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Abstract: The Internet of Things (IoT) permeates society in many areas, such 

as automotive, smart-homes, smart-cities, healthcare, and critical infrastruc-

tures. Even if the IoT promises economic growth as well as convenience for us-

ers, the security (and safety) implications of the IoT are equally significant. In 

fact, weak security in IoT devices could have dangerous consequences, such as 

to a car crash, or an intruder entering in our home. As an example, in October 

2016, the distributed denial of service attack on Dyn, a company controlling 

and managing several DNS services, brought down most of America’s Internet, 

and was caused by an IoT botnet (Mirai). This is mainly due to an increasing 

number of vulnerabilities in IoT devices being discovered on a daily basis, and 

that are the consequence of poor IoT security practices. To properly address the 

security and testing of IoT devices, the first step is the description of a threat 

model. However, few IoT manufactures base their testing on sound threat mod-

elling techniques and comprehensive IoT security guidelines.  

For these reasons, in this paper we propose a methodological approach for IoT 

security testing, which extends the OWASP IoT framework to include threat 

models to guide the selection of tests used to evaluate IoT attack surfaces and 

associated vulnerabilities. In addition, the proposed extended framework in-

cludes indications on how to actually test a given vulnerability and a set of rec-

ommended tools for performing the tests. To this end, we have devised a set of 

procedures associated with the tests, e.g. accessing device hardware or resetting 

the device. We also describe a set of tests based on the framework we have per-

formed on IoT devices to test their security. In particular, we have tested the 

framework on a home router, a relatively cheap baby monitor, and a pricey se-

curity system. The methodological testing of the devices reported that the baby 

monitor showed signs of inadequate security, the router patching any known 

vulnerabilities as expected from a well-known manufacturer, and the security 

system quashing any penetration testing attempts. 

Keywords: Internet of Things, OWASP, Attack Surfaces, Testing Methodology 

1 Introduction 

As defined in [15], the Internet of Things (IoT) is “a system of interrelated computing 

devices, mechanical and digital machines, objects, animals, or people that are provid-
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ed with unique identifiers and the ability to transfer data over a network without re-

quiring human-to-human or human-to-computer interaction”. The IoT encompasses a 

large range of devices (‘things’), among which every-day household electronics, such 

as dishwashers, fridges, smart cameras, smart watches, smart glasses, smart TVs, and 

smart light bulbs. Wearable devices can monitor heart rate, steps, and spent calories to 

name just a few ‘smart’ features introduced by IoT devices. The IoT offers almost 

limitless possibilities of positive features, finally fulfilling at least some of the alacri-

tous visions of futurists in the mid to late twentieth century
1
. These positives are hard 

to outweigh, but negatives do exist. Concerns over data collection by product manu-

facturers and associated privacy, as well as security vulnerabilities in these devices, 

might well not be enough to completely put people off using IoT devices or care for 

these issues [11], but these concerns are still prominent.  

Perhaps the most nefarious use of IoT devices is the one performed by botnets. 

One in particular, the Mirai botnet [13], exploits something as simple as default cre-

dentials in IoT devices, gaining root access to recruit infected devices to the botnet. 

This particular botnet made global headlines after causing massive Internet outages, 

mainly in America. Articles highlighted the root cause being infected IoT devices, 

stirring skepticism over these devices as a whole. The botnet code itself uses a list of 

known default credentials for different devices and brute-forces IoT devices over the 

Telnet protocol. This is a shockingly simple exploitation of IoT devices, yet very 

common nowadays. The first question is why the Telnet protocol is used so frequent-

ly, as the protocol is very well known to be insecure by transmitting data in the clear. 

Devices are often manufactured with trivial hard coded credentials in firmware, such 

as username ‘admin’ and password ‘admin’. More complex hard coded credentials 

still pose a problem, since they could be extracted from the device firmware. For ex-

ample, the main manufacturer whose devices were targeted by the Mirai botnet simp-

ly changed their mechanism of default credentials by assigning a default username 

and password, stored in a table in the firmware, for each day of the year [18]. Such a 

fix is clearly not adequate – a method of setting user credentials upon first boot would 

make more sense (but this would bring other usability issues). Of course, default cre-

dentials and firmware extraction/analysis are just examples of vulnerabilities related 

to attack surfaces. In fact, most of IoT devices for everyday consumers are still not 

designed with security in mind, with a reported one out of ten devices displaying the 

prevalent issue of common default credentials alone [12]. Only few manufacturers 

have started to include security practices in IoT design and development, mainly due 

to the publicity around the concept of the exploitation of an IoT device potentially 

having a direct impact on consumers and negative press [16] [17]. 

For these reasons, we propose an extension to the OWASP IoT attack surface 

mappings [14] with the aim of making the security testing of IoT devices more rigor-

ous as to significantly reduce their number of vulnerabilities.  In particular, we have 

extended the OWASP framework to include: (i) a mapping of vulnerabilities to a set 

of security tests – to facilitate the selection of tests to be performed; (ii) a mapping of 

tests to potentially useful tools to perform the test – to guide users/manufacturers on 

                                                           
1 https://www.postscapes.com/internet-of-things-history/ 
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the choice of the tools to perform the test; and (iii) a more detailed threat modelling – 

to formalize under which assumptions and scenarios the tests are meaningful. The 

main aim of the proposed framework is to allow IoT designers, as well as manufac-

tures and end-users, to model and risk-assess IoT security in a methodological and 

comprehensive way. To evaluate the efficacy of the proposed framework, we have 

used it to guide the tests on three classes of IoT devices. 

The paper is structured as follows. In Section 2, we describe related works. In Sec-

tion 3, we firstly briefly recall the main concepts of the IoT OWASP framework, and 

we then describe the proposed changes to the IoT OWASP framework, by discussing 

the extended surface mapping to include IoT security considerations, the tools to use 

and threat models. In Section 4, we report the results of the tests performed on three 

classes of IoT devices by following the proposed testing methodology, and we discuss 

our findings. Finally, in Section 5 we conclude the paper. 

2 Related Works 

In [1], the authors have analysed the security of Samsung's SmartThings platform 

and found several security vulnerabilities. Similarly, in [2] the authors have per-

formed functionality extension attacks on IoT devices using smart-lights as a covert 

Li-Fi communication system to get data from a highly secure office building. The 

authors were able to read the leaked data from a distance of over 100 meters using 

cheap equipment. The authors of [3] have designed a feature-distributed malware to 

perform various malicious activities, such as unlocking smart-locks and disarming 

security alarms. These results show that traditional web attack techniques, such as 

cookie stealing, can be turned into sophisticated attacks on IoT devices. Similarly, the 

authors of [4] examine the security of five commercial home smart-locks, and show 

that most of these devices suffer from poor design and implementation choices. [5] 

analyses the IoT vulnerabilities from insecure web/mobile/cloud interfaces, by testing 

insufficient authentication and authorization, insecure network services, lack of 

transport encryption and integrity verification, privacy concerns, insufficient security 

configurability, insecure software/firmware, and poor physical security. In [6] the 

authors examine the security of different categories of IoT devices to understand their 

resilience under different threat models, in particular physical access and close prox-

imity of the attacker. However, none of these papers has proposed a framework to 

enable IoT manufacturers to test the security of IoT devices methodically by using 

different tools and security assumptions [7] [8], which is the main goal of this paper. 

3 Proposed Extended IoT Framework 

This section involves the analysis of relevant IoT attack surfaces and vulnerabili-

ties from IoT OWASP framework, and then it proposes an extension to include test-

ing considerations, tools, and threat models for each vulnerability. 
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3.1 IoT Threat Modelling 

A critical aspect of security testing is to evaluate all possible attack surfaces and 

their associated vulnerabilities, and then select specific attack surfaces to analyze and 

test. In IoT scenarios, attack surfaces are points of an IoT device at which an attacker 

can gain access to it to perform a security violation, e.g. by delivering a malicious 

payload. Vulnerabilities are the means by which an attack can be performed. As an 

example, Table 1 lists some of the attack surfaces and associate vulnerabilities from 

the OWASP IoT Framework [14].  

Table 1. IoT OWASP Framework (Excerpt) 

 

It appears evident that, while the OWASP framework includes several attack sur-

faces and sets of vulnerabilities, there are no indications on how to actually test these 

vulnerabilities, and under which security condition(s). Therefore, the first requirement 

(R1) of our methodological approach to testing the devices is to identify suitable at-

tack surfaces, based on factors such as knowledge of the scenario (i.e., threat model), 

and whether the attack surface is suitable to the device being tested. For example, 

prematurely choosing the Device Web Interface attack surface to test would not make 

sense on a device with no web interface. The second requirement (R2) of our frame-

work is to provide a set of guidelines describing how to test the vulnerabilities along 

with the list of tools that can be used to perform the test. The aim of these require-

ments is to make the framework more rigorous and to facilitate the selection of tests 

to be performed. 

 

Attack Surface Vulnerabilities 

Ecosystem Access Control 

 Implicit trust be-

tween components 

 Enrolment security 

 Decommissioning system 

 Lost access procedures 

Device Memory 
 Cleartext usernames 

 Cleartext passwords 

 Third-party credentials 

 Encryption keys 

Device Physical Interfaces 

 Firmware extraction 

 User CLI 

 Admin CLI 

 Privilege escalation 

 Reset to insecure state 

 Removal of storage media 

Device Web Interface 

 SQL injection 

 Cross-site scripting 

 Cross-site Request 

Forgery 

 Username enumera-

tion 

 Weak passwords 

 Account lockout 

 Known default credentials 



5 

3.2 Extended Attack Surface Mapping  

To consider these two requirements, the extended framework includes three addi-

tional mappings for each vulnerability, which are:  

(i) IoT Security Considerations, i.e. guidelines on how to perform the testing;  

(ii) Methodologies and Tools, i.e. a list of suggested tools and methodologies 

to perform the tests; 

(iii) Threat Models, i.e. a description of the security assumptions, in particular 

in terms of attacker’s access; 

 The first requirement (R1) is satisfied by including in the framework IoT Security 

Considerations and Methodologies and Testing tools. The first extension describes 

effectively means of testing, that is, the ways in which to test a given vulnerability if 

it seems possible. The second extension, Methodologies and Tools, refers to various 

pieces of software or hardware, as well as methodologies, that can be used to perform 

the testing process. This piece of information is useful to testers, since it works in 

concurrency with the Security Considerations to extend upon what will be needed to 

actually test the vulnerability. The second requirement (R2) is satisfied by extending 

the framework to include Threat Models. In fact, some vulnerabilities may require 

hardware access, and some may be exploited remotely. The extension Threat Models 

defines the security assumptions, e.g. proximity of attacker to perform the attack, so 

that manufactures can decide whether to perform the testing or not based on the de-

vice deployment scenarios. For instance, in case a device is not deployed in open 

fields, all the tests related to physical attacks could be omitted. 

We have included these threat models in the extended framework:  

 Physical access, i.e. an attacker that can tamper with the hardware; 

 Close access, i.e. an attacker that is in close proximity of the IoT device  

(e.g., RFID access), without having physical access; 

 Network access, in an attacker able to get access to the same network of 

the IoT device (e.g., WiFi); 

 Remote access, i.e. an attacker able to connect remotely to the device; 

 Application access, i.e. an attacker able to connect remotely to the appli-

cation (typically running on a smartphone) that controls the IoT device; 

 Router/Hub access, i.e. an attacker able to connect remotely to the home 

router or hub mediating/controlling the IoT device; 

 Cloud access, i.e. an attacker able to connect to the Cloud backend only. 

 

Each of these accesses is associated with a set of attacks that an attacker can per-

form, and a stronger assumption (e.g., physical access), which also includes the at-

tacks associated with a weaker assumption (e.g., network access), while the vice-

versa is not true. The symbols we have used to visually represent these threat mod-

els are shown in Table 2. 
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Table 2. Symbols used in the Framework to Represent the Threat Models 

Physical 

Access 

Close 

Access 

Network 

Access 

Remote 

Access 

App 

Access 

Gateway 

Access 

Cloud 

Access 

       

 

Table 3 reports the proposed extended framework by showing a representative 

subset of the vulnerabilities and attack areas for which we have provided an exten-

sion, namely Device Physical Interfaces, Device Web Interface, Device Firmware, 

Device Network Services, and Local Data Storage
2
. 

Table 3. Proposed Extended OWASP IoT Attack Surface Areas.  

 

Vulnerability 
IoT Security Considerations        

(How to Test) 

Methodologies and 

Tools 
Threat Model 

Firmware extraction 
Gain access to serial ports from     
hardware and dump firmware 

(physical) UART to USB 
cables 

 

User/admin CLI 
Use potential serial ports to access the 

CLI 
(physical) UART to USB 

into computer 

 

Privilege escalation 
Potential buffer overflow attacks,   

command injections 
Metasploit framework 

 

Reset to insecure state 
Reset button? Analyse network activity 

thereafter 
Wireshark 

 

Known default credentials 
Check internet for known default pass-

word lists for a given device 
Browsing internet  

SQL injection 
Give malicious input in some form on 

the web interface 

SQL ninja/Metasploit 

SQLi tools 
 

Weak passwords Guess passwords or bruteforce Brutus bruteforcer  

Account lockout 
Test whether account locks by       

constantly logging in incorrectly 
Brutus or manually  

Username enumeration 
Bruteforce default usernames until some 

message indicates its existence 
Brutus or any Metasploit 

bruteforcer 
 

                                                           
2 For the sake of conciseness, the Table shown here briefly summarizes "IoT Security Consid-

erations" and "Methodologies and Tools". 

Device Physical  

Interfaces 
Device Web 

Interface Device Firmware Device Network 

Services 
Local Data 

Storage 
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Hardcoded credentials 
Extract the firmware and manually 

analyse it for any credentials 

Binwalk firmware extrac-

tion and analysis tool 
 

Sensitive information 

disclosure 

Same as above, but analyse for sensitive 

information instead 

Binwalk firmware extrac-

tion and analysis tool 
 

Sensitive URL disclosure 
Same as above, but look for any sensi-

tive URLs 

Binwalk firmware extrac-

tion and analysis tool 
 

Firmware version display 

and/or last update date 

Displayed in some UI? Transmitted over 

network? 
Wireshark   

Information disclosure 
Intercept packets to gain unintended 

information 
Wireshark  

Administrative command 

line 

Check an open port (Telnet or SSH). 

Guess default credentials, bruteforce or 
extract firmware as above 

Fing network service 
identifier to identify 

Telnet/SSH. Firmware 

tools as above 

 

Injection 
Inject code into network messages/user 

input, perform dot traversal 
Metasploit tools  

Denial of service 
Flood a device with network traf-

fic/packets/broken packets 
Ettercap  

Vulnerable UDP services 
Sending spoofed IP UDP packets or 

even DoS attacks on open UDP ports 
Ettercap DoS  

Unencrypted services 
Read unencrypted data with a  packet 

sniffer 
Wireshark  

Unencrypted data 
View data perhaps stored by applica-

tions accompanying the device 
Dex2jar for APK to JAR 

 

Update sent without 
encryption 

Look for streams of unencrypted   
packets related to an update 

Wireshark 

 

No Manual update   

mechanism 

Look for ways by which it is not    

possible to manually update 
Web interfaces  

 

 

As already recalled, by selecting a specific Threat Model, the proposed framework 

shows the vulnerabilities to test belonging to the uncovered attack surfaces. Then, the 

associated IoT Security Considerations report a set of guidelines on how to perform 

the testing. For example, in the Physical Access threat model, the Device Physical 

Interfaces Attack Surface is enabled. Here, a possible vulnerability is Firmware Ex-

traction, and one of the main Security Consideration is that access to serial ports from 

hardware must be tested, and a set of Methodologies and Tools to obtain the firmware 

are described.  

 

In the following section we describe how we have used the extended framework to 

assess the security of three categories of IoT devices. 
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4  Testing with the Extended Framework  

This section covers the actual testing and describes the results obtained following 

the extended IoT framework. In detail, we have tested the devices on a router, on a 

baby monitor, and on a security system. For the sake of responsible disclosure, we 

omit the details of the manufacturers and IoT models of any of these devices, and any 

details which could lead to any harmful outcome.  

A preliminary phase of the proposed methodological approach taken to the testing 

is that of reconnaissance, which involves learning about and gathering information on 

the target before the test. In our tests, for each of the three devices, the following 

pieces information were gathered: chipsets used, known vulnerabilities (to verify their 

existence or absence), information on how open the devices, as well as other various 

specifics that would aid the testing. In one case, to speed up the testing, firmware for 

one of the devices was obtained by emailing the manufacturer and having them send 

the actual binary.  

 

4.1 Selecting Suitable Vulnerabilities from the Extended Framework 

After the reconnaissance phase, vulnerabilities to be tested for each device are 

carefully selected based on the threat model and on whether a specific vulnerability 

would be suitable for that device. The list of vulnerabilities considered in our tests is 

shown in Table 4, and will be detailed in the following. 

Table 4. Tested vulnerabilities for each device. R denotes Router, B denotes Baby Monitor 

camera, S denotes the Security System. 

 

Attack Surface Vulnerability R B S 

Device Network Services Information disclosure X X X 

Administrative command line X X X 

Denial of Service  X X 

Unencrypted services  X X 

Device Web Interface Account Lockout X  X 

Weak Passwords X   

SQL Injection X   

Default known credentials X   

Update Mechanism Update sent without encryption X   

Device Physical Interface User/Admin CLI  X  

Firmware Extraction  X  

Device Firmware Hardcoded credentials  X X 

Firmware Version display X X X 

Firmware Last update date X X X 
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4.2 Home Router Testing  

In the considered testbed, the home router is one that has previously been tested by 

security professionals, and a well-known reported vulnerability with this specific 

device is the use of default credentials, with the username and password being ‘ad-

min’. Therefore, we first started with security testing of credentials.  The expectation 

would be for this vulnerability to have been fixed, despite the issue still being listed 

on a frequently update website of default credentials. Following the list of guidelines 

in the extended framework, we performed the tests through the automatic testing of 

credentials on the web interface, and easily-guessed credentials were not being an 

issue anymore. We then tested possible vulnerabilities to the firmware and update 

mechanism. Upon actually setting up the device and connecting to the router, a 

prompt was made by a webpage to run a firmware update in order for the device to 

work. However, this was easily skipped past by closing the webpage. One could then 

proceed to use the device normally, potentially postponing the firmware update indef-

initely, as a common user would, resulting in any possible vulnerability patches in the 

update being left unapplied. However, to access the router login page, the firmware 

had to be updated. Even so, it should not be allowed to be possible to skip a crucial 

firmware update and use the device. An incoming update to the router was intercept-

ed, using Wireshark
3
. The contents were encrypted, meaning that the device is secure 

against the Update Sent Without Encryption vulnerability, listed under the Update 

Mechanism attack surface. 

We then tested for an administrative command line as outlined by the Device Net-

work Services attack surface mappings. As per the Security Considerations for the 

vulnerability, open service ports were searched for to potentially gain access to a 

command line interface (CLI). The aim is to establish an SSH or Telnet connection. 

To do this, Fing service scanner
4
 and the Netstat

5
 command was used. The router had 

a lot of miscellaneous ports open, but none which could potentially hold the route to a 

CLI. It turns out that it could actually be chosen to enable remote connection to the 

router on the router settings page by enabling SSH. Had there been an accessible ad-

ministrative command line available over the network, this would have been a further 

venue of possible exploitation to test. The Web interface was tested further with mali-

cious input into the username and password fields. Following the recommendations 

reported on the Tools column, we used SQL ninja
6
 to perform an SQL injection, 

which did not return any successful result. We discovered that the router obtained 

credentials from a cloud service and that the manufacturer has taken measures against 

SQL injections – noted as the most important web application security risk [15]. By 

this same method of testing suggested by the framework, we also discovered that the 

web interface employs account lockout. In addition, weak (default) passwords could 

not be tested for, since the user has to set the password on the admin page. The final 

test was for Information Disclosure vulnerability. This test returned positive as some 

                                                           
3 https://www.wireshark.org/ 
4 https://www.fing.io/ 
5 https://linux.die.net/man/8/netstat 
6 http://sqlninja.sourceforge.net/ 
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sensitive information was disclosed. In particular, by using Wireshark
7
 to analyze 

packets, upon loading the device web interface, it was observed that details of the 

device were sent over HTTP in the clear (see Fig. 1). This includes a display of the 

current firmware version and its last update, as well as the serial number. This infor-

mation is only sent when loading the web interface.  

 

Fig. 1. Cleartext Device Details 

 

Fig. 2. Cleartext Credentials Details 

                                                           
7 https://www.wireshark.org/ 
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It is a more threating outcome when the user actually logs into the web interface as 

all user information and device information, including the device’s password, is 

transmitted in clear text (see Fig. 2). Hence, adversaries could simply just read the 

HTTP packet and have access to sensitive information, such as password – which can 

also be reused across other accounts of the same user. 

 

4.3 Baby Monitor Testing 

The Baby monitor we have tested is a low-cost baby monitor, designed to send a 

video stream to an application on a mobile phone with the camera registered to it. It 

does not have a web link available to view the video, but only a mobile application.  

The entire initial setup phase of the device and its controlling application had se-

cure network communications, which involved user details input to the application, 

entering wireless network details, and configuring the two devices such that the mo-

bile application displayed the camera’s live video feed. Any information disclosure 

here and subsequently through any future communications was not evident during the 

testing. All communications were encrypted, and no details were transmitted in the 

clear. To test possible vulnerabilities here, following the framework guidelines, 

Wireshark was used as well as an Android application titled ‘Packet Capture’
8
, which 

records packets in and out of a smartphone for a set period of time. Packets were then 

individually analyzed, in particular around 90 packets during the camera initialization 

and 20-50 for each following analysis of general camera usage.  

As per the extended framework, Fing network service scanner
4
 was then used to 

scan for any open services with the hope of finding a service that would offer access 

to some administrative CLI. One service detected of particular interest was Telnet, 

which is dangerous, since it transmits data in clear-text. The camera had an open 

Telnet port indeed, requiring credentials to connect to, and so a dictionary attack 

could be performed. It seemed appropriate to gather some further understanding of the 

device to do this. Since the camera’s firmware was not readily available anywhere on 

the Internet, we followed the framework guidelines on how to exploit the APK of the 

camera’s mobile application. In fact, the APK includes the compiled version of the 

Java source code for a mobile application, which still embeds some strings from the 

original source code. To this end, as per the framework guidelines, we have analyzed 

the APK with automatic tools to search for words such as ‘default’, ‘Telnet’, ‘pass’, 

‘user’, as well as any variations of these words including capital letters. There were 

lots of instances of these words in the code but after following the program control 

flow of these instances, we discovered that no code referred to the Telnet login. There 

was an imported class used, ‘Telnet login’, and a default Apache library class but both 

classes were not actually used in the product. One interesting finding, however, was 

that the actual camera was manufactured by one of manufacturers that produced sev-

eral vulnerable devices targeted by the Mirai botnet for default credentials. The 

framework includes guidelines on to perform a dictionary attack, which we did on the 

Telnet login of the camera with the Mirai word list, as well as any other common 

                                                           
8 https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture 
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logins by using some MSFconsole
9
 commands. However, the tests were unsuccessful 

and username enumeration was not possible. The connection was also dropped after 

several attempts and 60 seconds. Similarly, brute-forcing the Telnet port would take a 

very long time without meaningful results.  

We then considered the security of the device’s firmware. The firmware version 

and update-date was clearly listed on the application. To access the firmware by ref-

erencing our framework, it made sense to pursue the Device Physical Interface Attack 

Surface. IoT Security considerations were taken into account for the Firmware Ex-

traction vulnerability, and it was quickly learned that hardware would need to be dis-

mantled to access useful serial ports. Additionally, as per the recommended Tools to 

test for the vulnerability, UART to USB cables were required. After emailing the 

manufacturer and obtaining the cables, it was learned that, to access the camera’s 

hardware, the device would need to be broken open with the risk of damaging the 

hardware to the point of it not working again. The device was opened, with the goal 

of finding a UART serial port (see Fig. 3), which might have offered access to an 

administrative CLI as well as the firmware for the device if connected to.  

 

Fig. 3. Potential UART pinout on Baby Monitor camera 

 

Upon analysis of the hardware, we found a candidate for a UART pinout, which 

we tested with a voltmeter to read the voltages given off by each port, so that could be 

detected whether it was a UART pinout based on the voltage given off by each port 

and their voltages relative to each-other. The voltages were far too close together to 

be UART pins – it was expected that there would be a fixed amount of voltage be-

tween them, relative to each-other but this was not evident.  

The final test on this device was to understand its resilience against DoS attacks. 

After referencing the framework, attempts were made to take down the camera by 

flooding it with a stream of packets, as per the Security Considerations for the Denial 

                                                           
9 https://www.offensive-security.com/metasploit-unleashed/msfconsole/ 
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of Service vulnerability. To do this, Ettercap
10

, a program shipped with Kali Linux
11

, 

was used as listed in the extended framework. By specifying the IP address and the 

type of attack to carry out, Ettercap proceeded to transmit to the device an over-

whelming number packets. The device physically heated up and its light flickered red 

indicating an error. The video stream then slowly flickered out through packet loss 

and the camera turned itself off. Hence, the DoS attack was performed successfully.   

 

4.4 Security System Testing 

The final IoT device that we tested is a reputable security system, complete with 

motion detection, Cloud-stored video recordings, two-way camera communication 

and support for multiple cameras. The camera streams to a website which requires a 

user login to connect to the camera. The device web interface was regarded as secure: 

SQL injections failed and account lockouts were enabled. Additionally, weak pass-

words were not permitted for the device, and all the efforts at analyzing the web inter-

face were unsuccessful. Regarding the Device Network Services Attack Surface, any 

network communications were encrypted, and so no information was retrieved. Simi-

larly, there were no publicly accessible ports on the device. Our preliminary tests 

showed that this device was designed with security in mind, considering the selected 

attack surfaces-vulnerabilities pair. 

4.5 Results of the Testing 

The results of the tests are shown in Table 5, which reports, for each device, the 

vulnerabilities tested, and whether or not the vulnerability was realized. Here, ‘Y’ 

denotes realization, ‘N’ denotes that the vulnerability was not realized, ‘-’ denotes 

untested, and ‘?’ indicates there could potentially be an issue with more tests.  

Table 5. Results of the Tests using the Proposed Framework. 

Device Vulnerability Vulnerability exploited? 

Router Information disclosure Y 

Account lockout N 

Weak passwords N 

SQL injection N 

Default known credentials N 

Administrative command line N 

Update sent without encryption - 

Firmware version display/update date Y 

Baby Monitor Information disclosure N 

Administrative command line ? 

Denial of service Y 

Unencrypted services N 

Firmware extraction N 

User/admin CLI ? 

                                                           
10 https://www.ettercap-project.org/ 
11 https://www.kali.org/ 
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Hardcoded credentials ? 

Firmware version display/update date Y 

Secure System Information disclosure N 

Administrative command line ? 

Denial of services - 

Hardcoded credentials N 

Unencrypted services N 

Firmware version display / last update date - 

Account lockout N 

Weak passwords N 

SQL injection N 

Known default credentials N 

 

By following the framework guidelines, we discovered that the results of the tests 

were different than expected. For example, it was not expected that the router would 

have basic security issues such as instances of clear text communication. Additional-

ly, it was not expected that the baby monitor camera would be as secure as it was, 

despite few existing issues. We expected to find some information disclosure or prob-

lems with network communications at least, but there was nothing in that sense. An 

expected result, however, was the security system device’s firm security against the 

attack vectors chosen. Therefore, it appeared that the device is properly designed from 

a security perspective – at least, considering the five selected attack surfaces. 

5 Conclusion  

IoT security is still an issue today, in particular as several insecure devices are still 

mass produced, with little attention from manufacturers on device security. However, 

with IoT regulation groups and boards aimed at ensuring that security standards are 

kept – e.g. the EU IoT Council
12

 – we probably should see a swing in a positive direc-

tion for the security of IoT devices. Existing frameworks to test IoT devices simply 

are not mature enough for testers. There definitely needs to be an extension to it both 

in terms of what is included, e.g. the extension of tools/attack scope, as well as more 

vulnerabilities being added, such as relay/replay attacks. IoT security frameworks also 

need constant updating: for example, the OWASP attack surfaces mapping page was 

last updated in 2015, which is not in line with how IoT has developed since then.  

This paper shows that the proposed extension to the OWASP attack surface to vul-

nerabilities mappings is useful from a testing perspective. In particular, the testing 

methodology we have proposed adds further structure to the process of identifying 

and exploiting any vulnerability in IoT devices and would be useful to actually add to 

the OWASP IoT attack surface mappings. A future extension to our proposed frame-

work, which we are currently working on, is the addendum of extended mappings for 

the remaining attack surfaces listed in the original OWASP framework. 

 

                                                           
12 https://www.theinternetofthings.eu/ 
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