summed over all spaces V ⊆ Fm

q

with dim(V ) = r.
By Corollary 2.4, the number of r-dimensional subspaces V ⊆ Fm

q , with dim(V ∩
Row(X)) = h is

q(r−h)(rX−h)
[
m− rX
r − h

]
q

[
rX
h

]
q

. (29)

Substituting (29) into (28) gives the result.

8 Conclusion

In this paper we have considered a class of matrix channels (Gamma channels) suit-
able for modelling random linear network coding when random errors are introduced
during transmission. The Gamma channels are a generalisation of the AMMC chan-
nel considered in [18]. Random errors are modelled by a matrix whose rank represents
the number of linearly independent errors. The error matrix is chosen by first picking
its rank according to a rank distribution R dependent on the application, and then
choosing uniformly from all matrices of this rank (a UGR distribution). We show
that in this model there always exists a capacity achieving input distribution that is
UGR. This key result allows us to compute the capacity of the channel as a maximi-
sation problem over possible (input) rank distributions, a set of linear rather than
exponential size. We presented sample capacity computations in the introduction:
all computations used a simple hill-climbing algorithm to perform the maximisation,
and were implemented in Mathematica 10.4 [11].

Open Problem 1. Can bounds for the AMMC capacity be improved, to give good
asymptotic results in more situations?

We ran simulations to show that for the AMMC channel with two errors, the
true capacity of the channel closely follows the trend of the previously known upper
bound for the capacity. It might be possible to improve the lower bound on the
capacity by using simulation results as a guide.

Open Problem 2. Can good asymptotic bounds on the capacity of the Gamma
channel be established?

We believe it will be hard to find good capacity bounds that hold in complete
generality. But it would be very interesting to investigate the binomial rank distribu-
tion for errors, or the distribution arising for errors that are not linearly independent
mentioned in the introduction. Many natural error rank distributions, such as those
just mentioned, cluster around a mean value µ. For such distributions, and when
n ≤ m, we believe that the capacity of the Gamma channel (in q-ary units) should
be approximately c̃ where

c̃ =

{
(m− n)(n− µ) when µ ≥ 2n−m,
(m− µ)2/4 otherwise.
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Moreover, in these cases both experiments and heuristic arguments lead us to believe
that a capacity-achieving input rank distribution peaks at one or two values close to
k̃, where

k̃ =

{
n− µ when µ ≥ 2n−m,
(m− µ)/2 otherwise.

It might be possible to use Corollary 6.2 to prove asymptotic capacity results, but
this corollary is designed for precision rather than asymptotics. A more promising
approach would be to further develop the theory in Silva et al [18]. (We note that
work is needed to establish asymptotically tight bounds even in the case when the
error rank is bounded by t. For example, the lower bound on the capacity in [18, VI.D]
will not be tight when the error rank is normally significantly smaller than t.)

Open Problem 3. Can explicit good coding schemes for the Gamma channel be
constructed?

Theorem 5.5 shows that there are UGR input distributions that achieve capacity.
It would be interesting to see explicit good coding schemes that use UGR input
distributions. (We are not aware of such schemes, even in special cases such as the
AMMC channel.)
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