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Abstract—Detection algorithms for electroencephalography
(EEG) data, especially in the field of interictal epileptiform dis-
charge (IED) detection, have traditionally employed handcrafted
features which utilised specific characteristics of neural responses.
Although these algorithms achieve high accuracy, mere detection
of an IED holds little clinical significance. In this work, we
consider deep learning for epileptic subjects to accommodate
automatic feature generation from intracranial EEG data, while
also providing clinical insight. Convolutional neural networks are
trained in a subject independent fashion to demonstrate how
meaningful features are automatically learned in a hierarchical
process. We illustrate how the convolved filters in the deepest
layers provide insight towards the different types of IEDs within
the group, as confirmed by our expert clinicians. The morphology
of the IEDs found in filters can help evaluate the treatment of a
patient. To improve the learning of the deep model, moderately
different score classes are utilised as opposed to binary IED and
non-IED labels. The resulting model achieves state of the art
classification performance and is also invariant to time differences
between the IEDs. This study suggests that deep learning is
suitable for automatic feature generation from intracranial EEG
data, while also providing insight into the data.

Index Terms—Convolutional neural networks, epilepsy detec-
tion, intracranial EEG, multi score class learning.

I. INTRODUCTION

EG is the most popular tool for the investigation of

the brain function. Its high temporal resolution property
makes it ideal for a variety of fields that consider time varying
signals. EEG has been extremely useful in medical sciences,
since it complements other biomarkers for many types of brain
diseases and conditions. Detection of epileptic seizure was
the first application of EEG-based diagnosis by Hans Berger
in 1924. Epilepsy is a chronic condition with the primary
characteristic being the occurrence of seizures. Fast changing
abnormal electrical activities that occur during seizures (ictal)
and between seizures (inter-ictal) make the use of EEG ideal
for diagnosis. These types of electrical activity are analysed
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in order to predict a seizure, detect the seizure onset location,
or aid the clinical diagnosis by quantifying properties of the
recorded signals. Although EEG has been employed for a
number of years, automated feature and pattern detection have
proved to be a challenging task, due to noise and multi-task
brain activities.

Interictal epileptiform discharges (IEDs) originate from
deep brain or hippocampus and in many cases are descriptive
of the epileptic condition. They are the most reliable biomark-
ers and are widely used in clinical evaluations. Detection of
IEDs has attracted interest from the machine learning and
biomedical communities and a variety of algorithms have been
developed [1]. These algorithms are based on methods such
as template matching [2]-[5], classification [6]-[9], dictionary
learning [10], differential operator [11], spike rate [12] and
other methods common in the well-established field of spike
detection [14], [15]. The common characteristic of all these
methods is that a description of an IED/spike signal is obtained
either through modeling or similarity measurement with fea-
tures of interest. This is often facilitated by obtaining useful
representations of the signal that can better exploit its structure.
Finding the optimal features for IED detection is a challenging
yet important problem [13].

Artificial neural networks are computational systems mod-
eled after the human brain that simulate how interconnected
neurons in the brain collect, process, and disseminate electrical
signals [16], [17]. These models are used as universal model
approximators for classification or regression tasks [18] and
have seen many successes in the past few decades [19], [20].
Neural networks have been utilised in a wide range of fields
including physiological signal analysis through the use of
electromyography [21], [22] and EEG [23], [24] signals.

Recent advances in neural networks have been in the form
of deep learning which operates based on a hierarchical
squashing function to generate high level features at each layer
by reducing the dimensionality of data [25]. Convolutional
neural networks (CNNs) are deep learning models inspired
by the animal visual cortex [26]. CNNs allow the extraction
of higher level features from the original input. Traditionally,
CNNs have been used for image processing and computer
vision and have set new benchmarks for image classification
problems [25], [27].

In contrast to their success in image processing, CNNs have
been used sparingly in EEG processing. Notable contributions
are in areas such as mental load classification [28], detection



of P300 [29], prediction of epileptic seizure [30], [31]. The
shortcoming in the literature is perhaps due to the blackbox
nature of neural networks for clinicians and the limited avail-
ability of specialised EEG (such as IED data) to data scientists.
To address these issues, we provide a comprehensive review
of CNNs and demonstrate how clinically meaningful features
manifest themselves within the structure of CNNs. In this way,
a specialised clinician can make sense of the data due to the
qualitative (and not quantitative) nature of the IED features.
To our best knowledge, this is the first time that the IED
morphology is detected within the filter weight coefficients
in the convolutional layer of a CNN.

A recent study into deep learning has revealed that deep
models benefit from out of distribution examples [32]. In other
words, transforming the original input samples using a variety
of filters in conjunction with separating the original classes
into sub-classes enhances the classification performance of
deep learning models. We therefore hypothesise that additional
subclasses of IEDs can improve the detection of IEDs, over
the methodology whereby we only consider the binary IED
and non-IED classes. We expect that the increased number
of IED classes and their clinical significance (see Section
II-D) assist the classifier in learning the features of IEDs
better, leading to improved classification rates. To enhance
learning, we introduce discrete ordered score labels, as a
means of training with moderately different classes. At the end
of classification, a threshold layer is designed to categorise
the predicted subclasses to IED and non-IED classes. This
paper is summarised as follows: In Section II we describe
the epileptic dataset and the preprocessing methodology for
the intracranial EEG. The training algorithm for our selected
models is derived in Section III and a thorough study of the
proposed method and our hypothesis are detailed in Section
IV. Section V provides the training procedure, parameter
selection and empirical results. A discussion of the achieved
results and their significance is provided in Section VI. Finally,
our manuscript is concluded in Section VIIL.

II. DATASET
A. Subjects

In this study, 18 subjects (11 males, 7 females, average
age 25.2 years, range 13 — 37) assessed for temporal lobe
epilepsy with scalp and foramen ovale (F'O) electrodes at
King’s College Hospital, London were included. Subjects
were submitted for telemetry recording with F'O electrodes
when their medical history, interictal scalp EEG, neuroimaging
and neuropsychological studies were not able to confidently
determine the side of seizure onset or there were doubts
about lateral temporal or extra-temporal seizure onset. In 10
subjects the seizure onset was located within mesial temporal
structures, while in eight subjects it was located in the lateral
temporal region. 13 EEG traces were entirely recorded during
wakefulness and the remaining also included periods of slow
wave sleep (stages I-II) (Subjects S2, S9, S10, S13, S15).

B. Electrode placement

The scalp EEG was obtained with the ‘Maudsley’ electrode
placement system [33] using 20 standard chlorided silver

cup electrodes. Each subject had two flexible bundles of six
intracranial electrodes inserted through the subjects F'Os under
general anesthesia and fluoroscopic control. The procedure
waw performed following the technique described by Stodieck
[34] and their positions were radiographically confirmed. Each
electrode consisted of a 0.1 mm insulated stainless steel wire.
The three deepest electrodes had recording contacts of 3 mm
long while for the most superficial electrodes the recording
contacts were 5 mm long. The distance between the two most
superficial recording contacts was 15 mm and 10 mm for the
rest of the contacts in the electrode. For each F'O electrode
bundle, the two deepest electrodes were located close to mesial
temporal structures.

C. Recording system

A Telefactor Beekeeper cable telemetry system of 32 chan-
nels was used. Data was digitised at 200 Hz and bandpass
filtered ([0.3 - 70] Hz). The system input range was 2 mV and
data were digitised using a 12 bit analog-to-digital converter
(an amplitude resolution of 0.488 V). The F'O data were
recorded with respect to Pz as common reference. For each
subject, a period of 20 min of scalp EEG and F'O interictal
recordings was used.

D. IED scoring

Scoring of the IED was performed by an expert epileptolo-
gist (DML) based on the spatial distribution and morphology
of the observed waveforms. These were evaluated in the back-
ground context as described in [35], and following the standard
definitions for epileptiform pattern, spike and sharp wave
of the International Federation of Clinical Neurophysiology
[36] and currently accepted EEG descriptions were taken into
account for scoring. Each trial was 65 sample long which is
equivalent to 325ms and was given a certainty score (0 — 4)
and categorised to one of the following:

0: Non-physiological and physiological artifacts, physio-
logical ‘sharpened/spiky’ activities (vertex waves, K-
complexes), and low amplitude irregularities barely dis-
tinguishable from the background activity and restricted
to 1 — 2 channels.

Sharp wave (restricted to at least 3 channels).

Broadly distributed sharp wave (> 3 channels).

Spike (restricted to at least three channels).

Broadly distributed spikes or spike and wave complexes
(> 3 channels), interictal bursts of spikes or sharp waves.

N

A summary of the scored data can be found in Table I.

E. Notation

We treat each of the six channels of the intracranial EEG
data as a univariate time sequence, as the data were sampled
at successive points in time at uniform time intervals. As
such, we denote each channel c; as (c;|j € Channels)
where ¢; = {¢j, ¢, ¢, } and ¢, is the k' sample
in channel j. CNNs utilise filters that use windowing to
sweep through the data of each channel and produce a new
multichannel time series that captures the femporal similarity
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Fig. 1: Resulting network after initial optimisation of parameters. X is the input, F7 are the filters for layer j, M7 are the
feature maps for layer j, WY is the weight matrix for the fully connected hidden layer and, h® and h! represent the pre-
activation and post-activation features for the fully connected hidden layer, W' and £ are the weight matrix and activation of

the logistic regressor.

TABLE I: Summary of the data scoring process.

Subject | No. of trials | Subject | No. of trials

S1 684 S10 448

S2 100 S11 1696

S3 144 S12 1906

S4 330 S13 1658

S5 316 S14 1082

S6 944 S15 520

S7 398 Si6 1212

S8 634 S17 228

S9 682 S18 236
Score No. of trials Score No. of trials

0 6609 3 2175

1 1389 4 915

2 2130

between EEG and the filter. At each step, filter f, is convolved
with each subsequence s of the same length. For example,
the first subsequence of the third channel is represented as:
st = {c},c2, .../}, where | - | is the cardinality operator.
Recall that we employ 1-d filters to avoid channel mixing as
it is not relevant for time series.

IIT. CONVOLUTIONAL NEURAL NETWORKS FOR EEG
LEARNING

Based on neural networks and the convolution operation,
CNNs perform convolution at each convolutional hidden layer
between the input and the weights. However, unlike normal
neural networks, CNNs can have many sets of weights at
each layer, also called filters. Each filter sweeps the entirety
of the input space to produce feature maps via convolution.
The feature maps of previous layers are used as input to the
next layer, leading to a hierarchical feature learning. Fig. 1
illustrates the architecture of our network, whereby the filters
operate within the convolutional hidden (CNH) layers and
traditional weights combine the feature representation learnt
in CNH layers in the fully connected hidden layer.

In image processing, these filters are typically 2-d by design
and are used to capture the spatial information of pixels. In
this work, we exploit these filters to capture the temporal
information of the EEG. To do so, CNN convolution is

performed by convolving each electrode signal with a 1-d filter
and adding a bias term to generate the feature map. This can
be expressed in two ways:

(I)/
GE =) Fh«M}' 40" (1)
g=1

' L
k—
G?,t-i—l,o = Z Z F;C,oMj,iJit,g + bk
g=1i=1
vt={0,.,.T-L}
Voj= {1,.,12}
vV o= {1,.,9}

where * is the convolution operator, L is the filter length, T’
is the length of the data segment, ® and ®’ are the number of
filters in the current and previous layer respectively (1 for the
first layer), F¥ is the o” filter at layer k, G* are the feature
maps at layer k before applying the non-linear function, M*~!
are the feature maps at layer & — 1 after applying the non-
linear function, ¢ denotes the time index and j represents the
4™ channel.

To introduce non-linearity to the network, the result of Eq.
(2) is passed through a non-linear activation function ¢.

M = ¢(GF) 3)

A number of activation functions have been proposed, how-
ever, for the purposes of this work we consider the hyperbolic
tangent function defined as:

sinh(6) _exp (0) —exp (—0)
cosh(6)  exp () + exp (—0)

¢(6) = tanh(0) = @)
where exp(-) is the exponential function. Allowing for a
number of convolutional layers (as shown on the L.H.S of Fig.
1) enables CNNss to learn complex features as combinations of
filters from the preceding layers. The generated features from



the convolutional layers are passed through a fully connected
hidden layer, such that:

h° = (Woec(MXT) + b) (5)
hj = ¢(h}) (6)

where (-)T is the transpose operator, K is the last convolutional
layer, W? and b are the weight matrix and bias of the fully
connected hidden layer respectively, see L.H.S of Fig. 1. Note
that M is a 3-d tensor. In order to pass the generated features
to the fully connected hidden layer the vec(-) function is
used so that M¥ is flattened to a vector. This is performed
by repeatedly concatenating each column of the feature map
matrices into a vector.

Finally, the output of the hidden layer is passed through a
logistic regression model for classification of the intracranial
EEG generated features. We use a one vs all approach so that
a number of binary classification problems are solved in the
case of discrete ordered score labels.

£=W'h'+b (7

where W' and b are the weights and bias for the logistic
model respectively. £ is a vector containing the probabilities
of a sample being in a particular class, normalised using the
softmax function:

exp(¢;)

C
Zc:l eXp(EC)
where z is the result of the softmax function normalisation

of £ and ¢; is the i element of £, corresponding to the
probability of being in the i class.

= softmax(¢;) =

®)

For classification the model outputs the index of the maxi-
mum value, from 0 (non-IED) to 4 (IED). The model is trained
using the backward propagation algorithm. We consider the
cross entropy as the error function for the training of the
proposed model.

c
— Z zclog(ye) 9)
c=1

where log(.) is the logarithm operator to the base e, C' is
the number of classes, z. is the generated output and y,. the
desired output for class c.

The gradient of a given cost function F can be computed
by backpropagation for each component of our network. For

the logistic model, the partial derivative 2 87 is calculated as:
¢ 0l 822 oL,

1 0z
:_Zylzlae

(10)
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In terms of the fully connected hidden layer the partial
OF

derivative 55 is calculated as:
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For the last convolutional layer the partial derivative 8(? L
is derived as follows: e
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where the function ROT180(-) is a rotation at 180 degrees
and equivalent to time reversal used in 1-d linear convolution.
> denotes all rows of WO, s refers to the length of each
vectorised map (in this case 7 x 12 = 84); the formula s(o —
1)+ 1 corresponds to the start index and so corresponds to the
end index - which effectively selects the appropriate columns
(weight coefficients) that relate to the feature map of the ot"
filter. The vector p (of size s x 1) is summed up to yield the
sum of contributions of all elements in the o' feature map.
Note that A is a matrix of the same size as GX. This can
be generalised for all convolutional layers as:

OE 0Gr omE-!
aGk 8Mk 1 aGk 1

- k k 1
- 21: ; (AO . R0T180(Fo))ji o (GE T

(13)
The weights for each component at every iteration are updated
as follows:

Akl

Logistic: w!(n + 1) = w!(n) — ad*h’

w)(n) — adlvec(MET)

(14)

Hidden: w)(n +1) = (15)

Convolutional: £¥(n 4 1) = f¥(n) — aAF « MF-1 (16)

where the transpose of w} corresponds to the ' row of the
matrix W1, the transpose of w? corresponds to the i*" row of
the matrix W9, f¥ is the o™ filter/column of the filter matrix
F* at layer k and « is the learning rate. Observe that for the
last convolutional layer, the convolution between A’; (of size
12 x 7) and M’jfl (of size 12 x 12) results in a vector of size
(1 x 6). This is because convolution of two matrices A (of
size al x a2) and B (of size bl x b2) results in a matrix of
size ((b1 —al+1) x (b2 — a2 +1)).

Following each convolutional layer, a pooling layer is
generally utilised to provide a squashing function. Specifically,
the pooling function maps an area (also called window) of the
generated feature map to a scalar value. Pooling has proven
to achieve invariance to transformation (such as rotation) and
more compact representation of images by reducing the image
size. A number of pooling strategies have been proposed with
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Fig. 2: Max pooling with a window size of 3 samples for an
IED example. The top plot represents the original IED segment
while the bottom plot represents the deformed segment after
max pooling.

the most prominent one being max-pooling where max(u)
returns the maximum sample in the vector or matrix u.
Although pooling has proven to be beneficial to deep learning,
it also modifies the input-output space. In the case of IEDs,
this alters the morphology of an epileptic spike, see Fig. 2,
which could degrade the performance. This observation was
confirmed by simulations.

IV. BINARY VS MULTICLASS IED DETECTION

Our method challenges the assumption that binary labeling
is sufficient to represent the complexity of the data for deep
learning [32]. Examples that lie close to the threshold of a
logistic regressor have a high probability to be misclassified.
To support our hypothesis, we provide two methods to demon-
strate the proximity of IED-1 and IED-2 segments to non-IED
compared to IED-3 and IED-4 segments. The first method
provides a quantitative measure while the second provides a
visual, qualitative measure on the proximity of IED and non-
IED segments.

First, a special case of the Minkowski distance metric called
Chebyshev distance is used to show the distance between
the different scored IEDs, emphasising that IED-1 class is
much closer to the non-IED class than any other IED class.
The Chebyshev distance is the generalised L,-norm of the
difference between two vectors when p moves towards infinity:

n

. 1
a5 (x,y) = % = ylloo = lim (3 [ai = yil?)’?

i1 arn
= max;|z; — yi
where x and y are vectors and || - || is the norm of a vector.

This is more appropriate in our comparison as the p value is
set.

Since the scored classes do not have the same number of
examples, see Table I, the first 914 examples from each class
were selected in order to calculate the Chebyshev distance.
The distance between the examples of different scored classes
are presented in Table II. Although examples in the IED-1
class are classified as IED, it is clear that these segments are
closer to the non-IED class than any other class due to the
smaller distance.

Second, to provide a visualisation of the closeness be-
tween the non-IED and IED-1 classes, we used t-distributed

TABLE II: Chebyshev Distance of data segments.

Non-IED | IED-1 IED-2 | IED-3 IED-4

Non-IED 0 0.0583 | 0.4774 | 0.5756 | 0.6594

IED-1 0.0583 0 0.4809 | 0.5785 | 0.6620

IED-2 0.4774 0.4809 0 0.3215 | 0.4549

IED-3 0.5756 0.5785 | 0.3215 0 0.3218
IED-4 0.6594 0.6620 | 0.4549 | 0.3218 0

Stochastic Neighbour Embedding (tSNE)[37]. As a dimen-
sionality reduction technique, tSNE is useful for visualising
high dimensional data. It is a supervised method that takes
as input a dataset X, and returns a 2-d or 3-d projection of
the data. Given a dataset X = [z, 29, ..,Z,], it implements
a function f(X) — Y where Y can be plotted in a 2-
d or 3-d space. Based on Stochastic Neighbour Embending,
tSNE calculates and converts the high dimensional Euclidean
distances between the data points into probabilities and is
defined as:

exp(— ||z — z[]*/207)

18
S xp(— |1 — 2 ]/207) (1%

Pjli =

where o; is the variance of the Gaussian centered at x;.
For the low-dimensional space Y, Gaussian neighbourhoods
with a fixed variance, in this case %, are used. Therefore,
for the low-dimensional y; and y; counterparts of the high-
dimensional datapoints x; and z;, a conditional probability
q;]; can be computed as follows:

exp(—llyi — y;l1*)
> ki €XP(—vi — yel[?)

qj)i = (19)

For our visualisation we have set the dimensionality of Y
to 2, since a 2-d plot is more straightforward to interpret.
The distributions in Eq. (18) and Eq. (19) are matched by
minimising a cost function of Kullback-Leibler divergence
over neighbours for each object.

Cy = ZZPN log L
(]

Jli
qj|i

(20)

For more information about tSNE, we refer the reader to [37].
The resulting visualisation from tSNE is presented in Fig. 3.

To show the closeness of IED-1, IED-2 and non-IED segments

the figure is divided as follows:

Fig 3(a) presents the visualisation for IED and non-IED

segments with a different marker for IED-1 segments which

overlap clearly with the class of non-IED segments.

Finally, Fig. 3(b) presents the feature space for all scored
classes; we can also observe the overlap between IED-2 and
non-IED segments.

Both the quantitative analysis based on Chebyshev distance
and the qualitative t-SNE analysis have shown the proximity
of IED-1 and IED-2 to the non-IED class. This can introduce
some bias in the binary classification of IEDs. As such, we
consider multiclass IEDs to minimise the interference of IED-
1 and IED-2 on the classification task.
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Fig. 3: Data feature space using tSNE.
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Fig. 4: Initial simulations with different number of convolu-
tional layers. The greatest increase in accuracy was between 1
and 2 layers, while the performance plateaued with 4 layers.

V. EXPERIMENTS
A. Training procedure

The leave-subject-out training methodology along with two-
fold validation was used for all the simulations. For each sim-
ulation, the data of a single subject was used for testing. The
remaining 17 subjects were divided into two folds, training and
validation sets. Using early stopping, competing algorithms
were trained until the validation error stopped improving. Once
the first fold was completed, the validation set was used for
training and vice versa. This procedure was repeated until all
the subjects were used as test data for both folds. The results
presented in Section V were averaged over the two folds for
each subject. Both the binary labelled (IED and non-IED)
and scored data were considered for all competing algorithms
using the above training procedure. The models were built
using the Theano framework [38] and run on a GTX 980ti.

B. Parameter selection

A number of simulations were conducted initially to obtain
the optimal neural network configuration. Fig. 4 shows the
performance of CNNs with different topologies. It is apparent
that using more than 4 convolutional layers was not beneficial
as the performance no longer improved. Therefore, the addi-
tional computational complexity entailed to more than 4 layers
cannot be justified; as a result a CNN with 4 convolutional
layers was selected. Additionally, pooling was omitted as
the networks trained with max-pooling had on average lower
accuracy than those trained without, possibly due to the loss
of information as the result of the change in the morphology
of the IED segments, see Fig. 2. The length of the first layer’s

filters was set to 32 samples which corresponds to 160ms;
this duration was adequate to capture the main part of an IED
waveform. For the following layers we gradually reduced the
length of the filters to capture finer details of IEDs [39].

The resulting optimal model consisted of 4 convolutional
layers followed by a fully connected hidden network and a
logistic regressor. We introduced a threshold layer at the end
of our model so that the discrete ordered score subclasses were
mapped to the binary non-IED and IED classes. The topology
of the proposed model is depicted in Fig. 1. Note that the
output of the final convolutional layer was unfolded from a
3-d tensor to a 1-d vector. For clarity, the training parameters
of all competing algorithms are summarised in Table IIT while
information on the dimensionality of our data structures are
presented in Table IV.

TABLE III: Training parameters for the considered methods.

Parameter/Method Wavelet [41] TD [35] TF [35] CNN
Convolution layers - - - 4

No. of filters - - - 40, 30, 20, 10
Filter size - - - 32,16, 8, 6
Sigmoidal layer size - - - 500
Network parameters - - - 1980
Classifier features 240 780 756 500
Total hidden layers 0 0 0 5

TABLE IV: Dimensions of variables.

Type Size

X 12 channels x 65 samples

F! 32 coefficients x 40 filters

M1 G' 12 channels x 34 samples x 40 maps
F2 16 coefficients x 30 filters

M2, G2 12 channels x 19 samples x 30 maps
F3 8 coefficients x 20 filters

M3, G3 12 channels x 12 samples x 20 maps
F4 6 coefficients x 10 filters

M*%, G4 12 channels x 7 samples x 10 maps
wo 500 neurons x 840 coefficients
hO ht! 500 features x 1 sample

wi 5 classes x 500 neurons

£ 5 classes x 1 probability

C. Dataset balancing

Initial experimentation revealed that due to the unbalanced
dataset, classifiers trained with the scored data became biased
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towards non-IED segments as they represented the majority
of the available data. In an effort to balance the dataset, we
employed undersampling for the non-IED class using random
sampling, this method is known to be the most effective
approach for bioinformatic data [40]. Reducing the number of
non-IED waveforms should not deteriorate the classification
rate on the IED segments. The same subsets of undersampled
non-IED segments were used by the competing algorithms to
ensure objectivity of the presented results.

VI. DISCUSSION

First, it is instructive to observe the classification accuracy
for the CNN trained with the scored data but without the
threshold layer, as presented in Fig. 5. It is clear that IED-
1 is the most contested class as it represents a transition state
between IED and non-IED segments; this is consistent with
our hypothesis, see Section IV for more details. An index of
the methods considered in this section is available in Table
V. The achieved accuracy for each subject and method is
presented in Table VI

TABLE V: Model Notations.

Notation | Description
Wavelet | A logistic regression model trained with wavelet data
and binary labels.
TD A logistic regression model trained with time-domain data.
TFE A logistic regression model trained with handcrafted time-
frequency features.
CNN A convolutional neural network trained with time-domain
data.
Bin A model trained with binary labelled data.
Multi A model trained with discrete ordered score data.

Remark 1: It is clear from Table VI, that the CNN Multi
model trained using our approach has, on average, outper-
formed all other methods. For rigour, a statistical analysis for
the performance of each method is also provided in Table VII.
Remark 2: Models trained with binary labels were less likely
to misclassify a segment as a false positive IED, whereas
models trained with discrete ordered score labels were superior
in terms of minimising false negatives, see Table VII.
Remark 3: The wavelet approach produced good results for
a minority of the subjects, i.e. S8 and S17, but had the lowest
overall accuracy. In terms of the competing algorithms, the
TF Bin model achieved the best performance, but still did not
outperform the CNN models.

Remark 4: The CNN Multi model seems to hold a balance
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Fig. 6: ROC curves for the different methods.

by retaining a relatively small number of TP and FP classifica-
tions. The Receiver Operating Characteristic (ROC) analysis
presented in Fig. 6 also supports this.

Remark 5: Observing the ROC curve leads to the conclusion
that models trained with the binary labels leaned towards the
True Positive Rate (TPR) while models trained with discrete
ordered scores leaned towards the False Positive Rate (FPR).
The deep CNN Multi model provided the best balance between
the two and greatest area under the curve (0.900).

The analysis showed that certain types of IED presented
sharp waves which were closer to non-IED segments than
broad IED spikes over 3 channels, therefore, they should not
share the same class as IED segments of greater amplitude
in terms of training. To allow the deep model to benefit
from this insight, we have replaced binary labels with ordered
ordinal score labels. The network learns the IEDs of different
scales and amplitudes as individual IED subclasses. Finally, a
threshold layer was utilised to convert the predicted subclasses
to binary IED and non-IED. Using this methodology, we have
observed a 3% increase in accuracy from our CNN, when
compared to a model trained with the binary labels. Con-
volved filters generated at the deepest layers showed prominent
features, beneficial for the classification of IED segments, as
verified by our expert clinicians. Specifically, prominent IED
segments for Subjects 2 and 11 were compared with the learnt
filters at different layers in Fig. 7 and Fig. 8 respectively.
The differences in IEDs are evident and may express different
neural generation mechanisms [42], [43]. Traditionally, spikes
and sharp waves are assigned equal etiologic and clinical
significance in the evaluation of a subject with epilepsy [44].
However, it is well known that the morphology of an IED
can provide clinical insights to the subject’s condition [45]-
[47]. Consistent changes in amplitude, duration and sharpness
have been described in different sleep stages [48], during
pharmacological treatment [49], [50] and, furthermore, after
achievement of seizure control, revealing significant decrease
in spike amplitude, duration and sharpness [51]. Therefore, the
ability to discriminate IEDs based on their morphology has an
additional value in the evaluation of treatment efficacity.

VII. COMPUTATIONAL COMPLEXITY

It is instructive to provide a comparative analysis on the
computational complexity of the competing methodologies.
As such, we have considered the three main stages of each



TABLE VI: Classification accuracy per subject for different approaches.

Subyj. [ Wavelet [ TD Bin [ TD Multi [ TF Bin [ TF Multi [ CNN Bin [ CNN Multi ]

1 0.6798 0.7558 0.8048 0.9137 0.9137 0.9371 0.9510
2 0.8200 0.8800 0.8500 0.8850 0.8950 0.8700 0.9600
3 0.7431 0.7674 0.7812 0.9167 0.9375 0.9375 0.9653
4 0.7970 0.7879 0.7758 0.8788 0.8470 0.8424 0.9076
5 0.7278 0.7358 0.7358 0.8339 0.8196 0.8639 0.8940
6 0.6441 0.7505 0.7903 0.8957 0.8798 0.8962 0.9237
7 0.6608 0.8028 0.7902 0.8580 0.7977 0.8266 0.8832
8 0.8486 0.7390 0.7256 0.8904 0.8604 0.9290 0.8856
9 0.6862 0.7273 0.7603 0.8702 0.8350 0.8651 0.9098
10 0.7679 0.8013 0.7667 0.9129 0.9498 0.9040 0.9576
11 0.7382 0.7765 0.7798 0.8818 0.8113 0.8945 0.8750
12 0.7833 0.7977 0.7972 0.8547 0.7985 0.8762 0.8762
13 0.6628 0.6674 0.7099 0.8477 0.7796 0.8613 0.8589
14 0.5878 0.6945 0.6945 0.8549 0.8068 0.8429 0.8946
15 0.5058 0.5038 0.4942 0.4837 0.4971 0.4827 0.4990
16 0.7624 0.7954 0.7987 0.8886 0.8630 0.8705 0.9134
17 0.8816 0.7632 0.7412 0.8772 0.9211 0.8465 0.9364
18 0.7203 0.8347 0.7903 0.8771 0.8347 0.9195 0.9301
[Mean | 0.7232 | 0.7545 | 0.7548 | 0.8567 | 0.8360 | 08592 | 0.8901 |
TABLE VII: Statistical results for different approaches.

[ Method [ TP ] FP | FN [ TN [ Precision [ Sensitivity | f-measure | Specificity [ AUC |
‘Wavelet 9778 3428 | 4196 9034 0.74 0.70 0.72 0.72 0.733
TD Bin 11311 1927 1919 11279 0.85 0.85 0.85 0.85 0.755
TD Multi 12714 | 4313 516 8893 0.75 0.96 0.84 0.67 0.751
TF Bin 10417 | 3740 | 2813 9466 0.74 0.78 0.76 0.72 0.857
TF Multi 12204 | 5766 1026 7440 0.68 0.92 0.78 0.56 0.825
CNN Bin 11874 1729 1356 11477 0.87 0.90 0.88 0.87 0.887
CNN Multi 12463 | 2472 767 10734 0.83 0.94 0.88 0.81 0.900
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(a) The morphology of a prominent IED segment.

(b) Learnt filter coefficients for each convolutional layer.

Fig. 7: Similarity between an IED segment and learnt filters for Subject S2.

algorithm, i.e. feature generation, feature combination, and
classification. The computational complexities of these three
stages are shown in Table VIII. As expected, TD has the lowest
computational cost, whereas our proposed CNN model has the
highest. Moreover, the theoretical time complexity is approx-
imately in agreement with the experimental running time. For
example, TD is approximately 40 times less expensive than the
CNN (423/10), while the theoretical time complexity analysis
indicates that the TD method is 50 times less complex as
shown below:

This is not surprising, as the theoretical Big Oh notation re-
flects the upper limit in terms of time complexity. The wavelet
method provides a middle ground in terms of computational
complexity, but is the lowest in terms of accuracy. The higher
computational cost of our proposed CNN is compensated
by a 14% increase in accuracy. Moreover, our approach
circumvents the need to handcraft features in EEG data, a time-
consuming and difficult task for clinical experts [52], [53].

VIII. CONCLUSIONS

Indeed, deep learning models benefit from moderately dif-
ferent classes, and IED detection is no exception. Using
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Fig. 8: Similarity between an IED segment and learnt filters for Subject S11.

TABLE VIII: Computational Complexity Analysis.

[ Method | Feature Generation | Feature Combination | Classification [ Big Oh | Running Time (m) | Accuracy |
Wavelet TZNJ N/A HNC O(TZNJ) 33 0.7232
TD Bin N/A N/A TJNC O(TJNC) 10 0.7545
TD Multi N/A N/A TJNC O(TJNC) 11 0.7548
TF Bin (TlogT)JN N/A HNC O(HNC) 11 0.8567
TF Multi (TlogT)JN N/A HNC O(HNC) 13 0.8360
CNNBin | (T—t+1)JN® (V + H)N HNC O(TIN®) 423 0.8592
CNN Multi | (T — ¢+ 1)JN® (V + H)N HNC O(TIN®) 436 0.8901

Average computational complexity for each method per subject. 7" is the number of samples per trial, J is the number of channels, IV is the number
of trials, H is the number of neurons in the hidden layer, V' is the number of vectorised features, C' is the number of classes and ® is the number

of filters.

linearly ordered score labels we trained a deep convolutional
network and found that our model outperformed a deep model
trained with binary labels. This approach involved training the
model for different subclasses of IEDs and then converting the
predictions to binary IED and non-IED classes. We have also
shown how certain learnt filters converge towards prominent
IED segments found in the subject group. Our contribution
is three-fold, first we demonstrated that deep learning can be
used for automatic feature generation and match the accuracy
of models trained using features handcrafted by experts. Sec-
ond, we established that deep learning can assimilate a richer
collection of information within complex EEG data, i.e. linear
ordered score classes. Finally, the automatic discrimination
of IED morphology in convolved filters can be beneficial
for evaluating treatment effectivity of epileptic subjects, as
discussed in Section VI and confirmed by expert clinicians.
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