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Abstract

Widely linear estimation plays an important role in quaternion signal processing, as it caters for both proper and improper

quaternion signals. However, widely linear algorithms are computationally expensive owing to the use of augmented

variables and statistics. To reduce the computation cost while maintaining the performance level, we propose a four-

channel estimation framework as an efficient alternative to quaternion widely linear estimation. This is achieved by using

four linear models to estimate the four components of quaternion signals. We also show that any of the four channels is

able to replace a strictly linear quaternion estimator when estimating strictly linear systems. The proposed method is

shown to reduce computational complexity and provide more flexible algorithms, while preserving the physical meaning

inherent in the quaternion domain. The proposed framework is next applied to quaternion minimum mean square error

estimation to yield the reduced-complexity versions of the quaternion least mean square (QLMS), quaternion recursive

least squares (QRLS), and quaternion nonlinear gradient decent (QNGD) algorithms. For the proposed QLMS algorithm,

an adaptive step-size strategy is also explored. The effectiveness of the so introduced estimation techniques is validated

by simulations on synthetic and real-world signals.

Keywords: Quaternion filter, mean square error, widely linear estimation, four-channel model, computational

complexity

1. Introduction

Recent advances in sensing technology have enabled ubiquitous recording from 3-D and 4-D data sources, such as

measurements from seismometers [1], ultrasonic anemometers [2], and inertial body sensors [3]. Traditionally, these

measurements have been considered as vectors in the R3 and R4 fields of reals, however, the vector algebra is not a division

algebra and is inadequate when modelling orientation and rotation [4]. Owing to their division algebra, quaternions have

inherent advantages in representing 3-D and 4-D data, and quaternion-valued algorithms are a generic extension of their

real- and complex-valued counterparts. Quaternions also naturally account for mutual information between multiple

data channels, provide a compact representation, and have proven to offer a physically meaningful interpretation to real-

world applications, such as in navigation, communications, and image processing [5, 6]. Recent resurgence in research on
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quaternion signal processing spans the areas of adaptive filtering [7], neural networks [8], independent component analysis

[9], and spectral estimation [10].

When it comes to adaptive filtering, estimation of a set of signals based on information obtained from measurements

of other signals, which is widely used in signal enhancement and system identification, has been recently extended from

the real and complex domains to the quaternion domain H [7]. Traditional strictly linear quaternion estimators utilise the

second-order statistics based on the standard covariance and are optimal only for estimating second-order circular (proper)

signals. Advances in quaternion statistics have established that in order to capture complete second-order statistics

of quaternion signals, widely linear estimators which use the complementary covariances, in addition to the standard

covariance, are needed [11, 12]. However, the widely linear approach requires four times the number of parameters to

update, inducing higher computational complexity. To reduce the computation cost, efficient algorithms casting the

computations from H to R have been proposed, for example, the reduced-complexity widely linear quaternion least mean

square (RC-WL-QLMS) algorithm employs a quaternion-valued weight vector and a real-valued input vector [13], while

the multi-channel LMS (MLMS) algorithm exploits the duality between R4 and H [14]. Despite computational efficiency,

these algorithms have no means of exploring the physical meaning inherent in H, as the input and weight vectors no longer

reside in H.

In order to obtain physically meaningful estimates of quaternion signals at low computation cost, we here extend

the recently proposed complex dual channel estimation [15] to a four-channel quaternion estimation framework, which

comprises four sub-estimators for the four components of the quaternion. In this way, four degrees of freedom are provided

to capture complete second-order statistical information; the so introduced estimation model and weight update rule reduce

the computational cost compared with the conventional widely linear estimation, while achieving equivalent estimation

performance. In this way, the physical meaning inherent to the quaternion domain is also preserved, together with

enhanced flexibility as the convergence of the four sub-estimators can be controlled individually. When estimating strictly

linear quaternion systems, the proposed four-channel estimation simplifies to a single-channel problem, which can also

be used as an efficient alternative to conventional strictly linear estimation. For rigour, we derive a class of four-channel

quaternion minimum mean square error (MMSE) estimation algorithms, including the four-channel quaternion least mean

square (FC-QLMS), the four-channel quaternion recursive least squares (FC-QRLS), and the four-channel quaternion

nonlinear gradient decent (FC-QNGD). The transient and steady-state behaviour and computational complexity of the FC-

QLMS algorithm are established, and an adaptive step-size strategy based on the Barzilai-Borwein method is introduced.

Simulations on synthetic and real-world multi-dimensional signals support the analysis.

The rest of this paper is organised as follows. Section 2 provides a background of quaternions and quaternion-valued

signal estimation. The novel four-channel quaternion estimation framework is introduced in Section 3. Section 4 applies

the four-channel estimation framework to quaternion MMSE estimation and introduces the corresponding algorithms.

Section 5 analyses the performance of the FC-QLMS algorithm and introduces an adaptive step-size strategy. Simulation

results are given in Section 6, and Section 7 concludes the paper. Throughout the paper, we use boldface capital letters
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to denote matrices, A, boldface lowercase letters for vectors, a, and italic letters for scalar quantities, a. Superscripts (·)T

, (·)∗ and (·)H denote the transpose, conjugate, and Hermitian (i.e. transpose and conjugate), respectively, I the identity

matrix, and E {·} the statistical expectation operator.

2. Background

2.1. Quaternion algebra

The quaternion domain H is a four-dimensional vector space over the real field R, spanned by the basis {1, ı, , κ}.

A random quaternion vector, x ∈ HL×1, comprises a real part R [·] and an imaginary part = [·] which consists of three

imaginary components, ı=ı, =, κ=κ, so that

x = < [x] + = [x] = < [x] + ı=ı [x] + = [x] + κ=κ [x]

where < [x] ,=ı [x] ,= [x] ,=κ [x] ∈ RL×1, and ı, , κ are the roots of -1 which satisfy

ı2 = 2 = κ2 = ıκ = −1

ı = −ı = κ κ = −κ = ı κı = −ıκ = 

The conjugate of a random quaternion vector x is defined as

x∗ = < [x]−= [x] = < [x]− ı=ı [x]− = [x]− κ=κ [x]

The modulus of a quaternion variable x ∈ H is defined as

|x| =
√
<2 [x] + =2

ı [x] + =2
 [x] + =2

κ [x]

and the product of two quaternions x, y ∈ H by

xy = <[x]<[y]−=[x] · =[y] + <[x]=[y] + <[y]=[x] + =[x]×=[y]

where the symbol ’·’ denotes the scalar product and ’×’ the vector product. The presence of the vector product causes

the non-commutativity of the quaternion product, that is, xy 6= yx. The quaternion product has the following properties

[16]:

|xy| = |x||y|, x−1 =
x∗

|x|2
, (xy)

−1
= y−1x−1, (xy)

∗
= y∗x∗ (1)

A quaternion variable x is called a unit quaternion if it satisfies |x| = 1. A quaternion variable x is called a pure quaternion

if it satisfies <[x] = 0.
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Another important notion is that of the quaternion involution [17], which defines a self-inverse mapping analogous to

the complex conjugate. The general involution of the quaternion vector x is defined as xη = −ηxη, and represents the

rotation of the vector part of x by π about a unit pure quaternion η. The involutions obey (xη)
η

= x, and the conjugate

involutions are defined as xη∗ = (xη)
∗

= (x∗)
η. The special cases of involutions about the ı,  and κ imaginary axes are

given by

xı = −ıxı = < [x] + ı=ı [x]− = [x]− κ=κ [x]

x = −x = < [x]− ı=ı [x] + = [x]− κ=κ [x]

xκ = −κxκ = < [x]− ı=ı [x]− = [x] + κ=κ [x]

(2)

Through the above quaternion involutions, the four real-valued components of x can be expressed as

< [x] = 1
4 (x + xı + x + xκ)

=ı [x] = 1
4ı (x + xı − x − xκ)

= [x] = 1
4 (x− xı + x − xκ)

=κ [x] = 1
4κ (x− xı − x + xκ)

(3)

2.2. Second-order statistics

The set of quaternion involutions in (2) and the original quaternion vector x form the most frequently used basis

for augmented quaternion statistics, which is at the core of the recently proposed widely linear processing methodology

[18, 19]. Benefiting from this involution basis, complete second-order quaternion statistics is described by the ı-, -, and

κ-complementary covariance matrices, together with the standard Hermitian covariance matrix, Cx = E{xxH}. The

complementary covariance matrices can be represented in a unified form as Cxxη = E{xxηH}, η ∈ {ı, , κ}, and every

η-complementary covariance matrix is η−Hermitian, that is, Cxxη = (Cxxη )ηH . The knowledge of both the covariance

matrix and the complementary covariance matrices is necessary to ensure the utilisation of complete second-order statistical

information in H.

The notion of non-circularity (improperness) is unique to division algebras. For quaternion data, non-circularity

refers to probability distributions which are not rotation-invariant, while improperness is characterised by the degree of

correlation and/or power imbalance between the real and imaginary components. The additional degrees of freedom in

the quaternion domain allow for types of properness: Rη-properness, Cη-properness, and H-properness [18, 19], defined

below.

Definition 1 (H-properness). A random quaternion vector x is H-proper if it is uncorrelated with the involutions xı, x

and xκ, so that Cxxı = Cxx = Cxxκ = 0.

Definition 2 (Rη-properness). A random quaternion vector x is Rη-proper with respect to an imaginary unit η ∈ {ı, , κ}

if it is uncorrelated only with the involutions xη, so that Cxxη = 0.
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Definition 3 (Cη-properness). A random quaternion vector x is Cη-improper with respect to an imaginary unit η ∈

{ı, , κ} if it is correlated with only one of the involutions, xη, so that all complementary covariances except for Cxxη

vanish.

2.3. Quaternion estimation

A fundamental problem in quaternion signal processing is to obtain the estimate, ŷ, of a desired signal, y ∈ H, from

a set of measurements, x ∈ HL×1, which carry information about y. The estimation model, ŷ = f (x), incorporates

knowledge about the relationship between y and x, is crucial for estimation performance. Traditionally, the strictly linear

model has been used for this purpose and is given by [7]

ŷ = ĥHx (4)

where ĥ is the weight vector. This model achieves optimal estimation for proper quaternion signals but is suboptimal

for general improper quaternion signals. To address this issue, the incorporation of the involution basis for x yields the

widely linear model [11]

ŷ = ĥHx + ĝHxı + ûHx + v̂Hxκ = ŵaHxa (5)

where ĥ, ĝ, û, v̂ ∈ HL×1 are the estimated weight vectors which can be compactly represented in the augmented form as

ŵa =
[
ĥT , ĝT , ûT , v̂T

]T
, and xa =

[
xT ,xıT ,xT ,xκT

]T is the corresponding augmented input vector. The widely linear

estimation has proven to outperform the strictly linear estimation for general quaternion signals [20].

3. Four-channel quaternion estimation model

Consider a quaternion-valued desired signal, y, given by a widely linear system corrupted by independent noise, υ, in

the form

y = hHx + gHxı + uHx + vHxκ + υ (6)

where h,g,u,v ∈ HL×1 are the true weight vectors. According to the relationship (3), the four real-valued components

of y can be represented by four linear models, as

< [y] = <
[
(h + gı + u + vκ)

H
x + υ

]
=ı [y] = =ı

[
(h + gı − u − vκ)

H
x + υ

]
= [y] = =

[
(h− gı + u − vκ)

H
x + υ

]
=κ [y] = =κ

[
(h− gı − u + vκ)

H
x + υ

]
(7)

Therefore, the desired signal (6) can be expressed as

y = <
[
wH

1 x
]

+ ı=ı
[
wH
ı x
]

+ =
[
wH
 x
]

+ κ=κ
[
wH
κ x
]

+ υ (8)
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where w1,wı,w,wκ are quaternion-valued weight vectors. This motivates us to separately estimate the four real-valued

components, < [ŷ1], =ı [ŷı], = [ŷ], =κ [ŷκ], of y, in the form

ŷ1 = ŵH
1 x, ŷı = ŵH

ı x, ŷ = ŵH
 x, ŷκ = ŵH

κ x (9)

which are respectively referred to as channel 1, ı,  and κ. Then these components can be combined into a quaternion-valued

estimate

ŷ = < [ŷ1] + ı=ı [ŷı] + = [ŷ] + κ=κ [ŷκ] (10)

for which the estimation error is given by

e = y − ŷ = e1 + ıeı + e + κeκ

where

e1 = < [y]−< [ŷ1] , eı = =ı [y]−=ı [ŷı] , e = = [y]−= [ŷ] , eκ = =κ [y]−=κ [ŷκ]

are the respective estimation errors in the four channels (components). We refer to the equations in (9) and (10) as the

four-channel linear estimation model, which avoids the summation of the four quaternion quantities in the widely linear

estimation model (5) and consequently reduces the computation cost.

4. Four-channel quaternion MMSE estimation

The MMSE estimation is a widely used estimation technique which aims to minimise the mean square error (MSE),

E
{
|e|2
}
. On the basis of the four-channel linear model in (9)(10), we shall now obtain the optimal estimate by analysing

individual channels. For example, let ŵ1,o denote the optimal estimate of the system weight w1. Then the optimal

estimate of < [y] is given by

<
[
ŵH

1,ox
]

=
1

4

[
ŵH

1,ox + ŵıH
1,ox

ı + ŵH
1,ox

 + ŵκH
1,o xκ

]
which is the projection of < [y] onto a Hilbert subspace spanned by the basis in (2), and obeys the orthogonality principle

e1 ⊥ x e1 ⊥ xı e1 ⊥ x e1 ⊥ xκ

where the symbol ’⊥’ designates that the error e1 is orthogonal to x, xı, x and xκ. This orthogonality condition is

equivalent to

E {xe∗1} = E {xıe∗1} = E {xe∗1} = E {xκe∗1} = 0 (11)
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Substituting e1 = <
[
(w1 − ŵ1,o)

H
x
]

+ < [υ] into (11) yields

E
{
xxaH

}


ŵ1,o

ŵı
1,o

ŵ
1,o

ŵκ
1,o


= E

{
xxaH

}


w1

wı
1

w
1

wκ
1


which implies ŵ1,o = w1. Similarly, the remaining three optimal estimated weights can be derived as ŵı,o = wı, ŵ,o = w,

ŵκ,o = wκ.

For w1 = wı = w = wκ, the desired signal (8) is expressed as a strictly linear model y = wH
1 x + υ, and the optimal

estimated weight vectors of the four-channel estimator are ŵ1,o = ŵı,o = ŵ,o = ŵκ,o = w1. Therefore, we can use a

single sub-channel to estimate the weight vector w1, and hence obtain

ŷ = <
[
ŵH

1 x
]

+ ı=ı
[
ŵH

1 x
]

+ =
[
ŵH

1 x
]

+ κ=κ
[
ŵH

1 x
]

= ŵH
1 x

This reduced form of the four-channel estimation is referred to as single-channel estimation.

We next introduce three adaptive algorithms for quaternion MMSE estimation within the proposed four-channel

framework.

4.1. FC-QLMS algorithm

Based on the four-channel linear estimation model in (9)(10), a FC-QLMS algorithm is next derived for quaternion

estimation. As shown in Figure 1, the desired signal at the n-th iteration, yn, is estimated as

ŷn = <
[
ŵH

1,nxn
]

+ ı=ı
[
ŵH
ı,nxn

]
+ =

[
ŵH
,nxn

]
+ κ=κ

[
ŵH
κ,nxn

]
and the weights are updated to minimise the cost function

JLMS
n = |yn − ŷn|2 =

(
e2

1,n + e2
ı,n + e2

,n + e2
κ,n

)
where

e1,n = < [yn]−<
[
ŵH

1,nxn
]

eı,n = =ı [yn]−=ı
[
ŵH
ı,nxn

]
e,n = = [yn]−=

[
ŵH
,nxn

]
eκ,n = =κ [yn]−=κ

[
ŵH
κ,nxn

]
7



As the maximum change of JLMS
n occurs when the weight update is collinear with the conjugate derivative of JLMS

n [21],

the weight at the (n+ 1)-th iteration can be derived from the n-th iteration as

ŵη,n+1 = ŵη,n − µfc∇ŵ∗η
JLMS
n (12)

where η ∈ {1, ı, , κ}, and µfc is a positive step-size. The derivative in (12) is calculated based on the generalised HR

calculus [22] as

∇ŵ∗η
JLMS
n = −1

2
eη,nxnη

−1 (13)

Therefore, the component-wise weight updates are given by

ŵη,n+1 = ŵη,n + µfceη,nxnη
−1 (14)

where the constant 1
2 in (13) is absorbed into the step-size µfc.

If the desired signal obeys the strictly linear model, the four-channel estimation can be replaced with single-channel

estimation, so that the FC-QLMS simplifies to a single-channel QLMS (SC-QLMS) algorithm. The SC-QLMS using

channel 1 is therefore given by

ŷn = ŵH
1,nxn

ŵ1,n+1 = ŵ1,n + µfc (< [yn]−< [ŷn]) xn

(15)

The proposed model is also scalable, for example, when the quaternion input signal reduces to a complex one, that is,

x = < [x] + ı=ı [x], the FC-QLMS algorithm reduces to a complex algorithm, as

ŷn = <
[
ŵH

1,nxn
]

+ ı=ı
[
ŵH
ı,nxn

]
ŵ1,n+1 = ŵ1,n + µfc<

[
y − ŵH

1,nxn
]
xn

ŵı,n+1 = ŵı,n − µfc=ı
[
y − ŵH

ı,nxn
]
xnı

which is equivalent to the dual channel complex LMS algorithm in [15].

In addition to the reduction of computational cost owing to the four-channel estimation model, the FC-QLMS has a

more efficient weight update rule than existing QLMS algorithms [22, 23]. Another advantage of FC-QLMS is that the

step-sizes of the four channels can be different, and thus the convergence rate of each channel can be controlled individually,

which provides the algorithm with more flexibility in practical applications.

4.2. FC-QRLS algorithm

The class of quaternion recursive least squares (QRLS) algorithms include the strictly linear QRLS (SL-QRLS) algo-

rithm given by [24]
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epn = yn − ĥHn−1xn

pn = Pn−1xn
(
ρ+ xHn Pn−1xn

)−1

ĥn = ĥn−1 + pne
p∗
n

Pn = ρ−1
[
Pn−1 − pnxHn Pn−1

]
and the widely linear QRLS (WL-QRLS) algorithm given by [24]

epn = yn − ŵaH
n−1x

a
n

pan = Pa
n−1x

a
n

(
ρ+ xaHn Pn−1x

a
n

)−1

ŵa
n = ŵa

n−1 + pane
p∗
n (16)

Pa
n = ρ−1

[
Pa
n−1 − panxaHn Pa

n−1

]
where Pn ∈ HL×L and Pa

n ∈ H4L×4L are the estimated inverses of the covariance and augmented covariance matrices.

We next introduce an FC-QRLS version of the WL-QRLS algorithm, which aims to minimise the cost function

JRLS
n =

n∑
m=0

ρn−m |em|2

em = ym −<
[
ŵH

1,nxm
]
− ı=ı

[
ŵH
ı,nxm

]
− =

[
ŵH
ı,nxm

]
− κ=κ

[
ŵH
κ,nxm

]
where the weight update is derived from the WL-QRLS weight in (16) according to the isomorphism in (7), to yield

ŵη,n = ŵη,n−1 + 4Ψ [ep∗n ] rnη η ∈ {1, ı, , κ} (17)

In (17), rn ∈ HL×1 contains the first L entries of pan, Ψ [·] = < [·] when η = 1, Ψ [·] = =ı [·] when η = ı, Ψ [·] = = [·] when

η = , Ψ [·] = =κ [·] when η = κ. The weight calculation in (17) is more efficient than the weight update of WL-QRLS in

(16). If the desired signal obeys the strictly linear model, a single sub-channel is sufficient for optimal estimation, leading

to a more efficient single-channel QRLS (SC-QRLS) algorithm.

4.3. FC-QNGD algorithm

The class of quaternion nonlinear gradient decent (QNGD) algorithms include the strictly linear QNGD (SL-QNGD)

algorithm, given by [23, 25]

qn = ĥHn xn

ŷn = Φ (qn)

ĥn+1 = ĥn + µ
∑

ν∈{1,ı,,κ}
xn

∂Φν(qn)
∂qn

(yn − ŷn)
∗
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and the widely linear QNGD (WL-QNGD) algorithm, given by [25]

qn = ŵaH
n xan

ŷn = Φ (qn)

ŵa
n+1 = ŵa

n + µ
∑

ν∈{1,ı,,κ}
xan

∂Φν(qn)
∂qn

(yn − ŷn)
∗

where Φ (qn) is a nonlinear function of qn, µ is a positive step-size.

The FC-QNGD algorithm can also be derived on the basis of the four-channel estimation model. Consider the min-

imisation of the cost function

JNGD
n = |en|2 = |yn − Φ (qn)|2

where

qn = <
[
ŵH

1,nxn
]

+ ı=ı
[
ŵH
ı,nxn

]
+ =

[
ŵH
,nxn

]
+ κ=κ

[
ŵH
κ,nxn

]
The maximum change of JNGD

n occurs when the weight update is collinear with the conjugate derivative of JNGD
n [21], so

the weights can be updated as

ŵη,n+1 = ŵη,n − µfc∇ŵ∗η
JNGD
n

where η ∈ {1, ı, , κ} and the derivative is calculated based on the generalised HR calculus [22] as

∇ŵ∗η
JNGD
n

=
∑

ν∈{1,ı,,κ}

∂|en|2
∂eνn

∂eνn
∂ŵ∗η,n

= − 1
8

∑
ν∈{1,ı,,κ}

eν∗n
∂Φν(qn)
∂Ψ[qn] xnη

−1

(18)

Therefore, the weight update is given by

ŵη,n+1 = ŵη,n + µfc
∑

ν∈{1,ı,,κ}
eν∗n

∂Φν(qn)
∂Ψ[qn] xnη

−1 (19)

where the constant 1
8 in (18) is absorbed into the step-size µfc.

If Φ (q) is a split quaternion nonlinear function Φ (q) = Φ1 (q)+ ıΦı (q)+ Φ (q)+κΦκ (q), where Φ1 (q) is a real-valued

nonlinear function applied to < [q], Φı (q) to =ı [q], Φ (q) to = [q], and Φκ (q) to =κ [q], then the cost function can be

written as JNGD
n =

∑
η∈{1,ı,,κ}

e2
η,n, where eη,n = Ψ [yn] − Φη (qn) are split errors. The conjugate derivative of JNGD

n is

derived as

∇ŵ∗η
JNGD
n =

∂JNGD
n

∂eη,n

∂eη,n
∂ŵ∗η,n

= −1

2
eη,n

∂Φη (qn)

∂Ψ [qn]
xnη

−1 (20)
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and the weights are updated as

ŵη,n+1 = ŵη,n − µfc∇ŵ∗η
JNGD
n = ŵη,n + µfceη,n

∂Φη (qn)

∂Ψ [qn]
xnη

−1 (21)

where the constant 1
2 in (20) is absorbed into the step-size µfc.

The FC-QNGD weight update is obviously less complicated than the WL-QNGD weight update. When the desired

signal obeys the strictly linear model, a single sub-channel is sufficient for optimal estimation, yielding a more efficient

single-channel QNGD (SC-QNGD) algorithm.

5. Performance of FC-QLMS

The performance of the four-channel estimation with the FC-QLMS algorithm is next compared with existing QLMS

algorithms.

5.1. Equivalence of the FC-QLMS and WL-QLMS

Recently proposed QLMS algorithms include the strictly linear quaternion least mean square (SL-QLMS) algorithm

[23]

ŷn = ĥHn xn

ĥn+1 = ĥn + µxn (yn − ŷn)
∗

(22)

and the widely linear quaternion least mean square (WL-QLMS) algorithm [22]

ŷn = ŵaH
n xan

ŵa
n+1 = ŵa

n + µxan (yn − ŷn)
∗

(23)

where µ is a positive step-size.

Let Ψ [·] ∈ {< [·] ,=ı [·] ,= [·] ,=κ [·]}, then the four components of the FC-QLMS estimate have a unified form given

by

Ψ [ŷn]

= Ψ
[
ŵH
η,kxn

]
= Ψ

[(
ŵH
η,0 + µfceη,0ηx

H
0 + · · ·+ µfceη,n−1ηx

H
n−1

)
xn
]

= Ψ
[
wH
η,0xn

]
+ µfc

(
<
[
xH0 xn

]
eη,0 + · · ·+ <

[
xHn−1xn

]
eη,n−1

)
where η = 1 when Ψ [·] = < [·], η = ı when Ψ [·] = =ı [·], η =  when Ψ [·] = = [·], η = κ when Ψ [·] = =κ [·]. Similarly, the

11



components of the WL-QLMS estimate are represented as

Ψ [ŷn] = Ψ
[
ĥHn xn

]
+ Ψ

[
ĝHn xın

]
+ Ψ

[
ûHn xn

]
+ Ψ

[
v̂Hn xκn

]
= Ψ

[(
ĥH0 + µe0x

H
0 + · · ·+ µen−1x

H
n−1

)
xn

]
+ Ψ

[(
ĝH0 + µe0x

ıH
0 + · · ·+ µen−1x

ıH
n−1

)
xın
]

+Ψ
[(

ûH0 + µe0x
H
0 + · · ·+ µen−1x

H
n−1

)
xn

]
+ Ψ

[(
v̂H0 + µe0x

κH
0 + · · ·+ µen−1x

κH
n−1

)
xκn
]

= Ψ
[
ĥH0 xn + ĝH0 xın + ûH0 xn + v̂H0 xκn

]
+ 4µ

(
<
[
xH0 xn

]
Ψ [e0] + · · ·+ <

[
xHn−1xn

]
Ψ [en−1]

)
Remark 1. From the above two formulas, the estimates of FC-QLMS and WL-QLMS are identical if µfc = 4µ, and the

initial values of estimated weights satisfy ĥ0 = ĝ0 = û0 = v̂0, ŵ1,0 = 4<
[
ĥ0

]
, ŵı,0 = 4ı=ı

[
ĥ0

]
, ŵ,0 = 4=

[
ĥ0

]
, ŵκ,0 =

4κ=κ
[
ĥ0

]
. This indicates that the WL-QLMS can be replaced with the FC-QLMS without performance degradation.

5.2. Transient performance

For the FC-QLMS algorithm, the weight error vector in channel η at the n-th iteration is defined as w̃η,n , wη− ŵη,n,

so that the estimation error in channel η becomes eη,n = Ψ
[
w̃H
η,nxn + υn

]
, and the weight error vector at the next iteration

can be expressed as

w̃η,n+1 = w̃η,n − µfceη,nxnη
−1 (24)

which yields

w̃1,n+1 = w̃1,n − 1
4µfcxn

(
xHn w̃1,n + xıHn w̃ı

1,n + xHn w̃
1,n + xκHn w̃κ

1,n + < [υn]
)

w̃ı,n+1 = w̃ı,n − 1
4µfcxn

(
xHn w̃ı,n + xıHn w̃ı

ı,n − xHn w̃
ı,n − xκHn w̃κ

ı,n + =ı [υn]
)

w̃,n+1 = w̃,n − 1
4µfcxn

(
xHn w̃,n − xıHn w̃ı

,n + xHn w̃
,n − xκHn w̃κ

,n + = [υn]
)

w̃κ,n+1 = w̃κ,n − 1
4µfcxn

(
xHn w̃κ,n − xıHn w̃ı

κ,n − xHn w̃
κ,n + xκHn w̃κ

κ,n + =κ [υn]
)

Upon applying the statistical expectation operator, we obtain

E {w̃1,n+1} =
(
I− µfc

4
Cxx

)
E {w̃1,n} −

µfc

4

(
CxxıE

{
w̃ı

1,n

}
+ CxxE

{
w̃

1,n

}
+ CxxκE

{
w̃κ

1,n

})
E {w̃ı,n+1} =

(
I− µfc

4
Cxx

)
E {w̃ı,n} −

µfc

4

(
CxxıE

{
w̃ı
ı,n

}
−CxxE

{
w̃
ı,n

}
−CxxκE

{
w̃κ
ı,n

})
(25)

E {w̃,n+1} =
(
I− µfc

4
Cxx

)
E {w̃,n} −

µfc

4

(
−CxxıE

{
w̃ı
,n

}
+ CxxE

{
w̃
,n

}
−CxxκE

{
w̃κ
,n

})
E {w̃κ,n+1} =

(
I− µfc

4
Cxx

)
E {w̃κ,n} −

µfc

4

(
−CxxıE

{
w̃ı
κ,n

}
−CxxE

{
w̃
κ,n

}
+ CxxκE

{
w̃κ
κ,n

})
the solution to which is dependent on second-order statistics of x. It is useful to discuss the following three special cases

prior to considering the general case.
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5.2.1. H-proper signal

If x is H-proper, the three complementary covariances vanish, and the four weight error vectors obey the same recursion

form

E {w̃η,n+1} =

(
I− 1

4
µfcCxx

)
E {w̃η,n} (26)

The equivalence between the evolution of the four weight vectors is a consequence of the four components of x being uncor-

related and with the same variance. The weight error vectors converge if all the eigenvalues of the matrix
(
I− 1

4µfcCxx

)
are within (−1, 1), that is,

0 < µfc <
8

λmax

where λmax is the maximum eigenvalue of Cxx.

According to the expression for the SL-QLMS algorithm in (22), the weight error vector recursion of SL-QLMS is given

by

E
{

h̃n+1

}
= (I− µCxx)E

{
h̃n

}
(27)

Remark 2. For an H-proper quaternion signal x, the ratio between the convergence rate of the FC-QLMS and the SL-

QLMS is µfc
4µ . If µfc = 4µ, these two algorithms exhibit identical weight error evolution, which is illustrated in Figure 2

showing the averaged weight trajectories along the error surfaces while estimating a moving average (MA) process.

5.2.2. Cη-improper signal

For a Cη-improper quaternion signal x, we shall use η′ and η′′ to denote any other two imaginary units among ı, , κ.

Then the weight error vector recursions in (25) reduce to

E {w̃1,n+1} =
(
I− µfc

4 Cxx

)
E {w̃1,n} − µfc

4 CxxηE
{
w̃η

1,n

}
E {w̃η,n+1} =

(
I− µfc

4 Cxx

)
E {w̃η,n} − µfc

4 CxxηE
{
w̃η
η,n

}
E {w̃η′,n+1} =

(
I− µfc

4 Cxx

)
E {w̃η′,n}+ µfc

4 CxxηE
{

w̃η
η′,n

}
E {w̃η′′,n+1} =

(
I− µfc

4 Cxx

)
E {w̃η′′,n}+ µfc

4 CxxηE
{

w̃η
η′′,n

}
Observe that the evolutions of w̃1 and w̃η are the same, while w̃η′ and w̃η′′ also exhibit identical evolution, and the paths

of the four weight errors are symmetric about the weight error path of SL-QLMS in (27). This is illustrated in Figure

3 showing the averaged weight trajectories in the estimation of an MA process. Figure 3 can also be interpreted by the

Cayley-Dickson construction of Cı-improper quaternion vectors. A Cı-improper x can be expressed as x = z1 + z2 where

z1 and z2 are proper complex vectors defined in the plane spanned by {1, ı} [26], that is, the real and imaginary parts of

each of z1 and z2 are uncorrelated and with the same variance, so that channel 1 and i or channel j and k follow the same

path, similarly to the H-proper case in (26). On the other hand, if the two complex vectors z1 and z2 are related or with

different powers, this results in the opposite directions of the two pairs of paths.
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5.2.3. General signal with uncorrelated components

If the four components of x are uncorrelated, the covariance and complementary covariance matrices of x can be

expressed as

Cxx = C1 + Cı + C + Cκ

Cxxı = C1 + Cı −C −Cκ

Cxx = C1 −Cı + C −Cκ

Cxxκ = C1 −Cı −C + Cκ

where C1 = E
{
< [x]< [x]

T
}
, Cı = E

{
=ı [x]=ı [x]

T
}
, C = E

{
= [x]= [x]

T
}
, and Cκ = E

{
=κ [x]=κ [x]

T
}
. The

corresponding weight error vectors are given by

E {w̃1,n+1} = (I− µfcC1)E {< [w̃1,n]}+ ı (I− µfcCı)E {=ı [w̃1,n]}

+ (I− µfcC)E {= [w̃1,n]}+ κ (I− µfcCκ)E {=κ [w̃1,n]}

E {w̃ı,n+1} = (I− µfcCı)E {< [w̃ı,n]}+ ı (I− µfcC1)E {=ı [w̃ı,n]}

+ (I− µfcCκ)E {= [w̃ı,n]}+ κ (I− µfcC)E {=κ [w̃ı,n]}

E {w̃,n+1} = (I− µfcC)E {< [w̃,n]}+ ı (I− µfcCκ)E {=ı [w̃,n]}

+ (I− µfcC1)E {= [w̃,n]}+ κ (I− µfcCı)E {=κ [w̃,n]}

E {w̃κ,n+1} = (I− µfcCκ)E {< [w̃κ,n]}+ ı (I− µfcC)E {=ı [w̃κ,n]}

+ (I− µfcCı)E {= [w̃κ,n]}+ κ (I− µfcC1)E {=κ [w̃κ,n]}

and converge if all the eigenvalues of the matrices (I− µfcC1), (I− µfcCı), (I− µfcC), and (I− µfcCκ) are within (−1, 1),

that is,

0 < µfc <
2

σmax

where σmax is the maximum eigenvalue of C1, Cı, C and Cκ.

5.2.4. General improper signal

Equation (25) indicates that for a general improper quaternion signal, x, the four weight error vectors obey different

recursions which are symmetric about the weight error path of SL-QLMS, as shown in Figure 4.

5.3. Steady-state performance

To quantify the steady-state performance of the FC-QLMS algorithm, we next analyse the MSE in the estimation of

a desired signal in (6). The estimation error of FC-QLMS is given by

en = e1,n + ıeı,n + e,n + κeκ,n = ean + υn

14



where ean is the a priori error defined as

ean = <
[
w̃H

1,nxn
]

+ ı=ı
[
w̃H
,nxn

]
+ =

[
w̃H
,nxn

]
+ κ=κ

[
w̃H
κ,nxn

]
The steady-state MSE is therefore

MSE = lim
n→∞

E
{
|en|2

}
= lim
n→∞

E
{
|ean|

2
}

+ σ2
υ

where lim
n→∞

E
[
|ean|

2
]
is the excess MSE (EMSE) resulting from a mismatch between the estimated value and true value

of the system weight vector. The MSEs in the four channels shall be analysed separately. The a priori and a posteriori

errors in channel η are defined as eaη,n = Ψ
[
w̃H
η,nxn

]
and epη,n = Ψ

[
w̃H
η,n+1xn

]
, which are related as

epη,n = eaη,n − µfc ‖xn‖2 eη,n (28)

Combining (24) and (28) yields

w̃η,n+1 +
eaη,n

‖xn‖2
xnη

−1 = w̃η,n +
epη,n

‖xn‖2
xnη

−1 (29)

Upon evaluating the energies on both sides of (29) and applying the statistical expectation operator, we arrive at [27]

E
{
w̃2
η,n+1

}
+ E

{(
eaη,n

)2
‖xn‖2

}
= E

{
w̃2
η,n

}
+ E

{(
epη,n

)2
‖xn‖2

}

Assuming E
{
w̃2
η,n+1

}
= E

{
w̃2
η,n

}
at the steady state (as n→∞), we obtain the steady-state condition

E

{
(eaη,n)

2

‖xn‖2

}
= E

{
(epη,n)

2

‖xn‖2

}
= E

{
(eaη,n−µfceη,n‖xn‖2)

2

‖xn‖2

}
= E

{
(eaη,n−µfce

a
η,n‖xn‖

2−µfcΨ[υn]‖xn‖2)
2

‖xn‖2

} (30)

As the noise υ is independent of the input signal x, expression (30) simplifies into

2E
{(
eaη,n

)2}
= µfcE

{(
eaη,n

)2 ‖xn‖2}+ µfcTr [Cxx]E
{

Ψ [υn]
2
}

Considering |ean|
2

=
∑

η=1,ı,,κ

(
eaη,n

)2 , we next obtain

2E
{
|ean|

2
}

= µfcE
{
|ean|

2 ‖xn‖2
}

+ µfcTr [Cxx]σ2
υ
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For a small step-size µfc, the term µfcE
{
|ean|

2 ‖xn‖2
}

is negligible compared to µfcTr [Cxx]σ2
υ, and thus the EMSE and

MSE are given by

EMSEfc = lim
n→∞

E
{
|ean|

2
}

=
µfc

2
Tr [Cxx]σ2

υ

MSEfc = EMSEfc + σ2
υ =

(µfc

2
Tr [Cxx] + 1

)
σ2
υ

However, for a large step-size µfc, the term µfcE
{
|ean|

2 ‖xn‖2
}

is not negligible. Assuming that ‖xn‖2 is independent of

|ean|
2, the EMSE and MSE in this case are given by

EMSEfc = lim
n→∞

E
{
|ean|

2
}

=
µfc

2− µfcTr [Cxx]
Tr [Cxx]σ2

υ

MSEfc = EMSEfc + σ2
υ =

2

2− µfcTr [Cxx]
σ2
υ

As shown in the Appendix, the steady-state MSE of the WL-QLMS is given by

MSEwl = (2µTr [Cxx] + 1)σ2
υ (for a small µ)

MSEwl =
σ2
υ

1− 2µTr [Cxx]
(for a large µ)

Remark 3. The FC-QLMS and WL-QLMS algorithms have the same steady-state MSE if µfc = 4µ.

5.4. Computational complexity

Compared with existing widely linear and strictly quaternion estimation approaches, the proposed four-channel estima-

tion technique requires less computation cost. This is because the proposed estimation algorithm avoids the quaternion-

quaternion addition in (9) and (10) while the proposed weight update rule in (14) replaces quaternion-quaternion multipli-

cations, which cost 8 real multiplications and 28 real additions per multiplication [28], with real-quaternion multiplications

costing only 4 real multiplications per multiplication. Table 1 and Figure 5 compare the FC-QLMS and SC-QLMS al-

gorithms with the existing QLMS algorithms in terms of the number of real-valued operations required per iteration.

Observe that the FC-QLMS and SC-QLMS require only about half the number of multiplications and an eighth of the

number of additions, as compared to the WL-QLMS and the SL-QLMS. Therefore, the four-channel estimation framework

allows for an efficient formulation of WL-QLMS and SL-QLMS in the form of FC-QLMS and SC-QLMS. Although the

RC-WL-QLMS [13] and the MLMS [14] also have such low computational complexity, they result in a loss of physical

meaning inherent in the quaternion domain.

5.5. Adaptive step-size

Standard adaptive algorithms might experience degraded convergence when processing non-stationary signals with

large dynamical ranges. This degradation can be circumvented by algorithms that adaptively optimise the step-sizes. For
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the FC-QLMS algorithm, the four step-sizes in the four channels can be optimised separately as µ1, µı, µ and µκ. We

shall use the Barzilai-Borwein method [29] to obtain the optimal step-sizes at the n-th iteration, as

µη,n = arg min
µ∈R+

‖sη,n − µΓη,n‖22 η ∈ {1, ı, , κ}

where

sη,n = ŵη,n − ŵη,n−1

Γη,n =
∂Ψ[yn−ŵHη,nxn]

2

∂ŵ∗η,n
− ∂Ψ[yn−ŵHη,n−1xn]

2

∂ŵ∗η,n−1
= Ψ

[
(ŵη,n − ŵη,n−1)

H
xn

]
xnη

−1

By setting ∇µη,n ‖sη,n − µη,nΓη,n‖22 = 0 , we obtain the optimal step-size

µη,n =
<
[
sHη,nΓη,n

]
ΓHη,nΓη,n

= ‖xn‖−2
2 (31)

which is equivalent to a unit step-size after data normalisation [30].

6. Simulations

All estimation algorithms discussed were evaluated by simulations over synthetic and real-world signals. The perfor-

mance index in the form of normalised MSE (NMSE) was calculated at each iteration through averaging the error power

normalised by the signal power from 100 independent trials, to yield

NMSEn =
1

100

100∑
l=1

∣∣∣y(l)
n − ŷ(l)

n

∣∣∣2∣∣∣y(l)
n

∣∣∣2
where y(l)

n is the desired signal and ŷ(l)
n the estimate at the l-th trial. For a fair comparison, according to the theoretical

analysis in Section 5, the values of step-sizes of the four-channel and single-channel algorithms proposed in the paper were

set to four times those of their widely linear and strictly linear counterparts, and the weight vectors in the algorithms

were initialised to zero vectors.

6.1. QLMS

The QLMS algorithms were implemented to identify a strictly linear MA system, given by

yn = b0xn + b1xn−1 + b2xn−2 + b3xn−3 + υn (32)

and the widely linear MA system

yn = b0xn + b1x
ı
n−1 + b2x


n−2 + b3x

κ
n−3 + υn (33)
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where b0, b1, b2, b3 ∈ H, the signal x and noise υ were H-proper quaternion-valued white Gaussian data, and the signal-to-

noise ratio (SNR) was 10 dB. Figure 6a illustrates that when estimating the strictly linear MA system in (32), FC-QLMS,

WL-QLMS, SC-QLMS, and SL-QLMS behaved identically, while the FC-QLMS and SC-QLMS with an adaptive step-size

(31), which are referred to as the adaptive FC-QLMS and adaptive SC-QLMS, exhibited faster convergence. Figure 6b

shows that when estimating the widely linear MA system in (33), the FC-QLMS and the WL-QLMS behaved identically,

and had a much smaller steady-state NMSE than the SL-QLMS, while the adaptive FC-QLMS converged fastest. Table

2 compares the steady-state EMSE and MSE of the FC-QLMS and WL-QLMS when estimating the strictly linear MA

process in (32). The match between the theoretical and experimental values, and the equivalence between the results of

the two algorithms, support the quantitative analysis in Section 5.3.

These QLMS algorithms were also used to forecast quaternion-valued wind data, the four components of which contain

the wind speed in the north-south, east-west, and vertical directions, and the temperature. As shown in Figure 7, the

FC-QLMS and the WL-QLMS behaved identically, while the adaptive FC-QLMS had the fastest convergence.

6.2. QRLS

Figure 8 and Figure 9 illustrate the performance of QRLS algorithms in the identification of the MA systems in (32)

and (33), and in the forecasting of quaternion-valued wind data. The FC-QRLS behaved identically to the WL-QRLS for

both synthetic and wind data, while when identifying the strictly linear MA system, the SC-QRLS achieved equivalent

performance.

6.3. QNGD

The QNGD algorithms were employed in a one-step ahead prediction of the 4-D Saito’s chaotic circuit data, which is

governed by four state variables x1, y1, x2, y2 and five parameters, as [31]

 ∂x1

∂τ

∂y1
∂τ

 =

 −1 1

−α1 −α1β1


 x1 − γ β1

1−β1
h (z)

y1 − γ 1
1−β1

h (z)


 ∂x2

∂τ

∂y2
∂τ

 =

 −1 1

−α2 −α2β2


 x2 − γ β2

1−β2
h (z)

y2 − γ 1
1−β2

h (z)



h (z) =

 1, z ≥ −1

−1, z ≤ 1

z = x1 + x2

where τ is the time constant of the chaotic circuit. The parameter values were chosen as γ = 1.3, α1 = 7.5, α2 =

15, β1 = 0.16, β2 = 0.097. Figure 10 shows that the FC-QNGD and WL-QNGD behaved identically and outperformed the

SL-QNGD.
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7. Conclusion

We have introduced a four-channel linear model for quaternion signal estimation and have proposed the corresponding

adaptive MMSE estimation algorithms, referred to as the FC-QLMS, FC-QRLS and FC-QNGD. These have been shown

to be cost-effective alternatives to existing widely linear algorithms, while exhibiting identical performances. The proposed

individual estimation of real and imaginary quaternion components has maintained the four degrees of freedom necessary

for widely linear estimation, together with providing physical insight into quaternion estimation and enhanced flexibility

through the estimation in each channel being controlled independently. In this way, the computational complexity has been

dramatically reduced, while maintaining the performance of the original algorithms. Simulation studies on synthetic and

real-world signals support the analysis. The proposed four-channel linear model is suitable for a wide range of applications

in widely linear processing of quaternion signals, such as for widely linear series expansions [32].

Appendix A. Steady-state performance of WL-QLMS

For the desired signal model (6), the system weight vector can be expressed in the augmented form as wa =[
hT ,gT ,uT ,vT

]T , and represents the optimal Wiener solution. The estimation error is then given by

en = yn −waH
n xan = ean + υn

where ean is the a priori error defined as ean = w̃aH
n xan where w̃a

n = wa − ŵa
n is the weight error vector. The steady-state

MSE is then given by

MSEwl = lim
n→∞

E
[
|en|2

]
= lim
n→∞

E
[
|ean|

2
]

+ σ2
υ

where lim
n→∞

E
[
|ean|

2
]
is the EMSE. The weight error vectors at the n-th and the (n+ 1)-th iteration are related by

w̃a
n+1 = w̃a

n − µxane
∗
n (A.1)

from which we obtain

epn = ean − 4µen ‖xn‖2 (A.2)

where epn = w̃aH
n+1xn is the a posteriori error. Combining (A.1) and (A.2) yields

w̃a
n+1 + xn

ea∗n

4 ‖xn‖2
= w̃a

n + xn
ep∗n

4 ‖xn‖2
(A.3)

Evaluating the energies on both sides of (A.3) and applying the statistical expectation operator yields [27]

E
{∥∥w̃a

n+1

∥∥2
}

+ E
{
|ean|

2

16‖xn‖2

}
= E

{
‖w̃a

n‖
2
}

+ E
{
|epn|

2

16‖xn‖2

}
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Assuming E
{∥∥w̃a

n+1

∥∥2
}

= E
{
‖w̃a

n‖
2
}

at the steady state (as n→∞), we obtain the steady-state condition as

E
{
|ean|

2

16‖xn‖2

}
= E

{
|epn|

2

16‖xn‖2

}
= E

{
|ean−4µen‖xn‖2|2

16‖xn‖2

}
= E

{
|ean−4µ(ean+υn)‖xn‖2|2

16‖xn‖2

} (A.4)

As the noise υ is independent of x, equation (A.4) simplifies into

E
[
|ean|

2
]

= 2µE
[
‖xn‖2 |ean|

2
]

+ 2µTr [Cxx]σ2
υ

For a small step-size µ, the term 2µE
{
‖xn‖2 |ean|

2
}
is negligible compared to 2µTr [Cxx]σ2

υ, so that the EMSE is given

by

EMSEwl = lim
n→∞

E
{
|ean|

2
}

= 2µTr [Cxx]σ2
υ

and the steady-state MSE becomes

MSEwl = EMSEwl + σ2
υ = (2µTr [Cxx] + 1)σ2

υ

However, for a large step-size µ, the term 2µE
{
‖xn‖2 |ean|

2
}
is not negligible. Assuming that ‖xn‖2 is independent of

|ean|
2, we arrive at

EMSEwl = lim
n→∞

E
{
|ean|

2
}

=
2µTr [Cxx]σ2

υ

1− 2µTr [Cxx]

MSEwl = EMSEwl + σ2
υ =

σ2
υ

1− 2µTr [Cxx]
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ŷ

ŷ
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Figure 1: Architecture of the FC-QLMS algorithm.
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Figure 2: Averaged weight trajectories for the estimation of a strictly linear MA(1) process driven by H-proper white
Gaussian noise.
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Figure 3: Averaged weight trajectories for the estimation of a strictly linear MA(1) process driven by Cı-improper white
Gaussian noise.
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Figure 4: Averaged weight trajectories for the estimation of a strictly linear MA(1) process driven by general improper
white Gaussian noise.
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Figure 5: The number of real-valued operations per iteration for the QLMS algorithms, for an adaptive filter of length L.
The number of real-valued operations for quaternion-quaternion multiplications is based on [28].
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Figure 6: NMSE curves of the QLMS algorithms for the estimation of MA systems.
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Figure 7: NMSE curves of the QLMS algorithms for the wind forecasting.
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Figure 8: NMSE curves of the QRLS algorithms for the estimation of MA systems.
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Figure 9: NMSE curves of the QRLS algorithms for the wind forecasting.
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Figure 10: Performance of the QNGD algorithms for the one-step ahead prediction of Saito’s chaotic circuit data.

Table 1: The number of real-valued operations per iteration for the QLMS algorithms, for an adaptive filter of length L.
The number of real-valued operations for quaternion-quaternion multiplications is based on [28].

Algorithm Real multiplications Real additions
Estimation of widely linear systems

Proposed : FC-QLMS 32L+ 4 32L

WL-QLMS [22] 64L+ 4 256L

RC-WL-QLMS [13] 32L+ 4 32L

MLMS [14] 32L+ 4 32L

Estimation of strictly linear systems
Proposed : SC-QLMS 8L+ 1 8L

SL-QLMS [23] 16L+ 4 64L

Table 2: The MSE and EMSE of the FC-QLMS and WL-QLMS for the identification of a strictly linear MA system.

σ2
υ MSEfc EMSEfc MSEwl EMSEwl

Simulations 0.1 0.140 0.040 0.140 0.040
Theory 0.1 0.132 0.032 0.132 0.032
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