
Towards a Framework for Testing the Security of IoT

Devices Consistently

Gurjan Lally
1
, Daniele Sgandurra

2

1 Department of Computer Science, Royal Holloway, University of London, UK

gurjan.lally.2015@live.rhul.ac.uk
2 Information Security Group, Royal Holloway, University of London, UK

daniele.sgandurra@rhul.ac.uk

Abstract: The Internet of Things (IoT) permeates society in many areas, such

as automotive, smart-homes, smart-cities, healthcare, and critical infrastruc-

tures. Even if the IoT promises economic growth as well as convenience for us-

ers, the security (and safety) implications of the IoT are equally significant. In

fact, weak security in IoT devices could have dangerous consequences, such as

to a car crash, or an intruder entering in our home. As an example, in October

2016, the distributed denial of service attack on Dyn, a company controlling

and managing several DNS services, brought down most of America’s Internet,

and was caused by an IoT botnet (Mirai). This is mainly due to an increasing

number of vulnerabilities in IoT devices being discovered on a daily basis, and

that are the consequence of poor IoT security practices. To properly address the

security and testing of IoT devices, the first step is the description of a threat

model. However, few IoT manufactures base their testing on sound threat mod-

elling techniques and comprehensive IoT security guidelines.

For these reasons, in this paper we propose a methodological approach for IoT

security testing, which extends the OWASP IoT framework to include threat

models to guide the selection of tests used to evaluate IoT attack surfaces and

associated vulnerabilities. In addition, the proposed extended framework in-

cludes indications on how to actually test a given vulnerability and a set of rec-

ommended tools for performing the tests. To this end, we have devised a set of

procedures associated with the tests, e.g. accessing device hardware or resetting

the device. We also describe a set of tests based on the framework we have per-

formed on IoT devices to test their security. In particular, we have tested the

framework on a home router, a relatively cheap baby monitor, and a pricey se-

curity system. The methodological testing of the devices reported that the baby

monitor showed signs of inadequate security, the router patching any known

vulnerabilities as expected from a well-known manufacturer, and the security

system quashing any penetration testing attempts.

Keywords: Internet of Things, OWASP, Attack Surfaces, Testing Methodology

1 Introduction

As defined in [15], the Internet of Things (IoT) is “a system of interrelated computing

devices, mechanical and digital machines, objects, animals, or people that are provid-

2

ed with unique identifiers and the ability to transfer data over a network without re-

quiring human-to-human or human-to-computer interaction”. The IoT encompasses a

large range of devices (‘things’), among which every-day household electronics, such

as dishwashers, fridges, smart cameras, smart watches, smart glasses, smart TVs, and

smart light bulbs. Wearable devices can monitor heart rate, steps, and spent calories to

name just a few ‘smart’ features introduced by IoT devices. The IoT offers almost

limitless possibilities of positive features, finally fulfilling at least some of the alacri-

tous visions of futurists in the mid to late twentieth century
1
. These positives are hard

to outweigh, but negatives do exist. Concerns over data collection by product manu-

facturers and associated privacy, as well as security vulnerabilities in these devices,

might well not be enough to completely put people off using IoT devices or care for

these issues [11], but these concerns are still prominent.

Perhaps the most nefarious use of IoT devices is the one performed by botnets.

One in particular, the Mirai botnet [13], exploits something as simple as default cre-

dentials in IoT devices, gaining root access to recruit infected devices to the botnet.

This particular botnet made global headlines after causing massive Internet outages,

mainly in America. Articles highlighted the root cause being infected IoT devices,

stirring skepticism over these devices as a whole. The botnet code itself uses a list of

known default credentials for different devices and brute-forces IoT devices over the

Telnet protocol. This is a shockingly simple exploitation of IoT devices, yet very

common nowadays. The first question is why the Telnet protocol is used so frequent-

ly, as the protocol is very well known to be insecure by transmitting data in the clear.

Devices are often manufactured with trivial hard coded credentials in firmware, such

as username ‘admin’ and password ‘admin’. More complex hard coded credentials

still pose a problem, since they could be extracted from the device firmware. For ex-

ample, the main manufacturer whose devices were targeted by the Mirai botnet simp-

ly changed their mechanism of default credentials by assigning a default username

and password, stored in a table in the firmware, for each day of the year [18]. Such a

fix is clearly not adequate – a method of setting user credentials upon first boot would

make more sense (but this would bring other usability issues). Of course, default cre-

dentials and firmware extraction/analysis are just examples of vulnerabilities related

to attack surfaces. In fact, most of IoT devices for everyday consumers are still not

designed with security in mind, with a reported one out of ten devices displaying the

prevalent issue of common default credentials alone [12]. Only few manufacturers

have started to include security practices in IoT design and development, mainly due

to the publicity around the concept of the exploitation of an IoT device potentially

having a direct impact on consumers and negative press [16] [17].

For these reasons, we propose an extension to the OWASP IoT attack surface

mappings [14] with the aim of making the security testing of IoT devices more rigor-

ous as to significantly reduce their number of vulnerabilities. In particular, we have

extended the OWASP framework to include: (i) a mapping of vulnerabilities to a set

of security tests – to facilitate the selection of tests to be performed; (ii) a mapping of

tests to potentially useful tools to perform the test – to guide users/manufacturers on

1 https://www.postscapes.com/internet-of-things-history/

3

the choice of the tools to perform the test; and (iii) a more detailed threat modelling –

to formalize under which assumptions and scenarios the tests are meaningful. The

main aim of the proposed framework is to allow IoT designers, as well as manufac-

tures and end-users, to model and risk-assess IoT security in a methodological and

comprehensive way. To evaluate the efficacy of the proposed framework, we have

used it to guide the tests on three classes of IoT devices.

The paper is structured as follows. In Section 2, we describe related works. In Sec-

tion 3, we firstly briefly recall the main concepts of the IoT OWASP framework, and

we then describe the proposed changes to the IoT OWASP framework, by discussing

the extended surface mapping to include IoT security considerations, the tools to use

and threat models. In Section 4, we report the results of the tests performed on three

classes of IoT devices by following the proposed testing methodology, and we discuss

our findings. Finally, in Section 5 we conclude the paper.

2 Related Works

In [1], the authors have analysed the security of Samsung's SmartThings platform

and found several security vulnerabilities. Similarly, in [2] the authors have per-

formed functionality extension attacks on IoT devices using smart-lights as a covert

Li-Fi communication system to get data from a highly secure office building. The

authors were able to read the leaked data from a distance of over 100 meters using

cheap equipment. The authors of [3] have designed a feature-distributed malware to

perform various malicious activities, such as unlocking smart-locks and disarming

security alarms. These results show that traditional web attack techniques, such as

cookie stealing, can be turned into sophisticated attacks on IoT devices. Similarly, the

authors of [4] examine the security of five commercial home smart-locks, and show

that most of these devices suffer from poor design and implementation choices. [5]

analyses the IoT vulnerabilities from insecure web/mobile/cloud interfaces, by testing

insufficient authentication and authorization, insecure network services, lack of

transport encryption and integrity verification, privacy concerns, insufficient security

configurability, insecure software/firmware, and poor physical security. In [6] the

authors examine the security of different categories of IoT devices to understand their

resilience under different threat models, in particular physical access and close prox-

imity of the attacker. However, none of these papers has proposed a framework to

enable IoT manufacturers to test the security of IoT devices methodically by using

different tools and security assumptions [7] [8], which is the main goal of this paper.

3 Proposed Extended IoT Framework

This section involves the analysis of relevant IoT attack surfaces and vulnerabili-

ties from IoT OWASP framework, and then it proposes an extension to include test-

ing considerations, tools, and threat models for each vulnerability.

4

3.1 IoT Threat Modelling

A critical aspect of security testing is to evaluate all possible attack surfaces and

their associated vulnerabilities, and then select specific attack surfaces to analyze and

test. In IoT scenarios, attack surfaces are points of an IoT device at which an attacker

can gain access to it to perform a security violation, e.g. by delivering a malicious

payload. Vulnerabilities are the means by which an attack can be performed. As an

example, Table 1 lists some of the attack surfaces and associate vulnerabilities from

the OWASP IoT Framework [14].

Table 1. IoT OWASP Framework (Excerpt)

It appears evident that, while the OWASP framework includes several attack sur-

faces and sets of vulnerabilities, there are no indications on how to actually test these

vulnerabilities, and under which security condition(s). Therefore, the first requirement

(R1) of our methodological approach to testing the devices is to identify suitable at-

tack surfaces, based on factors such as knowledge of the scenario (i.e., threat model),

and whether the attack surface is suitable to the device being tested. For example,

prematurely choosing the Device Web Interface attack surface to test would not make

sense on a device with no web interface. The second requirement (R2) of our frame-

work is to provide a set of guidelines describing how to test the vulnerabilities along

with the list of tools that can be used to perform the test. The aim of these require-

ments is to make the framework more rigorous and to facilitate the selection of tests

to be performed.

Attack Surface Vulnerabilities

Ecosystem Access Control

 Implicit trust be-

tween components

 Enrolment security

 Decommissioning system

 Lost access procedures

Device Memory
 Cleartext usernames

 Cleartext passwords

 Third-party credentials

 Encryption keys

Device Physical Interfaces

 Firmware extraction

 User CLI

 Admin CLI

 Privilege escalation

 Reset to insecure state

 Removal of storage media

Device Web Interface

 SQL injection

 Cross-site scripting

 Cross-site Request

Forgery

 Username enumera-

tion

 Weak passwords

 Account lockout

 Known default credentials

5

3.2 Extended Attack Surface Mapping

To consider these two requirements, the extended framework includes three addi-

tional mappings for each vulnerability, which are:

(i) IoT Security Considerations, i.e. guidelines on how to perform the testing;

(ii) Methodologies and Tools, i.e. a list of suggested tools and methodologies

to perform the tests;

(iii) Threat Models, i.e. a description of the security assumptions, in particular

in terms of attacker’s access;

 The first requirement (R1) is satisfied by including in the framework IoT Security

Considerations and Methodologies and Testing tools. The first extension describes

effectively means of testing, that is, the ways in which to test a given vulnerability if

it seems possible. The second extension, Methodologies and Tools, refers to various

pieces of software or hardware, as well as methodologies, that can be used to perform

the testing process. This piece of information is useful to testers, since it works in

concurrency with the Security Considerations to extend upon what will be needed to

actually test the vulnerability. The second requirement (R2) is satisfied by extending

the framework to include Threat Models. In fact, some vulnerabilities may require

hardware access, and some may be exploited remotely. The extension Threat Models

defines the security assumptions, e.g. proximity of attacker to perform the attack, so

that manufactures can decide whether to perform the testing or not based on the de-

vice deployment scenarios. For instance, in case a device is not deployed in open

fields, all the tests related to physical attacks could be omitted.

We have included these threat models in the extended framework:

 Physical access, i.e. an attacker that can tamper with the hardware;

 Close access, i.e. an attacker that is in close proximity of the IoT device

(e.g., RFID access), without having physical access;

 Network access, in an attacker able to get access to the same network of

the IoT device (e.g., WiFi);

 Remote access, i.e. an attacker able to connect remotely to the device;

 Application access, i.e. an attacker able to connect remotely to the appli-

cation (typically running on a smartphone) that controls the IoT device;

 Router/Hub access, i.e. an attacker able to connect remotely to the home

router or hub mediating/controlling the IoT device;

 Cloud access, i.e. an attacker able to connect to the Cloud backend only.

Each of these accesses is associated with a set of attacks that an attacker can per-

form, and a stronger assumption (e.g., physical access), which also includes the at-

tacks associated with a weaker assumption (e.g., network access), while the vice-

versa is not true. The symbols we have used to visually represent these threat mod-

els are shown in Table 2.

6

Table 2. Symbols used in the Framework to Represent the Threat Models

Physical

Access

Close

Access

Network

Access

Remote

Access

App

Access

Gateway

Access

Cloud

Access

Table 3 reports the proposed extended framework by showing a representative

subset of the vulnerabilities and attack areas for which we have provided an exten-

sion, namely Device Physical Interfaces, Device Web Interface, Device Firmware,

Device Network Services, and Local Data Storage
2
.

Table 3. Proposed Extended OWASP IoT Attack Surface Areas.

Vulnerability
IoT Security Considerations

(How to Test)

Methodologies and

Tools
Threat Model

Firmware extraction
Gain access to serial ports from
hardware and dump firmware

(physical) UART to USB
cables

User/admin CLI
Use potential serial ports to access the

CLI
(physical) UART to USB

into computer

Privilege escalation
Potential buffer overflow attacks,

command injections
Metasploit framework

Reset to insecure state
Reset button? Analyse network activity

thereafter
Wireshark

Known default credentials
Check internet for known default pass-

word lists for a given device
Browsing internet

SQL injection
Give malicious input in some form on

the web interface

SQL ninja/Metasploit

SQLi tools

Weak passwords Guess passwords or bruteforce Brutus bruteforcer

Account lockout
Test whether account locks by

constantly logging in incorrectly
Brutus or manually

Username enumeration
Bruteforce default usernames until some

message indicates its existence
Brutus or any Metasploit

bruteforcer

2 For the sake of conciseness, the Table shown here briefly summarizes "IoT Security Consid-

erations" and "Methodologies and Tools".

Device Physical

Interfaces
Device Web

Interface Device Firmware Device Network

Services
Local Data

Storage

7

Hardcoded credentials
Extract the firmware and manually

analyse it for any credentials

Binwalk firmware extrac-

tion and analysis tool

Sensitive information

disclosure

Same as above, but analyse for sensitive

information instead

Binwalk firmware extrac-

tion and analysis tool

Sensitive URL disclosure
Same as above, but look for any sensi-

tive URLs

Binwalk firmware extrac-

tion and analysis tool

Firmware version display

and/or last update date

Displayed in some UI? Transmitted over

network?
Wireshark

Information disclosure
Intercept packets to gain unintended

information
Wireshark

Administrative command

line

Check an open port (Telnet or SSH).

Guess default credentials, bruteforce or
extract firmware as above

Fing network service
identifier to identify

Telnet/SSH. Firmware

tools as above

Injection
Inject code into network messages/user

input, perform dot traversal
Metasploit tools

Denial of service
Flood a device with network traf-

fic/packets/broken packets
Ettercap

Vulnerable UDP services
Sending spoofed IP UDP packets or

even DoS attacks on open UDP ports
Ettercap DoS

Unencrypted services
Read unencrypted data with a packet

sniffer
Wireshark

Unencrypted data
View data perhaps stored by applica-

tions accompanying the device
Dex2jar for APK to JAR

Update sent without
encryption

Look for streams of unencrypted
packets related to an update

Wireshark

No Manual update

mechanism

Look for ways by which it is not

possible to manually update
Web interfaces

As already recalled, by selecting a specific Threat Model, the proposed framework

shows the vulnerabilities to test belonging to the uncovered attack surfaces. Then, the

associated IoT Security Considerations report a set of guidelines on how to perform

the testing. For example, in the Physical Access threat model, the Device Physical

Interfaces Attack Surface is enabled. Here, a possible vulnerability is Firmware Ex-

traction, and one of the main Security Consideration is that access to serial ports from

hardware must be tested, and a set of Methodologies and Tools to obtain the firmware

are described.

In the following section we describe how we have used the extended framework to

assess the security of three categories of IoT devices.

8

4 Testing with the Extended Framework

This section covers the actual testing and describes the results obtained following

the extended IoT framework. In detail, we have tested the devices on a router, on a

baby monitor, and on a security system. For the sake of responsible disclosure, we

omit the details of the manufacturers and IoT models of any of these devices, and any

details which could lead to any harmful outcome.

A preliminary phase of the proposed methodological approach taken to the testing

is that of reconnaissance, which involves learning about and gathering information on

the target before the test. In our tests, for each of the three devices, the following

pieces information were gathered: chipsets used, known vulnerabilities (to verify their

existence or absence), information on how open the devices, as well as other various

specifics that would aid the testing. In one case, to speed up the testing, firmware for

one of the devices was obtained by emailing the manufacturer and having them send

the actual binary.

4.1 Selecting Suitable Vulnerabilities from the Extended Framework

After the reconnaissance phase, vulnerabilities to be tested for each device are

carefully selected based on the threat model and on whether a specific vulnerability

would be suitable for that device. The list of vulnerabilities considered in our tests is

shown in Table 4, and will be detailed in the following.

Table 4. Tested vulnerabilities for each device. R denotes Router, B denotes Baby Monitor

camera, S denotes the Security System.

Attack Surface Vulnerability R B S

Device Network Services Information disclosure X X X

Administrative command line X X X

Denial of Service X X

Unencrypted services X X

Device Web Interface Account Lockout X X

Weak Passwords X

SQL Injection X

Default known credentials X

Update Mechanism Update sent without encryption X

Device Physical Interface User/Admin CLI X

Firmware Extraction X

Device Firmware Hardcoded credentials X X

Firmware Version display X X X

Firmware Last update date X X X

9

4.2 Home Router Testing

In the considered testbed, the home router is one that has previously been tested by

security professionals, and a well-known reported vulnerability with this specific

device is the use of default credentials, with the username and password being ‘ad-

min’. Therefore, we first started with security testing of credentials. The expectation

would be for this vulnerability to have been fixed, despite the issue still being listed

on a frequently update website of default credentials. Following the list of guidelines

in the extended framework, we performed the tests through the automatic testing of

credentials on the web interface, and easily-guessed credentials were not being an

issue anymore. We then tested possible vulnerabilities to the firmware and update

mechanism. Upon actually setting up the device and connecting to the router, a

prompt was made by a webpage to run a firmware update in order for the device to

work. However, this was easily skipped past by closing the webpage. One could then

proceed to use the device normally, potentially postponing the firmware update indef-

initely, as a common user would, resulting in any possible vulnerability patches in the

update being left unapplied. However, to access the router login page, the firmware

had to be updated. Even so, it should not be allowed to be possible to skip a crucial

firmware update and use the device. An incoming update to the router was intercept-

ed, using Wireshark
3
. The contents were encrypted, meaning that the device is secure

against the Update Sent Without Encryption vulnerability, listed under the Update

Mechanism attack surface.

We then tested for an administrative command line as outlined by the Device Net-

work Services attack surface mappings. As per the Security Considerations for the

vulnerability, open service ports were searched for to potentially gain access to a

command line interface (CLI). The aim is to establish an SSH or Telnet connection.

To do this, Fing service scanner
4
 and the Netstat

5
 command was used. The router had

a lot of miscellaneous ports open, but none which could potentially hold the route to a

CLI. It turns out that it could actually be chosen to enable remote connection to the

router on the router settings page by enabling SSH. Had there been an accessible ad-

ministrative command line available over the network, this would have been a further

venue of possible exploitation to test. The Web interface was tested further with mali-

cious input into the username and password fields. Following the recommendations

reported on the Tools column, we used SQL ninja
6
 to perform an SQL injection,

which did not return any successful result. We discovered that the router obtained

credentials from a cloud service and that the manufacturer has taken measures against

SQL injections – noted as the most important web application security risk [15]. By

this same method of testing suggested by the framework, we also discovered that the

web interface employs account lockout. In addition, weak (default) passwords could

not be tested for, since the user has to set the password on the admin page. The final

test was for Information Disclosure vulnerability. This test returned positive as some

3 https://www.wireshark.org/
4 https://www.fing.io/
5 https://linux.die.net/man/8/netstat
6 http://sqlninja.sourceforge.net/

10

sensitive information was disclosed. In particular, by using Wireshark
7
 to analyze

packets, upon loading the device web interface, it was observed that details of the

device were sent over HTTP in the clear (see Fig. 1). This includes a display of the

current firmware version and its last update, as well as the serial number. This infor-

mation is only sent when loading the web interface.

Fig. 1. Cleartext Device Details

Fig. 2. Cleartext Credentials Details

7 https://www.wireshark.org/

11

It is a more threating outcome when the user actually logs into the web interface as

all user information and device information, including the device’s password, is

transmitted in clear text (see Fig. 2). Hence, adversaries could simply just read the

HTTP packet and have access to sensitive information, such as password – which can

also be reused across other accounts of the same user.

4.3 Baby Monitor Testing

The Baby monitor we have tested is a low-cost baby monitor, designed to send a

video stream to an application on a mobile phone with the camera registered to it. It

does not have a web link available to view the video, but only a mobile application.

The entire initial setup phase of the device and its controlling application had se-

cure network communications, which involved user details input to the application,

entering wireless network details, and configuring the two devices such that the mo-

bile application displayed the camera’s live video feed. Any information disclosure

here and subsequently through any future communications was not evident during the

testing. All communications were encrypted, and no details were transmitted in the

clear. To test possible vulnerabilities here, following the framework guidelines,

Wireshark was used as well as an Android application titled ‘Packet Capture’
8
, which

records packets in and out of a smartphone for a set period of time. Packets were then

individually analyzed, in particular around 90 packets during the camera initialization

and 20-50 for each following analysis of general camera usage.

As per the extended framework, Fing network service scanner
4
 was then used to

scan for any open services with the hope of finding a service that would offer access

to some administrative CLI. One service detected of particular interest was Telnet,

which is dangerous, since it transmits data in clear-text. The camera had an open

Telnet port indeed, requiring credentials to connect to, and so a dictionary attack

could be performed. It seemed appropriate to gather some further understanding of the

device to do this. Since the camera’s firmware was not readily available anywhere on

the Internet, we followed the framework guidelines on how to exploit the APK of the

camera’s mobile application. In fact, the APK includes the compiled version of the

Java source code for a mobile application, which still embeds some strings from the

original source code. To this end, as per the framework guidelines, we have analyzed

the APK with automatic tools to search for words such as ‘default’, ‘Telnet’, ‘pass’,

‘user’, as well as any variations of these words including capital letters. There were

lots of instances of these words in the code but after following the program control

flow of these instances, we discovered that no code referred to the Telnet login. There

was an imported class used, ‘Telnet login’, and a default Apache library class but both

classes were not actually used in the product. One interesting finding, however, was

that the actual camera was manufactured by one of manufacturers that produced sev-

eral vulnerable devices targeted by the Mirai botnet for default credentials. The

framework includes guidelines on to perform a dictionary attack, which we did on the

Telnet login of the camera with the Mirai word list, as well as any other common

8 https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture

12

logins by using some MSFconsole
9
 commands. However, the tests were unsuccessful

and username enumeration was not possible. The connection was also dropped after

several attempts and 60 seconds. Similarly, brute-forcing the Telnet port would take a

very long time without meaningful results.

We then considered the security of the device’s firmware. The firmware version

and update-date was clearly listed on the application. To access the firmware by ref-

erencing our framework, it made sense to pursue the Device Physical Interface Attack

Surface. IoT Security considerations were taken into account for the Firmware Ex-

traction vulnerability, and it was quickly learned that hardware would need to be dis-

mantled to access useful serial ports. Additionally, as per the recommended Tools to

test for the vulnerability, UART to USB cables were required. After emailing the

manufacturer and obtaining the cables, it was learned that, to access the camera’s

hardware, the device would need to be broken open with the risk of damaging the

hardware to the point of it not working again. The device was opened, with the goal

of finding a UART serial port (see Fig. 3), which might have offered access to an

administrative CLI as well as the firmware for the device if connected to.

Fig. 3. Potential UART pinout on Baby Monitor camera

Upon analysis of the hardware, we found a candidate for a UART pinout, which

we tested with a voltmeter to read the voltages given off by each port, so that could be

detected whether it was a UART pinout based on the voltage given off by each port

and their voltages relative to each-other. The voltages were far too close together to

be UART pins – it was expected that there would be a fixed amount of voltage be-

tween them, relative to each-other but this was not evident.

The final test on this device was to understand its resilience against DoS attacks.

After referencing the framework, attempts were made to take down the camera by

flooding it with a stream of packets, as per the Security Considerations for the Denial

9 https://www.offensive-security.com/metasploit-unleashed/msfconsole/

13

of Service vulnerability. To do this, Ettercap
10

, a program shipped with Kali Linux
11

,

was used as listed in the extended framework. By specifying the IP address and the

type of attack to carry out, Ettercap proceeded to transmit to the device an over-

whelming number packets. The device physically heated up and its light flickered red

indicating an error. The video stream then slowly flickered out through packet loss

and the camera turned itself off. Hence, the DoS attack was performed successfully.

4.4 Security System Testing

The final IoT device that we tested is a reputable security system, complete with

motion detection, Cloud-stored video recordings, two-way camera communication

and support for multiple cameras. The camera streams to a website which requires a

user login to connect to the camera. The device web interface was regarded as secure:

SQL injections failed and account lockouts were enabled. Additionally, weak pass-

words were not permitted for the device, and all the efforts at analyzing the web inter-

face were unsuccessful. Regarding the Device Network Services Attack Surface, any

network communications were encrypted, and so no information was retrieved. Simi-

larly, there were no publicly accessible ports on the device. Our preliminary tests

showed that this device was designed with security in mind, considering the selected

attack surfaces-vulnerabilities pair.

4.5 Results of the Testing

The results of the tests are shown in Table 5, which reports, for each device, the

vulnerabilities tested, and whether or not the vulnerability was realized. Here, ‘Y’

denotes realization, ‘N’ denotes that the vulnerability was not realized, ‘-’ denotes

untested, and ‘?’ indicates there could potentially be an issue with more tests.

Table 5. Results of the Tests using the Proposed Framework.

Device Vulnerability Vulnerability exploited?

Router Information disclosure Y

Account lockout N

Weak passwords N

SQL injection N

Default known credentials N

Administrative command line N

Update sent without encryption -

Firmware version display/update date Y

Baby Monitor Information disclosure N

Administrative command line ?

Denial of service Y

Unencrypted services N

Firmware extraction N

User/admin CLI ?

10 https://www.ettercap-project.org/
11 https://www.kali.org/

14

Hardcoded credentials ?

Firmware version display/update date Y

Secure System Information disclosure N

Administrative command line ?

Denial of services -

Hardcoded credentials N

Unencrypted services N

Firmware version display / last update date -

Account lockout N

Weak passwords N

SQL injection N

Known default credentials N

By following the framework guidelines, we discovered that the results of the tests

were different than expected. For example, it was not expected that the router would

have basic security issues such as instances of clear text communication. Additional-

ly, it was not expected that the baby monitor camera would be as secure as it was,

despite few existing issues. We expected to find some information disclosure or prob-

lems with network communications at least, but there was nothing in that sense. An

expected result, however, was the security system device’s firm security against the

attack vectors chosen. Therefore, it appeared that the device is properly designed from

a security perspective – at least, considering the five selected attack surfaces.

5 Conclusion

IoT security is still an issue today, in particular as several insecure devices are still

mass produced, with little attention from manufacturers on device security. However,

with IoT regulation groups and boards aimed at ensuring that security standards are

kept – e.g. the EU IoT Council
12

 – we probably should see a swing in a positive direc-

tion for the security of IoT devices. Existing frameworks to test IoT devices simply

are not mature enough for testers. There definitely needs to be an extension to it both

in terms of what is included, e.g. the extension of tools/attack scope, as well as more

vulnerabilities being added, such as relay/replay attacks. IoT security frameworks also

need constant updating: for example, the OWASP attack surfaces mapping page was

last updated in 2015, which is not in line with how IoT has developed since then.

This paper shows that the proposed extension to the OWASP attack surface to vul-

nerabilities mappings is useful from a testing perspective. In particular, the testing

methodology we have proposed adds further structure to the process of identifying

and exploiting any vulnerability in IoT devices and would be useful to actually add to

the OWASP IoT attack surface mappings. A future extension to our proposed frame-

work, which we are currently working on, is the addendum of extended mappings for

the remaining attack surfaces listed in the original OWASP framework.

12 https://www.theinternetofthings.eu/

15

Acknowledgment.

This work was partially supported by the European Union's Horizon 2020 research

and innovation programme under grant agreement No 779391 (FutureTPM).

References

1. Fernandes, Earlence, Jaeyeon Jung, and Atul Prakash. "Security analysis of emerging smart

home applications." In 2016 IEEE Symposium on Security and Privacy (SP), pp. 636-654.

IEEE, 2016.

2. Ronen, Eyal, and Adi Shamir. "Extended functionality attacks on IoT devices: The case of

smart lights." In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pp.

3-12. IEEE, 2016.

3. Min, Byungho, and Vijay Varadharajan. "Design and evaluation of feature distributed mal-

ware attacks against the Internet of Things (IoT)." In Engineering of Complex Computer

Systems (ICECCS), 2015 20th International Conference on, pp. 80-89. IEEE, 2015.

4. Ho, Grant, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and David Wag-

ner. "Smart locks: Lessons for securing commodity internet of things devices." In Proceed-

ings of the 11th ACM on Asia conference on computer and communications security, pp.

461-472. ACM, 2016.

5. Bertino, Elisa, and Nayeem Islam. "Botnets and internet of things security." Computer 2

(2017): 76-79.

6. Xu, He, Daniele Sgandurra, Keith Mayes, Peng Li, and Ruchuan Wang. "Analysing the Re-

silience of the Internet of Things Against Physical and Proximity Attacks." In International

Conference on Security, Privacy and Anonymity in Computation, Communication and Stor-

age, pp. 291-301. Springer, Cham, 2017.

7. Sgandurra, Daniele, and Emil Lupu. "Evolution of attacks, threat models, and solutions for

virtualized systems." ACM Computing Surveys (CSUR) 48, no. 3 (2016): 46.

8. Sgandurra, Daniele, Erisa Karafili, and Emil Lupu. "Formalizing Threat Models for Virtual-

ized Systems." In IFIP Annual Conference on Data and Applications Security and Privacy,

pp. 251-267. Springer, Cham, 2016.

9. Rouse, Margaret: "Prevent Enterprise IoT Security Challenges". (2018). Available at:

http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

10. Dave, E. "How the next evolution of the Internet is changing everything." The Internet of

Things (2011). Available at:

https://www.cisco.com/c/dam/en_us/about/ac79/docs/inov/IoT_IBSG_0411FINAL.pdf

11. Rouffineau, Thibaut: “Consumers are terrible at updating their connected devices.” (2016).

Available at: https://blog.ubuntu.com/2016/12/15/research-consumers-are-terrible-at-

updating-their-connected-devices

12. Shipulin, Kirill, Positive Technologies: “Practical ways to misuse a router.” (2017).

Available at: http://blog.ptsecurity.com/2017/06/practical-ways-to-misuse-router.html

13. Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime

Cochran, Zakir Durumeric et al. "Understanding the mirai botnet." In USENIX Security

Symposium, pp. 1092-1110. 2017.

14. OWASP, “IoT Attack Surface Areas.” (2015). Available at:

https://www.owasp.org/index.php/IoT_Attack_Surface_areas

https://blog.ubuntu.com/2016/12/15/research-consumers-are-terrible-at-updating-their-connected-devices
https://blog.ubuntu.com/2016/12/15/research-consumers-are-terrible-at-updating-their-connected-devices
http://blog.ptsecurity.com/2017/06/practical-ways-to-misuse-router.html
https://www.owasp.org/index.php/IoT_Attack_Surface_areas

16

15. OWASP, “Top 10 2017: The Ten Most Critical Web Application Security Risks.” Sl: The

OWASP Foundation (2013).

16. Trendall, Sam, PublicTechnology.net: “Labour MP: If a device is called ‘smart’ – don’t buy

it.” (2018). Available at: https://publictechnology.net/articles/news/labour-mp-if-device-

called-%E2%80%98smart%E2%80%99-%E2%80%93-don%E2%80%99t-buy-it

17. Ranger, Steve, ZDNet: “Internet of Things: Finding a way out of the security nightmare.”

(2016). Available at: https://www.zdnet.com/article/internet-of-things-finding-a-way-out-of-

the-security-nightmare/

18. Paul, The Security Ledger: “Mirai Redux: A Year’s Worth of DVR Passwords Published

Online.” (2017). Available at: https://securityledger.com/2017/01/mirai-redux-a-years-
worth-of-dvr-passwords-published-online/

https://publictechnology.net/articles/news/labour-mp-if-device-called-%E2%80%98smart%E2%80%99-%E2%80%93-don%E2%80%99t-buy-it
https://publictechnology.net/articles/news/labour-mp-if-device-called-%E2%80%98smart%E2%80%99-%E2%80%93-don%E2%80%99t-buy-it
https://www.zdnet.com/article/internet-of-things-finding-a-way-out-of-the-security-nightmare/
https://www.zdnet.com/article/internet-of-things-finding-a-way-out-of-the-security-nightmare/
https://securityledger.com/2017/01/mirai-redux-a-years-worth-of-dvr-passwords-published-online/
https://securityledger.com/2017/01/mirai-redux-a-years-worth-of-dvr-passwords-published-online/

