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ABSTRACT: We study high-Q nanostrings that are joined end-to-end to
form coupled linear arrays. Whereas isolated individual resonators exhibit
sinusoidal vibrational modes with an almost perfectly harmonic spectrum,
the modes of the interacting strings are substantially hybridized. Even far-
separated strings can show significantly correlated displacement. This
remote coupling property is exploited to quantify the deposition of
femtogram-scale masses with string-by-string positional discrimination
based on measurements of one string only.
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Fantastic progress has been made in the use of individual
nanomechanical resonators for atomic and molecular

sensing.1−8 Yet the most striking potential of nanomechanics
lies in the use of arrays9 of resonators to detect multiple
molecular species simultaneously,10 thus performing parallel
molecular analysis.11−13 In certain geometries, these resonators
can become coupled to form hybridized arrays,14,15 offering
new capabilities as a result. Here we present the first example of
strongly coupled silicon nitride (Si3N4) nanostrings16−21

arranged in a one-dimensional (1D) array. As a result of
mode hybridization, we can detect the state of all resonators in
the array from measurements performed on a single one (as
anticipated in ref 22.). The ability to extract information while
focusing on just one string greatly simplifies our optical
interferometric measurement system and has the potential to
streamline other methods of detection as well.11 The analysis
relies on numerical techniques that we have developed to
rapidly characterize the system’s response to mass added
anywhere in the array. We have successfully carried out single-
blind comparisons between the theoretical predictions and
experimental mass deposition.
Previous studies of mutually interacting nanomechanical

resonators have typically employed cantilevers14,15 or doubly
clamped beams23,24 that are weakly coupled through a mutual
overhang. Instead, we have developed 1D arrays of stringlike
resonators, fabricated from a contiguous strip of silicon nitride
under high intrinsic tension with the individual resonators
defined by the placement of small support posts (Figure 1A). A
device design with posts on the micrometer scale (Figure 1C)
leads to strong hybridization and a substantial frequency
splitting between modes that are delocalized across the entire
array. As a result, remote sensing and characterization are
possible. We use silicon nitride nanostrings because their
mechanical quality factors are exceptionally high18−20,25−27 and
because their sinusoidal mode shapes encourage strong
coupling through the posts.

The nanostrings are fabricated from stoichiometric silicon
nitride (250 nm) deposited onto silicon dioxide (2 μm) on a
silicon substrate (0.5 mm). Standard optical lithography is
performed, followed by reactive ion etching of the silicon
nitride. The device is released with a buffered oxide etch of the
silicon dioxide that is timed to produce the desired size of the
coupling posts. The complete arrays are then mounted inside
an optically accessible vacuum chamber. The experimental data
is collected using standard optical interferometry with a 632.8
nm laser focused to a ∼1 μm diameter spot onto the
nanostring, as described elsewhere.20 The optical power
incident on the nanostrings, ∼200 μW, does not cause
significant heating. The interferometric signal is amplified
after detection and is analyzed using a high frequency lock-in
amplifier (Zurich Instruments HF2LI). Driven data can be
acquired using an external piezoelectric (see Figures S.1 and S.2
of the Supporting Information), which allows for phase-locked
loop measurements (Supporting Information Figure S.4). For
thermomechanical measurements, optimized time domain data
is acquired within a bandwidth around the device frequency and
then Fourier transformed. In this way, multiple data sets can be
taken very quickly and averaged together for increased signal-
to-noise, a key requirement for practical sensing applications.
The out-of-plane motion of these devices, z(x,t), can be

accurately represented by a Lagrangian L = ∫ dx (μ(x)(∂tz)2 −
U[z(x,t)]) in which μ(x) = ρA + 1/3π(x)ρ′A′ is the linear mass
density along the device and
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is a model of the potential energy that accounts for stretching
and bending of the string and elongation of the posts. Here, ρ
and E are the volumetric mass density and the Young’s
modulus for silicon nitride; A is the (yz plane) cross-sectional
area of the string; and Iy is a bending moment of inertia
(around the y-axis). The primed constants represent the
corresponding quantities for the silicon dioxide post, and the
geometric factor 1/3 that appears in μ(x) properly accounts for
the post’s kinetic energy under bulk deformation. The
Lagrangian density is spatially discontinuous by virtue of a
bump function π(x) that takes the value one wherever there is a
post and zero otherwise. Further details on the theoretical
model can be found in the Supporting Information.
By way of conventional finite-difference techniques (see the

schematic in Figure 1B), we are able to obtain numerical
solutions that provide the mode shapes and natural frequencies
of all the out-of-plane vibrational excitations. (The large width
relative to thickness of the device, more strip than string,
suppresses in-plane motion.) With some modest fine-tuning of
the geometric parameters, we find that we are able to match the
simulated modes to the measured ones with good accuracy.
Individual strings under high intrinsic tension have a close-

to-harmonic spectrum with a large, nearly uniform spacing
between modes. If we form an array from N strings that are
roughly the same size, then we expect the hybridization to
occur in bundles of N-like frequencies, each of which can be
treated independently. The lowest bundle, formed from the
coupled fundamental frequencies of the N individual
resonators, can be described by a dynamical matrix having
the following band diagonal form:
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The eigenvalue-eigenvector pairs (λn; An,j) give the square of
the angular frequency, λn = (2πf n)

2, and the deflection

amplitude on string segment j for each of modes n = 1,2,...,N.
The trace property of eq 2 implies that Λ+ = Σj = 1

N λj = Σj = 1
N κj/

mj, which is independent of the post couplings. Λ+ is sensitive
to the total (nonspecific) mass added to the device.
For a two-string array, there is a closed-form solution with
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and it is straightforward to linearize the expressions for λ1 and
λ2 in terms of small mass increments. For longer arrays (N > 2),
we simply diagonalize eq 2 and judge its response to mass
perturbation with numerical derivatives. In either case,
measurements of the N low-lying frequencies before and after
mass deposition (mj → mj + δmj) can be inverted to determine
unknown values of δmj, provided that the dynamical matrix is
known.
We can populate eq 2 in one of two ways. First, we can

“downfold” the full numerical simulation, based on the
Lagrangian preceding eq 1. Alternately, we can recognize that
N + (N − 1) = 2N − 1 known quantities are needed to fix the
diagonal and off-diagonal elements of the matrix. We obtain
these by measuring the resonant frequencies f n for n = 1,2,...,N
and the relative amplitudes |An,1/A1,1| for n = 2,3, ..., N, all
carried out with interferometry performed on the first string.
The dynamical matrix is then completely determined via the
Lanczos algorithm (see ref 28 and references therein). The
procedure just described serves as a characterization of the
system that only needs to be carried out once, before any
subsequent mass deposition.
On two- and three-string systems, we have performed

experiments in which the initial dynamical matrix is determined
and then additional mass at the femtogram level is selectively
deposited on particular strings. The mass addition is
accomplished by bombarding the center of the target string
with a highly collimated electron beam from a scanning-
electron microscope (SEM). The exposure is timed and
calibrated to the relative frequency shift δf1/f1 = −δm1/m1
observed in a single-string reference device on the same chip.
Here, m1 is determined from the silicon nitride density ρ =
3100 kg/m3 and the string volume, as estimated from high-
resolution SEM images.

Figure 1. (A) Side-view schematic of the mode of next-to-lowest energy for an array of three nanostrings (with the out-of-plane motion highly
exaggerated). A top view shows the a × b rectangular cross-section of one of the supporting posts. (B) Representation of the corresponding finite-
difference modeling. (C) SEM image of the three-string device (angled from above). The scale bar represents a distance of 10 μm. (D) Magnified
image of the silicon dioxide post with a 1 μm scale bar.
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The two-string system offers the simplest possible test of our
ability to predict shifts in the frequencies of the normal modes
as a result of added mass. The data shown in Figure 2 are taken

on a device ≈100 μm long. Observation and numerical
simulation are in excellent agreement if we assume that the
string is broken into two segments L1 = 50.55 μm, L2 = 50.65
μm by a single post with dimensions a = 0.2 μm and b = 1.0 μm
(see Figure 1). The top panel of Figure 2 shows Λ+
(determined from resonant frequencies measured on string
1); its negative slope is consistent with the mass accumulation
inferred from the SEM process targeting string 2. The lower
two panels show the theoretical and observed softening of the
vibration modes. Also plotted are results from our inversion
procedure in which the dynamical matrix is fixed from
measurements of the frequencies and relative amplitudes, and
the mass changes determined from the subsequent frequency
shifts.
Our second test case is a three-string array, composed of

segments of length L1 = 50.75 μm, L2 = 51.30 μm, and L3 =
50.55 μm. Figure 3 illustrates the characteristic rearrangement
of resonances in response to ∼40 fg of mass placed onto its
third string. Fitting the peaks in the power spectral density29

(PSD) provides the frequencies f n and amplitudes |An,j| of the

resonances, before and after deposition. The fitting form is a
damped harmonic oscillator line shape superimposed on a flat
noise background. (See the Supporting Information.)
It is worth noting that both the eigenvalues (proportional to

the square of the peak frequencies in Figure 3) and the
eigenvectors (the displacement amplitudes on each string) of
the dynamical matrix are altered by the addition of mass to any
single string. Because the fractional change in the amplitudes is
many times larger than the corresponding change in the
frequencies, it has been suggested, in the context of coupled
cantilevers,14 that amplitude measurements provide greater
sensitivity to added mass. To the contrary, our careful study of
the system’s response in each of these channels (using the Allan
deviation, see the Supporting Information) reveals that this is
not the case, at least not for our coupled nanostring system.
The mode amplitudes are subject to much higher background
noise than the frequencies and therefore are unsuitable for mass
sensing, except as part of the initial characterization step in
which the N − 1 relative amplitudes play a role in fixing the
elements of the dynamical matrix.
Figure 4 shows the evolution of the resonant frequencies as

strings 3, 2, and 1 of the three-string system are targeted in turn
for mass deposition with the SEM. Plotted alongside the
experimental measurements are numerical predictions obtained
from running our model forward (predicting frequency shifts
from knowledge of the mass added) and backward (predicting
mass added from the observed frequency shifts). Testing the
forward technique is an important self-consistency check; it
verifies that our analytical framework is expressive enough to
describe the experimental reality and that we have good control
over where mass is being added during the SEM process. The
backward technique is the full inversion that would actually be
performed in a real-world sensing device. It determines mass

Figure 2. Data from a mass deposition experiment performed on a
two-string array. (A) Λ+ is the sum of the eigenvalues of the dynamical
matrix. Measured values (yellow diamonds) are plotted alongside κ1/
m1 + (κ2/m2)(1 + δm2/m2)

−1 (dashed line), the analytical expression
for the predicted behavior. The total mass deposition inferred from Λ+
and the SEM calibration agree. (B,C) Theory tells us that the mass
accumulation should reveal itself as a downward shift of the
frequencies of the lowest two vibrational modes. Frequencies f1 and
f 2 are observed to behave in exactly that way. The dashed lines show
(λ1)

1/2/2π and (λ2)
1/2/2π from eq 3. The values κ1/m1 = 1.07931(7),

κ2/m2 = 1.07759(7), and t1,2/(m1m2)
1/2 = 0.01224(1), expressed in

units × 1015 s−2, are taken from a simultaneous fit to the measured
resonant frequencies. These compare well to the corresponding values,
1.07983(3), 1.07708(3), and 0.012186(3), obtained via Lanczos from
the initial characterization measurements.

Figure 3. Thermomechanical resonances for the (A) first, (B) second,
and (C) third strings in a three-string array. The three eigenmodes are
measured on each string before (dark) and after (light) 40 fg has been
deposited onto the third string. We observe that all resonances shift to
lower values. The inset in (A) shows the simulated amplitude profiles
for the three lowest modes in their initial state before mass deposition.
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additions from frequency shifts and could be easily integrated
into an experimental data acquisition system to provide
seamless real-time calibrated mass sensing.
We have shown that strongly coupled silicon nitride

nanostrings, organized into 1D arrays, offer a compelling
platform for parallelized sensing applications. The hybridized
normal modes can be accurately simulated using a finite-
difference solver. When mass is deposited on any one string,
the frequencies of all the modes respond in a characteristic way.
These small frequency shifts can be measured remotely, on a
single “sensing” string. Most importantly, once the system’s
pre-mass-deposition dynamical matrix is determined from the
mode frequencies and relative amplitudes, as measured on a
single string, an inverse solver can be used to transform the
frequency shifts, again measured on a single string, into inferred
values for the mass added to each string in the array. The
results of this inversion technique have been compared to the
calibrated mass deposition values with excellent agreement. We
have demonstrated remote sensing capability in both two- and
three-string arrays, and there is no practical impediment to
extending this work to larger arrays, or even to collections of
coupled resonators in two dimensions.30−33
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