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Abstract

We consider stationary autoregressive processes with coefficients restricted to
an ellipsoid. These are included in the family of autoregressive processes with
absolutely summable coefficients. We provide consistency results under differ-
ent norms for the estimation of such processes using constrained and penalized
estimators. As an application we show a weak form of universal consistency. Sim-
ulations show that directly including the constraint in the estimation can lead to
more robust results.

Key Words: consistency, empirical process, ridge regression, reproducing
kernel Hilbert space, universal consistency.

1 Introduction

It is common to impose constraints on the decay rate of the coefficients of the autore-
gression, in order to derive results amenable to estimation for the purpose of prediction.
At minimum, these constraints usually require the coefficients of the autoregression to
be absolutely summable. Then, a natural approach is to consider sieve estimation.
Sieve estimation of infinite autoregressive (AR) models has been considered by various
authors. For universal consistency, Schäfer (2002) derived perhaps the strongest result
possible. Györfi and Sancetta (2015) review some of these results. For convergence in
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probability, various authors have considered infinite AR models and its applications,
e.g. Bühlmann (1997), and Kreiss et al. (2011). Additional references can be found in
the cited papers.

Here, we constrain the autoregression coefficients to lie inside an infinite dimen-
sional ellipsoid such that the coefficients associated to higher order lags decay fast.
The conditions essentially require the coefficients of the autoregression to be absolutely
summable. We shall see that the vector of these coefficients can be seen as an ele-
ment in a Reproducing Kernel Hilbert Space (RKHS) when `2 (the space of square
summable sequences) is equipped with a suitable inner product. This allows us to ex-
ploit all the existing machinery for estimation in RKHS and build on it (Steinwart and
Chirstmann, 2008, for a comprehensive review). The main ingredient is penalized least
square estimation. We also consider the constrained least square problem. Penalized
and constrained estimation are dual problems for specific values of the penalty coeffi-
cient. Our result establishes the relation between the two problems and the consistency
rates. In general, they can lead to different consistency results under different norms.
One norm is the usual `2 norm, while the other is the norm of the RKHS. We show
that consistency under the latter has important implications for prediction problems.

In general, unlike existing results, we are able to establish consistency when both
the order of the autoregression and the sample size go to infinity with no constraint
on their rate of divergence to infinity. Existing results use the machinery of method of
sieve, hence they require the order of the autoregression to go to infinity in a controlled
way. However, the ellipsoid is compact under the `2 norm (Kuelbs, 1976, Example 2).
Hence, we can expect to derive asymptotic results with no constraint on the growth
rate of the number of estimated coefficients.

The plan for the paper is as follows. Section 2 reviews the estimation method and
presents the consistency results. A numerical example is provided in Section 3. Section
4 mentions extensions to other processes such as vector autoregressive processes. The
proof of the consistency results is long and is given in Section 5.

2 Estimation Method

We restrict attention to the stationary infinite order autoregressive process

Yt =
∞∑
k=1

ϕkYt−k + εt (1)
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for some mean zero independent identically distributed (i.i.d.) sequence (εt)t∈Z with
finite fourth moment, and unknown coefficients ϕk’s. Throughout, Z is the set of
integers and N is the set of strictly positive integers. Under additional conditions the
model satisfies the following.

Lemma 1 If (1) is such that
∑∞

k=1 |ϕk| < ∞, and if 1 −
∑∞

k=1 ϕkz
k = 0 only for

z outside the unit circle, (Yt)t∈Z is stationary and ergodic with absolutely summable
autocovariance function and EY 4

t <∞.

It is well known that for an AR process, 1 −
∑∞

k=1 ϕkz
k = 0 only for z outside

the unit circle if the autocovariance function is absolutely summable and the spectral
density is strictly positive and continuous (Kreiss et al., 2011, Corollary 2.1).

There are processes (even Gaussian) that satisfy the conditions of Lemma 1, but
fail to be beta mixing (Doukhan, 1995, Theorem 3, p.59). The beta mixing assumption
is often conveniently used when proving convergence using methods from empirical
process theory. Alas, it cannot be used here.

In a finite sample, (1) can only be approximated by the finite dimensional model

Yt =
K∑
k=1

bkYt−k + εt

While this is essentially a sieve we do not necessarily require K to be of smaller order
than the sample size. Here, we restrict the coefficients in the ellipsoid to be defined
as follows. Let λ = (λk)k∈N be a sequence of positive constants diverging to infinity.
Define the ellipsoids

E =

{
b ∈ R∞ :

∞∑
k=1

b2kλ
2
k <∞

}

E (B) :=

{
b ∈ R∞ :

∞∑
k=1

b2kλ
2
k ≤ B2

}

EK (B) :=

{
b ∈ R∞ :

∞∑
k=1

b2kλ
2
k ≤ B2, bk = 0 for k > K

}
. (2)

Also, define the following subspace of R∞ which will be used in defining a penalized
estimator,

EK := {b ∈ R∞ : bk = 0 for k > K} .
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The ellipsoids depend on the choice of λ, which is supposed to be fixed throughout. For
notational convenience, we do not make explicit the dependence on λ in the notation.
When dealing with finite sample size, estimation is carried out in (2). We shall use
the symbol . to mean that the left hand side (l.h.s.) is less than an absolute constant
times the right hand side (r.h.s.). When the inequality holds in both directions (with
possibly different constants) we use the symbol �.

We restrict the coefficients to be in E and work with the model in (1). Summarizing,
we use the following conditions.

Condition 1 For the sequence (Yt)t∈Z in (1), the following are satisfied:

1. (Stationarity) 1−
∑∞

k=1 ϕkz
k = 0 only for z outside the unit circle;

2. (Parameter Space Constraint)ϕ ∈ E and the sequence λ is such that λk � kη, for
k ∈ N, where η > 1/2;

3. (Innovations) the innovations (εt)t∈Z are independent identically distributed with
finite fourth moment.

We use λk � kη as in some applications (e.g. in the presence of seasonal patterns) we
may wish to penalize the coefficients of the autoregression differently. For asymptotic
analysis we may just set λk = kη. Throughout, when writing E and similar quantities,
it is understood that λ is as in Condition 1. The space E and hence λ are given. The
only free parameter is B. The following is stated for convenience.

Lemma 2 If b ∈ E (B) then, |bk| ≤ cBk
−(2η+1)/2/

√
ln (1 + k), where cB is a finite

constant that depends on B.

In consequence, Condition 1 implies absolute summability of the coefficients of the
autoregression and Lemma 1 applies. Absolute summability would just require η ≥ 1/2

in Condition 1 rather than η > 1/2. Hence, the condition we use is a bit more restrictive.

2.1 Estimation and Consistency

The goal is to find an estimator for ϕ. We consider two approaches: constrained least
square and penalized least square. By duality, the two can be made to be equivalent by
suitable choice of the penalty parameter. However, in the constrained case, the penalty
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turns out to be sample dependent, while in penalized estimation this it not necessarily
the case.

To avoid notational trivialities, suppose that the sample size is N = n + K. This
will be assumed without further notice throughout the paper. In particular, our sample
is Y−(K−1), Y−(K−2), ..., Y0, Y1, ..., Yn. This also stresses the fact that n and K can go to
infinity at different rates.

In the constrained problem, we estimate b ∈ EK (B). The constrained estimator is
defined as

b(n) = arg inf
b∈EK(B)

1

n

n∑
t=1

(
Yt −

∞∑
k=1

bkYt−k

)2

(3)

Of course, in the above,
∑∞

k=1 bkYt−k =
∑K

k=1 bkYt−k if b ∈ EK (B).
For the penalized problem l define

b(n,τ) := arg inf
b∈EK

1

n

n∑
t=1

(
Yt −

∞∑
k=1

bkYt−k

)2

+ τ
∞∑
k=1

λ2kb
2
k, (4)

where (λk)k∈N is as in the definition of E , and τ > 0. By use of the Lagrangian, we can
always rewrite (3) as (4) for suitable choice of τ . This means that there is a τ = τB,n

(τ = 0 if the constraint it not binding) such that b(n,τ) = b(n).
Both problems can be reformulated using matrix notation. Let X be the n × K

dimensional matrix with (t, k)th entry equal to Yt−k and Y be the n-dimensional vector
with tth entry Yt. Also, let Λ be the K × K diagonal matrix with kth diagonal entry
equal to λk. The estimator for either (3) or (4) is found by minimizing the penalized
least square criterion with respect to (w.r.t.) b̃ ∈ RK ,

1

n

(
Y −Xb̃

)T (
Y −Xb̃

)
+ τ b̃TΛ2b̃ (5)

where for (3) τ is chosen so that the constraint b̃TΛb̃ ≤ B2 is satisfied. In this latter
case, τ is necessarily random because the constraint needs to be satisfied in sample.
Here the tilde in b̃ is used to remind us that in the matrix formulation, b is truncated
to be a K dimensional vector, as all entries larger than K are zero by definition of EK .
The solution is the usual ridge regression estimator b̃(n,τ) :=

(
XTX + nτΛ2

)−1
XTY .

For problem (4), τ = τn can go to zero in a controlled way. For problem (3),
τ = τB,n ≥ 0 must be chosen so that the constraint is satisfied. Such τB,n is non-zero if
the constraint is binding, and zero otherwise.
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All vectors are in R∞, though only the first K elements might be non-zero. The
exception is when we use a tilde, as in (5). For b(n) in (3), the `2 norm of b(n) − ϕ

becomes
∣∣b(n) − ϕ∣∣

2
=

(∑K
k=1

∣∣∣b(n)k − ϕk
∣∣∣2 +

∑
k>K |ϕk|

2

)1/2

It is worth noting that the ellipsoid E ⊂ `2 is a RKHS generated by the kernel
C (k, l) =

∑∞
v=1 λ

−2
v δv,kδv,l where δv,l is the Kronecker’s delta, i.e. δv,l = 1 if v = l

and zero otherwise. The inner product 〈·, ·〉E is defined to satisfy the reproducing
kernel property 〈C (·, l) , C (·, k)〉E = C (k, l). Hence for a, b ∈ E , bk = 〈b, C (·, k)〉E and
〈a, b〉E =

∑∞
v=1 λ

2
vavbv. The norm induced by the inner product is |·|E such that for

any vector b ∈ R∞, |b|2E =
∑∞

k=1 λ
2
kb

2
k. This norm dominates the `2 norm. The fact

that E (1) is compact under the `2 norm is a consequence of the fact that E is a RKHS
(Kuelbs, 1976, Lemma 2.1(iv) and example 2; see also Li and Linde, 1999) and sharp
asymptotics can be derived by related means (Graf and Luschgy, 2004).

We shall not directly use this fact in the proofs. However, once we realize such
compactness, it is not a surprise that it might be possible to estimate infinite AR
processes under no restriction on the number of estimated coefficients except for being
in E (B). We also establish convergence rates. Moreover, we want to clearly address
the relation between constrained and penalized estimation.

The best approximation ϕ(K) ∈ EK to ϕ minimizes the population mean square
error

ϕ(K) = arg inf
b∈EK

E

(
Y1 −

∞∑
k=1

bkY1−k

)2

(6)

Theorem 1 Suppose that Condition 1, and n, K →∞ hold.

1. (Consistency of Constrained Estimator) If ϕ ∈ E (B), then, for any ε ∈ (0, 2η − 1),∣∣b(n) − ϕ∣∣
2

= Op

(
n−

1
2( 2η−ε

2η−ε+1) +
(
Kη ln1/2 (K)

)−1)
.

2. (Consistency of Penalized Estimator) Consider possibly random τ = τn such that
τ → 0 and τn1/2 → ∞ in probability. Then,

∣∣b(n,τ) − ϕ∣∣E → 0 in probability.
Hence, for any real B such that |ϕ|E < B, then,

∣∣b(n,τ)∣∣E < B with probability
going to one.

3. (Equivalence of Estimators) If ϕ ∈ E (B), there is a random τ = τB,n such that
τ = Op

(
n−1/2

)
, b(n,τ) = b(n).

4. (Consistency in EK) If τ � n−1/4K−η, then
∣∣b(n,τ) − ϕ(K)

∣∣
E = Op

(
n−1/4Kη

)
.
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5. (Approximation Error in EK) We have that
∣∣ϕ− ϕ(K)

∣∣
E = o (1). Moreover, sup-

pose that the kth entry ϕk in ϕ satisfies |ϕk| . k−ν with ν > (2η + 1) /2 for all k
large enough. Then

∣∣ϕ− ϕ(K)
∣∣
E = O

(
K(2η+1−2ν)/2).

6. (Difference Between Norms) Suppose that ϕ ∈ int (E (B)) (int (E (B)) is the in-
terior of E (B)). Then, we can find K → ∞ and τ = Op

(
n−1/2

)
such that∣∣b(n,τ) − ϕ∣∣

2
→ 0 in probability, but

∣∣b(n,τ) − ϕ∣∣E does not converge to zero in prob-
ability.

Point 1 establishes the convergence rate of (3) towards the true ϕ in terms of the
exponent η (in Condition 1). This rate does not constrain the number of lags used
as long as ϕ ∈ E (B). For the finite dimensional case we trivially recover the root-n
convergence by letting η →∞.

Point 2 says that if we use the penalized estimation and the penalty does not go
to zero too fast (i.e. strictly slower than in Point 1), (4) is consistent under the norm
|·|E . Moreover, with probability going to one, (4) will be contained in a ball in E that
contains the true parameter.

Point 3 establishes the link between constrained and penalized estimation by finding
the rate of decay of the ridge penalty so that (3) and (4) are the same.

Point 4 provides the rate of consistency of (6) for ϕ(K) under the RKHS norm. The
latter parameter defines the closest AR model in EK to the true infinite AR model.

Point 5 shows how close ϕ(K) is to ϕ under the RKHS norm for K →∞.
Point 6 establishes an additional insight between the convergence under the `2 norm

and the RKHS norm in terms of the penalty. A “slowly convergent” penalty is necessary
for convergence under |·|E . Hence, this also shows that the constrained estimator (whose
penalty is τ = τB,n = Op

(
n−1/2

)
when ϕ ∈ E (B)) cannot be consistent in the norm

|·|E in general. This happens when choosing a rather large K that leads to a binding
constraint for (3).

Combining Points 4 and 5 in Theorem 1, we have the following.

Corollary 1 Suppose that Condition 1 holds, K � n
1

2(2ν−1) , τ � n−1/4K−η,
and that the kth entry ϕk in ϕ satisfies |ϕk| . k−ν with ν > (2η + 1) /2 for all k

large enough. Then,
∣∣b(n,τ) − ϕ∣∣E = Op

(
n−

2ν−(2η+1)
4(2ν−1)

)
.

Corollary 1 imposes additional restrictions in order to improve on the statement of
Point 2 in Theorem 1, by giving rates of convergence. These rates are not tight as they
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require K = o (n) unlike Point 2 in Theorem 1. However, they are useful in applications
(e.g. Section 2.1.1).

Sieve estimators are often consistent under the sole condition that the number of
components (here K) is of smaller order of magnitude than the sample size n. In Point
1 of Theorem 1, we have shown that this is not required. Recall that N = n + K is
the sample size. We can have K = O (N) as long as n → ∞. Of course, we require
knowledge concerning the magnitude of the coefficients. Such knowledge is usually
assumed in the literature in order to bound the approximation error.

In practice the fact that we allow K = O (N) might sound irrelevant. However,
the asymptotic results can be seen as suggesting that, once we set the constraint, the
procedure used here can be more robust to lag choice. We show this in the simulation
in Section 3.

2.1.1 Application to Optimal Forecasting and Universal Consistency

Define Xt (a) =
∑∞

k=1 akYt−k for any a ∈ R∞. The expectation of Yt conditioning on the
infinite past (Yt−s)s≥1 is Xt (ϕ). As an application of Theorem 1 consider the following
problem. Show that, as n→∞,

sup
t∈T

∣∣Xt (ϕ)−Xt

(
b(n,τ)

)∣∣→ 0

in probability where T = (0,∞) or (0, n) (b(n,τ) in (4)). The above display is a weak
form of universal consistency because the convergence is in probability rather than
almost surely. We want Xt

(
b(n,τ)

)
to be close to the conditional expectation of Yt

uniformly in t ∈ T , which is even more general than considering a moving target. The
norm |·|E is useful because the previous display can be written as

sup
t∈T

∣∣Xt

(
ϕ− b(n,τ)

)∣∣ . ∣∣ϕ− b(n,τ)∣∣E sup
t∈T

(
∞∑
k=1

(
Yt−k
kη

)2
)1/2

. (7)

To obtain the inequality, we have multiplied and divided each term in the sum (on
the l.h.s.) by λk and then used the Cauchy-Schwarz inequality and Condition 1 to set
λ−1k . k−η.

We have that
∣∣ϕ− b(n,τ)∣∣E = Op (εn) in probability, where εn → 0 at a rate which
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depends on Theorem 1. Then, if

sup
t∈T

(
∞∑
k=1

(
Yt−k
kη

)2
)1/2

= op
(
ε−1n
)
, (8)

we have shown that (7) goes to zero in probability. The convergence of (7) to zero holds
for a variety of processes and circumstances.

If T = (0,∞) then (8) is almost surely finite if the random variables are bounded,
and (7) goes to zero in probability using Point 2 in Theorem 1.

If T = (0, n), we can use the bound(
E sup
t∈(0,n)

∞∑
k=1

Y 2
t−kk

−2η

)1/2

≤ n1/(2p) sup
t∈(0,n)

(
E
∞∑
k=1

Y 2p
t−kk

−2ηp

)1/(2p)

when the variables are 2p integrable (Lemma 2.2.2 in van der Vaart and Wellner, 2000).
For any 2p integrable sequence (Zt)t∈Z, this is a consequence of the following chain of
inequalities

E
(

max
t≤n
|Zt|2

)1/2

≤
(
Emax

t≤n
|Zt|2p

)1/(2p)

≤

(
n∑
t=1

E |Zt|2p
)1/(2p)

≤ n1/(2p)

(
max
t≤n

E |Zt|2p
)1/(2p)

.

If p is such that n1/(2p) = o (ε−1n ), then the r.h.s. of (7) goes to zero in probability. If Yt
has moment generating function, the r.h.s. of the above display is actually O

(√
lnn
)

(Lemma 2.2.2 in van der Vaart and Wellner, 2000). Either way, to find εn we can use
Corollary 1. Note that the argument is unchanged if T = (0, cn) for any cn � n.

Theorem 1 can also be applied to the less ambitious problem: show that

lim
K→∞

sup
t∈T

∣∣Xt

(
ϕ(K)

)
−Xt

(
b(n,τ)

)∣∣→ 0

in probability. In this case we want to forecast as well as the increasingly best approx-
imation of the conditional expectation of Yt, uniformly in t ∈ T . Point 4 in Theorem 1
is suited for this problem.
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2.2 Choice of B in Practice

The parameter B can be chosen to minimize some cross-validated prediction error es-
timate (beware of cross-validation in a time series context, e.g. Györfi et al., 1990,
Burman and Nolan, 1992, Burman et al., 1994, for discussions and applicability). Al-
ternatively, one can choose B to minimize a penalized loss function such as

ln σ̂2
B +

2df (B)

n
(9)

where df (B) = Trace
((
XTX + τB,nnΛ2

)−1
XTX

)
using the notation in (5). Here,

σ̂2
B = êT ê/n and ê is the n dimensional vector of residuals ê = Y −Xb̃(n). In particular,

if the constraint is binding, τB,n is implicitly defined by

Y TX
(
XTX + τB,nnΛ2

)−2
XTY = B2, (10)

otherwise it is zero. The procedure is the same as for lag selection using Akaike’s
information criterion (AIC) when the constraint is not binding; set τB,n = 0 in the
definition of df (B) to see this. Hence, the number of lags/parameters is replaced by
df (B), which is the effective number of degrees of freedom implied by B (Hastie et al.,
2009).

3 Numerical Example

Asymptotic results are of interest on their own, but it is also relevant to understand
the scope of applicability in practice. As a benchmark, we use predictions based on an
AR model estimate where the lag length is chosen using AIC.

3.1 Simulated True Model

One thousand data samples are simulated from (1). The sample size is N = 1000. A
burn in of 20000 observations is used to reduce any dependence on the starting value.
We simulate a testing sample of 1000 observations to approximate the mean square
error (MSE). We consider different parametrizations of the ARFIMA model

Yt =

K0∑
k=1

ϕkYt−k + (1− L)−d
(

L∑
l=0

θlεt−l

)
(11)
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The symbol L stands for the lag operator (not to be confused with the constant L):
Lεt = εt−1. The MA polynomial is θl = (1− 0.1l) with L = 5. The coefficient of
fractional integration is d ∈ {0, 0.49}. We choose the errors in (1) i.i.d. t-distributed
with v ∈ {2, 4, 30} degrees of freedom. When v ∈ {2, 4}, the innovations do not satisfy
Condition 1. In fact, for v equal to 2 and 4, the innovations have infinite variance and
infinite kurtosis respectively. When v = 30, the innovations are essentially Gaussian.
The coefficients of the autoregression are chosen to be ϕk = ϕ̄k−1/2/

(∑K0

k=1 k
−1/2

)
,

where ϕ̄ ∈ {0.75, 0.99}. A higher value for ϕ̄ leads to a more persistent behaviour. By
construction, for both values of ϕ̄, the model appears to generate cycles because the
roots of 1−

∑K0

k=1 ϕkz
k = 0 are outside the unit circle, but complex. We shall have differ-

ent values for K0 ∈ {10, 100, 1000}. The scalar K0 is the unknown true lag length. The
simulation design accounts for short and long memory infinite autoregressive processes.

Short Memory When d = 0 the model reduces to an invertible ARMA model of
finite order. In this case, (11) has an infinite AR representation with asymptotically
geometrically decaying coefficients. The latter claim follows from invertibility, and the
fact that K0 is finite. In consequence, the coefficients of the autoregression are in E .

Long Memory Model When d = 0.49, the model is stationary, but exhibits long
memory. In particular, from the binomial expansion, (1− L)d =

∑∞
j=1 πjL

j with non-
zero πj’s (Brockwell and Davis, 1991, eq. 13.2.2 for details). Hence, the process is
an AR(∞). It admits an MA(∞) representation with coefficients that are only square
summable so that the autocorrelation function is not summable (Brockwell and Davis,
1991, Theorem 13.2.1). In this case, ϕ /∈ E and an approximation error is incurred.

In practice, because of limitations in floating point arithmetic, the expansion of
(1− L)d is truncated after 100 terms. Hence, strictly speaking the process is an
ARMA(K0,100), but in finite samples, the behaviour is similar to a long memory pro-
cess.

3.2 Estimation and Results

The parameter’s estimates are obtained from (5) with λk = kη with η ∈ {0.501, 1}.
This is to establish the sensitivity to the choice of λ in Condition 1. The benchmark
is an AR model estimate with lag length chosen to minimize AIC. Denote the number
of lags chosen using AIC by KAIC . We compare this to a model estimated using more
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lags, but with coefficients constrained in EK (B). In particular, K = 2KAIC and 4KAIC

with B chosen as outlined in Section 2.2. The goal is to verify whether the procedure is
robust to lag choice. AIC is known to choose large models. We use even larger models,
and verify whether we are able to obtain sensible results.

The results in Table 1 show the MSE of the constrained procedure over the MSE
obtained by estimating an AR model with lag length selected by AIC. The numbers
have been multiplied by 100. In the interest of space, only the results for ϕ̄ = 0.75 and
v = 30 are reported in Table 1. The full set of results is essentially identical: the MSE
increases for all procedures when ϕ̄ = 0.99 and ν ∈ {2, 4}, but the ratio of the MSE’s
does not change.

These results show that the procedure is robust against lag choice. This becomes
evident in the long memory case. The larger model (4KAIC) leads to relatively better
performance especially when the true model exhibits persistency (d = 0.49 ). We also
deduce that, for the given simulation design, the choice of exponent η does not make a
difference.

Table 1: Simulation Results. The true model is as in
(11) with number of true AR coefficients equal to K0 and
AR coefficients satisfying ϕk = ϕ̄k−1/2/

(∑K0

k=1 k
−1/2

)
,

where ϕ̄ = 0.75 and t-distributed innovations with de-
grees of freedom v = 30. Entries denote the MSE of the
constrained procedure over the MSE obtained by estimat-
ing an AR model with lag length KAIC selected by AIC.
Numbers are multiplied by 100. A number less than 100
favours the constrained procedure over AIC. The MSE in
the numerator is computed using lag lengths 2KAIC and
4KAIC and B chosen as described in Section 2.2. The
ellipsoid is defined by λk = kη for k > 0.

K0 = 10 100 1000
2KAIC 4KAIC 2KAIC 4KAIC 2KAIC 4KAIC

Short Memory: d = 0

η = 0.501 97 95 95 92 94 91
η = 1 97 95 95 92 94 91

Long Memory: d = 0.49
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η = 0.501 92 87 93 88 94 88
η = 1 92 87 93 88 94 88

4 Further Remarks

It is simple to impose linear restrictions on the coefficients of either the constrained
or penalized estimator. A natural example is positivity. This is the case if we wish to
estimate ARCH models of large orders. Under ARCH restrictions, the squared returns
follow an AR process. The estimator does not have a closed form expression, but it is
just the solution of a quadratic programming problem. Another extension pertains to
vector autoregressive processes

Yt =
∞∑
k=1

ΦkYt−k + εt (12)

where now the variables and innovations are L dimensional vectors and we use the
capital Φk to stress the multivariate framework, where Φk is an L × L matrix. Again,
we can restrict E in a suitable way. For example, Φk can be restricted to be lower
triangular. This restriction has a variety of implications going from Granger causality
to exogeneity and it is of much interest in econometrics (e.g., Sims, 1980). For fixed
L, all the results in this paper apply to this problem as well, with obvious changes if
we modify the constraint to

∑∞
k=1 |Φk|2 λ2k ≤ B where |Φk| is any matrix norm, e.g.,

Frobenius: |Φk| =
√
Trace (ΦT

kΦk).
An extension, which does not follow directly from the results derived here, is to

consider the case where L → ∞. This is the problem where we have a large cross-
section (L is the dimensional of the vector Yt in (12)). In this case, the constraint
cannot use an arbitrary matrix norm (norms are not equivalent in infinite dimensional
spaces). Results in Lutz and Bühlmann (2006) together with the ones derived here can
provide initial guidance on how to tackle this problem in the future.

Finally, the paper has not considered the asymptotic distribution of the constrained
and penalized estimators. For finite dimensional regression problems with i.i.d. ob-
servations, the distribution of constrained estimators and the penalized estimators is
well known (Geyer, 1994, Fu and Knight, 2000). The results in Section 5 can be used
to extend those results to our autoregressive problem when K is bounded. When K

diverges to infinity, which is the focus of this paper, to the author’s knowledge, there
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are no available results directly applicable to the estimators in (3) and (4).

5 Proofs

Lemma 1 is standard, but a proof is provided for convenience.
Proof. [Lemma 1] A stationary infinite AR process with absolutely summable AR

coefficients has an infinite MA representation with absolutely summable coefficient and
it is invertible (Lemma 2.1 in Bühlmann, 1995). Hence, there are coefficients ψs such
that Yt =

∑∞
s=0 ψsεt−s and

∞∑
k=1

|EYtYt−k| ≤ σ2

∞∑
k=1

∞∑
s=0

|ψs+k| |ψs| <∞.

This means that the autocovariance function is absolutely summable. The moment
bound follows from the infinite MA representation and the bound on the fourth mo-
ment of the innovations. The process is ergodic. This follows from the fact that it is
integrable, and it is a filter of i.i.d. observations whose invariant sets are trivial by
Kolmogorov 0-1 law.

5.1 Proof of Theorem 1

We divide the proof into two parts. The first only considers result under the `2 norm
(Theorem 1, Point 1). The other is concerned with convergence results under the RKHS
norm and the relation between the penalized and constrained estimator (Theorem 1,
Points 2-6).

5.1.1 Consistency Under the `2 Norm (Point 1 in Theorem 1)

This section is concerned with the proof of Point 1 in Theorem 1. Few lemmas are
needed for the proof. Throughout, we shall use the notation Xt (a) =

∑∞
k=1 akYt−k for

any a ∈ R∞. The proof of Point 1 in Theorem 1 can be found at the end of this section.

Lemma 3 For ρ := (2η + 1) /2 > 1 (η > 1/2 as in Condition 1) and real constants wk,
there is a finite constant cB - that depends on B - such that supb∈E(B) |

∑∞
k=1 bkwk| ≤

cB
∑∞

k=1 k
−ρ |wk| , and similarly, for real constants wk,l, supb∈E(B)

∣∣∣∑∞k,l=1 bkblwlk

∣∣∣ ≤
c2B
∑∞

k,l=1 k
−ρl−ρ |wkl|.
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Proof. Note that |
∑∞

k=1 bkwk| ≤
∑∞

k,l=1
|bk|
k−ρ

k−ρ |wk|. Given that b ∈ E (B),
|bk| ≤ cBk

−ρ, by Lemma 2. This implies that the previous quantity is bounded by
cB
∑∞

k=1 k
−ρ |wk|. The same argument proves the second statement in the lemma

The coefficients wkl in the lemma above will be partial sums of cross products of
Yt’s, which we bound using the following.

Lemma 4 Under Condition 1,

sup
n,k,l>0

E

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
2

<∞.

Proof. From the proof of Lemma 1, there are absolutely summable coefficients ψu,
such that Yt =

∑∞
u=0 ψuεt−u. For ease of notation in what follows suppose that the i.i.d.

innovations have variance one and the MA coefficients are non-negative.
For any square integrable stationary sequence of mean zero random variables (Zt)t∈Z,

E

∣∣∣∣∣ 1√
n

n∑
t=1

Zt

∣∣∣∣∣
2

≤ V ar (Zt) + 2
n−1∑
s=1

Cov (Zt, Zt+s) ≤ 2
n−1∑
s=0

Cov (Zt, Zs)

for any integer t, by stationarity. By this remark, setting Zt = (1− E)Yt−kYt−l, deduce
that

E

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
2

≤ 2
n−1∑
s=0

E [(1− E)Yt−kYt−l (1− E)Yt−s−kYt−s−l] ,

where the r.h.s. holds for t ∈ Z. If we showed that

E [(1− E)Yt−kYt−l (1− E)Yt−s−kYt−s−l] . ψs

the result would follow by summability of the coefficients. To show the above, with no
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loss of generality, by symmetry, consider only the case l ≥ k. This implies that

E [(1− E)Yt−kYt−l (1− E)Yt−s−kYt−s−l]

= Cov (Yt−kYt−l, Yt−s−kYt−s−l)

= E
∞∑

u1=0

∞∑
u2=0

ψu1ψu2 (1− E) εt−k−u1εt−l−u2

×
∞∑

u3=0

∞∑
u4=0

ψu3ψu4 (1− E) εt−s−k−u3εt−s−l−u4 .

The above is equal to

∞∑
u1=0

∞∑
u2=0

∞∑
u3=0

∞∑
u4=0

ψu1ψu2ψu3ψu4Cov (εt−k−u1εt−l−u2 , εt−s−k−u3εt−s−l−u4) .

By the i.i.d. condition on the innovations, the covariance is zero if the indices are not
constrained in the following sets {k + u1 = l + u2, k + u3 = l + u4}, {u1 = u3 + s, u2 = u4 + s},
{k + u1 = l + u4 + s, l + u2 = k + u3 + s}. Hence, we can consider summation with in-
dices in these sets only. Splitting the sum according to the above index sets, we have
respectively,

I =
∞∑
u=0

∞∑
v=0

ψu+l−kψuψv+l−kψvCov
(
ε20, ε

2
u−(s+v)

)
,

II =
∞∑
u=0

∞∑
v=0

ψu+sψv+sψuψvEε20ε2(u−v)+(k−l),

III =
∞∑
u=0

∞∑
v=0

ψu+s+(l−k)ψv+s+(k−l)ψuψvEε20ε2(u−v−s)+(k−l).

From the fact that the innovations are i.i.d., Cov
(
ε20, ε

2
u−(s+v)

)
= 0 unless u = (s+ v).

Hence, we further constrain the sum to deduce that

I .
∞∑
u=0

∞∑
v=0

ψu+l−kψuψv+l−kψv1{u−v=s}

where 1{·} is the indicator function, which is one if the argument is true and zero
otherwise. Substituting u = v + s in the indices containing u, the r.h.s. of the above
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display is equal to
∞∑
v=0

ψv+s+l−kψv+sψv+(l−k)ψv.

Now note that the coefficients are asymptotically decreasing and that l ≥ k, so that
ψv+s+l−k . ψv+s . ψs and ψv+(l−k) . ψv. Hence replacing these in the previous display
deduce that

I .
∞∑
v=0

ψ2
v+sψ

2
v . ψ2

s

∞∑
v=0

ψ2
v . ψ2

s

by summability of the coefficients. By finiteness of the fourth moment of the innova-
tions,

II .
∞∑
u=0

∞∑
v=0

ψu+sψv+sψuψv =

(
∞∑
u=0

ψuψu+s

)2

.

Using again the fact that the coefficients are asymptotically decreasing (ψu+s . ψs),
the above display is bounded by a constant multiple of ψ2

s (
∑∞

u=0 ψu)
2 . ψ2

s . Finally,
by the moment bound, and the same arguments as before,

III .
∞∑
u=0

∞∑
v=0

ψuψvψu+s+(l−k)ψv+s+(k−l) ≤ ψs

(
∞∑
u=0

∞∑
v=0

ψvψu

)
. ψs.

The second inequality used the fact that ψv+s+(k−l) . 1. The bounds do not depend on
k, l beyond the fact that l ≥ k. Repeating the argument for k > l, the result follows.

Lemma 4 will be used to bound quantities such as the following

E

∣∣∣∣∣
∞∑

k,l=1

k−(2η+1)/2l−(2η+1)/2 1

n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
≤

∞∑
k,l=1

k−(2η+1)/2l−(2η+1)/2E

∣∣∣∣∣ 1n
n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
.

1√
n

max
k,l>0

E

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣ ,
where the second inequality follows because (2η + 1) /2 > 1. Then, by Lemma 4 the ex-
pectation is finite because E |·| ≤

(
E |·|2

)1/2
and it is independent of k, l by stationarity.

In consequence the display is Op

(
n−1/2

)
because convergence in L1 implies convergence

in probability.
To establish convergence rates we need two stochastic equicontinuity results.
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Lemma 5 Under Condition 1, for any ε ∈ (0, 2η − 1),

E sup
a,b∈E(2B),|b|2≤δ

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Xt (b)Xt (a)

∣∣∣∣∣ . δ
2η−ε−1
2η−ε , (13)

where η is the exponent in Condition 1.

Proof. By the triangle inequality, the l.h.s. in (13) is bounded by

E sup
a,b∈E(2B),|b|2≤δ

∞∑
l=1

|al|
∞∑
k=1

|bk|

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣ .
By Lemma 3, there is a ρ > 1 such that the above is bounded by a constant multiple of

∞∑
l=1

l−ρE sup
b∈E(2B),|b|2≤δ

∞∑
k=1

|bk|

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
. sup

l>0
E sup
b∈E(2B),|b|2≤δ

∞∑
k=1

|bk|

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
by summability of l−ρ. For any positive V , the above display can be written as

sup
l>0

E sup
b∈E(2B),|b|2≤δ

(∑
k≤V

+
∑
k>V

)
|bk|

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣ . (14)

We shall bound the two sums separately. By the Cauchy-Schwarz inequality, the first
sum is bounded by√√√√sup

l>0
sup
|b|2≤δ

∑
k≤V

b2k
∑
k≤V

E

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
2

. δ
√
V , (15)

where the inequality uses Lemma 4 and |b|2 ≤ δ. Given that V has been fixed, multi-
plying and dividing each term by k1+ε with ε ∈ (0, 2η − 1), and then using the Cauchy-
Schwarz inequality, the second sum in (14) is bounded by√√√√√( sup

b∈E(2B)

∑
k>V

b2kk
1+ε

)sup
l>0

∑
k>V

k−(1+ε)E

∣∣∣∣∣ 1√
n

n∑
t=1

(1− E)Yt−kYt−l

∣∣∣∣∣
2
.

Use the the fact that k−(1+ε) is summable, together with Lemma 4, to deduce that
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the second term in the product above is bounded by a constant. Hence the above is
bounded by a constant multiple of√√√√( sup

b∈E(2B)

∑
k>V

b2kk
1+ε

)
.

√√√√V 1+ελ−2V

(
sup

b∈E(2B)

∑
k>V

b2kλ
2
k

)
.

To deduce the inequality, we multiplied and divided each addend by λ2k, and used the
fact that k1+ελ−2k � kε−(2η−1) ≤ V ε−(2η−1) is decreasing in k > V . The above display is
then bounded by a constant multiple of V (1+ε−2η)/2. This together with the bound in
(15) show that (14) is bounded above by a constant multiple of δ

√
V + V (1+ε−2η)/2 .

δ
2η−ε−1
2η−ε when we choose V = δ−

2
2η−ε . This proves the bound in the lemma.

Lemma 6 Under Condition 1, for any ε ∈ (0, 2η − 1),

E sup
b∈E(2B),|b|2≤δ

∣∣∣∣∣ 1√
n

n∑
t=1

εtXt (b)

∣∣∣∣∣ . δ
2η−ε−1
2η−ε ,

where η is the exponent in Condition 1.

Proof. By linearity and the triangle inequality,

E sup
b∈E(2B),|b|2≤δ

∣∣∣∣∣ 1√
n

n∑
t=1

εtXt (b)

∣∣∣∣∣
≤ E sup

b∈E(2B),|b|2≤δ

∞∑
k=1

|bk|

∣∣∣∣∣ 1√
n

n∑
t=1

εtYt−k

∣∣∣∣∣ .
Note that

sup
k>0

E

∣∣∣∣∣ 1√
n

n∑
t=1

εtYt−k

∣∣∣∣∣
2

≤ σ2γ (0) ,

where γ (0) is the autocovariance function of (Yt)t∈Z at zero. We can then proceed
exactly as in the proof of Lemma 5 to deduce the result.

Proof of Theorem 1 Point 1. Define the empirical loss function

Ln (b) :=
1

n

n∑
t=1

(
Yt −

∞∑
k=1

bkYt−k

)2
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where b ∈ E . When b ∈ EK (B) the sum inside the parenthesis only runs from 1 to K.
The population loss is

L (b) := E [X1 (ϕ− b)]2 . (16)

Define β = β(K) ∈ R∞ such that its first K entries are as in ϕ and the remaining are
all zero. The consistency proof is standard (van der Vaart and Wellner, 2000, Theorem
3.2.5) once we show the following:

L (b)− L (β) & |b− β|22 , (17)

E sup
b∈EK(B):|b−β|2≤δ

|[Ln (b)− L (b)]− [Ln (β)− L (β)]| . δα√
n
, (18)

for some α ∈ (0, 2). Then, for any sequence rn → ∞ satisfying r2−αn .
√
n, Ln (bn) ≤

Ln (β) +Op (r−2n ) and |ϕ− β|2 . r−1n , we have that
∣∣b(n) − ϕ∣∣

2
= Op (r−1n ). We can then

choose r2n = n1/(2−α).
At first we verify (17). At the end of the proof we shall show that we can restrict

attention to b such that

L (b)− L (β) &
∞∑

k,l=1

(bk − βk) (bl − βl) γ (k − l) , (19)

where γ (k) is the autocovariance function (ACF) of (Yt)t∈Z. The estimator is uniquely
identified if the matrix, say Γ, with (k, l) entry equal to γ (k − l), is strictly positive
definite with smallest eigenvalue θmin > 0 (see remarks after Lemma 2.2. in Kreiss et al.,
2011). This is the case if the spectral density of (Yt)t∈Z, say g (ω), is bounded away from
zero. The spectral density of the AR model (1) is given by g (ω) = (2π)−1 σ2/ϕ (ω),
where ϕ (ω) =

∣∣∑∞
k=0 ϕke

−ikω
∣∣2 with ϕ0 := 1. Noting that by Condition 1, ϕ (ω) =∣∣∑∞

k=0 ϕke
−ikω

∣∣2 ≤ (
∑∞

k=0 |ϕk|)
2
< ∞, deduce that the eigenvalues of Γ are bounded

away from zero. Hence,

L (b)− L (β) ≥ θ−1min

∞∑
k=1

(bk − βk)2 = |b− β|22 , (20)

and (17) holds.
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Using the notation Yt = Xt (ϕ) + εt, the empirical loss is equal to

Ln (b) =
1

n

n∑
t=1

[
ε2t +X2

t (ϕ− b) + 2εtXt (ϕ− b)
]
.

This implies that

(Ln (b)− L (b))− (Ln (β)− L (β))

=
1

n

n∑
t=1

[
2εtXt (β − b) + (1− E)

(
X2
t (b− ϕ)−X2

t (β − ϕ)
)]
.

To verify (18), we need to bound the above uniformly in b ∈ E (B) such that |b− β|2 ≤ δ.

To this end, apply Lemma 6 to the first term on the r.h.s. to find that the uniform
bound is a constant multiple of n−1/2δ

2η−ε−1
2η−ε for any ε ∈ (0, 2η − 1). By basic algebraic

manipulations, the second term on the r.h.s. of the display is

(1− E)
(
X2
t (b− ϕ)−X2

t (β − ϕ)
)

=
1

n

n∑
t=1

(1− E)Yt−kYt−l (bk − βk) (bl − ϕl)

+
1

n

n∑
t=1

(1− E)Yt−kYt−l (βk − ϕk) (bl − βl) .

The equality follows adding and subtracting 1
n

∑n
t=1 (1− E)Yt−kYt−l (βk − ϕk) (bl − ϕl).

Note that both ϕ − b and β − ϕ are in E (2B). We apply Lemma 5 to deduce that
each term on the r.h.s. of the above display is uniformly bounded in L1 by a constant
multiple of n−1/2δ

2η−ε−1
2η−ε for any ε ∈ (0, 2η − 1) when |b− β|2 ≤ δ. Hence (18) is verified

with α = 2η−ε−1
2η−ε . When we are only interested in a finite dimensional model, we can

take η →∞ to deduce that α = 1, which is the parametric rate.
To find rn note that

Ln
(
b(n)
)
− Ln (β) ≤ Ln (bn)− inf

b∈EK(B)
Ln (b) = 0.

Also, |ϕ− β|2 =
(∑

k>K |ϕk|
2)1/2 = O

(
K−η/ ln1/2 (K)

)
. To see this, use Lemma 2 and
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bound the sum by the integral

∑
k>K

|ϕk|2 .
ˆ ∞
K

x−(2η+1)

ln (1 + x)
dx ≤ 1

ln (1 +K)

ˆ ∞
K

x−(2η+1)dx

using the fact that ln (1 + x) is monotonically increasing, in the last inequality. Fi-
nally, integrate to derive the bound. Hence we deduce that r−1n = n−

1
2( 2η−ε

2η−ε+1) +(
K−η/ ln1/2 (K)

)
as stated in Point 1 of the theorem.

It remains to show that (19) holds true. We recall a result from van der Vaart
and Wellner (2000, Problem 3.4.5) that says that for any elements x, y, z in a normed
space with norm |·|, we have that |z − y|2 + |z − y|2 ≥ (1− 2/c) |x− y|2 whenever
|x− y| ≥ c |z − y| for some c ≥ 2. We apply this to elements in R∞ with norm
|a|γ =

√∑∞
k,l=1 akalγ (k − l), a ∈ R∞, where γ (k) is the autocovariance function of

the AR process at k. This is a norm because the minimum eigenvalue θmin of the
matrix Γ defined above is strictly positive. By definition of the population loss in (16),
L (β) = |ϕ− β|2γ. Recall that β has the first K entries as ϕ and the remaining equal

to zero. As K → ∞, we have shown that |ϕ− β|2γ = O
(
K−η/ ln1/2 (K)

)
. Hence, we

suppose that eventually L (b) ≥ 2−1L (β). If this were not the case, |ϕ− β|2γ > 2 |ϕ− b|2γ
and we could bound 2

∣∣ϕ− b(n)∣∣2
2
by |ϕ− β|22 in virtue of the fact that |a|2γ ≥ θmin |a|22.

In this case, the proof of Point 1 in the theorem would be trivial. Hence, we can apply
the result stated above and deduce (19). This concludes the proof of Point 1 i Theorem
1.

5.1.2 Consistency Under the RKHS Norm (Points 2-6 in Theorem 1)

The proof depends on a few preliminary lemmas. The proof of Points 2-6 in Theorem
1 can be found at the end of this section.

Let ϕ(τ) := ϕ(K,τ) ∈ EK be the penalized population estimator

ϕ(τ) = arg inf
b∈EK

EX2
1 (b− ϕ) + τ |b|2E . (21)

The following can be deduced from Theorem 5.9 in Steinwart and Christmann (2008,
eq. 5.14). The proof is given, as the context might seem different at first sight.

Lemma 7 Suppose Condition 1. For arbitrary but fixed τ > 0, consider b(n,τ) and ϕ(τ)
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in (4) and (21) with K possibly diverging to infinity. Then,

∣∣b(n,τ) − ϕ(τ)
∣∣
E ≤

√√√√ K∑
k=1

1

τ 2λ2k

(
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ(τ)))Yt−k

)2

,

where b(n,τ)k is the kth entry in b(n,τ), and similarly for ϕ(τ).

Proof. By convexity of the square error loss, differentiating
(
Yt −Xt

(
b(n,τ)

))2 w.r.t.
b(n,τ) around ϕ(τ) and rearranging,

2

n

n∑
t=1

(
Yt −Xt

(
ϕ(τ)

)) (
Xt

(
b(n,τ)

)
−Xt

(
ϕ(τ)

))
≤ 1

n

n∑
t=1

(
Yt −Xt

(
b(n,τ)

))2− 1

n

n∑
t=1

(
Yt −Xt

(
ϕ(τ)

))2
.

Using the identity 2 (x− y) y + (x− y)2 = x2 − y2 for any real x, y, we have that

2τ
∞∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)
ϕ
(τ)
k +τ

∞∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
= τ

∞∑
k=1

λ2k

∣∣∣b(n,τ)k

∣∣∣2−τ ∞∑
k=1

λ2k

∣∣∣ϕ(τ)
k

∣∣∣2 .
The above two displays imply that

2

n

n∑
t=1

(
Yt −Xt

(
ϕ(τ)

)) (
Xt

(
b(n,τ)

)
−Xt

(
ϕ(τ)

))
+2τ

∞∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)
ϕ
(τ)
k + τ

∞∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
≤ 1

n

n∑
t=1

(
Yt −Xt

(
b(n,τ)

))2
+ τ

∞∑
k=1

λ2k

∣∣∣b(n,τ)k

∣∣∣2 − 1

n

n∑
t=1

(
Yt −Xt

(
ϕ(τ)

))2 − τ ∞∑
k=1

λ2k

∣∣∣ϕ(τ)
k

∣∣∣2 ≤ 0

where the most r.h.s. inequality follows because b(n,τ) minimizes the empirical penalized
risk. The first order conditions for ϕ(τ) read

ϕ
(τ)
k = − 1

τλ2k
E
(
Yt −Xt

(
ϕ(τ)

))
Yt−k (22)
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for k ≥ 1. Substituting this in the l.h.s. of the previous display,

2

n

n∑
t=1

(
Yt −Xt

(
ϕ(τ)

)) (
Xt

(
b(n,τ)

)
−Xt

(
ϕ(τ)

))
−2E

(
Yt −Xt

(
ϕ(τ)

)) K∑
k=1

(
b
(n,τ)
k − ϕ(τ)

k

)
Yt−k + τ

K∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
≤ 0.

Rearranging and using the definition of Xt

(
b(n,τ) − ϕ(τ)

)
, deduce that

τ

K∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
≤ 2

n

n∑
t=1

(E− 1)
(
Yt −Xt

(
ϕ(τ)

)) K∑
k=1

(
b
(n,τ)
k − ϕ(τ)

k

)
Yt−k

≤

√√√√ K∑
k=1

2

λ2k

(
1

n

n∑
t=1

(E− 1) (Yt −Xt (ϕ(τ)))Yt−k

)2
√√√√ K∑

k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
,

using the Cauchy-Schwarz inequality in the last step. Given that
∣∣b(n,τ) − ϕ(τ)

∣∣
E =√∑K

k=1 λ
2
k

(
b
(n,τ)
k − ϕ(τ)

k

)2
, this gives the result of the lemma after division by τ

∣∣b(n,τ) − ϕ(τ)
∣∣
E .

The next lemma establishes the relation between the constrained and penalized
estimator, and together with Lemma 7 it will be used to establish a bound for the
distance between the sample and population penalized estimator under the RKHS norm.

Lemma 8 Suppose that ϕ ∈ int (E (B)). Under Condition 1, if a ∈ EK (1), and b(n,τ)

is as in (4), there is a τ = τn = Op

(
n−1/2

)
such that

∣∣b(n,τ)∣∣E < B with probability going
to one, and

1√
n

n∑
t=1

(
Yt −Xt

(
b(n,τ)

))
Xt (a) = Op

B
√√√√ K∑

k=1

λ2ka
2
k

 ,

where the above bound holds uniformly in a ∈ EK (1). In consequence, there is a τ =

Op

(
n−1/2

)
such that b(n,τ) = b(n).
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Moreover, for any τ > 0,√√√√ K∑
k=1

1

τ 2λ2k

(
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ(τ)))Yt−k

)2

= Op

(
τ−1n−1/2

)
.

Proof. Suppose that τ > 0 as otherwise, by the first order conditions, the r.h.s.
in the first display in the statement of lemma is exactly zero and there is nothing to
prove. For arbitrary τ > 0, the first order conditions that define (4) imply that

b
(n,τ)
k = − 1

τλ2k

1

n

n∑
t=1

(
Yt −Xt

(
b(n,τ)

))
Yt−k (23)

where b(n,τ)k is the kth element in b(n,τ). By Condition 1, multiplying both sides by
τλ2kak, with a ∈ EK (1), and summing over k,∣∣∣∣∣ 1n

n∑
t=1

(
Yt −Xt

(
b(n,τ)

))
Xt (a)

∣∣∣∣∣ = τ

∣∣∣∣∣
K∑
k=1

λ2kb
(n,τ)
k ak

∣∣∣∣∣
≤ τ

√√√√ K∑
k=1

λ2k

∣∣∣b(n,τ)k

∣∣∣2
√√√√ K∑

k=1

λ2ka
2
k, (24)

recalling the definition of Xt (a) and using the Cauchy-Schwarz inequality. Given that

a ∈ EK (1), deduce that
√∑K

k=1 λ
2
ka

2
k ≤ 1. Moreover, the above display clearly holds

uniformly in a ∈ EK (1). We need to show that there is a τ = τn = Op

(
n−1/2

)
such√∑K

k=1 λ
2
k

∣∣∣b(n,τ)k

∣∣∣2 < B. This will imply the first display in the statement of the lemma.

By the triangle inequality,√√√√ K∑
k=1

λ2k

∣∣∣b(n,τ)k

∣∣∣2 ≤
√√√√ K∑

k=1

λ2k

∣∣∣ϕ(τ)
k

∣∣∣2 +

√√√√ K∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
. (25)

For τ ≥ 0, we have that
√∑K

k=1 λ
2
k

∣∣∣ϕ(τ)
k

∣∣∣2 ≤ √∑K
k=1 λ

2
k |ϕk|

2 , because the penalized

population estimator must have norm no larger than the unpenalized population esti-
mator ϕ(K). But, ϕ(K) is restricted to be in EK ⊂ E , hence its norm cannot be larger
than the one of ϕ. By this remark and the fact that ϕ ∈ int (E (B)), there is an ε > 0
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such that the first term on the r.h.s. is B − 3ε. Lemma 7 gives

K∑
k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
≤

K∑
k=1

2

τ 2λ2k

[
1

n

n∑
t=1

(
Yt −Xt

(
ϕ(τ)

))
Yt−k − E

(
Yt −Xt

(
ϕ(τ)

))
Yt−k

]2
. (26)

Adding and subtracting (1− E)Xt (ϕ)Yt−k, and then using the basic inequality (x+ y)2 ≤
2x2 + 2y2 for any real x, y, the r.h.s. is

K∑
k=1

2

τ 2λ2k

[
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ))Yt−k +
1

n

n∑
t=1

(1− E)
(
Xt (ϕ)−Xt

(
ϕ(τ)

))
Yt−k

]2
.

≤
K∑
k=1

4

τ 2λ2k

[
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ))Yt−k

]2

+
K∑
k=1

4

τ 2λ2k

[
1

n

n∑
t=1

(1− E)
(
Xt (ϕ)−Xt

(
ϕ(τ)

))
Yt−k

]2
.

Recalling that our goal is to bound the second term on the r.h.s. of (25), the above two
displays imply that√√√√ K∑

k=1

λ2k

(
b
(n,τ)
k − ϕ(τ)

k

)2
≤ 1

τ

√√√√ K∑
k=1

4

λ2k

[
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ))Yt−k

]2

+
1

τ

√√√√ K∑
k=1

4

λ2k

[
1

n

n∑
t=1

(1− E) (Xt (ϕ)−Xt (ϕ(τ)))Yt−k

]2
=: I + II. (27)

To bound I on the r.h.s. note that for k > 0,

E

[
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ))Yt−k

]2
= E

[
1

n

n∑
t=1

εtYt−k

]2
=

σ2γ (0)

n
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(recall γ (k) is the ACF of the AR process). Hence,

K∑
k=1

1

λ2k

[
1

n

n∑
t=1

(1− E) (Yt −Xt (ϕ))Yt−k

]2
= Op

(
σ2γ (0)

n

)

because the coefficients λ−2k are summable. We deduce that it is possible to find a
τ = Op

(
n−1/2

)
such that I ≤ ε. To bound II, recall that ϕ(τ), ϕ ∈ E (B) for any τ ≥ 0,

and write

Wk,l :=
1√
n

n∑
t=1

(1− E)Yt−lYt−k

for ease of notation. Recall that η is the exponent in Condition 1. Then, for ρ =

(2η + 1) /2 > 1,

III := E
K∑
k=1

1

λ2k

[
1

n

n∑
t=1

(1− E)
(
Xt (ϕ)−Xt

(
ϕ(τ)

))
Yt−k

]2

≤
K∑
k=1

1

λ2k
E sup
b∈E(2B)

[
1

n

n∑
t=1

(1− E)
∞∑
l=1

blYt−lYt−k

]2

≤ 1

n

K∑
k=1

1

λ2k

∞∑
l,j=1

l−ρj−ρEWk,lWk,j

.
1

n
sup
k,l,j

EWk,lWk,j ≤
1

n
sup
k,l

EW 2
k,l (28)

using Lemma 3 in the second inequality and summability of the coefficient in the penul-
timate inequality. By Lemma 4, EW 2

k,l ≤ c for some finite absolute constant c. Hence,
deduce that III = Op (n−1), which implies that II = Op

(
τ−1n−1/2

)
. Hence, there is a

τ = Op

(
n−1/2

)
such that II ≤ ε. The control of I + II implies that, with probability

going to one, (27) is not greater than 2ε for suitable τ . Hence, we have shown that
there is a τ = Op

(
n−1/2

)
such that (25) is not greater than B−ε with probability going

to one. This bound for (25) together with (24) proves the first display in the lemma.
To see that this also implies that there is a τ = Op

(
n−1/2

)
such that b(n,τ) = b(n) note

that
∣∣b(n,τ)∣∣E is non-decreasing as τ → 0. Hence, b(n,τ) = b(n) for the smallest τ such

that
∣∣b(n,τ)∣∣E ≤ B

The last statement in the lemma follows from the just derived bound for the r.h.s.
of (26).

We now estimate the approximation error.
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Lemma 9 Suppose Condition 1. For any K → ∞, we have that
∣∣ϕ(K) − ϕ(τ)

∣∣
E → 0

as τ → 0 where ϕ(K) and ϕ(τ) are as in (6) and (21). Moreover,
∣∣ϕ(K) − ϕ(τ)

∣∣
E =

Op (τK2η).

Proof. The first part of the lemma is the continuity of the penalized estimator
w.r.t. τ , under the RKHS norm. This is given in Theorem 5.17 in Steinwart and
Christmann (2008). Hence, we only need to prove the second statement. Let Γ be the
K ×K matrix with (k, l) entry equal to γ (k − l) and let Γ1 be the first column in Γ.
Let ϕ̃(K), ϕ̃(τ) ∈ RK be the first K entries in ϕ(K), ϕ(τ) ∈ EK . Recall that in both ϕ(K)

and ϕ(τ) all entries k > K are zero. Then, ϕ̃(K) = Γ−1Γ1, and writing D := τ 1/2Λ with
Λ as in (5),

ϕ̃(τ) = (DD + Γ)−1 Γ1.

By the Woodbury identity (Petersen and Pedersen, 2012, eq.159)

(DD + Γ)−1 = Γ−1 − Γ−1D
(
I +DΓ−1D

)−1
DΓ−1

we have that
ϕ̃(K) − ϕ̃(τ) =

[
Γ−1D

(
I +DΓ−1D

)−1
DΓ−1

]
Γ1.

We also have that
∣∣ϕ(K) − ϕ(τ)

∣∣
E =

∣∣Λ (ϕ̃(K) − ϕ̃(τ)
)∣∣

2
. To keep the notation simple, we

are using |·|2 for the `2 norm as well as for the Euclidean norm in RK . Hence, using
the above display,

∣∣ϕ(K) − ϕ(τ)
∣∣
E =

∣∣∣ΛΓ−1D
(
I +DΓ−1D

)−1
DΓ−1Γ1

∣∣∣
2

=
∣∣∣DΓ−1D

(
I +DΓ−1D

)−1
Λϕ̃(K)

∣∣∣
2

using the definitions of ϕ̃(K) and D in the second equality. For any square matrixW and
a compatible vector a, |Wa|2 ≤ σmax (W ) |a|2, where σmax (W ) is the maximum singular
value of W . There is a B < ∞ such that ϕ ∈ E (B). Because

∣∣ϕ(K)
∣∣
E ≤ |ϕ|E ≤ B, we

then must have that |Λϕ̃|2 ≤ B. Hence, we only need to find the maximum singular
value of W = DΓ−1D (I +DΓ−1D)

−1. Using the basic equality AC−1 = (CA−1)
−1 for

invertible A = DΓ−1D and C = (I +DΓ−1D), we have that W = (D−1ΓD−1 + I)
−1.

The matrix (I +D−1ΓD−1) has eigenvalues equal to 1 plus the eigenvalues ofD−1ΓD−1.
Hence, we focus on finding the smallest singular value of D−1ΓD−1. The following
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inequalities hold for the singular values of the product of two matrices A and C:

σmin (A)σmin (C) ≤ σmin (AC) ≤ σmax (AC) ≤ σmax (A)σmax (C)

where σmax (·) and σmin (·) are the maximum and minimum singular value of the ma-
trix argument (Bathia, 1997, eq. III.20, p.72). Recall that, in order to derive (20),
we argued that Γ has minimum eigenvalue θmin bounded away from zero. Moreover,
D−1 has minimum eigenvalues equal to a constant multiple of τ−1/2K−η. Hence, apply-
ing the inequalities above with A = D−1 and C = ΓD−1 we have that D−1ΓD−1

has eigenvalues bounded below by a constant multiple of τ−1θminK
−2η. This im-

plies that σmax (W ) . (1 + θminτ
−1K−2η)

−1. Hence, after rearrangement, deduce that∣∣ϕ(K) − ϕ(τ)
∣∣
E . τK2η (θmin + τK2η)

−1. This is O (τK2η) as stated in the lemma.
We need a final approximation result.

Lemma 10 Recall (6). Suppose Condition 1. If ϕ ∈ E, then
∣∣ϕ(K) − ϕ

∣∣
E = o (1) as

K →∞. If also |ϕk| . k−ν with ν > (2η + 1) /2, then,
∣∣ϕ(K) − ϕ

∣∣
E = O

(
K(2η+1−2ν)/2).

Proof. Recall the definition of β = β(K) ∈ R∞ just before (17). Let β̃ ∈ RK have
the same first K entries as β. Write Yt = Xt (β) + εK,t where εK,t = εt − Xt (β − ϕ).
Given that ϕ̃(K) is the population ordinary least square estimator, using the same
notation as in the proof of Lemma 9,

ϕ̃(K) = β̃ + Γ−1E


Yt−1

Yt−2
...

Yt−K

 εK,t.

We need to show that the second term goes to zero under the norm |·|E . Given that
the innovations εt are i.i.d., the expectation is equal to

−E


Yt−1

Yt−2
...

Yt−K


∞∑

l=K+1

Yt−lϕl = −
∞∑
l=1

ϕK+l


γ (K − 1 + l)

γ (K − 2 + l)
...

γ (l)

 =: Ψ.

Hence, ∣∣β − ϕ(K)
∣∣
E =

∣∣ΛΓ−1Ψ
∣∣
2
,
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and again we are using |·|2 for the `2 norm as well as for the Euclidean norm in RK .
We need to show that this converges to zero. By similar arguments as in the proof of
Lemma 9, |ΛΓ−1Ψ|2 . Kηθ−1min |Ψ|2 because Λ is diagonal with largest entry O (Kη). To
bound |Ψ|2, note that

|Ψ|22 =
∞∑

l1,l2=1

ϕK+l1ϕK+l2

K∑
k=1

γ (K − k + l1) γ (K − k + l2) .

However, maxk≤K |γ (K − k + l)| . |γ (l)| because the ACF is absolutely summable by
Lemma 1. Hence, |Ψ|22 . Kϕ2

K and from the previous remarks, deduce that

∣∣β − ϕ(K)
∣∣
E .

√
K2η+1ϕ2

K .

Because ϕ ∈ E , then |ϕK |E = O
(
K−(2η+1)/2/ ln1/2 (1 +K)

)
by Lemma 2, so that∣∣β − ϕ(K)

∣∣
E = o (1). If also |ϕk| . k−ν holds true,

∣∣ϕ(K) − β
∣∣
E . K(2η+1−2ν)/2. By

definition of β,

|ϕ− β|E =

√∑
k>K

ϕ2
kλ

2
k =

O
(
K(2η+1−2ν)/2) if |ϕk| . k−ν

o (1) if ϕ ∈E
.

Hence, by the triangle inequality, we deduce the bound for
∣∣ϕ(K) − ϕ

∣∣
E .

Proof of Theorem 1 Points 2-6. We can now prove Points 2-6 in Theorem 1.
Point 2. If ϕ ∈ E , then, there is a finite B such that ϕ ∈ int (E (B)). By Lemma 7

and 8, deduce that
∣∣b(n,τ) − ϕ(τ)

∣∣
E = Op

(
τ−1n−1/2

)
. Hence, if τn1/2 →∞ in probability,

by Lemma 9 and the triangle inequality,
∣∣b(n,τ) − ϕ(K)

∣∣
E → 0 in probability for any

K > 0, including K → ∞. By Lemma 10,
∣∣ϕ− ϕ(K)

∣∣
E → 0 as long as K → ∞. In

consequence, the triangle inequality implies that
∣∣b(n,τ) − ϕ∣∣E → 0 in probability, under

the sole condition that τn1/2 +K →∞ in probability.
Point 3. This follows from Lemma 8.
Point 4. By the triangle inequality,

∣∣b(n,τ) − ϕ(K)
∣∣
E ≤

∣∣b(n,τ) − ϕ(τ)
∣∣
E+
∣∣ϕ(K) − ϕ(τ)

∣∣
E .

Use Lemma 9 to bound the second term on the r.h.s. by a quantity Op (τK2η). Use
Lemmas 7 and 8 to bound the first term on the r.h.s. by a quantity Op

(
τ−1n−1/2

)
.

Deduce that
∣∣b(n,τ) − ϕ(K)

∣∣
E = Op

(
τ−1n−1/2 + τK2η

)
. Equating the two terms inside

Op (·), and solving for τ , this quantity is Op

(
n−1/4Kη

)
when τ � n−1/4K−η.
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Point 5. The approximation rates are from Lemma 10.
Point 6. Lemma 8 shows that for the constrained problem, the Lagrange multiplier

is τ = τn,B = Op

(
n−1/2

)
, and the constraint is possibly binding. In fact, there is a

K large enough relatively to n, such that the constraint needs to be binding so that∣∣b(n)∣∣E = B. However, if ϕ ∈ int (E (B)) there is an ε > 0 such that |ϕ|E = B− ε. Then,
we must have that

∣∣b(n) − ϕ∣∣2E =
∣∣b(n)∣∣2E + |ϕ|2E − 2

〈
b(n), ϕ

〉
E

=
(
B2 + (B − ε)2 − 2

〈
b(n), ϕ

〉
E

)
.

But
〈
b(n), ϕ

〉
E ≤

∣∣b(n)∣∣E |ϕ|E ≤ B (B − ε). Therefore, the above display is greater or
equal than

B2 + (B − ε)2 − 2B (B − ε) ≥ ε2.

This means that b(n) cannot converge under the norm |·|E .

5.2 Proof of Corollary 1

By Points 4-5 in Theorem 1 and the triangle inequality, deduce that
∣∣b(n,τ) − ϕ∣∣E =

Op

(
n−1/4Kη +K(2η+1−2ν)/2). Equating the coefficients this is Op

(
n−

2ν−(2η+1)
4(2ν−1)

)
when

K = n
1

2(2ν−1) .
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