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ABSTRACT2

The pressure to search effective bioremediation methodologies for contaminated ecosystems has led3
to the large-scale identification of microbial species and metabolic degradation pathways. However,4
minor attention has been paid to the study of bioremediation in marine food webs and to the definition5
of integrated strategies for reducing bioaccumulation in species. We propose a novel computational6
framework for analysing the multiscale effects of bioremediation at the ecosystem level, based7
on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The8
combination of techniques from synthetic biology and ecological network analysis allows the specification9
of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or10
synthetic microbial strains. In this study, we derive a bioaccumulation model of Polychlorinated biphenyls11
(PCBs) in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida12
KT2440 (iJN746) with the aerobic pathway of PCBs degradation. We assess the effectiveness of different13
bioremediation scenarios in reducing PCBs concentration in species and we study indices of species14
centrality to measure their importance in the contaminant diffusion via feeding links. The analysis of the15
Adriatic sea case study suggests that our framework could represent a practical tool in the design of16
effective remediation strategies, providing at the same time insights into the ecological role of microbial17
communities within food webs.18

Keywords: PCBs; Bioremediation; Adriatic Sea; Pseudomonas Putida; Flux Balance Analysis; Ecological Network Analysis19

1 INTRODUCTION
Aquatic ecosystems are subject to a mixture of synthetic organic chemicals, leading to adverse effects20
on organisms at different levels of biological organization and at all trophic levels of the food web. Over21
the last decades, many removal strategies have been proposed in order to reduce the bioavailability of22
Persistent Organic Pollutants (POPs) and to limit the consequent bioaccumulation phenomena on species.23
Polychlorinated biphenyls (PCBs) are a class of POPs consisting of 209 different congeners, obtained from24
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the catalytic chlorination process of biphenyl, and characterized by high environmental persistence and25
resistance to natural ways of breakdown. PCBs are practically insoluble in water and due to their lipophilic26
nature, they easily dissolve in fats and lipids causing bioaccumulation, i.e. the phenomenon by which the27
internal contaminant concentration of an organism is higher than in the external medium. Indeed, PCBs28
have been detected both in aquatic biota and in all the abiotic phases of marine environments (sediments,29
water and dissolved organic carbon). Generally, heavier chlorinated PCBs congeners tend to accumulate30
in oxygen-depleted zones of sediments. Moreover, they bioconcentrate in species by following biomass31
flows in predator-prey relationships. PCBs bioccumulation phenomena in aquatic organisms occur over32
time as the result of multiple contamination pathways, including processes of uptake (e.g. dietary and33
dermal absorption) and elimination (e.g. egestion and respiration).34

However, not all the living organisms in a polluted environment are prone to bioaccumulation. The35
sizeable variety of marine microbial life is metabolically involved in many transformation processes36
like biogeochemical cycles of elements, water quality conservation and biodegradation of many organic37
pollutants. Microbial communities are also an active compartment at the lower trophic levels of marine38
food webs. They interact with the grazing activities of planktonic groups and play a crucial role in the39
mineralization of organic matter through the complex trophic pathway known as the microbial loop40
(Fenchel, 2008). The bioremediation of PCBs is biologically incomplete, since it takes place via two41
distinct microbially mediated processes: anaerobic bacteria by reductive dechlorination remove chlorine42
atoms in higher chlorinated congeners, which are then oxidatively reduced by aerobic bacteria via43
cometabolic reactions (Brown Jr et al., 1987; Bedard and Quensen III, 1995). Even if PCBs are difficult44
to fully degrade, the patterns of PCBs mixtures can potentially lead to the development of novel catabolic45
pathways, thus increasing the genetic microbial variability in the aquatic ecosystem (Pieper and Reineke,46
2000; Lovley, 2003).47

Computational models and predictive tools have found wide applicability and usefulness both in48
ecotoxicological studies and in the genome-scale reconstruction of pollutant degrading bacteria. However,49
to the best of our knowledge, these techniques have never been considered for investigating, in a combined50
way, the multiscale effects of microbial bioremediation at the ecological level. In this work, we develop51
a computational framework that integrates bioaccumulation information at ecosystem level with genome-52
scale metabolic models of degrading bacteria. We apply it to the case study of the PCBs bioremediation53
in the Adriatic food web.54

Specifically, we estimate the PCBs bioaccumulation model by using Linear Inverse Modelling, and we55
employ Flux Balance Analysis to extend the metabolic reconstruction of the toluene degrading bacteria56
Pseudomonas putida KT2440 (iJN746) presented in Nogales et al. (2008) with the aerobic pathway of57
PCBs degradation. We also provide a general method to obtaining integrated ecological-metabolic models,58
relying on a reaction-based encoding of the food web and on the definition of different bioremediation59
scenarios. We analyse the effects of varying oxygen levels on the microbial growth and on the PCBs60
uptake of the extended P. putida by means of bilevel optimization to evaluate the efficiency of biomass61
production when PCBs uptake is favoured and when interactions with the toluene degradation pathway62
are considered. Finally, we apply ecological network analysis tools to study structural properties of the63
bioaccumulation networks obtained at increasing degrees of bioremediation efficiency. By testing different64
bioremediation interventions, our computational experiments provide insights into the potential reduction65
of bioconcentration in the food web, into the role of species in the diffusion of PCBs, and ultimately, into66
the overall status of ecosystem sustainability.67

2 METHODS

2.1 ESTIMATION OF PCBS BIOACCUMULATION IN THE ADRIATIC SEA

In our framework we focus on the case of PCBs bioaccumulation in the Adriatic sea, a semi-enclosed68
basin characterized by high biodiversity (Coll et al., 2010; Danovaro et al., 2010) and by the presence69
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Figure 1. Conceptual model of the Adriatic PCBs bioaccumulation network. Flows are shown with respect to a generic functional group. Mass-balanced
groups are enclosed in the gray boxes, externals are shown outside. The dashed arrow from planktonic groups indicate possible indirect connections. Feeding
links from discard and detritus are omitted. a) red arrows indicate contaminant flows mediated by feeding connections. b) green arrows highlight the potential
propagation of bioremediation effects. Possible bioremediation scenarios are assumed at the interface between detritus and planktonic groups (microbial loop),
or in the water compartment.

of multiple contamination sources and anthropogenic perturbations. In the last decades different species70
of ecological and commercial interest have been surveyed in this region and several toxicological studies71
report the occurrence of PCBs bioaccumulation in Adriatic sea (Storelli et al., 2007; Perugini et al.,72
2004; Marcotrigiano and Storelli, 2003; Bayarri et al., 2001; Corsolini et al., 2000; Sagratini et al.,73
2008). We consider the PCBs bioaccumulation model presented in (Taffi et al., under revision1) where74
a review of bioaccumulation studies in the North, Central and South Adriatic sea (period 1994-2002) is75
conducted in order to estimate bioconcentrations and PCBs flows among species. The model consists of76
39 functional groups and is defined on top of a trophic reconstruction obtained from data collected in Coll77
et al. (2007), one of the most complete quantitative studies of the Northern and Central Adriatic food web.78

We assume that organic chemicals follow the same paths as biomasses, moving via feeding link through79
the trophic structure of the food web, which is a common approach in the field of ecotoxicological80
modelling (Christensen and Walters, 2004; Hendriks et al., 2001; Laender et al., 2009). Flow rates81
quantify the intensity at which the contaminant is transferred from the source to the target (i.e. from prey to82
predator), and are estimated at mass-balance conditions from bioconcentration and biomass values of the83
involved groups. We also include external unbalanced compartments, implementing potentially unlimited84
exogenous imports and exports. Network estimation is achieved through Linear Inverse Modelling (LIM)85
(van Oevelen et al., 2010), used to compute flow rates and bioconcentrations (the unknowns) by solving86
a system of linear constraints that incorporate empirical bioaccumulation data. If constraints are not87
contradictory, there are generally multiple admissible values that can be chosen. In our case, we derive88
a statistically well-founded solution by taking the mean2 of a set of random solutions obtained with89
Monte-Carlo sampling.90

Figure 1 illustrates the conceptual model and the topology of our PCBs bioaccumulation network; in91
Table 1, we provide a description of the contaminant flows and of the constrains used for their estimation.92
We consider the sum of PCBs congeners, expressed in ng g�1 wet weight-based. Biomasses are measured93

1 A recent version is available at http://arxiv.org/abs/1405.6384
2 Being a linear operation, the mean of valid solutions to a system of linear constraints is in turn a valid solution to the system (see also van Oevelen et al.
(2010)).
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Table 1. Main flows in the PCBs bioaccumulation network and linear constraints for their estimation from data.

Mass balances:
P

j

c

j!i

�
P

j

c

i!j

= 0
The bioconcentration of a generic group i is estimated under the mass-balance assumption; j ranges
among groups and external compartments1.
Concentration data: C

i

./ k

where k is an input PCBs value used to constrain concentration C

i

and ./2 {=,,�}. Note that an
arbitrary number of data constraints can be included for the same group.
Uptake from food/losses: c

j!i

= b

j!i

· C
j

The contaminant flow from group j to i is the product of the corresponding biomass flow b

j!i

and
the PCBs concentration in the source j. This equation characterizes both the contaminant uptake
of predator i by consumption of prey j and the contaminant removal from j due to predation by
i. If instead i is an external, the equation can express generic outflows to the export compartment
(c

j�!Export

); respiration flows (c
j�!Respiration

), which account for part of the unassimilated fraction
of ingested biomass; or removal due to fishing activity, which can be directed to the landings
(c

j�!Landing

) or to the discards (c
j�!Discard

). The latter enters back the biomass cycle and is modelled
as a mass-balanced group, with its own bioconcentration value.
Uptake from generic imports: c

Import!i

= b

Import!i

· C
i

This class of constraints describes generic imports of PCBs coming from external contaminant
inflows (e.g. immigration), which we group in the Import compartment. In this case, the PCBs
concentration in the biomass imported into group i is assumed to be the same as in i.
Uptake from environment: c

Water!i

= w

i

· C
Water

where w

i

is the rate of contaminant uptake from water by group i and C

Water

is the concentration in
water2. Contaminant uptakes from water are not mediated by a biomass transfer and are estimated
according to mass-balance constraints.
Non-negativity of concentrations: C

i

� 0
1 Natural detritus and planktonic groups are assumed to be in instant equilibrium with the water phase, and their concentration only depends on the
concentration in water.
2 When also CWater is unknown, the constraint becomes non-linear and wi cannot be directly estimated. In this case, cWater!i is treated as a single
unknown. We assume null wi for compartments in rapid equilibrium with the water phase.

in t km�2 wet weight organic matter, and biomass flows in t km�2 yr�1. PCBs flow rates are thus expressed94
in mg km�2 yr�1. We denote the contaminant flow from prey i to predator j with c

i�!j

, and the PCBs95
concentration in i with C

i

. We assume that biomass flows (b
i�!j

) are known quantities and are estimated96
as reported in (Taffi et al., under revision).97

2.2 INTEGRATION OF PCBS DEGRADATION PATHWAYS INTO P. PUTIDA KT2440

Various environmental and biological factors limit the natural PCBs degradation process, among which98
the high selectivity of bacteria for specific PCBs congeners. Higher chlorinated congeners typically99
tend to accumulate in marine sediments, where anaerobic bacteria by reductive dechlorination use100
these compounds as alternative electron acceptors in their respiration processes, thus making PCBs101
less chlorinated and more aerobically degradable. This step is generally slow but crucial in the whole102
detoxification process, and various PCBs-dechlorinating bacteria, mainly belonging to the phylum103
Chloroflexi, have been isolated and characterized in different contaminated sites (Fava et al., 2003).104
The bioconversion process of less chlorinated PCBs congeners is performed by aerobic bacteria able105
to oxidatively cometabolize PCBs as the unique carbon source, since they encode biphenyl-metabolic106
enzymes (bph). In order to have an effective degradation process, this aerobic step should ideally take107
place sequentially to the anaerobic step in the full microbial degradation pathway. As illustrated in Figure108
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Figure 2. Integration of the aerobic pathway of PCBs degradation in the core metabolism of P. putida KT2440 (iJN746). BphA=biphenyl 2,3-dioxygenase
(multicomponent Rieske non-heme iron oxygenases); BphB=cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase; BphC=biphenyl-2,3-diol 1,2-dioxygenase;
BphD=2,6-dioxo-6-phenylhexa-3-enoate hydrolase; mhpD=2-keto-4-pentenoate hydratase; mhpE=4-hydroxy 2-oxovalerate aldolase; mhpF=acetaldehyde
dehydrogenase.

2, the established aerobic route of PCBs elimination involves a set of enzymatic reactions acting on109
(chloro)biphenyl congeners to yield first, benzoic acid; and then, pyruvate and acetyl-CoA, molecules110
that directly enter the Krebs cycle and allow the microbial biomass growth. Several aerobic bacteria111
are environmentally widely present and characterized as belonging to a variety of genera, including112
Pseudomonas putida (Furukawa, 2000). In particular, strains of P. putida have been isolated in water113
habitats and marine sediments (Garcia-Valdes et al., 1988).114

In this work, we construct a synthetic model of PCBs degrading bacteria using the FBA approach115
(see Sect. 2.3), by extending the metabolic reconstruction of P. putida KT2440 (iJN746) in Nogales116
et al. (2008) with the aerobic degradation pathway of PCBs (KEGG pathway: map00621). As explained117
above, the pathway connects to the core metabolism of P. putida at the starting point of the citrate118
cycle (see Fig. 2). The P. putida TOL-plasmid has been extensively used as a discovery platform for119
bioremediation purposes, since it encodes enzymes required for aromatic hydrocarbons degradation (e.g.,120
toluene, benzoate, phenylacetate, nicotinate). Several studies report the genetic plasticity of different121
strains of Pseudomonas spp., showing the correspondence between gene clusters involved in biphenyl122
degradation pathways (Furukawa and Miyazaki, 1986) and genes for toluene degradation (Furukawa123
et al., 1993).124
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2.3 BILEVEL FLUX BALANCE ANALYSIS

Starting from biochemical reactions and stoichiometric coefficients, the Flux Balance Analysis (FBA)125
framework is based on the assumption of a metabolic steady state (Orth et al. (2010)). That is, for126
each metabolite in the network, a balance is kept between the fluxes of those reaction in which the127
metabolite is a reactant, and those in which it is a product. Due to its ability to handle large biochemical128
networks without requiring kinetic parameters, FBA allows an effective in silico analysis of the invariant129
characteristics of the metabolic network at a low computational cost.130

Formally, let X
h

, h = 1, . . . ,m be the concentration of the hth metabolite in the network, and v

k

,131
k = 1, . . . , n be the flux of the kth reaction. Every X

h

must satisfy dXh
dt

=
P

n

k=1 Shk

v

k

, where S

hk

is132
the stoichiometric coefficient of h in the kth reaction, with the assumption that S

hk

< 0 for substrates133

and S

hk

> 0 for products. Under the assumption of steady state conditions
⇣
dXh
dt

= 0
⌘

, the flux balance134

constraint is Sv = 0.135

Typically, there are more reactions than metabolites, thus Equation Sv = 0 is a highly underdetermined136
linear system, leading to a plurality of solutions. The solution space can be restricted by imposing137
additional capacity constraints on the fluxes, e.g. defining the lower and upper bounds of each flux138
V

?
k

 v

k

 V

>
k

, where V

?
k

and V

>
k

are the minimum and maximum flux rates for the kth reaction. A139
solution is taken through the maximization or the minimization of an objective function Z =

P
n

k=1 fkvk,140
which, under the above constraints, reduces to a convex optimization problem that can be efficiently141
solved with linear programming techniques.142

When two objective functions are taken into account, an FBA problem can be formulated as a143
bilevel linear programming problem (e.g. for optimizing growth and product yield (Burgard et al.,144
2003)). This approach has been also adopted in metabolic engineering when optimizing models towards145
the overproduction of two metabolites simultaneously (Angione et al., 2013). Specifically, the FBA146
maximization problem becomes the inner problem, while an additional maximization problem constitutes147
the outer problem. The constraints of the outer maximization problem are the same as those of the inner148
problem, plus an additional constraint ensuring that the solution space is restricted to the solution of the149
inner problem. Formally, a bilevel maximization problem is defined as:150

max g

|
v

such that max f

|
v

such that Sv = 0

V

?
k

 v

k

 V

>
k

(1)

where f and g are vectors used to select the objectives. For instance, if in a two-objective problem we151
maximize the flux rates of the natural objective v

k1 (e.g. biomass production) and the synthetic objective152
v

k2 (e.g. contaminant uptake), we set f
k1 = 1 and g

k2 = 1. The solution of the bilevel problem (1) is153
a pair indicating the maximum natural objective (inner problem) allowed by the constraints Sv = 0 and154
V

?
k

 v

k

 V

>
k

, and the maximum synthetic objective allowed in the flux distribution that maximizes the155
natural objective. The bilevel problem can be converted to a single-level problem using the duality theory156
applied to the inner problem, which is replaced by additional constraints for the outer problem.157

2.4 FBA ENCODING OF FOOD WEB AND INTEGRATION WITH DEGRADATION PATHWAYS

We introduce a method for integrating the PCBs bioaccumulation network with the FBA-based metabolic158
reconstruction of P. putida. In the following, we use the more compact notation of chemical reactions to159
describe our FBA encoding, omitting the translation to the matrix form given in Section 2.3.160
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FBA encoding. The basic idea is encoding each link i �! j in the food web with a unary irreversible
reaction with substrate i (the prey) and product j (the predator). Ecological compartments are thus
translated into metabolites. Specifically, we derive the following set of reactions:

R

FW

= {(i, j) : i ![0,ci�!j ] j | ci�!j

> 0}

where the rate of a reaction (i, j) (denoted by r

i,j

) is upper bounded by the original corresponding flow rate161
c

i�!j

. This formulation admits a space of solutions with potentially reduced (even zeroed) contaminant162
flows, which is required in order to reproduce the contaminant removal by the bacterial metabolism.163

Any admissible vector of fluxes for the reactions in R

FW

entails a food web whose groups are the164
metabolites occurring in R

FW

and with contaminant flows given by r

i,j

for any group i and j. A reaction165
i ! j having null flux indicates that prey i does not contribute to the contaminant uptake of predator j,166
e.g. when biomass transfer occurs between i and j (b

i�!j

> 0) but i has null contaminant concentration167
(C

i

= 0).168

Additionally, we consider the following set of exchange reactions for expressing the external inputs and
outputs of the food web:

E

FW

={e ![0,+1) ; | e 2 {Respiration,Export, Landing}} and

I

FW

={; !
r

i | i 2 {Water, Import} and r =
X

j

c

i�!j

}

The set E
FW

contains, for each external sink e of the food web, an unbounded export reaction from e.169
Similarly, the set of import reactions I

FW

has an uptake reaction for each external source, but in this case170
the uptake rate is set to the sum of all flows imported through i in the contaminated network (

P
j

c

i�!j

).171
Note that it is sufficient to constrain the import reactions in order to obtain a consistent FBA encoding of172
the bioaccumulation model. Indeed, by mass-balance, throughflow values are conserved by the encoding173
and it can be shown that the food webs entailed by the reactions in R

FW

[ E

FW

[ I

FW

are all identical174
to the original network, up to redistribution of external exports.175

Finally, for a generic group i, the resulting bioconcentration C

i

in the entailed network is computed176
as the ratio between the total contaminant outflows (as reaction fluxes) and the total biomass outflows:177

C

i

=

P
j

r

i,jP
j

b

i�!j

.178

Integration with P. putida metabolism. An effective way to accomplish this task is adding a dummy179
metabolite x̄, which serves as the interface between the encoded bioaccumulation model and the bacterial180
reactions. In particular, x̄ represents the unbounded sink for all the food web groups we aim to remediate;181
and the unbounded source for all the metabolites describing PCBs molecules in the P. putida metabolism182
(in our case, Biphenyl and 4-Chlorobiphenyl). Clearly, these interface reactions could also be bounded183
with arbitrary or experimentally measured limiting factors to bioremediation efficiency, as done in Section184
3 for evaluating different degrees of bioremediation.185

We define the bioremediation problem, as that of maximizing the amount of remediated flow, i.e. the186
sum of fluxes exiting3 metabolite x̄ in the integrated metabolism-food web network. Formally,187

max
P

x̄�!x

02I rx̄,x0

subject to reactions R

FW

[ E

FW

[ I

FW

[ I [R

where I denotes the set of interface reactions; R is the set of reactions in the P. putida metabolism; and188
R

FW

, E
FW

and I

FW

describe the encoded food web.189

3 Due to the mass balance assumption of FBA, influxes could have been equivalently considered.
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Evidently, not all integrations are ecologically and biologically plausible. In our model, we consider two190
bioremediation scenarios, as also shown in Figure 1:191

• Scenario 1: Bioremediation of detritus groups. This hypothesis is based on the fact that the microbial
loop, where bioremediating bacteria are assumed to naturally operate, is located at the interface
between natural detritus and planktonic groups (both included in our food web). Thus, we redirect the
outflows from detritus to the microbial metabolism. The same applies to the discard group, treated as
a detritus in our model. The integration reactions are:

I1 = {Detritus �![0,+1) x̄, Discard �![0,+1) x̄, x̄ �![0,+1) Biphenyl, x̄ �![0,+1) 4-Chlorobiphenyl}

• Scenario 2: Bioremediation of water compartment. This case describes the effects of an in situ
bioremediation process of PCBs, regarded as acting within the water compartment (an external in
our model), decreasing PCBs concentrations in the whole surrounding environmental media. The
integration reactions are:

I2 = {Water �![0,+1) x̄, x̄ �![0,+1) Biphenyl, x̄ �![0,+1) 4-Chlorobiphenyl}

The integrated models have been obtained after converting PCBs flows (mg km�2 yr�1) to the flux units192
used in FBA (mmol h�1 gDW�1). The conversion factor is k = 1/ (m · t · n), where m is the molar mass193
of a PCBs molecule (Biphenyl: 154.2078 mol g�1; 4-Chlorobiphenyl: 188.6529 mol g�1); t = 8760 h is194
the number of hours per year; and n is the amount (gDW) of actively remediating P. putida in the unit of195
space (1 km2). k can be applied to all the PCBs flows, or as a stoichiometric coefficient in the interface196
reactions. In our model, we set n = 10�3 gDW, enough to import the totality of the connected PCBs197
flows into the P. putida metabolism, and to avoid numerical errors in the optimization procedure due to198
excessively small flux values. However, marine metagenomic data can be used to have a finer estimation199
of parameter n.200

2.5 ECOLOGICAL NETWORK INDICES

In order to assess the effects of bioremediation on our contaminated food web, we combine the evaluation201
of bioconcentrations with the study of ecological network indices. Typically, global indices (Kones et al.,202
2009) are used to derive unique descriptors of the structure and properties of the whole ecosystem. On the203
other hand, indices of species centrality (Jordán, 2009) are typically employed for conservation purposes204
and give a measure of species importance in the global functioning of the ecosystem. These notions205
can be naturally applied to the study of our contaminated ecological network, where central species are206
those having a crucial role in the trophic diffusion of PCBs among other species, while global indices207
provide insights into the degree of ecosystem pollution. In our evaluation, we consider Flow Betweenness208
Centrality (FBC) (Freeman et al., 1991) and Link Density (LD), even if our framework can be applied to209
the study of arbitrary network indices.210

FBC gives the topological importance of a species in maintaining the flows among other groups. The
FBC of a group i, FBC

i

, is defined as

FBC

i

=
X

j 6=k,j 6=i,k 6=i

(max

G

c

j�!k

�max

G\i cj�!k

)

where max

G

c

j�!k

is the maximum flow between j and k in the considered food web G and max

G\i cj�!k

211
is the maximum flow between j and k in the same network without group i.212

We employ LD to obtain a structural and qualitative descriptor of the network. It expresses the average
number of active links (with non-null flow) per species and, ideally, from an effective bioremediation
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strategy we expect a substantial breakdown of this property. It is calculated as:

LD =

P
i

P
j

(c
i�!j

> 0)

n

where n is the number of groups in the network.213

3 RESULTS
The approach for the estimation of the PCBs bioaccumulation model and for the analysis of network214
indices was implemented in R (using packages LIM (van Oevelen et al., 2010) and sna (Butts, 2008)).215
The MATLAB-based COBRA toolbox (Schellenberger et al., 2011) was used for constructing and216
analyzing our extension of the P. putida metabolism as well as for the reaction-based encoding and217
integration of the food web4.218

3.1 PCBS METABOLISM IN KT2440 AND INTERACTIONS WITH TOLUENE DEGRADATION

By applying bilevel FBA, the growth rate of P. putida remains at the maximum value (1.3975 h�1) for219
PCBs uptake rate up to 9.8 mmol h�1 gDW�1 (Figure 3 (a)). The maximum PCBs uptake supported by P.220
putida is registered at 10 mmol h�1 gDW�1, since the rate of PCBs uptake stays constant for upper bounds221
greater than this value. Therefore, robust growth is achieved for almost the whole range of admissible222
PCBs uptake rates. Nevertheless, for PCBs uptake rates greater than 9.8 mmol h�1 gDW�1, biomass223
production drops to the 71% of its maximum value (1 h�1), indicating that the bacterium is not able to224
support growth while degrading large amount of PCBs. Further, the addition of the PCBs bioremediation225
pathways to the P. putida metabolism does not result in an increased growth rate.226

In order to investigate the relation between growth rate and oxygen uptake, and between PCBs uptake227
and oxygen uptake, we apply a single-level FBA analysis. In Figure 3 (b), we evaluate the optimal flux228
of biomass and PCBs uptake rate at different levels of oxygen uptake (simulating different depths in the229
marine environment). While the optimal PCBs uptake rate is linear with the maximum oxygen uptake230
rate allowed, the growth rate increases quickly for low import of oxygen until 0.4 mmol h�1 gDW�1, and231
then remains stable even at high oxygen uptake. The P. putida is able to keep a high growth rate also with232
low oxygen, which reproduces the environmental conditions describing the proposed first bioremediation233
scenario. The linear relationship between PCBs and oxygen uptake rates is in keeping with the fact that234
the uptake of PCBs depends on the aerobic degradation pathway.235

We also analyse the interdependence between the PCBs degradation pathways (introduced in this work)236
and that of toluene (in the original reconstruction). We derive an optimality front between them by solving237
two bilevel problems. In the first, we evaluate the maximum toluene uptake when PCBs imports are238
favoured, while in the second problem, we consider the symmetric objectives. Both problems identify the239
identical linear trade-off (red dashed line in Figure 3 (c)), evidencing that P. putida is not able to optimally240
support multiple degradation pathways. We further perform a phenotypic phase plane (PhPP) analysis by241
coupling the biomass production objective with varying PCBs and toluene uptake rates. In this case, we242
seek to optimize growth on top of the configuration maximizing both degradation pathways (the sum of243
PCBs and toluene uptakes). The PCBs-toluene tradeoff delineates two regions in the phenotypic space:244
when the uptakes of PCBs and toluene are below the optimal front, maximum growth is achieved (100%,245
green area in Fig. 3 (c)); and when they exceed the front, we found a reduced growth (71%, blue area).246
Negligible regions with 90% growth (yellow points) are found at the border between the two phenotypes.247
Specifically we observe that optimal growth is achieved for PCBs and toluene fluxes strictly below this248

4 The extended P. putida model was deposited in BioModels Database (Li et al., 2010), id: MODEL1407250000. The code and the models developed in this
work are available at http://www.nicolapaoletti.com/files/research/models/Frontiers_model.zip.
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Figure 3. (a) Bilevel analysis on the P. putida metabolism: we study the optimal growth rates on the solution space of optimal PCBs uptake (L1), when the
upper bound of the latter ranges from 0 to 15 mmol h�1 gDW�1. The maximum PCBs uptake rate is 10 mmol h�1 gDW�1, and the optimal growth rate
is thus achieved for almost the whole range of PCBs uptake. (b) Single-level analysis: controlled/optimal flux of biomass and PCBs uptake rate at different
oxygen levels, which in our case are determined also by different depths. The P. putida is able to keep a high growth rate also on low oxygen. The linear
relationship between PCBs and oxygen uptake rates is in keeping with the fact that the uptake of PCBs depends on aerobic degradation. (c) Interdependence
between toluene and PCBs uptake and corresponding phenotypic phase plane (PhPP). The red dashed line shows the trade-off between toluene and PCBs
uptakes, obtained with a bilevel analysis of optimal toluene uptake (L2), over the configuration maximizing PCBs uptake (L1), by limiting the latter from 0
to 10 mmol h�1 gDW�1. The symmetric bilevel problem (with toluene limited from 0 to 20 mmol h�1 gDW�1) gives the same linear front. This tradeoff
delineates two phenotypes in the PhPP analysis (L2: biomass, L1: toluene+PCBs uptakes): in the lower half (green region), we have optimal growth; in the
upper half (blue region), growth is limited to the 71%.

trade-off, implying that reduced growth occurs also at high uptake values (PCBs flux > 9.8 mmol h�1249
gDW�1, toluene flux > 19.7 mmol h�1 gDW�1), as also seen for the PCBs case in plot (a). It follows250
that, apart from extreme uptake values, the P. putida robustly gives optimal growth yields even in the251
strain designs targeted to the maximization of multipule degradation pathways.252

3.2 BIOREMEDIATION EFFECTS ON BIOACCUMULATION AND SPECIES CENTRALITY

We analyse the integrated models obtained by applying the two scenarios introduced in Section 2.4.253
In Scenario 1, microbial degradation pathways reduce contaminant concentrations through outflows254
from natural detritus and fishing discards (functional groups 38 and 39, trophic level=1), simulating a255
bioremediation at the level of the microbial loop. In Scenario 2, PCBs bioremediation is assumed to act256
in the water compartment by reducing simultaneously all the PCBs uptakes in each functional group.257
The following results are obtained by solving the bioremediation problem (Sect. 2.4) and computing258
bioconcentrations and network indices on the resulting (the entailed) bioaccumulation networks.259

In Figure 4, we illustrate in a circular layout the PCBs bioaccumulation networks of a business-as-260
usual case without bioremediation, hereafter called Scenario 0 (plot (a)), and of the above two scenarios261
when no limits to the bioremediation efficiency are imposed (plot (b) and (c)). Fig. 4 depicts only the262
contaminant flows mediated by feeding links. Plot (a) highlights that in Scenario 0, contaminant diffusion263
throughout the food web is driven by a dense network of trophic connections, each of them carrying a264
non-null PCBs flow.265
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In Scenario 1 (plot (b)), we clearly notice a simpler pattern of PCBs contamination among functional266
groups, due to a considerable reduction of feeding links active in the transport of PCBs. Specifically,267
the redirection of outflows from detritus and discard out of the food web causes the inactivation of268
several PCBs flows, and subsequent presence of groups with null PCBs concentration. Therefore, these269
groups (not plotted) are disconnected from the bioaccumulation network but still active in the biomass270
network. They include detritus (38) and discard (39); detritivores (6,7,8); group 30, which totally feeds271
on planktonic groups; and groups feeding on those so far mentioned (33, 34, 35). Other variations272
are detectable in groups 5, 27 and 28 (detritivores and planktivores) that no longer acquire PCBs273
from food. Finally, we can observe that groups 12 and 27 gain in this scenario a central role in the274
contaminant diffusion, becoming the preferential source of most of their predators, while in Scenario 0275
their contribution appears less relevant.276

The bioaccumulation network under Scenario 2 (plot (c)) exhibits a similar structure to Scenario 1.277
Detritus groups (38,39) and detritivores (6,7,8) are no longer connected to the rest of the food web,278
showing that bioremediation of the water compartment tends to disrupt the pathways of contaminant279
uptake at the lowest trophic levels. Another similarity is the promotion of group 12 as a central node in280
the acquisition of PCBs by its predators. On the other hand, group 27 has no outgoing PCBs flows, while281
in plot (b) the opposite situation (no inflows) is observed for the same group. In general, we notice a lower282
number of active links with respect to Scenario 1, especially in species at higher trophic levels.283

Another kind of analysis enabled by our framework is the study of the networks obtained by solving284
the bioremediation problem at increasing efficiencies, limiting the amount of PCBs flow allowed into the285
bacterial metabolism. In both scenarios, we analyse the variations in PCBs bioconcentrations (Fig. 5 (a)286
and (b)) and in the topological importance of functional groups, measured with the FBC index introduced287
in Section 2.5 (Fig. 5 (c) and (d)). We report a difference between the maximum remediated PCBs flows288
in the two scenarios (4258 mg km�2 y�1 and 3312 mg km�2 y�1, respectively), which mainly depends289
on the structure of the network. Applying the conversion factor in Section 2.4, the maximum remediated290
flow in Scenario 1 corresponds to a PCBs uptake rate of 3.15 mmol h�1 gDW�1 (31.5% of the maximum291
uptake), while in Scenario 2 to 2.45 mmol h�1 gDW�1 (24.5% of the maximum uptake).292

As regards Scenario 1, no remarkable reductions in bioconcentrations are observed in the entire food293
web (see plot (a)), apart from the natural detritus and the discard groups, whose PCBs values are zeroed at294
the 89% and 16%, respectively, of the maximum bioremediation efficiency. We register only minor drops295
in a number of groups at TL 4 (14, 16, 23, 24) and in group 37 (feeding on discard). This tendency is also296
visible in the sum of PCBs, which is practically constant.297

On the other hand, Scenario 2 gives a considerable decrease in the bioconcentrations of all groups298
(plot (b)). This is explained by the fact that the estimated uptakes from water constitute an important299
fraction of imported contaminant, whose degradation also mitigates, indirectly, uptakes from food. The300
only exceptions are natural detritus and discard (38, 39) which have null PCBs flow from water (see Table301
1); and groups 26 and 35 where according to our estimation, water imports are the least relevant external302
uptakes. In general, the sum of PCBs concentrations shows a constant and gradual decreasing trend,303
even though steeper reductions are observable at low values of microbial degradation (2% of maximum304
efficiency gives a 17% drop in the sum of PCBs), and at about the 34% of the maximum bioremediation305
(leading to the 48% reduction of the initial total PCBs).306

In Scenario 1, the analysis of the FBC index (plot (c)) highlights the topological importance of natural307
detritus in the bioaccumulation network, which derives from the fact that every group in the food web308
contributes (via natural death and unassimilated food) to its contaminant uptake. Indeed, this group309
maintains its central role up to the 89% of bioremediation efficiency. After this point, a structural310
disruption occurs, related to the detritus becoming disconnected from the network (i.e. no incident flows).311
This leads to cascade effects also in the centrality of groups 13, 15, 16, 19 and 32. Apart from this312
case, FBC exhibits quite a robust pattern, showing a number of groups (2, 21, 22, 25) with unchanged313
centralities regardless of the amount of bioremediated flux. This structural robustness is evidenced also314
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by the link density values, indicating that, globally, the number of links active in the PCBs diffusion are315
relatively constant.316

On the contrary, Scenario 2 (plot (d)) produces prominent changes in the centrality of most species.317
Here, natural detritus loses its dominant role in the network at the 10% of maximum bioremediation.318
Moreover, at the 34% efficiency, we observe a sudden fall in the FBC of group 24, as also registered319
on its bioconcentration values (see plot (b)). Only functional groups 2 and 25 show robust topological320
importance, in agreement with Scenario 1. The evolution of the link density index also evidences the high321
sensitivity of the network structure. Indeed, the index reaches an average of 3.1429 active links per group,322
36% lower than the initial value.323

4 DISCUSSION

Recent biotechnological advances and novel discovery tools in marine metagenomics are paving the way324
for new integrated solutions in environmental bioengineering, turning empirical hypotheses into practical325
methods. In this context, we presented a computational framework for the analysis of contaminated326
ecosystems and for the evaluation of different hypothetical bioremediation scenarios. We considered the327
case of PCBs bioaccumulation in the Adriatic food web and PCBs degradation microbially mediated by328
Pseudomonas putida. Our framework is based on a range of multi-scale analyses obtained by combining329
well-established methods in ecological modelling (Linear Inverse Modelling and Ecological Network330
Analysis) and Systems Biology (Flux Balance Analysis). We showed how to derive optimal remediation331
strategies that yield the highest decrease of bioaccumulation phenomena in species. In addition, more332
realistic scenarios can be reproduced that take into account environmental limiting factors influencing the333
potential of natural or synthetically designed microbial pathways.334

Our computational experiments indicated that P. putida metabolically supports well the degradation335
of PCBs, and that a substantial drop of PCBs concentration in Adriatic species is achieved with336
comprehensive bioremediation strategies (e.g. Scenario 2: bioremediation of water compartments),337
while natural bioremediation (e.g. Scenario 1: bioremediation of detritus group) proved to be less338
effective. Results also highlight how remediation patterns vary among species in function of their339
feeding relationships. The study of ecological network indices allowed the evaluation of emerging global340
ecosystem properties under different bioremediation scenarios and degradation efficiencies.341

To the best of our knowledge, this is the first computational method linking genome-scale342
reconstructions of bacterial metabolism with food web bioaccumulation models for designing and343
analysing bioremediation strategies. Approaches based on high dimensional omics data and network344
inference methods (Williams et al., 2011; Perkins et al., 2011) have been proposed for predicting the345
exposure of organisms to contaminated sites and for reconstructing adverse outcome pathways (Ankley346
et al., 2010). From the experimental side, Kupryianchyk et al. (2013) were the first to study how in situ347
sediment treatment reduces bioaccumulation at different trophic levels in aquatic food chains.348

In this work we wanted to stress a different view on marine ecosystems, regarding them not just349
as ensembles of macro-species, but as complex multiscale networks linking classical food webs and350
microbial communities, towards a new perspective of “eco-metabolic” networks. We believe that bringing351
the study of microbial metabolic activity into the field of ecotoxicological modelling can highlight352
bottlenecks and advantages of different bioremediation approaches and shed light on the ecological role of353
marine microbial life. Furthermore, PCBs degrading bacteria live in communities structurally organized in354
biofilms (Abraham et al., 2002), where genetic events like recombination, conjunction and gene transfer355
(Dahlberg et al., 1998) can naturally lead to new metabolic pathways of pollutant degradation. In this356
perspective, our framework could be extended from single organism models to the bioengineering of357
bacterial consortia, e.g. following (Brenner et al., 2008; Klitgord and Segrè, 2010), where natural358
genetic interactions can be explored and synthetically optimized for different persistent contaminants.359
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Angione, C., Carapezza, G., Costanza, J., Liò, P., and Nicosia, G. (2013), Pareto optimality in organelle363
energy metabolism analysis, IEEE/ACM Transactions on Computational Biology and Bioinformatics364
(TCBB), 10, 4, 1032–1044365

Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., et al.366
(2010), Adverse outcome pathways: a conceptual framework to support ecotoxicology research and367
risk assessment, Environmental Toxicology and Chemistry, 29, 3, 730–741368

Bayarri, S., Baldassarri, L. T., Iacovella, N., Ferrara, F., and Domenico, A. d. (2001), Pcdds, pcdfs, pcbs369
and dde in edible marine species from the adriatic sea, Chemosphere, 43, 4, 601–610370

Bedard, D. L. and Quensen III, J. F. (1995), Microbial reductive dechlorination of polychlorinated371
biphenyls, Microbial transformation and degradation of toxic organic chemicals, 127–216372

Brenner, K., You, L., and Arnold, F. H. (2008), Engineering microbial consortia: a new frontier in373
synthetic biology, Trends in biotechnology, 26, 9, 483–489374

Brown Jr, J. F., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., and Wagner, R. E. (1987),375
Polychlorinated biphenyl dechlorination in aquatic sediments, Science, 236, 4802, 709–712376

Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003), Optknock: a bilevel programming framework377
for identifying gene knockout strategies for microbial strain optimization, Biotechnology and378
bioengineering, 84, 6, 647–657379

Butts, C. T. (2008), Social network analysis with sna, Journal of Statistical Software, 24, 6, 1–51380
Christensen, V. and Walters, C. (2004), Ecopath with Ecosim: methods, capabilities and limitations,381

Ecological modelling, 172, 2, 109–139382
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F. B. R., Aguzzi, J., et al. (2010), The383

biodiversity of the mediterranean sea: estimates, patterns, and threats, PloS one, 5, 8, e11842384
Coll, M., Santojanni, A., Palomera, I., Tudela, S., and Arneri, E. (2007), An ecological model of the385

northern and central adriatic sea: Analysis of ecosystem structure and fishing impacts, Journal of386
Marine Systems, 67, 1, 119–154387

Corsolini, S., Aurigi, S., and Focardi, S. (2000), Presence of polychlorobiphenyls (pcbs) and coplanar388
congeners in the tissues of the mediterranean loggerhead turtle caretta caretta, Marine Pollution389
Bulletin, 40, 11, 952–960390

Dahlberg, C., Bergström, M., and Hermansson, M. (1998), In situ detection of high levels of horizontal391
plasmid transfer in marine bacterial communities, Applied and environmental microbiology, 64, 7,392
2670–2675393

Danovaro, R., Corinaldesi, C., D’Onghia, G., Galil, B., Gambi, C., Gooday, A. J., et al. (2010), Deep-sea394
biodiversity in the mediterranean sea: The known, the unknown, and the unknowable, PLoS One, 5, 8,395
e11832396

Fava, F., Zanaroli, G., and Young, L. (2003), Microbial reductive dechlorination of pre-existing pcbs and397
spiked 2, 3, 4, 5, 6-pentachlorobiphenyl in anaerobic slurries of a contaminated sediment of venice398
lagoon (italy), FEMS microbiology ecology, 44, 3, 309–318399

Fenchel, T. (2008), The microbial loop–25 years later, Journal of Experimental Marine Biology and400
Ecology, 366, 1, 99–103401

Freeman, L. C., Borgatti, S. P., and White, D. R. (1991), Centrality in valued graphs: A measure of402
betweenness based on network flow, Social networks, 13, 2, 141–154403

Furukawa, K. (2000), Biochemical and genetic bases of microbial degradation of polychlorinated404
biphenyls (pcbs)., The Journal of general and applied microbiology, 46, 6, 283–296405

Furukawa, K., Hirose, J., Suyama, A., Zaiki, T., and Hayashida, S. (1993), Gene components responsible406
for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon).,407
Journal of bacteriology, 175, 16, 5224–5232408

Furukawa, K. and Miyazaki, T. (1986), Cloning of a gene cluster encoding biphenyl and chlorobiphenyl409
degradation in pseudomonas pseudoalcaligenes., Journal of bacteriology, 166, 2, 392–398410

Frontiers in Genetics 13



Taffi et al. Computational modelling in marine bioremediation

Garcia-Valdes, E., Cozar, E., Rotger, R., Lalucat, J., and Ursing, J. (1988), New naphthalene-degrading411
marine pseudomonas strains., Applied and environmental microbiology, 54, 10, 2478–2485412

Hendriks, A. J., van der Linde, A., Cornelissen, G., and Sijm, D. T. (2001), The power of size. 1.413
rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water414
partition ratio and species weight, Environmental toxicology and chemistry, 20, 7, 1399–1420415

Jordán, F. (2009), Keystone species and food webs, Philosophical Transactions of the Royal Society B:416
Biological Sciences, 364, 1524, 1733–1741417
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(a) Scenario 0

(b) Scenario 1 (c) Scenario 2

Figure 4. Circular plot of the Adriatic food web in the three cases considered: PCBs bioaccumulation network without bioremediation (Scenario 0); at
maximum bioremediation efficency for the natural bioremediation acting on detritus and discard (Scenario 1); and the in-situ bioremediation acting on the
water compartment (Scenario 2). Functional groups are located clock-wise in ascending trophic level order. Ribbons represent feeding links carrying PCBs
flows. Each ribbon takes the same color as its source node (the prey), and thickness is proportional to the contribution of the source in the diet of the target node
(the predator). In each group, the outmost stacked bars summarize its diet composition and its contribution to predators’ diet. External and flows to detritus
groups are not displayed. The top-right table lists report the functional groups of the Adriatic food web and their ID numbers. Images has been obtained by
using Krzywinski et al. (2009).
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Figure 5. Levelplots of PCBs concentrations (a, b) and flow betweenness centralities (c,d) in Adriatic species (y-axis) at increasing amounts of contaminant
removed by bacterial uptake (x-axis) in the natural (a,c) and in-situ (b,d) bioremediation scenarios. In the middle, the final amount of remediated flow and
the corresponding PCBs uptake are reported for the two scenarios. Plots on the top of (a) and (b) show the evolution of the sum of PCBs in the food web at
increasing degrees of bioremediation. Plots on the bottom of (c) and (d) show the effects of bioremediation in the link density of the bioaccumulation network.
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