
Accepted Manuscript

Adaptability checking in complex systems

Emanuela Merelli, Nicola Paoletti, Luca Tesei

PII: S0167-6423(15)00065-9
DOI: http://dx.doi.org/10.1016/j.scico.2015.03.004
Reference: SCICO 1882

To appear in: Science of Computer Programming

Received date: 17 February 2013
Revised date: 16 December 2014
Accepted date: 26 March 2015

Please cite this article in press as: E. Merelli et al., Adaptability checking in complex systems,
Sci. Comput. Program. (2015), http://dx.doi.org/10.1016/j.scico.2015.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published
in its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2015.03.004

Highlights

• Hierarchical model for multi-level adaptive systems.
• Relational characterisation of strong and weak adaptability.
• Adaptability checking is reduced to a CTL model checking problem.
• Application to the case study of ATVs motion control

Adaptability Checking in Complex Systems

Emanuela Merellia,∗, Nicola Paolettib, Luca Teseia

aSchool of Science and Technology, Computer Science Division, University of Camerino,
Via del Bastione 1, 62032, Camerino, Italy

bDepartment of Computer Science, University of Oxford, Parks Road, OX1 3QD,
Oxford, UK

Abstract

A hierarchical approach for modelling the adaptability features of complex
systems is introduced. It is based on a structural level S, describing the
adaptation dynamics of the system, and a behavioural level B accounting
for the description of the admissible dynamics of the system. Moreover, a
unified system, called S[B], is defined by coupling S and B. The adaptation
semantics is such that the S level imposes structural constraints on the B
level, which has to adapt whenever it no longer can satisfy them. In this con-
text, we introduce weak and strong adaptability, i.e. the ability of a system to
adapt for some evolution paths or for all possible evolutions, respectively. We
provide a relational characterisation for these two notions and we show that
adaptability checking, i.e. deciding if a system is weak or strong adaptable,
can be reduced to a CTL model checking problem. We apply the model and
the theoretical results to the case study of a motion controller of autonomous
transport vehicles.

Keywords: adaptive systems, state machine, adaptability relations,
adaptability checking, S[B] model
2000 MSC: 68Q10, 68Q60

∗Corresponding author
Email addresses: emanuela.merelli@unicam.it (Emanuela Merelli),

nicola.paoletti@cs.ox.ac.uk (Nicola Paoletti), luca.tesei@unicam.it (Luca Tesei)

Preprint submitted to Science of Computer Programming March 30, 2015

1. Introduction

Self-adaptive systems are particular systems able to modify their own be-
haviour according to their current configuration and the perception of the
environment in which they operate. They develop new strategies in order to
fulfil an objective, properly respond to changes of the environmental condi-
tions or, more generally, maintain desired conditions.

From a broad viewpoint, self-adaptiveness is an intrinsic property of com-
plex natural systems. Self-adaptation is a process driving both the evolution
and the development of living organisms that adapt their features and change
their phenotype in order to survive to the current habitat, to achieve higher
levels of fitness and to appropriately react to external stimuli.

Nowadays, software systems are increasingly resembling complex sys-
tems; this motivates the development of methods for enabling software self-
adaptiveness. Similarly to natural systems, “Self-adaptive software evalua-
tes its own behaviour and changes behaviour when the evaluation indicates
that it is not accomplishing what the software is intended to do, or when
better functionality or performance is possible” [35]. Self-adaptive software
finds application in fields like autonomic computing, service-oriented archi-
tectures, pervasive service ecosystems, mobile networks, multi-agent systems,
and ultra-large-scale software systems [25], characterised by distributed, au-
tonomous, interacting, heterogeneous, conflicting and evolvable sub-systems.

In this work, we develop a formal hierarchical model for self-adaptive
systems, where two fundamental levels are defined: the behavioural level B,
which describes the admissible dynamics of the system; and the structural
level S, accounting for the invariant features of the system that regulate the
behaviour of the system. More precisely, both levels are modelled as state
machines, but each state of the S level is associated with a set of constraints,
i.e. logical formulas over observable variables of the B level.

An S state in the structural level represents a relatively persistent situa-
tion, a steady region for the B level, identified by the set of B states satisfying
the constraints. Therefore S is a higher order structure whose states can be
interpreted as sets of B states, and whose transitions can be viewed as map-
pings among sets of B states. The coupled model will be referred to as S[B],
in order to highlight the two basic levels that compose the system.

The S[B] model is broadly inspired by a previous work of some of the
authors, a spatial bio-inspired process algebra called Shape Calculus [3, 4],
where processes are characterised by a reactive behaviour B and by a shape

2

S that imposes a set of geometrical constraints on their interactions and oc-
cupancy in the three-dimensional Euclidean space. Here, instead, the com-
putational approach is shifted in a more general context, where S and B are
coupled by a hierarchical relation defined on the structural constraints of the
S level and the state space of the B level.

The adaptation semantics can be briefly described as follows. Consider
an S[B] system, let q be the current state of B and assume that it satisfies
the constraints of the current S state. The adaptation is triggered whenever
q cannot evolve because there is no next B state that satisfies the current S
constraints. During adaptation, the S[B] system attempts to evolve towards
a new B state that satisfies a new S state, chosen among the successors of
the current one. In this phase B is no more constrained by S. Adaptation
terminates successfully when B ends up in a state that fulfils the new global
situation represented by one of the admissible S states.

A first general introduction of the S[B] model was given in [38] and [39]
by the authors. In this work, we provide several novelties and improvements,
most of them devoted to the adaptability checking problem, i.e. the automatic
checking of the adaptation capabilities of a given S[B] system. In particular,
we define the notion of weak adaptability, possessed by an S[B] system that
is able to adapt along some of all its possible evolution paths. Strong adapt-
ability requires that the S[B] system is able to adapt along all its possible
evolution paths. We formulate the notions of weak and strong adaptabil-
ity as relations between the states of B and S and also in logical form, as
Computation Tree Logic (CTL) formulas over the given semantics of an S[B]
system. Then, we formally prove the equivalence between the relational and
the logical formulation of strong and weak adaptability (Theorems 1 and 2),
showing that the adaptability checking problem can be reduced to a classical
model checking problem. We also discuss the computational complexity of
our approach. The effectiveness of the S[B] approach for self-adaptive sys-
tems is demonstrated using a case study in the context of adaptive software
systems, a model for a motion controller of autonomous transport vehicles
in a smart airport. The same case study is used for exemplifying the notions
of weak and strong adaptability and the adaptability checking problem.

The paper is organized as follows. Section 2 introduces the formalism
and the syntax of the S[B] model. Section 3 illustrates the application of the
model to the example of adaptive motion controller. In Section 4 we give the
operational semantics of an S[B] system by means of a flattened transition

3

system. In Section 5 we formalise the relations of weak and strong adaptation,
which we equivalently characterise as CTL formulas in Section 6. Related
works including adaptation features of S[B], and conclusions are given in
Section 7. Finally, proofs are presented in Appendix A.

2. A Formal Hierarchical Model for Adaptive Systems

In the S[B] approach, a model encapsulates both the behavioural (B)
and the structural (S) level of an adaptive system. The behavioural level is
classically described as a finite state machine of the form B = (Q, q0 ,−→B)
whereQ is a set of B states, q0 initial B state and−→B transition relation. The
structural level is modelled as a finite state machine S = (R, r0 ,O,−→S, L)
where R is a set of S states, r0 is the initial S state, O is an observation
function, −→S is a transition relation and L is a state labelling function. The
function L labels each S state with a formula representing a set of constraints
over an observation of the B states. Therefore an S state r can be directly
mapped to the set of B states satisfying L(r). Through this mapping, S
can be viewed as a second-order structure S = (R ⊆ 2Q, r0 ,O,−→S⊆ R × R)
where each S state r is identified with its corresponding set of B states. An
S[B] system is the result of coupling the two levels S and B through the
observation function O and an evaluation function [[·]], that maps each S
state to the set of B states meeting the constraints.

The S[B] adaptation is achieved by switching from an S state to another
S state where a different set of constraints holds. During adaptation the B
machine is no more regulated by the structural level, except for an adaptation
invariant, called adaptation invariant, that must be fulfilled by the system
while adapting. The system adapts by following any trajectory that is present
at the B level that does not violate the invariant condition, which can be
used as a safety condition if some activities of the B level must be avoided
during adaptation.

In order to realise our notion of S[B] adaptiveness, there must be some
information flowing both from B to S and viceversa. In particular, the infor-
mation from B to S is modelled here as a set of variables A = {a1 , . . . , an}
called observables of the S on the B level. The values of these variables must
always be derivable from the information contained in the B states. This
makes our approach black-box-oriented, that is to say, S has not the full
knowledge of B, but only some derived information.

4

In control-theoretic terms, as illustrated in Fig. 1, the adaptation model
of an S[B] system can be viewed as a closed-loop system where B is the
plant and S is the controller. Let q and r be the current states of B and
S. B outputs the vector1 B = Post(q) of the states reachable from q with a
single transition, i.e. an element qi of B is such that q −→B qi and each state
is unique:

∧
i ̸=j qi ̸= qj. Since S can only observe some features of B states,

the observer O will provide S with a vector of observations made over the
values of the variables characterizing each state in B: o =

∏
i O(qi).

S will check the observables provided by o with respect to its current
state r. If its constraints are satisfied, S will remain in the same state and
S[B] will proceed in steady mode. Otherwise, S will perform a transition to
a new r state forcing the S[B] system to enter an adaptation mode. Here we
assume that the updated r is computed with a function Check that takes
the current S state and observations. The feedback loop closes with the
selection of the eligible next states B outputted to B, i.e. those states that
satisfy the current constraints of r or those that satisfy the current adaptation
invariant. The set B is obtained by applying the evaluation function [[·]] to
either the constraints of r or the invariant. In the adaptation mode the
output is calculated using the whole B machine without constraints except
the adaptation invariant, to make B free to explore the state space. In turn,
B updates its current state q by selecting one of the eligible states provided
in B. The concepts of observation function O and evaluation function [[·]]
are formalized in Definition 1 and Definition 2.

2.1. Language for constraints

The constraints characterising the states of an S level are expressed using
formulas of a many-sorted first order logic. More precisely, the definition of an
S level includes the definition of a many-sorted signature Σ containing some
function symbols, some predicate symbols and some sorts D1 , . . . , Dk. Σ-
terms and Σ-formulas are constructed in the standard way [24]. In addition,
a particular set of sorted variables, which we call observables, must be fixed.
Such a set is of the form A = {a1 : Dj1 , . . . , an : Djn}, where ji ∈ {1, . . . , k} for
all i = 1, . . . , n. Then, constraints can be expressed as Σ-formulas ψ such that
the variables that occur free in ψ, denoted by free(ψ), are a (possibly empty)

1With abuse of notation, we allow the Post operator to return an indexed vector of
states instead of a set.

5

B level

q ∈ B

Post(q) → B

S level

Check(r,o) → r
O[[·]]

r

B

o

B

Figure 1: Adaptation loop in an S[B] system. At each step, S observes B and decide if
there is a need to change state. The loop closes with the selection of eligible next states
B of B, i.e. those that satisfy the current constraints or those that satisfy the current
adaptation invariant.

subset of A. This set will be denoted by Ψ(Σ, A) = {ψ | ψ is a Σ-formula ∧
free(ψ) ⊆ A}.

We also impose that a particular structure M is fixed for the evalua-
tion of Σ-formulas. M consists of k non-empty domains M(D1), . . . ,M(Dk),
as carrier sets for sorts, together with interpretations for all function and
predicate symbols of Σ. To obtain the full semantic evaluation of formulas in
Ψ(Σ, A) we will take the values for the free variables in A from an observation
function.

Definition 1 (Observation Function). Let Q be the universe set of all states
of machines possibly representing B levels. Let Σ be a many-sorted signature,
let A = {a1 : Dj1 , . . . , an : Djn} be a set of observables and let M be a structure
for the evaluation of Σ-formulas. An observation function OΣ,A

M on Σ, A and
M is a partial function

OΣ,A
M : Q ↪→ (A → D)

where (i) D =
⋃n

i=1 M(Dji) and (ii) for any state q ∈ Q, if OΣ,A
M (q) ̸=⊥ then

OΣ,A
M (q)(ai : Dji) ∈ M(Dji), for all i = 1, . . . , n. For a lighter notation, we

will use O instead of OΣ,A
M when Σ, A and M are clear from the context.

Note that the use of the universe of states as domain makes the defini-
tion of the observation function independent from a particular state machine
representing a behavioural level B. Note also that we do not require the ob-
servation function to be injective. This means that some different states can

6

give the same values to the observables. In this case, the difference among
the states is not visible to S through the observation, but it is internal to B.

To complete the machinery for checking whether a set of constraints is
satisfied or not, we define the satisfaction relation in the natural way.

Definition 2 (Satisfaction relation). Let OΣ,A
M be an observation function. A

state q ∈ Q satisfies a formula ψ ∈ Ψ(Σ, A), written q |= ψ, iff OΣ,A
M (q) ̸=⊥

and ψ is true, according to the standard semantics of many-sorted first order
logic, with respect to the structure M and by substituting in ψ every occur-
rence of the free sorted variable ai : Dji with OΣ,A

M (q)(ai : Dji).
We also define an evaluation function [[·]] : Ψ(Σ, A) −→ 2Q mapping a

formula ψ ∈ Ψ(Σ, A) to the set of states [[ψ]] = {q ∈ Q | q |= ψ}, i.e. those
satisfying ψ.

A set of constraints is formally expressed by a formula ψ ∈ Ψ(Σ, A) that
is the conjunction of all the formulas representing each constraint in the set.
The set of constraints is satisfied if and only if the corresponding formula is
true in the fixed structure M and observation OΣ,A

M .

Example 1: Let us consider a set of observables and associated sorts:

A = {velocity : R, congestion : B}

Consider also a signature Σ = {R,B,==, >,<, 0, 5} where R and B are the
sorts indicating the domains of real numbers and boolean, respectively; ==
is the equality predicate interpreted as the identity relation in each domain;
> and < are the usual greater-than and less-than predicates over R; and the
constants 0 and 5 are the real numbers 0 and 5. A possible formula ψ in the
language Ψ(Σ, A) is

congestion =⇒ velocity < 5 ∧ ¬congestion =⇒ velocity > 0

whose satisfaction depends on the particular values of the variables, which
will be different in different states.
In the context of Autonomous Transport Vehicles (see Section 3), this formula
can be thought to represent a set of two constraints, one imposing that “in
case of congestion, the velocity of the vehicle must be lower than 5” and the
other that “in normal traffic conditions, the velocity must be greater than 0”.

7

2.2. Coupling S and B

Let us now formally define the behavioural level B and the structural
level S separately. Afterwards, the S[B] model is defined as the combination
of the two.

Definition 3 (Behavioural level). The behavioural level of a system is a tuple
B = (Q, q0 ,−→B), where

• Q ⊆ Q is a finite set of states and q0 ∈ Q is the initial state; and

• −→B⊆ Q×Q is the transition relation.

Definition 4 (Structural Level). The structural level of a system is a tuple
S = (R, r0 ,O

Σ,A
M ,−→S, L), where

• R is a finite set of states and r0 ∈ R is the initial state;

• OΣ,A
M is an observation function on a signature Σ, a set of observables

A and a structure M ;

• −→S⊆ R × Ψ(Σ, A) × R is a finite transition relation, labelled with a
formula called invariant; and

• L : R −→ Ψ(Σ, A) is a function labelling each state with a formula
representing a set of constraints.

Let us now give an intuition of the adaptation semantics. Let the current

S state be ri and suppose ri
ψ
−→S rj for some rj. Assume that the behaviour

is in a steady state (i.e. not adapting) qi and therefore qi |= L(ri). If the B
state can move, but all B transitions qi −→B qj are such that qj ̸|= L(ri), then
the system can start adapting to the target S state rj. In this phase, the
B level is no more constrained, but during adaptation the invariant ψ must
be met. Adaptation ends when the behaviour reaches a state qk such that
qk |= L(rj).

We want to remark that the model supports the non-deterministic choice
between adaptations, i.e. the system can adapt to every target state rj

reachable with a transition ri
ψ
−→S rj from the current ri state. The non-

determinism can be both external - that is different target states can be
reached by satisfying different invariants - and internal - that is different
target states can be reached satisfying the same invariant condition.

8

Definition 5 (S[B] system).
An S[B] system is the combination of a behavioural level B = (Q, q0 ,−→B)
and a structural level S = (R, r0 ,O

Σ,A
M ,−→S, L) such that for all q ∈ Q,

OΣ,A
M (q) ̸=⊥. Moreover, in any S[B] system the initial B state must satisfy

the constraints of the initial S state, i.e. q0 |= L(r0).

3. Case Study: Adaptive Motion Controller of Autonomous Trans-
port Vehicles

In this section, we illustrate the features of our approach by means of an
example adapted from [29]: a model of a motion controller of Autonomous
Transport Vehicles (ATVs) in a smart airport.

ATVs are responsible for the transport of passengers between stopovers
like passenger entrances, check-in desks, departure gates, and plane parking
positions. In the airport there are two types of roads that the ATVs can
use: main roads and secondary roads, the latter ones used during traffic
peaks. ATVs can travel at different speed in any road, preferably not at
the maximum speed on secondary roads, as they are narrower than the main
ones. For simplicity, we model only the subcomponent of ATVs that controls
the vehicle speed and the switching between main and secondary roads. The
S[B] approach will be used to specify and implement the adaptation features
of this controller in case of traffic congestion or blockages.

Behavioural Level
The behavioural level describes all the capabilities of the ATV controller,

i.e. all the actions that the system is able to do in an unconstrained scenario.
We suppose that each ATV controller has the possibility to perceive the
current situation of traffic congestion or blockage by using a sensor or by
communicating with a global monitoring systems of the airport. The ATV
controller may, based on this perception, decide which action to execute.

The usual way of abstractly specifying a behaviour of this kind is a two-
phase cycle: in the first phase there is the perception of the global environ-
ment, only relatively to the current congestion situation; in the second phase,
a local action can be executed, corresponding to change either the vehicle
velocity or the road to drive.

To formalise the behavioural level B we consider the following set of
observable variables and associated sorts:

• r : {M (main), S (secondary)}, the current road;

9

• v : {0 (slow), 1 (medium), 2 (high)}, the current velocity of the vehicle;

• c : {true (congestion), false (no congestion)}, a boolean variable indi-
cating the current knowledge of the ATV controller about the traffic
congestion;

• p : {true (perception), false (no perception)}, a boolean variable indi-
cating whether or not the ATV controller is currently perceiving the
congestion situation, i.e. it is in the first phase of its cycle; and

• a : {true (action), false (no action)}, a boolean variable indicating whether
or not the ATV controller is currently executing an action, i.e. it is in
the second phase of its cycle.

Hereafter, each state q of the B level will be identified by the values of the
observables, q = (r, v, c, p, a). We will denote the boolean value true with
the integer 1 and the boolean value false with the integer 0.

Figure 2 contains a schema representing the portion of the state ma-
chine, corresponding to the B level, starting from a generic state (r, v, c, 0, 0),
i.e. a state in which the controller is at the beginning of one iteration of
its cycle. The two outgoing transitions non-deterministically model the
perception of the same congestion situation known at the last perception
(state (r, v, c, 1, 0)) or of the new (negated) situation (state(r, v,¬c, 1, 0)).
In any case, the system proceeds to the action phase (states (r, v, c, 0, 1) or
(r, v,¬c, 0, 1)) where it can decide to change road or to change velocity ending
up in an updated state, ready to start another perception-action iteration.

Structural Level
The structural level can be used to give an abstract, constraint-based,

specification of the possible ways (the various states in S) in which the sys-
tem can function together with the admissible adaptations among them (the
transitions in S). In this case study we show how to implement, as an S[B]
system, a policy of the smart airport that requires the adaptation of the
behaviours of the vehicles during their functioning. We assume that some
of the ATVs in the airport are equipped with adaptability capabilities in
order to implement, as an example, the following policy: “whenever there
is congestion, the adaptive ATV will have to switch as soon as possible to
a secondary road and to limit the velocity to the maximum value 1; on the
contrary, whenever there is not congestion, the adaptive ATV will have to
use a main road at any velocity”.

10

���������

���������

����������

���������

����������

������������

���	��������

�
���������

�����������

���	�������

�
��������

Figure 2: A schema of states and transitions starting from a generic state (r, v, c, 0, 0). We
let r′ ̸= r. Moreover, the transitions towards the states (r, v+1, c, 0, 0) or (r, v+1,¬c, 0, 0)
are not present whenever v = 2, while the transitions towards the states (r, v − 1, c, 0, 0)
or (r, v + 1,¬c, 0, 0) are not present whenever v = 0.

11

This policy clearly identifies two modes of operations of the adaptive
ATVs, which are activated by different environmental conditions:

• a normal mode of operation, occurring when there is no traffic conges-
tion and such that the main road is driven (r == M); and

• a fallback mode, occurring when congestion occurs; in this case the
ATV has to be in the secondary road (r == S) and it cannot drive at
the maximum velocity (v is either 0 or 1).

These two modes are modelled by two different S states, as shown in Fig-
ure 3(a). The constraint characterizing the normal mode (state r0) is the
disjunction of the description of the mode (¬c ∧ r == M) with the possibil-
ity for the ATV controller to perceive the occurrence of a congestion when
in the mode (c ∧ r == M ∧ p). Note that without the latter disjunctive
term it would not be possible for the system to perceive the different value of
the variable c because that would violate the constraint describing the mode
(¬c ∧ r == M), putting the perception state out of the normal mode. This
according to the semantics of S[B] (see Section 4). The fallback mode (state
r1) is also described, for the same reasons, by the disjunction of the mode
description (c∧r == S∧v < 2) and the possibility for the system to perceive
¬c when in the mode (¬c ∧ r == S ∧ v < 2 ∧ p).

The invariant conditions on the transitions between r0 and r1 are needed
to avoid the perception of a value of c different from that of the mode to which
the system is adapting to. For instance, when adapting from r0 to r1 the
target steady state is one in which there is congestion. During the adaptation
we need to ensure that, whenever there is perception, only the value c can
be perceived, ruling out the other possibility (due to non-determinism) of
perceiving ¬c. This is expressed by the invariant (p ∧ c) ∨ ¬p that, in fact,
corresponds to forcing the S[B] system to ignore possible changes in the
environment during adaptation. Without these invariants (see Figure 3(b)),
the system could fall in a livelock during the adaptation phase, as it is shown
in Section 5.1.

Figure 4 shows the full B level where the blue box encloses the states sat-
isfying the constraints of r0 , and the red box those satisfying the constraints
of r1 .

12

��
�

�����������
��

�������������	�

��
�

��������
������
��

����������
��������	�

������������

�������������

(a) S0

��
�

�����������
��

�������������	�

��
�

��������
������
��

����������
��������	�

����

����

(b) S1

Figure 3: Two possible structural levels, S0 (a) and S1 (b), for the motion controller
example. They model the adaptation logic between two modes of operation, r0 (normal,
blue) and r1 (fallback, red).

��

��

���������

��������� ���������

��������� ���������

��������� ���������

��������� ��������� ��������� ���������

���������

��������� ���������

��������� ���������

��������� ���������

��������� ��������� ������������������

��������� ���������

���������

���������

���������

��������� ���������

���������

��������� ���������

���������

���������

��������� ���������

Figure 4: The behavioural state machine for the motion control example. Each state is
labelled with the different evaluation of the observable variables (r, v, c, p, a), i.e. (road,
velocity, congestion, perception, action). Coloured areas are used to represent the states
of the S levels of Figure 3(a) and 3(b), which identify stable regions in the B level. These
are r0 (normal mode, blue box) and r1 (fallback/congestion mode, red box).

13

4. Operational Semantics of the Flat S[B] system

We give the operational semantics of an S[B] system as a transition sys-
tem resulting from the flattening of the behavioural and the structural levels.
We obtain a Labelled Transition System (LTS) over states of the form (q, r, ρ),
where:

• q ∈ Q and r ∈ R are the active B state and S state, respectively; and

• ρ keeps the target S state that must be reached during adaptation and
the invariant that must be fulfilled during this phase. Therefore ρ is
either empty (no adaptation is occurring), or a singleton {(ψ, r′)}, with
ψ ∈ Ψ(Σ, A) a formula and r′ ∈ R an S state.

Definition 6 (Flat S[B]system). Consider an S[B] system. The correspond-

ing flat S[B] system is the LTS F(S[B]) = (F, f0 ,
r
−→ ∪

r,ψ,r′

−−−→) where

• F = Q×R× ({(ψ, r′) | ∃r ∈ R. r
ψ
−→S r′} ∪ {∅}) is the set of states;

• f0 = (q0 , r0 , ∅) is the initial state;

•
r
−→⊆ F × F , with r ∈ R, is a family of transition relations between
non-adapting states, i.e., both satisfying L(r);

•
r,ψ,r′

−−−→⊆ F ×F , with r, r′ ∈ R and ψ ∈ Ψ(Σ, A), is a family of transition
relations between adapting states, where the adaptation is determined

by the S transition r
ψ
−→S r′; and

• the pairs in
r
−→ and in

r,ψ,r′

−−−→ are all and only those derivable using the
rules in Table 1.

Let us discuss the rules listed in Table 1 characterising the flattened
transitional semantics:

• Rule Steady describes the steady (i.e. non-adapting) behaviour of the
system. If the system is not adapting and a B state q can perform
a transition to a q′ that satisfies the current constraints L(r), then
the flat system can perform a non-adapting transition

r
−→ of the form

(q, r, ∅)
r
−→ (q′, r, ∅).

14

Steady
q |= L(r) q −→B q′ q′ |= L(r)

(q, r, ∅)
r
−→ (q′, r, ∅)

AdaptStart

∀q′′.(q −→B q′′ =⇒ q′′ ̸|= L(r))

q |= L(r) q −→B q′ r
ψ
−→S r′ q′ ̸|= L(r′) q′ |= ψ

(q, r, ∅)
r,ψ,r′
−−−→ (q′, r, {(ψ, r′)})

Adapt

∀q′′.(q −→B q′′ =⇒ q′′ ̸|= L(r′))

q |= ψ q ̸|= L(r′) q −→B q′ q′ |= ψ

(q, r, {(ψ, r′)})
r,ψ,r′
−−−→ (q′, r, {(ψ, r′)})

AdaptEnd
q |= ψ q ̸|= L(r′) q −→B q′ q′ |= L(r′)

(q, r, {(ψ, r′)})
r,ψ,r′
−−−→ (q′, r′, ∅)

AdaptStartEnd

∀q′′.(q −→B q′′ =⇒ q′′ ̸|= L(r))

q |= L(r) q −→B q′ r
ψ
−→S r′ q′ |= L(r′)

(q, r, ∅)
r,ψ,r′
−−−→ (q′, r′, ∅)

Table 1: Operational semantics of the flat S[B] system

15

• Rule AdaptStart regulates the starting of an adaptation phase.
Adaptation occurs when all of the next B states do not satisfy the
current S state constraints - i.e. ∀q′′.(q −→B q′′ =⇒ q′′ ̸|= L(r)) - and
the B machine is not itself deadlocked (q −→B q′). In this case, for

each S transition r
ψ
−→S r′ an adaptation towards the target state r′,

under the invariant ψ, can start. The flat system performs an adapting

transition
r,ψ,r′

−−−→ of the form (q, r, ∅)
r,ψ,r′

−−−→ (q′, r, {(ψ, r′)}).

• Rule Adapt can be used only during an adaptation phase. It han-
dles the case in which, after the current transition, the system keeps
adapting because a steady configuration cannot be reached (∀q′′.(q −→B

q′′ =⇒ q′′ ̸|= L(r′))). In this situation, since the system still must
adapt (q ̸|= L(r′)), if the B machine is not deadlocked and the in-
variant can still be satisfied (q −→B q′ and q′ |= ψ), the rule allows a

transition of the form (q, r, {(ψ, r′)})
r,ψ,r′

−−−→ (q′, r, {(ψ, r′)}). Note that
during adaptation the behaviour is not regulated by the S states con-
straints. Note also that the semantics does not assure that a state
where the target S state constraints hold is eventually reached. Two
different formulations of such adaptability requirements are given in
Section 5.

• Also rule AdaptEnd can only be applied during an adaptation phase
and it handles the case in which, after the current transition, the
adaptation must end because a steady configuration has been reached

(q′ |= L(r′)). It allows a transition
r,ψ,r′

−−−→ from an adapting state
(q, r, {(ψ, r′)}) to the steady (non-adapting) state (q′, r′, ∅).

• Rule AdaptStartEnd handles the special case in which an adap-
tation phase must start from a steady situation - ∀q′′.(q −→B q′′ =⇒
q′′ ̸|= L(r) - but then, after just one move of the B level, another steady
region of the S level is reached (q′ |= L(r′)). In this case the invariant
ψ associated to the S transition is ignored and the system goes directly
into another steady state. Note that this rule is alternative to the rule
AdaptStart in which the initial situation is the same, but the steady
region is not reached after one B transition. The flat system performs

an adapting transition
r,ψ,r′

−−−→ of the form (q, r, ∅)
r,ψ,r′

−−−→ (q′, r,′ ∅).

16

Therefore, a successful adaptation occurs when rulesAdaptEnd orAdapt-

StartEnd can be applied, i.e. when a transition from an adapting to a
steady state is fired.

Let us now state some properties of the given flat semantics. In the
following, given any transition relation → and any state s, by s → and by
s ̸→ we mean, as usual, that there exists a state s′ such that s → s′ and
that there exists no state s′ such that s → s′, respectively. Moreover, by →+

we indicate a finite, non-empty, sequence of → steps; more formally, there
exists n ∈ N, n > 0 such that s = s0 → s1 → · · · sn−1 → sn. Finally, by →k,
k ≥ 0, we indicate k consecutive steps of the relation →: s = s0 → s1 →
· · · sk−1 → sk. If k = 0, then s →0 s′ is equivalent to say that there is the
empty sequence of steps s, and thus s′ = s. This is always possible, even if
the relation → is not reflexive.

Proposition 1 (Properties of flat semantics).

Let F(S[B]) = (F, f0 ,
r
−→ ∪

r,ψ,r′

−−−→) be a flat S[B] system. All the following
statements hold:

(i) If a steady transition can be performed, then adaptation cannot start:

∀(q, r, ∅) ∈ F. (q, r, ∅)
r
−→ (q′, r, ∅) =⇒ (q, r, ∅)

r,ψ,r′

−−−↛

(ii) If adaptation can start, then no steady transition is possible:

∀(q, r, ∅) ∈ F. (q, r, ∅)
r,ψ,r′

−−−→ (q′, r, {(ψ, r′)}) =⇒ (q, r, ∅) ̸
r
−→

(iii) During adaptation no steady transition is possible:
∀(q′, r′, {(ψ, r′)}) ∈ F. (q′, r′, {(ψ, r′)}) ̸

r
−→

(iv) The non-adapting and the adapting transition relations are disjoint:

∀r, r′ ∈ R, ∀ψ ∈ Ψ(Σ, A).
r
−→ ∩

r,ψ,r′

−−−→= ∅

(v) In case of a successful adaptation, the adaptation phase ends as soon
as possible, i.e. as soon as the target steady state can be reached with a
single transition.

(vi) Given any q ∈ Q and r ∈ R, then every infinite path π in F(S[B])
starting in a state (q, r, ∅) such that q |= L(r) is of one of the following
kinds:

17

(1) adaptation always succeeds; the path alternates between steady tran-
sitions and adaptation paths:

π = (q = q0 , r = r0 , ∅)(
r0−→)m0(

r0,ψ0,r1−−−−→)n0 · · ·

· · · (qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) · · ·

such that for each i ≥ 0, either mi = 1∧ni = 0 (steady transition)
or mi = 0 ∧ ni > 0 (adaptation path);

(2) adaptation lasts forever; the path has a prefix in which steady tran-
sitions and adaptation paths alternate, but then one adaptation
path never stops:

π = (q = q0 , r = r0 , ∅)(
r0−→)m0(

r0,ψ0,r1−−−−→)n0 · · ·

· · · (qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) · · ·

· · · (qk, rk, ∅)
rk,ψk,rk+1

−−−−−−→ (qk+1 , rk, {ψk, rk+1 })
rk,ψk,rk+1

−−−−−−→ (qk+2 , rk, {ψk, rk+1 })
rk,ψk,rk+1

−−−−−−→ · · ·

where k ≥ 0 and for each i, 0 ≤ i < k, either mi = 1 ∧ ni = 0 or
mi = 0 ∧ ni > 0.

(vii) Let π ∈ F(S[B]) be an infinite path starting in a state (q, r, ∅) such
that q |= L(r). Then, in every position i of the path such that π[i] =
(qi, ri, ∅), it holds qi |= L(ri).

Proof. See Appendix A.1

4.1. Termination

In an S[B] system, deadlocks cannot be compatible with adaptability.
Indeed, we see adaptability as the property for which a system continuously
operates under stable, allowed modes (steady states), by possibly performing
adaptation paths across modes.

In the flat semantics deadlocks occurring at adapting states, e.g. when the
adaptation invariant cannot be met, are clearly conflicting with the concept of
adaptability. Instead, deadlocks at steady states are more subtle to interpret,
since they may occur under two different conditions:

18

• from the current state, any transition lead to a state violating the
current constraints, and, at the same time, adaptation cannot start
because none of the next B states meet any of the adaptation invariants
and any of the target constraints. In other words, the flat semantics
terminates even if the B level can proceed. Evidently, this violates
adaptability.

• the B level cannot progress at all. We consider this situation as a bad
deadlock state in the behavioural model. Conversely, every B state
indicating a good termination should have the chance to progress and
therefore must be modelled, as usual in this case, with an idling self-
loop.

We capture the requirement for which the flat S[B] must not terminate
through the Progress(q, r) predicate:

Progress(q, r) ⇐⇒ (q, r, ∅)
r
−→ ∨ (q, r, ∅)

r,ψ,r′

−−−→

4.2. Flat Semantics of the Motion Control Example

The flat semantics of the two systems S0 [B] and S1 [B] implementing the
ATV motion controller case study are depicted in Figure 5 and 6, respectively.

Notably, the same behavioural level B possesses different adaptation
capabilities depending on the structure S that is considered. Indeed, in
F(S0 [B]) every adaptation path leads to a target S state. On the other
hand, in F(S1 [B]) always there exists an adaptation path leading to a target
stable region, but it may contain cycles of adapting states, thus leading to
possibly infinite adaptation paths.

In other words, the behavioural level B is able to successfully adapt un-
der the structural level S0 , for all possible adaptation paths. Recalling the
definitions introduced in Section 1, S0 [B] is strong adaptable. Conversely, B
is able to successfully adapt under S1 only for some adaptation paths, i.e. the
finite ones. Therefore, S1 [B] is weak adaptable. These two different kinds of
adaptability are formalized in Section 5.

5. Adaptability Properties

The transitional semantics introduced in Section 4 does not guarantee
that an adaptation phase can always start or that, once started, it always
ends up in a state satisfying the constraints of the target S state. In this

19

��� �
���������

��� �
���������

��� �
���������

��� �
���������

���� ��
���������

��� �
���������

��� �
���������

��� �
���������

��� �
���������

���� ��
���������

��� �
���������

��� �
���������

��� �
���������

��� �
���������

���� ��
���������

���� �
���������

���� �
���������

���� �
���������

���� �
���������

��� ��
���������

���� �
���������

���� �
���������

���� �
���������

���� �
���������

��� ��
���������

��� ��
���������

���� ��
���������

��� ��
���������

��� ��
���������

���� ��
���������

Figure 5: The flat semantics of the system S0[B]. Here, every adaptation path leads to a
target S-state.

20

���� �
���������

���� �
���������

���� �
���������

���� �
���������

���� ��
���������

���� �
���������

���� �
���������

���� �
���������

���� �
���������

���� ��
���������

���� �
���������

���� �
���������

���� �
���������

���� �
���������

���� ��
���������

���� �
���������

���� �
���������

���� �
���������

���� �
���������

���� ��
���������

���� �
���������

���� �
���������

���� �
���������

���� �
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

���� ��
���������

Figure 6: The flat semantics of the system S1[B]. In this case, there are adaptation paths
leading to a target stable region, but also infinite adaptation paths due to cycles (see
e.g. the adaptation path from r0 to r1 (M, 2, 1, 0, 1) → (S, 2, 1, 0, 0) → (S, 2, 0, 1, 0) →
(S, 2, 0, 0, 1) → (M, 2, 0, 0, 0) → (M, 2, 1, 1, 0) → (M, 2, 1, 0, 1)).

21

section we want to give some formal tools to analyse a given system w.r.t.
these kind of properties. As a first step, we characterise two adaptability
notions by means of two relations over the set of B states and the set of
S states, namely a weak adaptation relation Rw and a strong adaptation
relation Rs. Then, we characterise the same adaptability notions logically
and we prove that they can be model checked by using proper formulae of a
temporal logic.

Informally, a state q of B is weak adaptable to a state r of S if it satisfies
the constraints imposed by r and some of its successors are either weak
adaptable to the same r or there is an adaptation phase of the flat system
that, from q, reaches a state q′ that is weak adaptable to another S state
r′. In other words, we require that states satisfying L(r) are in relation
with r and that from “border” states, that is to say those that can start an
adaptation phase for leaving r, there is always at least one way to safely reach
another steady situation in another S state r′. As explained in Sect. 4.1, the
Progress predicate is used to rule out steady configurations in a state of
bad termination. We formally define this relation using a co-inductive style
as it is usually done, for instance, for bisimulation relations.

Definition 7 (Weak adaptation). Given an S[B] system, a binary relation
R ⊆ Q×R is a weak adaptation if and only if whenever q R r we have:

(i) q |= L(r) and Progress(q, r), and

(ii) if (q, r, ∅)
r
−→ then there exists q′ ∈ Q such that (q, r, ∅)

r
−→ (q′, r, ∅) and

q′ R r, and

(iii) if (q, r, ∅)
r,ψ′,r′′

−−−−→ for some ψ′ ∈ Ψ(Σ, A) and r′′ ∈ R then there exist

q′ ∈ Q, ψ ∈ Ψ(Σ, A) and r′ ∈ R such that (q, r, ∅)
r,ψ,r′

−−−→
+

(q′, r′, ∅) and
q′ R r′.

We say that a state q ∈ Q is weak adaptable to a state r ∈ R, written q|wr,
if and only if there is a weak adaptation relation R such that (q, r) is in R.

At the level of the whole system, we say that S[B] is weak adaptable if
the initial B state q0 is weak adaptable to the initial S state r0 .

Proposition 2 (Union of Weak Adaptation Relations). Given an S[B] sys-
tem, if R1 and R2 are weak adaptation relations, then R1 ∪ R2 is a weak
adaptation relation.

22

Proof. See Appendix A.2

Definition 8 (Weak adaptability). Given an S[B] system, the union of all
weak adaptation relations among the states Q and R of S[B] is denoted by
Rw and is the weak adaptability relation of S[B].

Lemma 1 (Propagation of Weak Adaptation Relation). Consider an S[B]
system and let q and r be such that q|wr. Then there exists in F(S[B]) an
infinite path

π = (q = q0 , r = r0 , ∅)(
r0−→)m0(

r0,ψ0,r1−−−−→)n0 · · ·

· · · (qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) · · ·

such that ∀i ≥ 0 . qi|wri ∧ ((mi = 1 ∧ ni = 0) ∨ (mi = 0 ∧ ni > 0)).

Proof. See Appendix A.3

Weak adaptability guarantees that there is always at least one way for a
certain state of an S[B] system to adapt, that is to say to continue to evolve
in a consistent way w.r.t. the structural constraints of the S level. A stronger
property that could be useful to know about the adaptability of a system is
what we call strong adaptability. A B state q is strong adaptable to an S
state r if it satisfies the constraints imposed by r and all its successors q′ are
either strong adaptable to the same r or they are always the starting point of
a successful adaptation phase towards states q′′ that are strong adaptable to
other S states. Again, bad deadlocks are excluded from the relations. This
time we require that all the “border” states are safe doors to other steady
situations, whatever path is taken from them.

Definition 9 (Strong adaptation). Given an S[B] system, a binary relation
R ⊆ Q×R is a strong adaptation if and only if whenever q R r we have:

(i) q |= L(r) and Progress(q, r), and

(ii) for all q′ ∈ Q, if (q, r, ∅)
r
−→ (q′, r, ∅) then q′ R r, and

(iii) all adaptation paths starting from (q, r, ∅) are finite and end up in a
state (q′, r′, ∅) such that q′ R r′.

We say that a state q ∈ Q is strong adaptable to a state r ∈ R, written q|sr,
if and only if there is a strong adaptation relation R such that (q, r) is in R.

At the level of the whole system, we say that B is strong adaptable to S
if the initial B state q0 is strong adaptable to the initial S state r0 .

23

Proposition 3 (Union of Strong Adaptation Relations). Given an S[B]
system, if R1 and R2 are strong adaptation relations, then R1 ∪ R2 is a
strong adaptation relation.

Proof. As in the case of weak adaptation relations.

Definition 10 (Strong adaptability). Given an S[B] system, the union of
all strong adaptation relations among the states Q and R of S[B] is denoted
by Rs and is the strong adaptability relation of S[B].

In the remainder of the paper we will alternatively say that an S[B]
system is weak (strong) adaptable, in the sense that B is weak (strong)
adaptable to S. It is straightforward to see that strong adaptability implies
weak adaptability, since the strong version of the relation requires that every
adaptation path reaches a target S state, while the weak version just requires
that at least one adaptation path reaches a target S state.

Proposition 4 (Strong Adaptation implies Weak Adaptation). Consider an
S[B] system and let q and r be such that q|sr. Then, it holds q|wr.

Proof. See Appendix A.4

Given the flat semantics F(S[B]) = (F, f0 ,
r
−→ ∪

r,ψ,r′

−−−→) of an S[B] system,
we will denote, in the following, the set of reachable states from a certain
state f ∈ F as the reflexive and transitive closure Post∗(f) of the operator

Post(s) = {s′ ∈ F | (s, s′) ∈
r
−→ ∪

r,ψ,r′

−−−→}.

Lemma 2 (Propagation of Strong Adaptation Relation). Consider an S[B]
system and let q and r be such that q|sr. Then, every state (q′, r′, ∅) ∈
Post∗((q, r, ∅)) is such that q′|sr′.

Proof. See Appendix A.5

The following proposition gives a precise candidate relation for checking
if a system is strong adaptable: such a candidate is determined by the steady
states of the flat semantics that are reachable from the initial state.

Proposition 5 (Construction of Strong Adaptation Relation). Given an

S[B] system, let F(S[B]) = (F, f0 ,
r
−→ ∪

r,ψ,r′

−−−→) be its flat semantics. Then
S[B] is strong adaptable if and only if R = {(q, r) ∈ Q × R | (q, r, ∅) ∈
Post∗(f0)} is a strong adaptation relation.

Proof. See Appendix A.6

24

5.1. Adaptation Relations in the Motion Controller Example

In the following we will show that in the ATV motion controller case
study S0 [B] is strong adaptable (and thus also weak adaptable) and S1 [B] is
weak adaptable, but not strong adaptable.

In order to verify that S0 [B] is strong adaptable, we need to prove that
q0 |sr0 , by finding a strong adaptation relation R s.t. (q0 , r0) ∈ R. Note
that in F(S0 [B]), every state is reachable from the initial state (0, r0 , ∅).
Therefore by Proposition 5, we consider the relation R = {(q, r) | q ∈ Q, r ∈
R, (q, r, ∅) ∈ F}, where F is the set of flat states of F(S0 [B]). It is easy to
verify that ∀(q, r) ∈ R. q |= L(r); and that Progress(q, r) holds for any
of such states, because there are no deadlock states in the flat semantics.
Therefore condition (i) of the definition of strong adaptation is always true
and has not to be further checked. Clearly, (q0 , r0) ∈ R. Finally, it can be
shown that requirements (ii) and (iii) of Def. 9 hold for each element of R.

We show the proof for ((M, 0, 0, 0, 0), r0) and ((M, 0, 1, 1, 0), r0). The
other pairs can be proved analogously.

• ((M, 0, 0, 0, 0), r0)

(ii) ((M, 0, 0, 0, 0), r0 , ∅)
r0−→ ((M, 0, 0, 1, 0), r0 , ∅)

and ((M, 0, 0, 1, 0), r0) ∈ R;

((M, 0, 0, 0, 0), r0 , ∅)
r0−→ ((M, 0, 1, 1, 0), r0 , ∅)

and ((M, 0, 1, 1, 0), r0) ∈ R

(iii) ((M, 0, 0, 0, 0), r0 , ∅)
r,ψ,r′
−−−↛

• ((M, 0, 1, 1, 0), r0)

(ii) ((M, 0, 1, 1, 0), r0 , ∅) ̸
r
−→

(iii) there is only one adaptation path from ((M, 0, 1, 1, 0), r0 , ∅) leading to
the flat state ((S, 0, 1, 0, 0), r1 , ∅) (through the B state (M, 0, 1, 0, 1)),
and ((S, 0, 1, 0, 0), r1) ∈ R.

On the other hand, we demonstrate that S1 [B] is weak adaptable by
finding a weak adaptation relation R s.t. (q0 , r0) ∈ R. We take as R the
following relation:

{((M, 0, 0, 0, 0), r0), ((S, 0, 1, 0, 0), r1), ((M, 0, 1, 1, 0), r0), ((S, 0, 0, 1, 0), r1)}

25

Similarly to S0 [B], (q0 , r0) ∈ R and for all (q, r) ∈ R, q |= L(r) and
Progress(q, r) both holds. Thus, we need to check requirements (ii) and
(iii) of Definition 7 to prove that R is a weak adaptation relation.

We observe that pairs ((M, 0, 0, 0, 0), r0) and ((S, 0, 1, 0, 0), r1) meet re-
quirements (ii) and (iii), the latter being trivially verified since they do not
admit adaptation transitions. Pairs ((M, 0, 1, 1, 0), r0) and ((S, 0, 0, 1, 0), r1)
also comply with the weak adaptation definition, since they can both reach,
in a finite number of adaptation steps, flat states that map to elements in R,
i.e. ((S, 0, 1, 0, 0), r1) and ((M, 0, 0, 0, 0), r0), respectively.

However, note that ((S, 0, 1, 0, 0), r1) cannot be in any strong adaptation
relation because, by the propagation property, ((M, 2, 1, 1, 0), r0) would be
in the relation and there are infinite adaptation paths starting from its cor-
responding flat state (see Figure 6 and its caption). We conclude that R is
a weak and not strong adaptation relation.

6. Logical Characterisation of Adaptability Properties

In this section we formulate the adaptability properties introduced in
Section 5 in terms of formulae of a temporal logic that can be model checked
[2, 17].

To this purpose we briefly recall the well-known Computation Tree Logic
(CTL) [14, 15], a branching-time logic whose semantics is defined in terms of
paths along a Kripke structure [33]. Given a set AP of atomic propositions,
a Kripke structure is a tuple (T, t0 ,−→k, I) where T is a finite set of states,
t0 is the initial state, −→κ⊆ T × T is a left-total transition relation and
I : T → 2AP maps each state to the set of atomic propositions that are true
in that state. Given a state t ∈ T , a path π starting from t has the form
π : t = t0 −→κ t1 −→κ t2 −→κ · · · , where for all i = 1, 2, . . . , (ti−1 , ti) ∈−→κ.
Given a path π and an index i > 0, by π[i] we denote the i-th state along
the path π. The set of all paths starting from t is denoted by Paths(t). Note
that, since the transition relation is required to be left-total, all runs are
infinite. To model a deadlocked or terminated state in a Kripke structure
the modeller must put a self-cycle on that state.

The set of well-formed CTL formulae are given by the following grammar:

φ ::= true | p | ¬φ | φ ∧ φ | AXφ | EXφ | A[φUφ] | E[φUφ]

where p ∈ AP is an atomic proposition, logical operators are minimal (¬,∧)
in order to generate all the usual ones, and temporal operators (X next,

26

U until) quantify along paths and must be preceded by the universal path
quantifier A or by the existential path quantifier E.

Given a state t of the underlying Kripke structure, the satisfaction of a
CTL formula φ in t, written t |=CTL φ, is defined inductively as follows.

t |=CTL true for all t
t |=CTL p iff p ∈ I(t)
t |=CTL ¬φ iff t ̸|=CTL φ
t |=CTL φ1 ∧ φ2 iff t |=CTL φ1 and t |=CTL φ2

t |=CTL AXφ iff ∀π ∈ Paths(t).π[1] |=CTL φ
t |=CTL EXφ iff ∃π ∈ Paths(t) : π[1] |=CTL φ
t |=CTL A[φ1Uφ2] iff ∀π ∈ Paths(t).∃j ≥ 0: (π[j] |=CTL φ2 and

∀0 ≤ i < j.π[i] |=CTL φ1)
t |=CTL E[φ1Uφ2] iff ∃π ∈ Paths(t) : ∃j ≥ 0: (π[j] |=CTL φ2 and

∀0 ≤ i < j.π[i] |=CTL φ1)

Other useful temporal operators like EFφ (φ holds potentially), AFφ (φ
is inevitable), EGφ (potentially always φ) and AGφ (invariantly φ), are
derived, as usual, as follows: EFφ ≡ E[trueUφ], AFφ ≡ A[trueUφ], EGφ ≡
¬AF¬φ and AGφ ≡ ¬EF¬φ.

In the following we provide a Kripke structure derived from the flat
semantics F(S[B]) and two CTL formulae characterising weak and strong
adaptability.

Definition 11 (Associated Kripke structure). Consider an S[B] system and

its associated flat semantics F(S[B]) = (F, f0 ,
r
−→ ∪

r,ψ,r′

−−−→). Its associated
Kripke structure is defined as K(S[B]) = (T, t0 ,−→k, I) where T = F , t0 = f0 ,

−→k=
r
−→ ∪

r,ψ,r′

−−−→ ∪ (−→self ! {(t, t) | t ̸
r
−→ ∧ t ̸

rs,ψ,r′−−−→}), I is defined w.r.t.
the set AP = {adapting, steady, progress} of atomic propositions as follows.
For all t ∈ T :

(i) adapting ∈ I(t) ⇐⇒ t = (q, r, ρ) ∧ t
r,ψ,r′

−−−→

(ii) steady ∈ I(t) ⇐⇒ t = (q, r, ∅) ∧ (t
r
−→ ∨ t

r,ψ,r′

−−−→)

(iii) progress ∈ I(t) ⇐⇒ t
r
−→ ∨ t

r,ψ,r′

−−−→

Note that the only structural difference between F(S[B]) and K(S[B]) are
the self-loop transitions in −→self added in K(S[B]). These are needed because

27

the transition relation of the Kripke structure must be left-total, but indeed
they allow us to keep the information that the states t such that t −→self t
where originally deadlocked in F(S[B]) (see discussion in Section 4.1). Then,
the atomic proposition progress, by its definition (identical to the one given
for Progress(q, r) at the end of Section 4.1), is not true in all and only
those states of K(S[B]) that were originally deadlocked or bad terminated in
F(S[B]). Moreover, we remark that in some states both adapting and steady
propositions may hold at the same time. These are the already mentioned
“border” states, i.e. those that are still in a steady situation, but will start
adapting in the next transition. From these, the next state may be steady
again (immediate adaptation) or only adapting (adaptation in more than one
step).

The formulae that we will check on K(S[B]) are the following:

• Weak adaptation: there is a path in which the progress condition
continuously holds and, as soon as adaptation starts, there exists at
least one path for which the system eventually ends the adaptation
phase leading to a steady state.

EG((adapting =⇒ EF steady) ∧ progress) (6.1)

• Strong adaptation: for all paths, the progress condition always holds
and whenever the system is in an adapting state, from there all paths
eventually ends the adaptation phase leading to a steady state.

AG((adapting =⇒ AF steady) ∧ progress) (6.2)

We remark that the same formulae could be expressed in the Action-based
Computation Tree Logic (ACTL) [21] without the need of defining the atomic
propositions. However, we decided to use CTL because we recognise that it
is one of the mostly known and used temporal logic for model checking,

Moreover, the expressive power given by CTL is adequate for the adapt-
ability checking we introduced, in the sense that the same properties could
not be expressed in the other mostly used logic, Linear Temporal Logic (LTL)
[40]. In particular, the weak adaptability property requires the existential
path quantification (EG, EF), which cannot be expressed in LTL, to render
the invariability of the possibility of adaptation along one certain computa-
tion. Differently, the strong adaptability property could also be formulated
in LTL as "((adapting ⇒ ♦steady) ∧ progress).

28

Theorem 1 (Weak adaptability checking).
Consider an S[B] system. Given a B state q and an S state r such that
q |= L(r), then q is weak adaptable to r if and only if the weak adaptation
CTL formula (equation 6.1) is true in K(S[B]) at state (q, r, ∅). Formally,
given a state q ∈ [[L(r)]]

q |w r ⇐⇒ (q, r, ∅) |=CTL EG((adapting =⇒ EF steady) ∧ progress)

Proof. See Appendix A.7

Corollary 1.
Consider an S[B] system. Then, S[B] is weak adaptable if and only if

t0 |=CTL EG((adapting =⇒ EF steady) ∧ progress)

where t0 is the initial state of K(S[B]).

Proof. The thesis follows easily from Definition 7 and from Theorem 1.

Theorem 2 (Strong adaptability checking).
Consider an S[B] system. Given a B state q and an S state r such that
q |= L(r), then q is strong adaptable to r if and only if the strong adaptation
CTL formula (equation 6.2) is true in K(S[B]) at state (q, r, ∅). Formally,
given a state q ∈ [[L(r)]]

q |w r ⇐⇒ (q, r, ∅) |=CTL AG((adapting =⇒ AF steady) ∧ progress)

Proof. See Appendix A.8

Corollary 2.
Consider an S[B] system. Then, S[B] is strong adaptable if and only if

t0 |=CTL AG((adapting =⇒ AF steady) ∧ progress)

where t0 is the initial state of K(S[B]).

Proof. As in the weak case, the thesis follows easily from Definition 9 and
from Theorem 2.

Note that since we assume that the behavioural and the structural state
machines are finite state, then the CTL adaptability properties can be model
checked. This means that the defined notions of weak and strong adaptability
are decidable and that the problem of adaptability checking can be reduced
to a classical CTL model checking problem.

29

6.1. State Space Dimension

CTL model checking has been widely investigated in the literature and
relies on efficient tools like NuSMV [13]. The time computational complexity
of the model checking problem for CTL is O((n +m) · |ψ|), where n is the
number of states in the Kripke structure, m is the number of transitions and
|ψ| is the length of the formula, i.e. the number of operators in its parse tree.

The well-known problem in this area is the so-called state explosion prob-
lem, that is to say the high number of states (and thus transitions) that comes
out from even relatively short descriptions of systems composed of concur-
rent interactive components. It is not in the scope of this work to discuss
and refer the high research efforts that are currently going on in this area. A
good starting point can be found in [2]. We will just give a brief estimation
of the dimension of the state space given a certain S[B] system, which is the
dominant complexity factor, considering that our formulae for the adapt-
ability checking have constant length 4. The computational complexity of
adaptability checking is therefore O(n+m).

Note that in our context the usual sources of state explosion (components,
concurrency) are “hidden” inside the behavioural level B. This is because we
want to work on the very basic model of computation of finite state machines
and maintain a black-box view of the behavioural level from the structural
level point of view. Thus, we take as the dominant dimension of the problem
the “already exploded” number of states of the behavioural level. Then, we
estimate what the definition of an S[B] model adds up to this explosion.

Recall that the Kripke structure to model check is K(S[B]), derived from
the flat semantics F(S[B]). Depending on the dimension of S, the flat
semantics could possibly lead to a transition system larger than the state
space of the behavioural model B since the states are formally tuples in

Q × R × ({(ψ, r′) | ∃r ∈ R. r
ψ
−→S r′} ∪ {∅}). The dimension n of the state

space is O(|Q| · 2|Q| · 2|Q|), where | · | is set cardinality, based only on the
number of states in the behavioural level and due to the higher order na-
ture of S. However, considering the intended role of the structural level S,
the number of S states is never exponential. This is because the different
S states represent different modes of operations and, thus, usually stand for
disjoint sets of B states. For this reason, a more realistic estimation of the
state space dimension n should be expressed w.r.t. both B and S dimensions,
yielding a number that is O(|Q| · |R| · | −→S |).

30

7. Discussion and Conclusion

In this work we presented a formal hierarchical model for self-adaptive
systems, consisting of a behavioural level and a structural level. The B level
is a state machine describing the behaviour of the system and the S level is a
second-order state machine accounting for the constraints which the system
has to comply with. S states identify stable regions that the B level may
reach by performing adaptation paths.

The adaptation semantics of the system is given by a flattened transition
system that implements the following adaptation model: adaptation starts
whenever the current B state does not meet the constraints specified by
the current S state. Then, adaptation towards a target S state r′ ends
successfully when the system ends up in a different B state q′ such that q′

satisfies the constraints in r′.
We tackled the adaptability checking problem by firstly characterizing

two degrees of adaptability: weak adaptability, for verifying if the system is
able to adapt successfully for some adaptation paths; and strong adaptabil-
ity, for verifying if the system is able to adapt successfully for all possible
adaptation paths. Then, we defined weak and strong adaptation as rela-
tions over the set of B states and the set of S states, so that adaptability
is verified when an appropriate adaptation relation can be built. We also
provided a logical formulation of weak and strong adaptability, in terms of
CTL formulae. Finally, by proving that the logical characterization is for-
mally equivalent to the relational one, we demonstrated that the adaptability
checking problem can be reduced to a classical model checking problem. We
derived the computational complexity of the problem and showed that the
state space dimension is polynomial in the dimension of the original S[B]
system.

The approach has been elucidated through an example of self-adaptive
software systems, that is the motion controller of an autonomous transport
vehicle. We considered two structural levels with different adaptation invari-
ants, S0 and S1 . Keeping the behavioural model B fixed, we derived the flat
semantics of S0 [B] and S1 [B] and we compared their adaptation capabilities,
showing that the former is strong adaptable, while the latter is only weak
adaptable.

We report that this work gives a formal computational characterization
of self-adaptive systems, and a novel and well-grounded formulation of the
concept of adaptability. We elaborate effective formal methods to investigate

31

and solve the problem of adaptability checking. Provided that S[B] systems
are based on a general and essential model of computation (state machines),
our results are general too and can be easily applied to richer and more
expressive models.

7.1. Multiple Levels and Modular Adaptability Checking

Although we have investigated the relationships between two fundamen-
tal levels, it is possible to show how our model can easily scale-up to an
arbitrary number of levels, arising from the composition of multiple S[B]
systems. We give an intuition of how a higher order S[B] can be defined.
In these settings, a first-order S[B] system is a “classical” system, as de-
fined in Sect. 2. For n > 1, a nth-order S[B] system is an S[B] system
Sn[Bn], where Sn = (Rn, rn0 , A

n,On,−→n
S, L

n) is the structural level; and
Bn = ∥i∈I F(Sn−1 [Bn−1]i) is the behavioural level resulting from the appli-
cation of a parallel composition operation ‘∥’ to the flattened semantics of a
family of n− 1th-order S[B] systems, indexed by i ∈ I.

Further, due to the separation between the S and the B levels, modular
techniques for adaptability checking could be exploited in our model. Let
S1 = (R1 , r1 0 , A1 ,O1 ,−→S1

, L1) and S2 = (R2 , r2 0 , A2 ,O2 ,−→S2
, L2) be two S

levels. For instance, we would be interested in showing if the adaptation
capabilities of S2 are preserved by S1 , in the case that S1 refines S2 , or
S1 ≼ S2 . To our purposes we may assume that S1 ≼ S2 iff a suitable
simulation relation R ∈ R1 ×R2 exists.

The following result would come quite straightforwardly: if S1 ≼ S2 ,
it can be shown that for every B level, if S2 [B] is strong adaptable, then
S1 [B] is strong adaptable too, i.e. that refinements at the S level would pre-
serve strong adaptability. On the other hand, refinements do not necessarily
preserve weak adaptability when S2 [B] is weak adaptable but not strong
adaptable. Instead, we cannot make any assumption on the adaptability of
S2 based just on the adaptability of its refinement S1 .

Modular adaptability could be investigated also in the opposite case, i.e.
making the S level vary and considering two behavioural levels B1 and B2

such that B1 ≼ B2 . Intuitively, it can be demonstrated that in this case
abstractions at the B level preserve weak adaptation, or alternatively that if
S[B1] is weak adaptable, then S[B2] is weak adaptable too for each structural
level S.

We leave the two topics briefly introduced above as future work, where
also other features of the S[B] model can be developed.

32

7.2. Related Work

Let us now characterise our approach according to the “taxonomy of
self-adaptation”, a quite general software-oriented classification proposed by
Salehie and Tahvildari [43]. Specifically, the features of the taxonomy consid-
ered here are adaptation type, or how adaptation is realized; temporal issues,
related to when the system needs to change and to be monitored to achieve
adaptation; and interaction aspects.
Interaction. In the S[B] model communication and interactions of the
adaptive system with other systems are not explicitly taken into account.
This is because we focus on studying the adaptation capabilities of a funda-
mental model of computation, to which more powerful and expressive models
can typically be reduced. Indeed, we always consider the behavioural level B
as the transitional semantics of a system constructed from several interacting
components.
Temporal characteristics. Recalling the introductory description of the
adaptation semantics, adaptation starts as late as possible, only when no
other evolution is possible that fulfils the current constraints; and adapta-
tion ends as soon as possible, i.e. as soon as a target state can be reached.
This implies that S[B] systems support a basic type of proactive (i.e. an-
ticipatory) adaptation, which ensures that the system reaches a state where
structural constraints or adaptation invariants are not met if and only if no
other evolution is possible.

The choice to exclude adaptations starting from states that can progress
normally, i.e. without violating the constraints, is motivated by the same def-
inition of adaptation: a mutation in an individual that leads to a higher level
of fitness. Indeed, as stated in [6], an adaptive system “. . . seeks to configure
its structure with the overall aim of adaptation to the environment trying to
optimize its function (i.e., to maximize its fit) to meet its reason of exis-
tence” . Our model provides just a qualitative characterization of the fitness
of a B state q̄ in a S state r̄, given by the satisfaction value (true or false) of
the constraints. Therefore, no adaptations can start from the state q̄ if it can
satisfy the constraints in r̄ during its evolution, since this configuration cor-
responds to the highest possible fitness, and any adaptation would produce
equal (in case of successful adaptation) or lower (unsuccessful adaptation)
fitness values. Nevertheless according to this semantics, the system cannot
prevent an unsuccessful adaptation to occur by starting adaptation earlier,
i.e. at a state admitting successors that are in the current steady region.

33

Adaptation type. This feature concerns aspects related to the implemen-
tation of adaptation mechanisms. According to the taxonomy above, our
approach falls into the definitions of model-based adaptation, i.e. based on
a model of the system and of the environment; and of close adaptation, in
the sense that the system has only a fixed number of adaptive actions, due
to the fact that we focus on models with finite and fixed state space. On
the contrary, open-adaptive systems support the runtime addition of adap-
tation actions. Salehie and Tahvildari also distinguish between external and
internal adaptation. S[B] systems belong to the former type, where the
adaptation logic (S level) and the application logic (B level) are separated.
In internal adaptation, conversely, adaptation mechanisms are mixed at the
application level.

Taking a broader view that generalizes from software systems, Sagasti [42]
distinguishes between two different adaptive behaviours: the system adapts
by modifying itself (Darwinian adaptation); or it adapts by modifying its
environment (Singerian adaptation). In this work, we clearly focus on the
former type of adaptation. Following this line, the adaptation type of S[B]
systems can be further classified as a top-down and behavioural adaptation.
Top-down, because the S level imposes high-level functions (e.g. constraints,
rules and policies) on the lower B level, which adapts itself whenever it
cannot fulfil the current constraints. Bottom-up adaptation represents the
opposite direction, occurring for instance when new higher-level patterns
emerge from the lower level. On the other hand, behavioural adaptation is
related to functional changes, like changing the program code or following
different trajectories in the state space. In literature, it is generally opposed
to structural adaptation, which is related to architectural reconfiguration,
e.g. addition, migration and removal of components. Note that structural
and behavioural adaptation must not be confused with the structural and
the behavioural level of an S[B] system.

Behavioural Adaptation. Zhang et al. give a general state-based model of self-
adaptive programs, where the adaptation process is seen as a transition be-
tween different non-adaptive regions in the state space of the program [46]. In
order to verify the correctness of adaptation they define a logic called A-LTL
(an adapt-operator extension to LTL) and model-checking algorithms [47]
for verifying adaptation requirements. Similarly, in S[B] systems adaptation
can be seen as a transition in the S level between two steady regions (the
S states), which corresponds to performing a path at the B level. However,

34

in our model the steady-state regions are represented in a more declarative
way using constraints associated to the states of the S level. Adaptation of
the B level is not necessarily instantaneous and during this phase the system
is left unconstrained but an invariant condition that is required to be met
during adaptation. Differently to [46], the invariants are specific for every
adaptation transition making this process controllable in a finer way.

PobSAM [30, 31] is another formal model for self-adaptive systems, where
actors expressed in Rebeca are governed by managers that enforce dynamic
policies (described in an algebraic language) according to which actors adapt
their behaviour. Different adaptation modes allow to handle events occurring
during adaptation and ensuring that managers switch to a new configuration
only once the system reaches a safe state. Similarly to our structural and
behavioural levels, the structure of a PobSAM model is built on multiple
levels: the level of managed actors, the levels of autonomous managers and a
view level, which acts as a sort of observation function over the state variables
of the actors. Further, a recently published extension of PobSAM called
HPobSAM [29], enables the hierarchical refinement of managed components.
On the other hand, S[B] systems are based on the general formalism of
state machines and enjoy the property that higher levels lead to higher-order
structures: indeed, the S level can be interpreted as a second-order B level,
since an S state identifies a set of stable B states and firing an S transition
means performing an adaptation path, i.e. a sequence of B transitions.

In the position paper by Bruni et al. [10], adaptation is defined as the
run-time modification of the control data of a system and this approach is
instantiated into a formal model based on labelled transition systems. They
consider a system S that is embedded in some environment E and that has
to fulfil a goal ψ. When the environment and the goal are fixed, the system
S is such that:

E [S] |= ψ,

where E [S] can be alternatively expressed as the parallel composition E∥S.
However, S may operate under run-time modifications in the environment
and goal. Thus, when the environment E changes into E ′ and the goal ψ into
ψ′, S adapts itself into S ′ such that:

E ′[S ′] |= ψ′.

As shown in [22], the problem of finding such an S ′ can be formulated as an
LTS control problem. Similarly, in our context we can see an S[B] system

35

as a behavioural model B embedded in a structure S. Let r̄S[q̄B] denote the
current state of the S[B] system. Then,

⟨S[B], r̄S[q̄B]⟩ |= ψS[B],

where ψS[B] ≡ q̄B ∈ L(r̄S), i.e. the current B state must meet the constraints
imposed by the current S state. Therefore, the structural level S not only
acts as the operating environment for B, but also encodes the goal ψ, which
requires that B has to move within the stable region identified by the con-
straints in the current S state. We can imagine that whenever ψ is no longer
satisfied, adaptation produces a system S ′[B′] from the current system S[B],
in a way that

⟨S ′[B′], r̄S′ [q̄B′]⟩ |= ψS′[B′].

In our settings, the control data component is not explicitly implemented
and there are no transitions that can be directly controlled, but due to the
top-down adaptation semantics, the S level provides some kind of control
mechanism on B. Indeed, during the steady phase, S forbids any transition
to a B state that violates the current constraints if there is at least one
transition to a state satisfying them. Instead, when adaptation starts, we
can think that S outputs to B a list of target S states, so directing the
evolution of B towards a set of possible goals and excluding those transitions
that lead to states violating the adaptation invariant.

The adaptation as control data modification view of [10] is implemented
also in the formalism of Adaptable Interface Automata (aias) [9], which ex-
tends Interface Automata [20] with state-labelling atomic propositions, a sub-
set of which - the control propositions - models the control data. Adaptation
occurs in correspondence of transitions that change the control propositions,
and actions labelling such transitions are called control actions. Similarly
to our S[B] systems, an adaptation phase is thus a sequence of adaptation
transitions. Let AC ,AI ,AO denote the set of control actions and the sets of
input and output actions of the underlying interface automaton, respectively.
On top of these actions, the authors provides different characterizations of
an aia P : P is adaptable when AC ̸= ∅; P is controllable when AC∩AI ̸= ∅;
and P is self-adaptive when AC ∩ AO ̸= ∅. Given an aia P , adaptability
properties are defined as those that are satisfied by P , but are not satisfied if
control actions are removed, i.e. by the aia P|A\AC . In addition, the authors
show how our notions of weak and strong adaptability can be encoded in
their framework.

36

Theorem-proving techniques have also been used for assessing the cor-
rectness of adaptation: in [34] a proof lattice called transitional invariant
lattice is built to verify that an adaptive program satisfies global invariants
before and after adaptation. In particular it is proved that if it is possible
to build that lattice, then adaptation is correct. Instead, in our model the
notion of correctness of adaptation is formalized by means of the weak and
strong adaptability relations, that can be alternatively expressed as CTL
formulae, thus reducing the problem of adaptability checking to a classical
model checking problem.

Furthermore, in [45], the authors define a spatial and chemical-inspired
tuple-space model in the context of distributed pervasive services. They
show that equipping the classical tuple-space model with reaction and dif-
fusion rules makes possible to support features like adaptivity and compe-
tition among services, by implementing Lotka-Volterra-like rules. Similarly,
S[B] systems are inspired by complex natural systems, where the dichotomy
between the behavioural level and the structural level may represent for in-
stance the genotype and the phenotype level of an organism, respectively;
or, by using the metaphor of multiscale systems, the B level can be used to
model the system at the micro-scale (e.g. cellular scale), while the S level
would represent the emergent macro-scale features (e.g. the tissue). However,
our model is not quantitative and is not based on a coordination model, but
on a simple and general model of computation (state machines). Moreover,
adaptation is not the result of nature-inspired rules, but is rigorously defined
from the B and the S level by operational semantics rules.

Structural Adaptation. Our model currently supports only behavioural adap-
tation, but several approaches have been recently defined also in the context
of structural adaptation, most of them relying on dynamic software archi-
tectures. In [7], several formal techniques for specifying self-managing archi-
tectures, i.e. able to support autonomous run-time architectural changes, are
surveyed and compared.

An important line of research focuses on the application of graph-based
methods, initiated by Le Métayer’s work [36] where architectural styles are
captured by graph grammars and graph rewriting rules are used to enable ar-
chitectural reconfiguration. Other relevant literature in this field includes the
Architectural Design Rewriting (ADR) framework [11], in which an architec-
tural style is described as an algebra over typed graphs (i.e. the architectures),
whose operators correspond to term-rewriting rules. ADR supports the well-

37

formed compositions of architectures, the hierarchical specification of styles,
style checking and style-preserving reconfiguration. A method for selecting
which rules to apply for maintaining a particular architectural style against
unexpected run-time reconfigurations is proposed in [41], where the authors
extend ADR rules with pre- and post-conditions, representing invariants to
be met by an architecture before and after the application of a rule. Tool
support is discussed in [8], where the authors provide an in-depth comparison
between the implementations of typed graph grammars in Alloy [27] and of
ADR in Maude [18].

Moreover, in [5], an approach for verifying safety properties in structurally
adapting multi-agent systems is presented. By modelling a system as a graph
and its evolution by graph transformation rules, safety properties are verified
by means of structural invariants, i.e. a set of forbidden graph patterns.

Hierarchical and Multi-level Methods. Besides S[B] systems, multi-level ap-
proaches have been extensively used for the modelling of self-adaptive soft-
ware systems. For instance, in [19] Corradini et al. identify and formally re-
late three different levels: the requirement level, dealing with high-level prop-
erties and goals; the architectural level, focusing on the component structure
and interactions between components; and the functional level, accounting
for the behaviour of a single component.

Furthermore, Kramer and Magee [32] define a three-level architecture
for self-managed systems consisting of a component control level that imple-
ments the functional behaviour of the system by means of interconnected
components; a change management level responsible for changing the lower
component architecture according to the current status and objectives; and
a goal management level that modifies the lower change management plans
according to high-level goals.

Hierarchical finite state machines, in particular Statecharts [26] have also
been employed to describe the multiple architectural levels in self-adaptive
software systems (see e.g. [28, 44]).

Relevant applications of multi-level approaches include the work by Zhao
et al. [48], where the authors present a two-level model for self-adaptive sys-
tems consisting of a functional behavioural level - accounting for the applica-
tion logic and modelled as state machines - and an adaptation level, account-
ing for the adaptation logic and represented with a mode automaton [37]. In
this case, each mode in the adaptation level is associated with different func-
tional state machines and adaptation is seen as a change of mode. Adaptation

38

properties are described and checked by means of a mode-based extension of
LTL called mLTL.

Another accepted fact is that higher levels in complex adaptive systems
lead to higher-order structures. Here the higher S level is described by means
of a second order state machine (i.e. a state machine over the power set
of the B states). Similar notions have been formalized by Baas [1] with
the hyperstructures framework for multi-level and higher-order dynamical
systems; and by Ehresmann and Vanbremeersch with their memory evolutive
systems [23], a model for hierarchical autonomous systems based on category
theory.

There are several other works worth mentioning, but here we do not
aim at presenting an exhaustive state-of-the-art in this widening research
field. We address the interested reader to the surveys [12, 43] for a general
introduction to the essential aspects and challenges in the modelling of self-
adaptive software systems.

Acknowledgements

The authors want to thank the anonymous reviewers for their valuable
suggestions and prof. Mario Rasetti for the continuous inspiration and the
useful discussions about the topics of this work and its general context. This
work was supported by the project “TOPDRIM: Topology Driven Methods
for Complex Systems” funded by the European Commission (FP7 ICT FET
Proactive - Grant Agreement N. 318121).

References

[1] N. Baas, Emergence, hierarchies, and hyperstructures, in: C. Langton
(Ed.), Artificial Life III, volume 17, Addison Wesley, 1994, pp. 515–537.

[2] C. Baier, J.P. Katoen, Principles of Model Checking, The MIT Press,
2008.

[3] E. Bartocci, D. Cacciagrano, M. Di Berardini, E. Merelli, L. Tesei,
Timed Operational Semantics and Well-Formedness of Shape Calculus,
Scientific Annals of Computer Science 20 (2010) 33–52.

[4] E. Bartocci, F. Corradini, M. Di Berardini, E. Merelli, L. Tesei, Shape
Calculus. A Spatial Mobile Calculus for 3D Shapes, Scientific Annals of
Computer Science 20 (2010) 1–31.

39

[5] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling, Symbolic invariant
verification for systems with dynamic structural adaptation, in: Pro-
ceedings of the 28th international conference on Software engineering,
ICSE ’06, ACM, 2006, pp. 72–81.

[6] A. Bouchachia, N. Nedjah, Introduction to the special section on self-
adaptive systems: Models and algorithms, ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS) 7 (2012) 13.

[7] J. Bradbury, J. Cordy, J. Dingel, M. Wermelinger, A survey of self-
management in dynamic software architecture specifications, in: Pro-
ceedings of the 1st ACM SIGSOFT workshop on Self-managed systems,
ACM, pp. 28–33.

[8] R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, A.L. Lafuente, Graph-
based design and analysis of dynamic software architectures, in: Concur-
rency, Graphs and Models, volume 6065 of Lecture Notes in Computer
Science, Springer, 2008, pp. 37–56.

[9] R. Bruni, A. Corradini, F. Gadducci, A.L. Lafuente, A. Vandin, Adapt-
able transition systems, in: Recent Trends in Algebraic Develop-
ment Techniques, volume 7841 of Lecture Notes in Computer Science,
Springer, 2013, pp. 95–110.

[10] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin,
A conceptual framework for adaptation, in: Fundamental Approaches
to Software Engineering, volume 7212 of Lecture Notes in Computer
Science, Springer, 2012, pp. 240–254.

[11] R. Bruni, A. Lluch-Lafuente, U. Montanari, E. Tuosto, Style-based ar-
chitectural reconfigurations, Bulletin of the European association for
theoretical computer science 94 (2008) 161–180.

[12] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, et al., Software engineering
for self-adaptive systems: A research roadmap, Software Engineering for
Self-Adaptive Systems (2009) 1–26.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, NuSMV 2: An opensource tool

40

for symbolic model checking, in: Computer Aided Verification, Springer,
pp. 359–364.

[14] E. Clarke, E. Emerson, A. Sistla, Automatic verification of finite-state
concurrent systems using temporal logic specifications, ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 8 (1986) 244–
263.

[15] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization
skeletons using branching time temporal logic, in: Logic of Programs,
number 131 in Lecture Notes in Computer Science, Springer-Verlag,
1981, pp. 52–71.

[16] E.M. Clarke, O. Grumberg, K.L. McMillan, X. Zhao, Efficient genera-
tion of counterexamples and witnesses in symbolic model checking, in:
Proceedings of the 32nd annual ACM/IEEE Design Automation Con-
ference, pp. 427–432.

[17] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT
press, 1999.

[18] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer,
J.F. Quesada, Maude: Specification and programming in rewriting logic,
Theoretical Computer Science 285 (2002) 187–243.

[19] F. Corradini, P. Inverardi, A. Wolf, On relating functional specifica-
tions to architectural specifications: a case study, Science of Computer
Programming 59 (2006) 171–208.

[20] L. De Alfaro, T. Henzinger, Interface automata, ACM SIGSOFT Soft-
ware Engineering Notes 26 (2001) 109–120.

[21] R. De Nicola, F. Vaandrager, Action versus state based logics for tran-
sition systems, Semantics of Systems of Concurrent Processes (1990)
407–419.

[22] N. D’Ippolito, V. Braberman, N. Piterman, S. Uchitel, The modal tran-
sition system control problem, in: FM 2012: Formal Methods, volume
7436 of Lecture Notes in Computer Science, 2012, pp. 155–170.

41

[23] A. Ehresmann, J. Vanbremeersch, Memory evolutive systems: hierarchy,
emergence, cognition, volume 4, Elsevier Science, 2007.

[24] S. Feferman, Applications of many-sorted interpolation theorems, in:
Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol.
XXV, Univ. of California, Berkeley, Calif., 1971), pp. 205–223.

[25] P. Feiler, R. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kaz-
man, M. Klein, L. Northrop, D. Schmidt, K. Sullivan, Ultra-large-scale
systems: The software challenge of the future, Software Engineering
Institute (2006).

[26] D. Harel, Statecharts: A visual formalism for complex systems, Science
of computer programming 8 (1987) 231–274.

[27] D. Jackson, Software Abstractions: Logic, Language, and Analysis, The
MIT Press, 2011.

[28] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, T. Ko-
vacshazy, An approach to self-adaptive software based on supervisory
control, Self-adaptive software: applications (2003) 77–92.

[29] N. Khakpour, S. Jalili, M. Sirjani, U. Goltz, B. Abolhasanzadeh, HPob-
SAM for modeling and analyzing IT ecosystems–through a case study,
Journal of Systems and Software 85 (2012) 2770–2784.

[30] N. Khakpour, S. Jalili, C. Talcott, M. Sirjani, M. Mousavi, Formal mod-
eling of evolving self-adaptive systems, Science of Computer Program-
ming 78 (2011) 3–26.

[31] N. Khakpour, R. Khosravi, M. Sirjani, S. Jalili, Formal analysis of
policy-based self-adaptive systems, in: Proceedings of the 2010 ACM
Symposium on Applied Computing, ACM, 2010, pp. 2536–2543.

[32] J. Kramer, J. Magee, Self-managed systems: an architectural challenge,
in: Future of Software Engineering, 2007. FOSE’07, IEEE, pp. 259–268.

[33] S. Kripke, Semantical considerations on modal logic, Acta Philosophica
Fennica 16 (1963) 83–94.

[34] S. Kulkarni, K. Biyani, Correctness of component-based adaptation,
Component-Based Software Engineering (2004) 48–58.

42

[35] R. Laddaga, Self-adaptive software, Technical Report 98-12, DARPA
BAA, 1997.

[36] D. Le Métayer, Describing software architecture styles using graph gram-
mars, Software Engineering, IEEE Transactions on 24 (1998) 521–533.

[37] F. Maraninchi, Y. Rémond, Mode-automata: a new domain-specific con-
struct for the development of safe critical systems, Science of Computer
Programming 46 (2003) 219–254.

[38] E. Merelli, N. Paoletti, L. Tesei, A multi-level model for self-adaptive
systems, EPTCS 91 (2012) 112–126. Proceedings of FOCLASA ’12.

[39] E. Merelli, M. Pettini, M. Rasetti, Topology driven modeling: the IS
metaphor, Natural Computing DOI: 10.1007/s11047-014-9436-7 (2014).

[40] A. Pnueli, The temporal logic of programs, in: 18th IEEE Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society,
1977, pp. 46–67.

[41] K. Poyias, E. Tuosto, Enforcing architectural styles in presence of un-
expected distributed reconfigurations, EPTCS 104 (2012) 67–82. Proc.
of ICE 2012.

[42] F. Sagasti, A conceptual and taxonomic framework for the analysis of
adaptive behavior, General systems 15 (1970) 151–160.

[43] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and re-
search challenges, ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS) 4 (2009).

[44] M. Shin, Self-healing components in robust software architecture for
concurrent and distributed systems, Science of Computer Programming
57 (2005) 27–44.

[45] M. Viroli, M. Casadei, S. Montagna, F. Zambonelli, Spatial coordina-
tion of pervasive services through chemical-inspired tuple spaces, ACM
Transactions on Autonomous and Adaptive Systems 6 (2011).

[46] J. Zhang, B. Cheng, Model-based development of dynamically adap-
tive software, in: Proceedings of the 28th international conference on
Software engineering, ACM, 2006, pp. 371–380.

43

[47] J. Zhang, H. Goldsby, B. Cheng, Modular verification of dynamically
adaptive systems, in: Proceedings of the 8th ACM international confer-
ence on Aspect-oriented software development, ACM, 2009, pp. 161–172.

[48] Y. Zhao, D. Ma, J. Li, Z. Li, Model checking of adaptive programs with
mode-extended linear temporal logic, in: Engineering of Autonomic and
Autonomous Systems (EASe), 2011 8th IEEE International Conference
and Workshops on, IEEE, pp. 40–48.

Appendix A. Proofs

Appendix A.1. Proposition 1 (Properties of flat semantics)

Proof.

(i + ii) Both the couples of rules Steady + AdaptStart and Steady +

AdaptStartEnd ensure that there cannot exist a non-adapting state
with both an outgoing non-adapting transition

r
−→ and an outgoing

adapting transition
r,ψ,r′

−−−→. Indeed, the premises of the two rules, in
both cases, are mutually exclusive by the fact that (q −→B q′∧q′ |= L(r))
is the negation of ∀q′′.(q −→B q′′ =⇒ q′′ ̸|= L(r)).

(iii) Rules Adapt and AdaptEnd are the only ones producing an outgoing
transition from an adapting state and none of them produces an r-
labelled transition.

(iv) (i) ∧ (ii) ∧ (iii) =⇒ (iv).

(v) Rule Adapt ensures that an adaptation transition is taken only if
there are no other transitions that directly lead to the target S state.
Indeed Adapt and AdaptEnd are mutually exclusive, thus avoiding
adaptation steps to be taken when adaptation can end. This also holds
for the successful adaptation paths (of length 1) obtained with the rule
AdaptStartEnd, whose premises are not compatible with those of
rule Adapt.

(vi) Let π be a generic infinite path of F(S[B]) starting at a state (q, r, ∅).
Let i ≥ 0 be a generic position in π, denoted π[i], such that π[i] =
(qi, ri, ∅). Then, by properties (i)-(iv), there are only the following
cases:

44

1. (qi, ri, ∅) ̸
r
−→ ∧ (qi, ri, ∅) ̸

ri,ψ,r
′

−−−→, i.e. the path stops at position
π[i] = (qi, ri, ∅); this contradicts the fact that π is infinite, thus
this case never occurs along π;

2. (qi, ri, ∅)
ri−→ (qi+1 , ri+1 , ∅); rule Steady was applied in the deriva-

tion of π;

3. (qi, ri, ∅)
ri,ψ,r

′

−−−→ (qi+1 , ri+1 , ∅); rule AdaptStartEnd was applied
in the derivation of π;

4. (qi, ri, ∅)
ri,ψi,ri+1

−−−−−→ (q′i, ri, {(ψi, ri+1)}); rule AdaptStart was ap-
plied in the derivation of π; at this point only the two mutually
exclusive rules Adapt and AdaptEnd could be applied in the
subsequent derivation of π, yielding only two possible sub-cases:
(a) the derivation of π continues by zero or more applications of

rule Adapt followed by one application of rule AdaptEnd,
i.e.
(qi, ri, ∅)(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) for some ni > 0;
(b) the derivation of π continues with infinite applications of rule

Adapt, i.e.

(qi, ri, ∅)
ri,ψi,ri+1

−−−−−→ (q′i, ri, {ψi, ri+1 })
ri,ψi,ri+1

−−−−−→ (q′′i , ri, {ψi, ri+1 })
ri,ψi,ri+1

−−−−−→ · · ·

Thus, if for all steps i ≥ 0 the case 4(b) does not occur then π is of
kind (1). On the contrary, if there exists k ≥ 0 such that case 4(a)
occurs at all steps i < k and the case 4(b) occurs at step k, then π is
of kind (2).

(vii) By property (vi) it follows that the positions i in which π[i] = (qi, ri, ∅)
are those and only those in which the S[B] system is in a steady state,
i.e. it is either the first state f0 in which by definition it holds q0 |=
L(r0), or it has been reached by using Rules Steady, AdaptEnd or
StartAdaptEnd, which all explicitly check that qi |= L(ri).

Appendix A.2. Proposition 2 (Union of Weak Adaptation Relations)
Proof. If (q, r) ∈ R1 ∪R2 then (q, r) ∈ R1 or (q, r) ∈ R2 . Then it is possible
to trivially verify all the conditions on (q, r) of Definition 7 using the same

45

proofs already available for R1 and R2 , respectively, by substituting, in these
proofs, R1 and R2 with R1 ∪R2 .

Appendix A.3. Lemma 1 (Propagation of Weak Adaptation Relation)

Proof. If the path exists then, by property (vi) of Proposition 1, its form is
of kind (1) or of kind (2). We show the existence of a path of kind (1), which
equals to the one of the thesis. Moreover, we have to show that the weak
adaptability propagates along the path, i.e. ∀i ≥ 0 . qi|wri. We use induction
to construct the infinite path of the right kind and to show the propaga-
tion. When i = 0, from (q0 = q, r0 = r, ∅) we take the empty path and,
by hypothesis, q0 = q|wr0 = r. Moreover, the condition Progress(q0 , r0)
guarantees that the path can continue. At the generic step i > 0 sup-
pose by induction that qi|wri. Thus, there exists a weak adaptation relation
Ri containing (qi, ri). In addition, the condition Progress(qi, ri) guaran-
tees that the path can continue. This implies the existence of transition(s)

(qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅). There are two cases:

• mi = 1. Thus (qi, ri, ∅)
ri−→ (q′, ri+1 = ri, ∅) for some q′ ∈ B. According

to Definition 7 there is at least one B state qi+1 such that Ri contains
(qi+1 , ri+1 = ri). Thus we can choose the transition with target (q′ =
qi+1 , ri+1 = ri, ∅) and have qi+1 |wri+1 .

• mi = 0. Thus (qi, ri, ∅)
ri,ψ

′

i
,r′

i+1

−−−−−→ for some ψ′
i and r′i+1 . This is a transi-

tion leaving from a state qi that is weak adaptive to ri. Thus, by the def-
inition of weak adaptation, there exists a state (qi+1 , ri+1 , ∅) such that

(qi, ri, ∅)(
ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) for some ni > 0 and (qi+1 , ri+1) ∈ Ri,
i.e., qi+1 |wri+1 . Note that condition (iii) of Definition 7 excludes the
possibility that the adaptation path continues forever, which would
yield an infinite path of kind (2).

Appendix A.4. Proposition 4 (Strong Adaptation implies Weak Adaptation)

Proof. Since q|sr then there exists a strong adaptation relation R such that
(q, r) ∈ R. We construct a weak adaptation relation R′ containing (q, r),
hence q|wr. At the beginning we put (q, r) in R′, then for some transition
(q, r, ∅)

r
−→ (q′, r, ∅) we add (q, r′), which belongs to R, also to R′. If no

r
−→

transitions are possible then, if (q, r, ∅)
r,ψ,r′

−−−→, since q is strong adaptable

46

to r, we select one of the surely existing successor states (q′, r′, ∅) such that
(q′, r′) ∈ R and we add (q′, r′) to R′. Then, we iterate this process for each
new pair added in R′. The process will terminate since the states are finite
and the resulting R′ will be, by construction, a weak adaptation relation.

Appendix A.5. Lemma 2 (Propagation of Strong Adaptation Relation)

Proof. We construct inductively all possible finite paths from (q, r, ∅) to any
(q′, r′, ∅) ∈ Post∗((q, r, ∅)) showing that they are of the form:

π = (q = q0 , r = r0 , ∅)(
r0−→)m0(

r0,ψ0,r1−−−−→)n0 · · ·

· · · (qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) · · ·
· · · (qk = q′, rk = r′, ∅)

where k ≥ 0 and for each i, 0 ≤ i < k, either mi = 1 ∧ ni = 0 or mi =
0 ∧ ni > 0. By the same induction we also prove that for all i ≤ k, qi|sri. If
k = 0, then q0 = q and r0 = r, thus the thesis is trivially true. When k > 0
we assume by induction that we constructed, starting from (q, r, ∅), all the
possible finite paths, which are all of the form:

π = (q = q0 , r = r0 , ∅)(
r0−→)m0(

r0,ψ0,r1−−−−→)n0 · · ·

· · · (qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅) · · ·
· · · (qk−1 , rk−1 , ∅)

where for each i, 0 ≤ i < k, either mi = 1 ∧ ni = 0 or mi = 0 ∧ ni > 0.
Moreover we assume by induction that qi|sri for all i ≤ k−1. Since qk−1 |srk−1 ,
by condition (i) of Definition 9, Progress(qk−1 , rk−1) holds. This implies
that the paths of the form above cannot stop here. To continue the path
from (qk−1 , rk−1 , ∅) there are only the following possibilities:

1. (qk−1 , rk−1 , ∅)
rk−1

−−→ (qk, rk, ∅); rule Steady can be applied, thenmk−1 =
1 and nk−1 = 0; to prove that qk|srk it is sufficient to take the same
relation R that exists from the fact that qk−1 |srk−1 because condition
(ii) of Definition 9 implies that qk R rk;

2. (qk−1 , rk−1 , ∅)
rk−1,ψ,r

′

−−−−−→ (qk, rk, ∅); rule AdaptStartEnd can be ap-
plied, then mk−1 = 0 and nk−1 = 1; also in this case, to prove that
qk|srk it is sufficient to take the same relation R that exists from the
fact that qk−1 |srk−1 because condition (iii) of Definition 9 implies that
qk R rk;

47

3. (qk−1 , rk−1 , ∅)
rk−1,ψk−1,rk
−−−−−−−→ (q′k−1 , rk−1 , {(ψk−1 , rk)}); rule AdaptStart

can be applied; at this point only the two mutually exclusive rules
Adapt and AdaptEnd can be applied in the subsequent derivation
of the path, yielding only two possible sub-cases:
(a) the derivation continues by zero or more applications of ruleAdapt

followed by one application of rule AdaptEnd, i.e.

(qk−1 , rk−1 , ∅)(
rk−1,ψk−1,rk
−−−−−−−→)nk−1(qk, rk, ∅) for some nk−1 > 0;

(b) the derivation continues with infinite applications of rule Adapt,
i.e.

(qk−1 , rk−1 , ∅)
rk−1,ψk−1,rk
−−−−−−−→ (q′k−1 , rk−1 , {ψk−1 , rk})

rk−1,ψk−1,rk
−−−−−−−→ (q′′k−1 , rk−1 , {ψk−1 , rk})
rk−1,ψk−1,rk
−−−−−−−→ · · ·

Condition (iii) of Definition 9 implies that the case (b) cannot occur.
Thus, in this case the path continues in any possible way of the form:

(qk−1 , rk−1 , ∅)(
rk−1,ψk−1,rk
−−−−−−−→)nk−1(qk, rk, ∅) with mk−1 = 0 and nk−1 > 0;

also in this case, to prove that qk|srk it is sufficient to take the same
relation R that exists from the fact that qk−1 |srk−1 because condition
(iii) of Definition 9 implies that qk R rk;

Appendix A.6. Proposition 5 (Construction of Strong Adaptation Relation)
Proof. If S[B] is strong adaptable then f0 = (q0 , r0 , ∅) and q0 |sr0 . By ap-
plying the propagation lemma of strong adaptation (Lemma 2), we get that
all states (q, r, ∅) ∈ Post∗(f0) are such that q|sr. Thus, we can use Rq,r to
denote the strong adaptation relation, containing (q, r), that exists for each
(q, r, ∅) ∈ Post∗(f0). Moreover, we naturally deduce that, for each such pair,
q |= L(r). Thus, if we take R̂ =

⋃
(q,r,∅)∈Post∗(f0)

Rq,r we have, by definition

of R̂ and of R, R ⊆ R̂. But R contains, by its definition, each possible pair
(q, r) such that (q, r, ∅) is reachable from f0 and by the rule Steady of the
operational semantics, q |= L(r). Thus, it must also hold R̂ ⊆ R. Hence,
R = R̂. By Proposition 3, R̂ = R is a strong adaptation relation.

For the converse, trivially, if R = {(q, r) ∈ Q× R | (q, r, ∅) ∈ Post∗(f0)}
is a strong adaptation relation then S[B] is strong adaptable, because, by
definition, (q0 , r0) ∈ R.

48

Appendix A.7. Theorem 1 (Weak adaptability checking)

Proof. (⇒) Having q |w r, by the propagation of weak adaptation (Lemma 1)
we can construct an infinite path π in F(S[B]), and thus in K(S[B]), starting
from (q, r, ∅), which has the form specified in the Lemma and such that qi |w ri
for all i. Such a path can be used to show that the given CTL formula is true.
Since qi |w ri, along π the progress proposition is true in all states. Moreover,

whenever mi = 0 and ni > 0 in (qi, ri, ∅)(
ri−→)mi(

ri,ψi,ri+1

−−−−−→)ni(qi+1 , ri+1 , ∅), the
proposition adapting is true in state (qi, ri, ∅). In this case we reach, by
following the path, the state (qi+1 , ri+1 , ∅) in which, since progress is true,
then also steady is true. Note that adapting is true also in all the intermediate
states between (qi, ri, ∅) and (qi+1 , ri+1 , ∅). Following the same path, from all
these states the same target state (qi+1 , ri+1 , ∅), in which steady is true, is
reached. The cases in which mi = 1 and ni = 0 correspond to states in
which adapting is false (by definition of adapting and by property (i) of
Proposition 1), thus in this case the implication (adapting =⇒ EF steady)
is vacuously true.

(⇐) If the formula is true at state (q, r, ∅), by definition of the semantics of
CTL we have that there exists an infinite path π in K(S[B]) in which every
state satisfies progress and the sub-formula (adapting =⇒ EF steady).
Such a path is a witness of the truth of the formula and can be calculated by
a model checker usually in the form of a prefix followed by a cycle in which
some reasonable2 fairness constraints hold3 . To show that q |w r we use such
a path π to generate a weak adaptation relation Rπ as follows:

Rπ = {(qi, ri) | ∃i ≥ 0: π[i] = (qi, ri, ∅)}

First, we note that (q = q0 , r = r0) is in Rπ because π[0] = (q = q0 , r = r0 , ∅).
Then, we conclude the proof by showing, in the following, that Rπ is indeed
a weak adaptation relation. Let i ≥ 0 and let π[i] = (qi, ri, ∅). We check that
for the generic pair (qi, ri) ∈ Rπ all the conditions of the weak adaptability
definition (Def. 7) hold:

2In our case a fairness condition that should be required for the weak adaptability
checking can be expressed as follows:“if a state satisfying steady can be eventually reached
infinitely many times, then it is eventually reached infinitely many times”.

3For a detailed discussion on the fairness constraints in CTL and on the generation of
witnesses we refer to [2, 16].

49

(i) qi |= L(ri) holds by property (vii) of Proposition 1; Progress(qi, ri)
also holds because π[i] = (qi, ri, ∅) is a state along an infinite path, thus
it does not stop;

(ii) if in π[i] we have that (qi, ri, ∅)
r
−→ then we can take the transition

(qi, ri, ∅)
r
−→ (qi+1 , ri+1 , ∅) of π and then (qi+1 , ri+1) ∈ Rπ;

(iii) if in π[i] the (qi, ri, ∅)
r,ψ,r′

−−−→ for some ψ and r′, then π[i] |=CTL adapting
and π[i] |=CTL steady. Thus, the sub-formula (adapting =⇒ EF
steady) is immediately true in π[i]. However, we know that π contin-
ues and by property (v) of Proposition 1 we know that the semantics
imposes that π adapts as soon as possible. Thus, there are two further
sub-cases:

– the adaptation is immediate: (qi, ri, ∅)
r,ψ,r′

−−−→ (qi+1 , r
′ = ri+1 , ∅)

and thus (qi+1 , ri+1) ∈ Rπ;

– the adaptation cannot be immediate, thus in π we have

(qi, ri, ∅)
r,ψ,r′

−−−→ (q′, ri, {(ψ, r′)}) for some q′ ∈ Q, ψ ∈ Ψ(Σ, A)
and r′ ∈ R. Again by the progress of π and by the defini-
tion of K(S[B]), it holds that (q′, ri, {(ψ, r′)}) |=CTL adapting
and that (q′, ri, {(ψ, r′)}) ̸|=CTL steady. Now, the sub-formula
(adapting =⇒ EF steady) is not immediately true and, by hy-
pothesis, it holds in (q′, ri, {(ψ, r′)}). Thus, there exists inK(S[B])
a path starting from (q′, ri, {(ψ, r′)}) and leading in j steps, j > 0,
to a state in which steady holds, that is of the form (q′′, r′, ∅).
Among possibly others, the continuation of π until the next state
of the form (q′′ = qi+1 , r

′ = ri+1 , ∅) is a finite path satisfying this
condition. Indeed, if it were not, then π would either stop or in-
finitely continue along states that satisfy adapting but not steady.
This contradicts the fact that π is a witness (under reasonable fair-
ness conditions) of the truth of the original CTL formula. Thus,

we have that (qi, ri, ∅)(
ri,ψi,ri+1

−−−−−→)j+1 (qi+1 , ri+1 , ∅) (where ri+1 = r′

and ψi = ψ) and (qi+1 , ri+1) ∈ Rπ.

50

Appendix A.8. Theorem 2 (Strong adaptability checking)

Proof. (⇒) Having q |s r we consider all paths π in K(S[B]) starting from
(q, r, ∅), which have the form and the properties stated in the proof of
Lemma 2. All such paths can be used to show that the given CTL formula is
true by using the same argument used in the proof part (⇒) of Theorem 1,
by turning the initial existential quantification into a universal one.

(⇐) Also in this case the proof is similar to the proof part (⇐) of Theo-
rem 1. However, the reasoning should be repeated not considering the witness
of the truth of the formula, but a generic path π starting from (q, r, ∅). More-
over, the strong adaptation relation R must be defined generalising on all
paths:

R = {(qi, ri) | ∃π ∈ Paths((q, r, ∅)) : ∃i ≥ 0: π[i] = (qi, ri, ∅)}

Then, the checking of the conditions of the strong adaptability definition
(Def. 9) on every pair of R requires similar arguments to the proof of Theo-
rem 1.

51

View publication statsView publication stats

https://www.researchgate.net/publication/274405135

