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Abstract 

 

Sand grain entrainment and suspension in low-concentration flows is generally 
assumed to be controlled by the magnitude of the basal shear stress and the resulting 
flow velocity fluctuations. Basal shear stress and velocity fluctuations are key 
fundamentals of the classic “mixing-length” theories of turbulence developed by 
Reynolds, Prandtl, von Karman and others. However, concerns have been raised 
about discrepancies between estimates of basal shear stress obtained from the 
traditional methods of the Law-of-the-Wall and Reynolds stress decomposition which 
challenges the continued reliance on the turbulence-suspension theory as it applies 
to sediment grains transport.   
 
This research uses state-of-the-art, high resolution (in space and time) velocity 
fluctuations data obtained from a flume tank experiment to re-examine and validate 
key assumptions of the turbulence-suspension theory and investigate how well the 
turbulence model support thin long run-out turbidity-current flows transporting sand 
into Agadir basin, offshore Morocco, Northwest Africa. 
In validating the theory, six flow cases characterised by varying flow conditions 
including flow discharge rate, thicknesses of flow and bed roughness were measured 
in a clear water flume tank experiment instrumented with a Nortek II ADV flow 
velocity sampling instrument. A total of 45 flow experimental runs that generated 
over 30,000 instantaneous flow velocities with depth measurements for each run 
were undertaken.  
 
Results and data analysis show a reasonable agreement between the measured 
flume-tank data with that predicted by the turbulence model with respect to the 
time-averaged velocity profile with depth as well as the estimates of basal shear 
stress from the Reynolds and Law- of-the-Wall methods. Thus, this widely used 
mathematical approximation of turbulent suspension remains supported by 
experimental evidence and can continue to be confidently utilized. 
 
However, reported field observations and inferences of long run-out thin turbidity 
current flows transporting sand-sized sediments into the Agadir basin could not be 
replicated by a numerical flow model that is based solely on the turbulence-
suspension theory. Instead, the flow model demonstrated that thicker mud-rich 
turbidity current flows can achieve long distance transport of sand in Agadir basin. 
Therefore, it is suggested that turbulence and other sediment grain support 
mechanisms such as hindered settling and grain-grain collisions not incorporated in 
the flow model may have significantly contributed to the long-distance transport of 
sand grains by thin turbidity current flows across the Agadir basin.  
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1.1 Research Motivation 

Sediment grain transport is an intriguing area of research that has over the past decades 

attracted an increasing attention which resulted in theoretical hypothesis pioneered by 

notable researchers such as Reynolds, (1896), Prandtl, (1925), O’Brien, (1933), Shields, 

(1936), Rouse, (1939), as well as Bagnold, (1966), among several others. Following the 

enviable strides, focus over the years shifted to applying analytical flow models to gaining 

new insights and deeper understanding with regards to the intrinsic processes of sediment 

grains dislodgement from the parent bed, the grain motion, action of overlying flow, 

predicting sediment transport rates as well predicting flow properties.  

Sediment grains are predominantly transported by turbulent fluid motion in the form of 

suspended load as well as grain-grain interaction with the bed which is usually less significant 

(Syvitski et al., 2003). Up until now, the actual physical processes of these two modes of 

sediment transport especially that by turbulent motion requiring the precise prediction of a 

threshold criterion for grain entrainment into a turbulent flow remains largely unclear (Frey 

and Church 2009).  

The current use of experimental and numerical models to understand the turbulence 

characteristics of natural flows has largely been limited due to complexities in the principles 

of appropriate flow models (Sukhodolov et al., 1998). Most experimental models use time-

averaged flow velocity fluctuations which are the most common flow property to 

characterise and quantify turbulence in natural flows. However, over the years, the lack of 

readily available fluctuating velocity measuring devices as well as the difficulty of deploying 

such instruments in natural flows has been a major challenge (Grant and Madsen, 1979; 

Soulsby, 2005). Also, measuring flow velocity at a single point has not adequately 

characterise the spatial variability of exchange in turbulent flow boundary layers (Offen and 
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Kline, 1974; Laufer, 1975), yet turbulence of natural flows has been characterised based on 

data obtained from single current meters which may not yield reliable outcomes.  

It is established that sediment grains in low concentration flows only begin motion, when the 

grains are subjected to a flow force referred to as bed shear stress that is in excess of a 

threshold value (Shields, 1936, Bagnold 1966, Xie, 1981). Suspension of these grains in the 

flow are generally assumed to be supported by turbulence which largely depends on the 

basal shear stress. The mixing length theory of turbulence describes grain suspension in flows 

and predicts the corresponding flow force. Traditionally, three methods predominantly used 

to analyse this basal flow force and includes the Law-of-the-Wall (or log-profile); Reynolds 

decomposition (Reynolds shear stress) and the bed slope. However, variability in the results 

from recent experiments conducted by some researchers such as Kim et al., (2000); Biron et 

al., (2004); Sherwood et al., (2006); Noss et al., (2010); Lee and Baas, (2012); Bagherimiyab 

and Lemmin, (2013); Lee and Baas, (2016); Shivpure et al., (2016), raises questions with 

regards to the validity of the turbulence suspension theory and therefore necessitates its 

validation. 

Previous attempts at validating this widely used turbulence-suspension theory since its initial 

formulation has been fraught with challenges. Prandtl, (1925), O’Brien, (1933) and Bagnold, 

1966 conceded not being able to adequately validate the theory due to non-availability of 

flow adequate fluctuating velocity sampling devices.  

With advancement in acoustic technology and availability of high resolution flow fluctuating 

velocity sampling equipment, such as the Laser Doppler Velocimeter, Particle-image 

Velocimeter, Hot-wire Anemometer as well as the 3-C high resolution Acoustic Doppler 

Velocimeter, it is now possible to fully test the assumptions and predictions of this theory. 

This research will attempt a validation of this sediment transport theory to ascertain its 
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relevance and suggest its future application or otherwise in solving sediment grain transport 

problems.  

It is well known that natural turbidity currents can transport large volumes of sediments from 

the continent to the deep ocean with turbulence as the suspension mechanism. However, 

recently published work from the Agadir basin, offshore NW Africa by Tailing et al., (2007) 

and Stevenson et al., (2014), from observation and the analysis of sediment cores recovered 

from the Modern seafloor demonstrates that very large voluminous flows (apparently ten 

times more voluminous than the annual flux contributed by all rivers of the world), are 

responsible for the transport of sediments from the Moroccan margin into the Agadir basin. 

It was also reported that sand was transported only a few meters above the bed floor, which 

imply transport by a relatively thin flow, with thickness size of approximately 5 to 7 meters. 

It has remained arguable and unclear, how a thin flow can transport sand across the over 250 

km wide Agadir basin without it depositing its load, leading to suggestions of additional 

mechanism, apart from turbulence, that act to supress settling. This thesis will investigate 

this observation and inference by using a simple 2-D depth-averaged analytical model to 

show that sand grains can plausibly be suspended in flows of this thickness by turbulence 

alone. The 2-D analytical model to be used was developed by Waltham et al., (2008), using 

algorithms of Reynolds-Averaged Navier Stokes (RANS) as well as the Chezy equations and 

based solely on turbulence-suspension theory.    
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1.2 Aims and Objectives 

This study investigates turbulence in natural flows and how it could support the transport of 

sediment grains in long run-out flows. It is a novel approach seeking to first, validate the 

widely used Mixing-length turbulence-suspension theory and then apply a numerical flow 

model based on the turbulence suspension theory to understand sediment transport in 

Agadir basin, offshore Morocco, NW Africa.   

Pertinent questions to be addressed by this research include:  

1. Can flow properties of long run-out oceanic turbidity currents be inferred based on 

relatively simple inputs using a depth-averaged numerical turbulence flow model? 

2. How possible is it to re-create the extent and grain size trends of long run-out 

turbidity current flows that extend beyond the continental slope with a depth-

averaged numerical flow model?   

3. How well can measured experimental flow fluctuating velocity data and the resulting 

velocity profile compare with similar data obtained from the theoretical model of 

turbulence?  

4. How possible is it to apply a 2D depth-averaged numerical flow model to understand 

how and why large volume, long run-out turbidity current flows only suspended sand 

a few meters from the bed floor?  

 

 

1.3 Background  

This section aims at providing a general background to the theme of the research which 

investigates the role of turbulence in supporting the transport of by natural flows such as 

turbidity currents. It introduces the key terms and concepts such as turbulence, turbidity 

currents as well as the mixing-length turbulence theory of sediment grains transport. 
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1.3.1 Transport of sediment grains 

 

Huge volumes of terrestrially-derived sediments are transported annually from the continent 

by rivers to the shallow continental shelves and are further moved into deep oceans by 

turbidity currents (Milliman and Syvitski, 1992; McCool and Parsons, 2004).  

 

 

(Modified from Wang and Andutta, 2013) 
 

The mode and pattern of sediment transport depends on the physical properties of the 

sediment grains such as grain size and density as well as the properties of the transporting 

medium such as density, viscosity of the fluid and whether the flow is laminar or turbulent. 

Two modes of sediment transport are commonly recognised, and these are bedload and 

suspension load. Bedload sediment grains transport typically involves movement of coarse 

grains along or close to the bed by rolling or scraping along the bed while suspended grains 

transport involves movement of relatively fine-grained sediments (clays, silts and fine sands) 

high above the bed in the flow (figure 1.1). According to Kneller et al., (2016), the velocity of 

Figure 1.1 Schematic diagram of sediment transport process 
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flow, the grain-grain interaction in the flow and the bed configuration considerably affect the 

extent to which sediment grain movement takes place.  

To understand how sediments move from one location to another, knowledge of the forces 

acting on a sediment grain is very important. Figure 1.2 below is a sketch showing the 

multiplicity of forces acting on sediment grains at rest on the bed. These forces include force 

of gravity, FG, lift (due to Bernoulli effect), FL and drag forces, FD (due to frictional forces which 

arise from the collision between the grains in motion and the flow boundary).  

 

 

 

 

 

 

 

 
 
As modified from Wiberg and Smith (1987), Lamb et al. (2008). Here sediment grains are subjected to forces due 

to lift, FL, gravity, FG and drag, FD.   is the bed slope angle and 0 is the frictional angle. 
 

 
Sediment grains transport in natural flows is a very important aspect of sedimentology and 

have wide applications in geomorphology, environmental and civil engineering. Knowledge 

of sediment transport provide insights in improving current understanding of the processes 

of erosion and entrainment of sediment grains, as well as clues to predicting the timing and 

location where erosion or deposition/accumulation of sediments is anticipated. In particular, 

the reliable prediction of where clastic sediments such as sands accumulate subsea and their 

thicknesses remains a primary interest in hydrocarbon exploration. 

Figure 1.2 Forces acting on a stationary sediment grain resting on a bed 
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Sediment transport study also helps to mitigate potential environmental and civil 

engineering problems such as pollution, erosion and flood control, local bed scouring, 

dredging as well as dam breaching flows among others (Dewals et al., 2010b; van Rijn 2007).  

  

1.3.2 Turbulence in natural flows 

 
Flow Turbulence is an intricate phenomenon describing a flow state with regards to how 

highly irregular and chaotic the flow could be. Turbulence is flow condition in which 

characteristic flow quantities show a random variation with time and space (Hinze, 1975). As 

defined by Tritton (1988), flow turbulence is the constant state of instability of a flow and 

usually occurs due to exchanges between fluid particles having varying velocities, density, 

temperature or pressure. 

With regards to sediment grain transport, turbulence in natural flows is regarded as the main 

driving force responsible for the transport of terrestrially-derived sediments (Lapionte, 1992; 

Clifford and French, 1993; Best, 2005b; Van Maren et al., 2009; Shugar et al, 2010). According 

to Nichols (2009), turbulence facilitate the suspension and transport of sediment grains in 

natural flows.   

Natural turbulent flows are usually three-dimensional, occurring at high Reynolds numbers 

and often expressed in a wide range of scales. The largest scale is expressed by periodic, 

wave-shaped anisotropic flow structures described as Kelvin-Helmholtz instabilities 

(Simpson, 1999) which result from shear between the turbidity current and the ambient fluid 

at the upper flow boundary. The smallest scales are usually fine-scale isotropic velocity 

fluctuations.  

Turbulence as a property of flow could facilitate mixing arising from the rapid fluctuations in 

the flow velocity which creates microscopic instabilities (eddies) in the flow (Middleton and 

Southard, 1984). For example, ocean mixing due to turbulence is attributed to mean shear 
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produced by winds or tides as well as breaking surface waves (Burchard et al., 2008). For 

small-scale flows including laboratory flows, turbulence has been produced by fluctuations 

in flow speed which is significantly enhanced through the use of external devices such as 

high-powered shakers, impellers and vibrators.  

However, irrespective of the turbulence generation mechanism, Bagnold (1954), from his 

study, noted that, the turbulence structure of a flow is bound to change if there is high 

volume of suspended sediment grains concentration in the flow. The mechanisms for 

suppressing turbulence in most flows is summarised in Balachandar and Eaton (2010). For 

low concentration flows, suppression of turbulence has been linked to an enhanced inertia, 

effective viscosity of the flow and rapid dissipation of due to sediment drag (Bennet et al., 

2013). Wang and Larsen (1994), had demonstrated that high fine-grained sediment 

concentration above a threshold value could cause the electrostatic bonds existing between 

the fine grained (e.g. clay) sediments to suppress the turbulence of the flow. There are 

investigations, currently, on why small concentrations of fine sediments (<0.1% volume) 

could suppress turbulence in a flow as noted in decelerating flows especially at its final stage 

(Baas et al., 2009; Baas et al., 2011; Cantero et al., 2012b). High fine grained sediment 

concentration in turbulent flows has been noted to cause fast gravitational settling of the 

sediment grains which ultimately increase the near-bed concentration that results in 

damping in flows (Talling et al., 2015).  

Turbulence in natural flows is quantified from the velocity fluctuations occurring at a 

relatively high temporal resolution (1-200Hz) in the flow. Many custom-made acoustic 

devices are currently available for undertaking flow velocity sampling and turbulence 

measurements. These devices include the Acoustic Doppler Velocimeter (ADV), Acoustic 

Doppler Velocity Profiler (ADVP), Laser Doppler Velocimeter (LDV), Ultra sound pulse Doppler 

velocimetry, hot-film probes, hot-wire anemometers as well as electromagnetic current 

meters (ECM). Details of these can be found in (Hurther and Lemmin, 2001, 2008), Kim et al. 
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(2000), Biron et al. (2004), García et al. (2005), Rowiński et al. (2005), Jaafar et al. (2009), 

Pope et al. (2006), Liu and Wu (2015), Shivpure et al. (2016). The choice and applicability of 

these measuring devices will depend on the need of the study and technical criteria such as 

interference with the flow, adaptability to measurement environment as well as ease of 

calibration frequency.  

Measured instantaneous flow velocity vector usually comprise three components: the 

streamwise (U), the spanwise (W), and the vertical (V) velocity components. All three velocity 

components can further be statistically resolved into the mean velocity, for streamwise,  𝑢̅ 

and the fluctuating velocity, 𝑢′, according to the equation below: 

 𝑢 = 𝑢̅ + 𝑢′                                                                                                                                          (1.0) 

Quantification of the magnitude of turbulence in a flow is of significant interest as it accounts 

for understanding flow competence with regards to the run-out distance of turbulent flows 

and the maximum sediment grain size that can be suspended by such flows.  

 

1.3.3 Synopsis of the Mixing-length turbulence theory 

 

As discussed in the last section, in most natural flows, the extent to which fine-grained 

sediments are moved by the flow significantly depend upon the degree of flow turbulence 

(as the frictional interaction with the underlying flow bed is greater when flow is turbulent). 

Thus, understanding turbulence and the average behaviour of the fluctuations of a flow is 

crucial for predicting sediment grain motion and their distributions.  

Prandtl Ludwig, 1925 proposed the mixing-length theory to predict the evolution of velocity 

profiles down the flow path from an assumed initial condition and derived a formula for 

velocity distribution in a moving fluid. The theory was postulated based on comparison with 

the molecular motion of a gas in which the momentum of a moving fluid particle does not 

change until it has moved a distance referred to as the mixing-length. Thus, the mixing-length 
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refers to the average distance that a fluid particle can move freely without collision and 

momentum exchange. It also describes the flow height which characterise interchanges of 

fluid particles in a turbulent flow as well as the distance the particle could keep its original 

characteristics before assuming that of the surrounding fluid.  

Prandtl expressed the fluctuating velocities, 𝑢′and 𝑣′ as; 

𝑢′  ∝ 𝑙
𝜕𝑢̅

𝜕𝑧
                                                                                                                                            (1.1) 

𝑣′  ∝ 𝑙
𝜕𝑢̅

𝜕𝑧
                                                                                                                                            (1.2)                                                                                                      

Where 𝑢̅ is the time-averaged velocity (streamwise direction), 𝑙 is the mixing length (𝑙=𝜅𝑧) 

𝜅 is the Von Karman Constant, which has been traditionally taken as 0.41. 

 

 

 
(Adapted from Subhasish, 2016) 
 

Figure 1.3(a) schematically describes a fluid particle located at level 1(higher) moving a 

distance l, at level 2 (Lower) due to eddy motion. The flow velocity at level 1, is still retained 

until it arrives level 2 and then decreases to the velocity at level 2 after exchanging the 

momentum with the surrounding fluids of level 2. 

The basic assumption of the mixing-length theory is that each particle retains the original 

momentum during its vertical motion until it reaches its new position, where it mixes with 

Figure 1.3a and b; Sketch diagram illustrating the mixing length theory 
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the surrounding fluid and takes on its character including the corresponding time-averaged 

velocity 

 

Thus, in a typical turbulent shear flow, fluctuations in velocity culminating in the transfer of 

momentum by eddy viscosity are expressed by this concept to determine the amount of 

turbulence that could support the suspension and motion of sediment grains in a flow. 

The instantaneous velocity of the flow at level 2 (fig 1.4) is given by the expression; 

𝑢′ = (𝑢 + 𝑙 
𝜕𝑢

𝜕𝑧
) −  𝑢 = 𝑙 

𝜕𝑢

𝜕𝑧
 ………………………………………………………………………………………… (1.3) 

𝑙 is the mixing length.  

Three major assumptions made in the Mixing length theory of turbulence includes: 

• That close to the base of bed, the shear stress is approximately equal to the bed 

shear stress (𝜏 ≈  𝜏0)  

• The mixing length increases linearly with distance from the bed. That is 𝑙 =  𝜅𝑧  

• depth profile of velocity is logarithmic (the law of the wall) 

The mixing-length theory yields the log-law expression for determining the mean velocity 

distribution although it is yet to be fully validated in unsteady non-uniform flows. According 

to Yang and Chow (2008), the mixing-length theory cannot be used to express turbulence 

intensities directly due to equations 1.1 and 1.2, in which turbulence is expected to dissipate 

at points where 
𝜕𝑢̅

𝜕𝑧
 is equal to zero (at points of maximum velocity). This is contrary to 

expectations in non-uniform flows where turbulent mixing does not dissipate at points of 

maximum velocity.   

The key prediction of the theory is that the depth profile of velocity is logarithmic (the law of 

the wall), i.e. 

  𝑢̅ =
𝑢∗

𝑘
𝑙𝑛 (

ℎ

𝑧0
)                          (1.4) 
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where the “shearing velocity”, 𝑢∗, is related to basal shear stress by 

  𝜏𝑥𝑧 = −𝜌𝑢∗
2                (1.5) 

and k is von Kármán’s constant.   

An important parameter, z0, is the height where flow velocity is predicted to be zero, 

although, in practice, at this very small distance from the flow base the flow has become 

laminar and follows a simple linear profile.  

 

1.3.4 Turbidity currents and river flows 

 

Turbidity currents and open channel flows are the typical mainstream transport media for 

moving sediment grains from the continent to deep water. Oceanic turbidity currents and 

rivers are recognised most volumetrically important sediment transport processes on Earth 

and form very large deposits (Ingersoll et al., 2013). Open channel flows such as rivers and 

debris flow mainly transport sediment grains from the continental land mass to shallow 

coastal waters while turbidity currents (due to density contrast between the sediment grains 

and ambient water), move sediment grains from the shallow continental shelves to the deep 

ocean.  

Turbidity currents should not be confused with river currents though both may have laminar 

and turbulent flow regimes, they are quite different in several ways.  According to Middleton 

(1993), turbidity currents are sediment-gravity flows while river currents are fluid-gravity 

flows. The suspended sediment concentration of rivers may be considered negligible while 

that of turbidity currents is relatively significant (Fig 1.5).  The ambient fluid of a river current 

is air while that of turbidity current is sea water. A typical velocity profile of river current 

shows a velocity maximum at or near water surface unlike that of turbidity current whose 
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velocity maximum is close to the bed with an upward decreasing velocity until near zero at 

the top (fig. 1.4).  

  

    

In river currents, sand and gravel fractions are transported primarily by bed load (traction) 

mechanism while sands in natural turbidity currents are transported by suspended load. 

River deposits are characterised by cross bedding while sandy turbidites show a general lack 

of cross bedding but a characteristic normal grading (Shanmugam, 2001). River currents are 

the aqueous analogs of turbidity currents (Luchi et al., 2018). 

 

(Adapted from Stevenson et al., 2018) 

Figure 1.4 Sketch drawings, velocity profiles of turbidity current (a) and river flow (b) 

Figure 1.5 Conceptual velocity and concentration profiles of a turbidity current 
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Turbidity and river currents are also quite different from debris flows. Unlike turbidity 

currents and rivers, debris flows are strictly cohesive laminar flows that could transport 

sediments of various size range from clays to boulders. In debris flows, grain-to-grain contact 

is frequent while it is rare in turbidity currents. The velocity profile of a typical debris flow 

may be similar to that of a river current (Figure1.4b), as the velocity maximum is at or near 

the surface of flow (Kaitna et al., 2014). 

The link between rivers and oceanic turbidity currents and how changes in discharge from 

rivers affect the frequency and character of turbidity currents are well explained in Clare et 

al. (2016). This thesis will however dwell mainly on understanding turbulence and turbidity 

currents with respect to sediment transport. The section below reviews recent developments 

in understanding this subaqueous flow. 

 

1.3.5 Turbidity current flows 

 

Turbidity currents are a type of gravity currents that transport terrestrially-derived sediments 

over very long distances with small gradients into the deep sea (Talling et al., 2015; Kneller 

et al., 2016). Turbidity current flows usually move downslope under the action of gravity as 

well as the excess density contrast which may arise due to the presence of suspended 

sediments grains in the interstitial fluid (Middleton, 1993; Kneller and Buckee, 2000; 

Sequerios, 2000).   

Natural turbidity currents are able to transport large volumes of sediments with flow 

thickness ranging up to several hundreds of metres (Piper et al., 1998; Sumner and Paull, 

2014). According to Tailing et al., (2007c), a single turbidity current flow transporting 

sediment grains into the oceans is approximately ten times the annual sediment flux from a 

combination of all rivers globally (Milliman and Syvitski, 1992). Turbidity currents are also 
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able to propagate for up to several hours or days (Xu et al., 2004). Evidences of these long 

run-out turbidity currents have been observed in the formation of giant clastic sediment 

accumulations such as the Bengal and Amazon Fans (Tailing et al., 2015; Azpiroz-Zabala et 

al., 2017; Halsey et al 2017; Imran et al., 2017; Luchi et al., 2018), with majority of fans being 

host to hydrocarbon reservoirs (Kneller and Buckee, 2000; Sequerios et al., 2009).  

Dispersed sediment grains and organic matter suspended within the interstitial fluids in a 

turbidity current are usually supported by the fluid turbulence. Although several other 

nomenclatures have been used to describe the sediment support mechanisms, (see Kuenen 

and Migliorini, 1950; Lowe (1982); Mutti (1992); Mutti et al., (2003, 2009); Shanmugam 

(1997, 2000, 2002), this work specifically adopts definition in which sediment suspension is 

by fluid turbulence and this will be used throughout this thesis. 

 

 

(Modified from Kneller and Buckee (2000)). 

 

A turbidity current anatomy as described by Britter and Simpson, (1979), Kneller and Buckee 

(2000) shows complex flow dynamics, geometrically divided into three distinct parts; the 

head, body and tail (Fig1.6).  

Figure 1.6: The anatomy of a typical turbidity current 
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The head of a turbidity current, which is typically the frontal region and shaped like a semi-

eclipse is relatively thicker and deeper than the body as well as tail regions due to the 

resistance to motion caused by the ambient fluid. The head characterise the zone of intense 

mixing and usually controls the current that follows behind. The overhanging nose-like 

structure of the head have been attributed to a no-slip condition characteristic of the base 

of the current as well as the frictional resistance typical at the top of the head.  

 

(Modified from Manica 2012). 

 

The front of the head also consists of a pattern of complicated structure of lobe and cleft, 

identified as similar to the Kelvin-Helmholtz-type billows which are instabilities formed due 

to fluids being entrained or overrun at the base of flow (Simpson, 1972).  

These series of transverse vortices forms at the interface between the current and the  

ambient fluid and attributed to density change (Britter and Simpson, 1979), (fig 1.5b). Just 

behind the head is the body of the flow which has been observed to travel faster by up to 30-

40% than the head (Middleton 1966b, c; Kneller and Buckee, 2000). Middleton, (1966b) 

observed that minor changes in flow bed slope angles of less than 4% do not significantly 

affect the speed of the head of a moving turbidity current because of increase in the frictional 

resistance of the head of flow which balances the increased buoyancy.  

Figure 1.7: Schematic forces and processes affecting a turbidity current flow 
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The vertical profile of a turbidity current has been analysed in numerous researches and 

described by Parker et al., (1987), Altinakar et al., (1996), Stacey and Brown, (1988a); Kneller 

et al., (1999); Gray et al., (2006); Islam and Imran, (2010); Sequerios et al., (2010). The velocity 

maximum usually occurs close to the bed near the density maximum and an upwards 

decreasing velocity until near zero at the top (fig 1.4). The height of the maximum velocity is 

controlled by the ratio of the drag forces at the upper and lower boundaries (Kneller et al., 

1997). The maximum flow velocity represents the velocity in the head of the turbidity current 

flow.  

Subaqueous flow processes such as turbidity currents flows are till date yet to be fully 

understood. Although there are documented descriptions of turbidity currents deposits in 

numerous locations globally, only few direct observations and measurements beyond the 

continental shelf has been made. The occurrence of natural turbidity currents has remained 

very unpredictable and access challenges beyond the lower continental shelf, has made it 

difficult to directly observe and monitor its physical behaviour as well as measure the average 

sediment concentration (Talling et al., 2013). This has motivated researchers to seek 

alternate methods of its study such as identifying suitable analogs (fluvial sedimentary 

outcrops), (Konsoer et al., 2013) but the use of these analogs has also been limited due to 

significant variation in the governing physical mechanisms. Studies based on laboratory 

experiments and numerical modelling have become very relevant (Normark, 1970; Pirmez et 

al., 1997; Sequeiros et al., 2010; Cartigny et al., 2013; de Leeuw et al., 2016). In particular, 

laboratory experiments have successfully been used in testing and developing simplifying 

assumptions that are necessary in computational models (Kneller and Buckee, 2000). 

Laboratory flume experiments have over the last two decades deepened our insights from 

mere descriptions of turbidity current behaviour to understanding details of its turbulence 

structure (Kneller et al., 1997; Parsons 1998; Buckee et al., 2001). However, concerns with 

regards to scaling of laboratory turbidity currents have remained a limiting factor (Prandtl, 
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(1952); Middleton and Southard, (1984) and Talling et al. (2013). The large scale of natural 

turbidity current has been challenging to adequately reproduce on a one-to-one basis in the 

laboratory.  

However, recent advances in technology with respect to availability of flow monitoring and 

measuring equipment have resulted in successful attempts at generating data in modern 

systems (Cooper et al., 2013; Clarke, 2016; Clare et al., 2016).  These are however, currently 

limited to submarine canyons close to the shoreline, delta-fronts, freshwater lakes as well as 

reservoirs (Khripounoff et al 2003; Xu et al., 2004; Migeon et al., 2012; Mulder et al., 2012; 

Azpiroz-Zabala et al., 2017; Symons et al., 2017). It is however, still unclear how turbidity 

currents propagate beyond the continental slope (Clarke et al., 2012a).  

Numerical models of turbidity current flow are now a significant tool for improving our 

understanding of the hydrodynamics of a turbidity current flow and validating assumptions 

of laboratory experiments normally constrained with field data. Currently, there are a 

number of numerical modelling methods applied to study turbidity current flows which has 

provided valuable findings and helped in understanding the turbulent flow process 

(Blanchette et al., 2006; Waltham, 2006; Heimsund, 2007; Cantero et al., 2009; An et al., 

2012; El-Gawad et al., 2012; Hu et al., 2012; Janocko et al., 2013; Cao et al., 2014).  

The next section below provides a brief introduction to some of the numerical modelling 

approaches for turbidity current flows. 

 

1.3.6 Synopsis of Numerical modelling of Turbidity Currents 

 

Numerical modelling of turbidity currents involves applying the relevant hydraulic equations 

from simple one-equation to highly detailed three-dimensional models to resolve all scales 

of motion of a flow and make predictions. Numerical flow models are generally classified 

based on their complexity such as the single equation model (Chezy-type equation), box 
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models, depth-averaged equation (shallow water) and full 3-D models. This review is not 

exhaustive as there are many more advanced numerical modelling approaches not discussed 

here but it is an introductory guide based on the relevance to this thesis.  

 Single equation models 

This is the earliest as well as the simplest model expressing the hydraulic behaviour of 

turbidity current flow. Single equation models are based on the Chezy equation for steady 

uniform flow as derived from the Navier-Stokes equations. According to Kneller and Buckee 

(2000), a single equation model is expressed mathematically as; 

𝑢̅ = √
8𝑔𝜌′ sin(𝛼)ℎ

𝑓𝑏+ 𝑓𝑖
                                                                                                                           (1.4) 

Where 𝑢̅ is the depth-averaged velocity, 𝑔 is the acceleration due to gravity, 𝜌′ is the density 

of the current relative to the ambient density, 𝛼 is the slope of the sea bed over which the 

current is propagating, ℎ is the height of the current, 𝑓𝑏 and 𝑓𝑖 are the friction coefficients 

for the lower and upper boundaries of the current. 

 

Single equation models has been utilised in modelling the bulk flow properties of natural 

turbidity currents such as the Grand-Banks current (Kuenen, 1951; Mulder et al., 1997).  

 Box models 

Box models mostly simulate low-concentration surge-type turbidity currents and unlike other 

modelling methods, they are not based on the Navier-Stokes equations. The modelling 

approach was developed by Dade and Huppert (1995) for a gravity current essentially 

initiated as a result of the intrusion of suspended particles over the current horizontal 

boundary into a deep and calm ambient (Harris et al., 2002). A major assumption of this 

model is that the current evolves in the form of constant area rectangles with uniform flow 

properties (speed, height and volume concentrations) in both the streamwise and vertical 

directions inside the current (Huppert, 1998). The implication of this is that there is no 



35 

 

ambient fluid entrainment into the current. The Box model is characteristically very simple 

as it can provide quick estimates of key flow characteristics such as the thickness, run-out 

distance and grain size.  

Outcomes of box modelling technique have shown significant agreement when compared 

with data from experimental modelling for deposits of strongly depositional lock-exchange 

currents. However, the box models are yet to be validated against natural turbidity current 

deposits due to challenge in constraining the initial conditions (Kneller and Buckee, 2000).  

A characteristic problem with depth-averaged models of this type is the assumption of 

uniform vertical sediment concentration arising from vertical mixing in the flow by 

turbulence.  

 Shallow water models 

This is a more precise representation of sediment-laden current flows, essentially valid for 

currents whose length is significantly greater than their depths (Meiburg et al., 2015). The 

shallow water models are characterised by streamwise variation in current height and 

velocity while assumptions of proper mixing of the current accounts for the uniform vertical 

flow properties (density and velocity). Other key assumptions of the model include negligible 

viscous forces in the flow as well as minor vertical accelerations to ensure the vertical 

pressure gradient is hydrostatic.  

The Shallow water model was first applied to investigate aspects of saline gravity currents 

produced in a lock-release experiment by Rottman and Simpson (1983). This was further 

extended later to particle-driven gravity currents by Bonnecaze et al. (1993). Extensive 

literature on the Shallow water models as applied to gravity currents has been documented 

in Ungarish (2009). 

Several forms of density current shallow water models have been proposed. Parker et al. 

(1986), suggested the ‘four-equation’ model, which though regarded as complex, 
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significantly account for sediment grain entrainment from the bed and the entrainment of 

ambient fluid (water) into the flow.  The model has found usefulness in representing large 

scale turbidity current flows (Huang et al., 2005). Also, Doyle et al. (2010) applied similar 

model with some modifications to model the plumes generated by a dense pyroclastic flow.  

 

1.4 Thesis Structure 

This thesis comprises of eight chapters and an appendix.  

Chapter two deals with the dynamics of sediment grain movement and includes key concepts 

of the research designed to give the reader a broad insight into the nature of sediments, 

sediment properties, modes of sediment transport as well as the physical processes which 

control and influence the transport of sediment grains.  

Chapter three provides background literature and terms relating to the character and 

behaviour of turbulent flows, review of the governing equations and methods of estimating 

shear stress. 

Chapter four is the experimental chapter which describes the rationale and details of the 

flume experiment conducted; the experimental set-up, instrumentation and procedures. 

Chapter five is the result chapter which provides details of the analytical results generated 

from the flume experiment including the velocity profiles of the turbulent clear water flow, 

validation of the turbulence-suspension theory as well as comparing experimental mean flow 

velocities with estimated velocities obtained from the theoretical turbulence-suspension 

model.  

Chapter six presents the application of numerical model to understand turbidity current flow 

in Agadir basin, offshore Morocco. A sensitivity analysis of the model to examine the 

response of model input parameters was also carried out. 
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Chapter seven is a general discussion on the implications of the research  

Chapter eight summarises the key findings of the research and a short conclusion to the 

thesis. It also includes an outline of suggested possible future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

2 Chapter Two; Review of Key Concepts:  

 

 

 

 

 

 

 

 

Dynamics of Sediment Grain Movement in 

Turbulent Flows. 
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2.1 Introduction 

This chapter is a concise review of relevant published literatures that provide background 

understanding of the nature and basic physical properties of sediment grains, the forces 

acting on sediment grains that cause motion as well as modes and patterns of their motion.  

2.2 Nature and origin of sediments  

 
Sediment is an aggregate of grains (or particles), either in loose or indurated form, formed 

by the physical and chemical disintegration of rocks from the earth’s crust Van Rijn (1993); 

Selley (2000). Sediments on the earth surface consists of clay, silt, sand, gravel and cobbles. 

For the purpose of this study, focus will be given to sediment types based on the mutual 

interactions of the grains due to electrochemical forces such as van der Waals forces and 

electrostatic attraction (Pye, 1994; Righetti and Lucarelli, 2007). According to Partheniades 

(2009), differentiating between coarse and fine grained sediments is not only based on their 

size but also in the mutual interaction of the grains. Consequently, in addition to size 

discrimination, sediments will further be distinguished into the coarse non-cohesive and finer 

cohesive sediment classes (see table 2.2).  

2.2.1 Cohesive and non-cohesive sediments 

 

Generally, sediment grains with size greater than 0.01mm, such as coarse silts, sand, gravel 

and cobbles are described as non-cohesive. These are sediments characterised by very small 

electro-chemical attraction and grains are isolated during transport (transport is as individual 

grains rather than in flocs as in cohesive sediments). Non-cohesive medium-fine sediment 

grains do not normally require high shear stress for entrainment into the turbulent flow.  

Sediment grains with size less than 0.01mm, such as clays and fine silt, with the potentials of 

attracting each other due to the electrochemical forces binding them together are generally 
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considered cohesive. However, with increase in concentration, there is more likelihood of 

the grains aggregating together to form a large floc. 

Cohesion of sediment grains significantly contribute to the resistance of grains to shear and 

its influence on suspended grain transport has been discussed in Parker (1990), Raudkivi 

(1998), Jain and Kothyari (2009). The cohesiveness and resistance of the grains to being 

dislodged during flow depends on the average grain size of the sediments as well as the mean 

velocity of flow. Thus there is a significant correlation between the grain size and the 

minimum flow velocity to cause entrainment of grains and its transport (Grabowski et al., 

2011). Cohesive sediments grains form large aggregates called flocs which could influence 

the general flow pattern. With increase in the flocs size, their effective density decreases 

(Droppo et al., 2000; Van and Van Bang, 2013).  

 

2.3 Properties of individual sediment grains 

Sediment grains have a range of physical properties such as grain size, grain shape, 

mineralogy and density. The influence of these properties on flow will be briefly examined.  

2.3.1 Grain size  

 

Grain size is a key parameter in the sediment transport process. It directly influences the 

mode and pattern of sediment transport as well as the corresponding transport mechanism. 

Sediment grain size has been used to provide information about the sediment provenance 

as well as the grain’s dynamic condition of its transport and deposition (Krumbein and Tisdel, 

1940; Selley, 2000; Blott et al., 2004; Goossens, 2008; Buscombe and Masselink, 2009). 

According to Wilcock and Kenworthy (2002), grain size influences the transport of sediment 

grains in two ways. For flows over a homogenous bed, transport is controlled by the size of 

the grains with smaller grains being more mobile than the larger ones unless cohesion plays 

a major role or there is biologic mediation. But in conditions where the bed is heterogeneous, 
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the relative size of the grains affect the transport rates, in which the transport rate of the 

coarse sediment grain is increased with respect to the finer grains.  

There are several methods for estimating the size of a sediment grain and these depend on 

the physical state. In the laboratory, two common traditional methods are well established 

in determining grain size and these are the sieving and sedimentation methods. Recent 

reviews can be found in (Blott et al., 2004; Syvitski, 2007). 

Over the years, there has been developments in grain size analysis resulting in the use of 

automated counter devices such as electro-resistance particle counting (Coulter Counter), X-

ray attenuation (Sedigraph), Laser diffractometry and photometrcal techniques 

(Hydrophotometrer) as well as photon correlation spectroscopy (Singer et al., 1988; McCave 

and Syvitski, 1991; Tscharnuter, 2000; Gao et al., 2005; Blott and Pye, 2006; McCave et al., 

2006; Warrick et al., 2009; Di Stefano et al., 2010; Blott and Pye, 2012; Polakowski et al., 

2014), (table 2.1).  

 

 

 

Type of Sample Sample class Analytical method 
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 Boulders, Cobbles, Pebbles Manual measurement of individual 

clasts 

Granules, Sands, Silt Sieving, settling tube analysis, image 

analysis 

Clays Pipette analysis, Sedimentation 

balances, Photohydrometer, Sedigraph, 

Laser diffractometer, Electro-resistance 

(Coulter counter) 

L
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d

 s
e
d

im
e
n

ts
 Boulder, Cobbles, Pebbles Manual measurement of individual 

clasts 

Granules, Sand, Silt Thin section measurement, image 

analysis 

Clays Electron microscope 

Table 2.1: Analytical methods for sediment grain size 
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Classification of grain size in sediments dates back to 1898, pioneered by Udden and 

subsequently modified by Wentworth (1922) and Krumbein and Pettijohn (1938), describing 

the grade names and their lithified equivalents, followed by a further modification with the 

introduction of the phi () scale (see table 2.2), which converts the grade boundaries into phi 

values by a logarithmic transform as below: 

 ∅ = −log2 𝐷𝑔                                                                                                                                             (2.1) 

 Where 𝐷𝑔 is the grain average diameter. 

          Grain Size Class 
Mm                          Phi scale 

Description Degree of Cohesion 

<0.004                              >8 Clay Very cohesive 

0.004 -  0.062               8 to 4 Silt Cohesive 

0.062 – 0.25                 4 to 2 Fine Sand Weakly cohesive  

0.25   – 0.50                 2 to 1 Medium sand Cohesion increase with decreasing grain 
size 

0.50   -  2.0                   1 to -1 Coarse sand Cohesionless 

2.0 – 16.0                    -1 to -4 Gravels Cohesionless 

16.0 – 64.0                  -4 to -6 Pebbles Cohesionless 

64.0 – 256                   -6 to -8 Cobbles Cohesionless 

>256                                >-8 Boulders Cohesionless 

Modified from Udden and Wentworth, and Blair & McPherson (1999); Charlton (2006). 

 

Numerous studies have also been carried out relating grain size to sediment transport. For 

clastics in particular, the grain size has been used excellently in predicting the relative amount 

of energy that is responsible for the final transport and deposition of a sediment grain and 

interpreting the depositional environments of ancient sedimentary rocks (Dashtgard et al., 

2008; Wilson et al., 2008; Salarashayeri and Siosemarde, 2012; Miall, 2013). 

The size of sediment grains could influence the fluid flow in sedimentary rocks and has been 

used as a reliable index for environmental characterisation (Sun et al., 2002; Owens et al., 

2005). In addition, the hydraulic character of sediment grains is significantly influenced by its 

settling velocity which depends mainly on the grain size. According to Eggenhuisen et al. 

Table 2.2: Millimetre and phi scale grain size ranges for sediments 
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(2017), from observation data, grain size is the primary control on sediment grain suspension 

as coarser grains tend to fall faster under the action of gravity in a stationary body of water. 

This has made it important to always incorporate settling velocities of grains in sediment 

transport studies considering the fluctuations and competency in flows. The observed 

decrease in grain size with distance of transport in most field studies being attributed to grain 

fracturing and abrasion is mainly related to the velocity of flow, mineralogy of the sediment 

grain as well as the initial grain size and the travel distance.  

2.3.2 Grain shape 

 

Grain shape and size together define the macroscopic appearance of a sediment grain. 

However, grain shape specifically describes the sediment grain’s geometric form. From the 

shape of a sediment grain, valuable information such as the sediment depositional history as 

well as the behaviour of the transporting medium can be predicted (Kleesment, 2009). Quartz 

has been the standard mineral for grain shape analysis (Beal and Shepard, 1956; Griffiths, 

1967; Blott and Pye, 2008). 

The description of the shape of sediment grains is done with reference to how round or 

smooth a sediment grain is. For example, roundness reflects the degree of “smoothness” or 

“roughness” of the grain. Roundness is also described in relation to how well the rounding or 

angularity of the corners and edges are.  Pettijohn (1975), explained that the roundness of a 

grain gives an account of its abrasion history. Sphericity on the other hand suggests how close 

a grain shape approximates to a sphere. Sphericity and roundness together, as a function of 

the sediment parent rock and original grain shape, have been noted to increase with long 

distance transport. Form has also been used to describe the overall appearance of a sediment 

grain and has been noted to affect the efficiency of grains transport.  

Grain shape is a very significant factor in the hydrodynamic behaviour of sediments especially 

with regards to their transport. However, because of the limited understanding of its impact 
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in sediment transport, it is hardly included in most sediment transport formulas.  Currently, 

there are data from a few investigations comprising both laboratory and field work, on the 

behaviour of various sediment grains in flow modelling. According to Komar and Li (1986), 

from the results of their experiments, elongate grains are more imbricated than spherical 

grains and thus less exposed to flow. Also, it was shown that the value of Shields number 

required for the initiation of motion of elongate grains was five to six times greater than that 

for spherical grains. Allen (1984), from his experiments on bivalves shells also hinted from his 

results that the drag increases with the elongation of the shells, thus reducing their transport 

capacity when compared to the spherical grains. Smith and Cheung (2004), also related the 

compelling impact of grain shape on fall velocity. 

Cho et al. (2007), also suggested that though the shape of a sediment grain reflects the 

sediment transport history, which may not necessarily only relate the wear during transport, 

but it could also influence the grain susceptibility to transport. The more spherical a grain is, 

the easier it is to transport due to less friction. Sperry and Peirce (1995), emphasised the 

relevance of grain shape and its impact on the total surface area as well as the pore geometry 

which subsequently influences the hydraulic conductivity of the sediments.  

2.3.3 Composition and density 

 

The composition of sediment grains depends largely on the clastic sediment source. Most 

individual grains are mono-mineralic, having a single type of mineral such as quartz, while 

large grain accumulations, sourced from the breakdown of pre-existing rocks are mostly 

composed of a variety of minerals including quartz, feldspar, mica, pyroxene and hornblende. 

However, quartz and feldspar are the dominant minerals in most sediments with their 

specific gravity ranging from 2.60-2.72. The mineralogical composition of sediment grains is 

a well-established source of information from which the transport history can be inferred. 

Example, zircon, tourmaline and rutile are stable heavy minerals known to withstand several 

cycles of weathering, erosion and long distance transport (Bridge and Demicco, 2008). It 
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should be noted that the most common mineral present in the bed load of most river 

channels is quartz, and it originates mostly from igneous and metamorphic rocks (Bogárdi 

and Szilvássy, 1974). 

The mass density of a sediment grain, describes the solid mass per unit volume. This naturally 

will depend on the sediment mineralogical composition which controls the relative ease with 

which the grains could be entrained in a flow and maintained in suspension.  

 

2.3.4 Bulk properties of sediments  

 

Sediments comprising grains of different sizes, shapes and mineral composition have bulk 

physical properties, known to influence the aggregate character of the sediment and affects 

grain entrainment and transport in flows. Some of these bulk properties include grain size 

distribution and porosity. Also, these bulk sediment characteristics influence the bulk 

density, permeability and shear strength of the sediments.  

 Grain size distribution 

Sediments comprise a range of sediment grains with various sizes which holistically have a 

direct impact on the sediment hydraulic properties and this may be influenced by the 

magnitude of the electrochemical forces binding the grains together among other factors.  

The size distribution of a sediment mixture, especially clastics, is commonly measured by the 

sieve analytical method. Results of these analysis are further statistically analysed using the 

Folk and Ward (1957) graphic method with further interpretations based on percentiles 

taken from the cumulative frequency curves. The mean grain size, sorting and standard 

deviation are derivatives of the process.  



46 

 

 Grain sorting and packing 

Sorting of sediment grains is a measure of the spread of grain sizes distributed on either side 

of an average or around a mean value in a sediment mixture. The degree of sorting, however, 

reflects the range of grain sizes in the sediment bed.  

There are various descriptive terms associated with sorting and the corresponding graphic 

phi values and these are presented in table 2.4 below. However, more details on sorting can 

be found in Boggs (2009), Folk (1980) as well as Tucker (2009). 

 Sediment sorting is fundamental to understanding the impact of grain size on the porosity 

of a sediment as well as provide clue as to the effectiveness of the depositing flow to separate 

grain sizes of the various size range. Well-sorted sediment grains have a narrow range of sizes 

whereas poorly sorted sediment shows a wider range. In sediment transport, poorly sorted 

sediments with a wide range of grain sizes would require critical flow velocity of higher 

magnitude to entrain sediment grain into a flow than a well-sorted sediment.  

Grain packing reflects the arrangement of the grains in a sediment and this largely depends 

on the grain size, shape as well as sorting. The way sediment grains are packed primarily 

influences the porosity and permeability of the sediment. Poorly sorted sediments have 

closer packing and porosity will be lower. However, the closer and tighter the packing 

arrangement, the greater the magnitude of shear stress required to entrain individual 

sediment grains from the bed. 
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2.4 Sediment grain entrainment 

Turbulent flows moving over a bed of sediment grains are able to pick up grains from the 

sediment bed and carry them into suspension in a flow. This character of a flow is described 

as “grain entrainment”. For well over a century, there has been research to gain more insights 

into the process of how sediment grains are dislodged from the parent bed, moved into 

suspension and transported by the overlying flow. Despite the long study which has resulted 

in several theoretical hypotheses, the actual physical process responsible for sediment grain 

entrainment and the precise prediction of a threshold criterion defining the flow conditions 

which account for grain entrainment is yet to be fully understood.  

The entire entrainment process look complex as the interactions between the flow and the 

parent bed may lead to the formation of bed forms which influence how easy sediment grains 

are likely to be entrained into a flow. 

According to Sutherland (1967), sediment grain entrainment is a two-phase process involving 

the motion and intrusion of turbulent eddies into the thin laminar sublayer. The process is 

believed to prompt an increase in the mean flow velocity around the grains (to dislodge the 

Phi standard deviation                            Sorting 

<0.35                           Very well sorted 

0.35 to 0.50                           Well sorted 

0.50 to 0.70                           Moderately well sorted 

0.70 to 1.0                           Moderately sorted 

1.0 to 2.0                           Poorly sorted 

2.00 to 4.0                          Very poorly sorted 

>4.0                           Extremely poorly sorted 

Table 2.3: Ssediment grains sorting values and their interpretation 

Adapted from Folk and Ward (1957) 
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grains held within the sediment bed) as well as the mean bed stress to set the entrained 

grains in motion.   

However, two kinds of theories have been developed on sediment grain entrainment.  The 

first theory is primarily based on statistical methods and this has to do with the relation of 

near-bed flow turbulence to sediment grain entrainment. Near-bed flow turbulence is 

characterised by four events such as sweep, ejection, outward interaction and inward 

interaction events. All four events have varying influence on sediment grain transport modes 

and rate (Bridge and Bennett, 1992), which will be discussed later. The second theory was 

proposed by Shields (1936), in which (Wright and Parker, 2004a) a sediment grain 

entrainment criterion is set and this depends on the threshold bed shear stress. The 

assumptions of the mean flow velocity or the mean bed shear stress controlling the sediment 

grain entrainment process now formed the basis of later entrainment models (Garcia and 

Parker, 1991; Raudkivi, 1998; Elhakeem and Imran, 2011; Elhakeem and Sattar, 2015; 

Elhakeem et al., 2016). 

 A common feature of most of the sediment grain entrainment models is that the threshold 

conditions rely on the equilibrium of grain forces although some disparity in its elucidation is 

still observed with regard to which of the forces are relevant (for example, weight, buoyancy, 

drag and lift), how they could combine and most importantly, the forces parameterization 

(Papanicolaou et al., 2002; Hofland and Battjes, 2006; Schmeeckle et al., 2007).  

The next section describes the forces acting on a sediment grain prior to entrainment and 

during flow. 

 

2.5 Approaches to predict sediment grain entrainment 

 
Defining sediment grain entrainment threshold is very crucial in sediment grain transport. 

Threshold conditions for grain entrainment have been defined based on the critical mean 
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flow velocity (from the cross-sectional average) or on the critical bed shear stress.  For ease 

of understanding, it is expedient to define related terms as below; 

• Shear Stress; this is expressed as a force per unit area of the bed. It is a measure of 

the frictional force from moving water and acting on the river or channel bed. It acts 

in the flow direction and is responsible for the entrainment of bed materials into 

flow. According to Biron et al. (2004), shear stress, 𝜏0, is defined by 

 𝜏0 =  𝜌𝑔ℎ𝑠                                                                                                                          (2.7) 

• Critical shear stress, 𝜏𝑐𝑟𝑖𝑡, is the magnitude of shear stress required to move 

sediment grains from the channel bed into flow. 

𝜃𝑐𝑟𝑖𝑡 =
𝜏𝑐𝑟𝑖𝑡

𝑔(𝜌𝑆−𝜌)𝐷
                                                                                                                (2.8) 

• Grain Reynolds Number, 𝑅𝑒∗, this describes the degree of sediment bed roughness 

arising from grain packing. It is mathematically expressed as proportional to the ratio 

between the grain size and thickness of the laminar sublayer. 

𝑅𝑒∗ =  𝑢∗  
𝐷

𝝂
=  

11.6𝐷

𝛿𝑠𝑢𝑏
                                                                                                            (2.9) 

Where 𝜃𝑐𝑟𝑖𝑡 is the dimensionless critical shear stress (Shields parameter), 𝜏0 is the bed shear 

stress, 𝜏𝑐𝑟𝑖𝑡 is the critical shear stress, 𝝂 is the kinematic viscosity, 𝑢∗is the shear velocity,  𝐷 

is the grain diameter and 𝛿𝑠𝑢𝑏 is the thickness of the laminar sublayer.  

 

2.5.1 Shields diagram 

 

Shields (1936), was among the foremost researchers to describe how motion of sediment 

grains starts after considering the forces acting on the grains. Shields successfully derived a 

quantitative parameter, defined as a dimensionless critical bed shear stress, which predicts 

the threshold at which spherically shaped non-cohesive sediment grains are set in motion.  

The Shields parameter, (otherwise called the Shields entrainment function or Shields 

parameter) expresses the ratio between the applied bottom shear stress that tends to 



50 

 

destabilise the bed to free the grains and the stabilizing gravitational force. The Shields 

formula is: 

𝜃𝑐𝑟𝑖𝑡 =  
𝑢∗

2

𝑔(𝑆𝑠−1)𝐷
=  

𝑢∗
2

∆𝑔𝐷
                                                                                                                           (2.10) 

Where  𝑢 ∗= √𝜏/𝜌 is shear velocity, 𝜏 is the bed shear stress, D is the grain diameter and g 

is the acceleration due to gravity.  𝑆𝑠 =  
𝜌𝑠

𝜌
;  𝜌𝑠  is the sediment grain density,  𝜌 is the water 

density. 

 

 

 

Fig 2.1 above shows a sketch of the original Shields diagram in which sediment threshold 

conditions is displayed as a narrow band (orange-coloured band) with interpretation made 

in reference to this band. The diagram also shows that above this band, sediment grains will 

be set in motion, whereas, below it, due to insufficient shear stress, sediments grains are 

unable to be mobilised into flow for motion.  

Figure 2.1: The Original Shields diagram (Shields, 1936).  
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Consequently, three sediment transport zones can be distinguished from the Shields curve, 

namely No motion, Bed load and suspended load. According to Shield, when Re* > 1000, (as 

the case of most rough and turbulent flows), the shields parameter or number will remain 

unchanged. 

The Shields diagram, however, has lately come under criticisms with regard to its accuracy 

(Miller et al., 1977; Buffington and Montgomery, 1997; Buffington, 1999). Dissatisfactions as 

reported by Mantz (1977); Yalin and Karahan (1979); Buffington (1999) as well as Smith and 

Cheung (2004) were mainly from observed large scatters in sediment characteristics. These 

discrepancies have been attributed to be caused by the non-uniform flow conditions 

characterising natural flows. Consequently, several attempts were made by other 

researchers including Vanoni (1964), to modify the original Shields diagram to address some 

of the observed discrepancies. 

These researchers also advocated the use of alternate plots for different flow cases such as 

Vanoni (1964); Yalin and Karahan (1979) and Paphitis (2001).  

Similar predictions of bed critical threshold conditions in the field have been notably very 

challenging leading to the development of alternate Shield type equations and diagrams 

(Chien and Wan (1999), Paphitis (2001), Hager and Oliveto (2002), Cheng (2004) and Cao et 

al. (2006)). Essentially, despite all these several alternate contributions, Shields (1936) 

predictive equation and diagram still remain the most globally accepted standard method for 

determining the threshold for incipient motion conditions. 

 

2.5.2 The Hjulstrom diagram 

 

Despite the criticisms of the Shields curve described above, it remains a good technique for 

estimating entrainment thresholds for cohesionless grains. Cohesionless sediment grains, as 
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applied in this thesis, include sediment grains that are subject to the influence of drag and 

lift forces as well as turbulent velocities.  

Hjulstrom (1935), based on results of a series of experiments published the first curve that 

describes the relationship between the sediment size and the flow velocity required for the 

sediment erosion, transportation and deposition.  

 

 

 

Essentially, the graph relates grain size to the flow velocity. However, for grain sizes coarser 

than 0.5mm, the flow velocity is observed to increase with the grain size, as the coarser the 

grains, the higher the velocity of flow required and similarly, for finer grains such as having 

mud or clays in the flow, a higher flow velocity is required to overcome the cohesive forces 

binding the finer sediment grains together. 

Figure 2.2: The Hjulstrom diagram 
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The challenge with using Hjulstrom diagram is that all the forces that are required to move 

sediment grains are not only related to flow velocity. Boundary shear stress is a particularly 

important force which varies with flow depth. Hjulstrom diagram is used mainly to predict 

the mean velocity of flow that could reasonably entrain sediment grains into a flow.  

 

2.5.3 Influence of bed slope  

 

The influence of bed slope angle on incipient motion was first investigated by Shields (1936), 

although most of his work centred on nearly horizontal slopes. Since most natural flow 

channels do not have horizontal slopes especially in mountainous areas where there could 

be steep gradients, it is expedient to account for the influence of the downslope component 

of gravity on the initiation of sediment grain motion. Neill (1967), from a follow up model to 

Shields experiments confirmed that bed critical shear stress decreases with increasing 

channel slope. Later experimental works of Shvidchenko and Pender (2000) as well as 

Shvidchenko et al. (2001) also showed that incipient motion was slope dependent, even for 

very low angle slope values. With a higher bed shear stress, sediment grains therefore, are 

expected to become more mobile resulting from an increase in bed slope in addition to the 

effect of gravitational force acting in the downstream direction (Wiberg and Smith, 1987; 

Lamb et al., 2008). 

Thus, sediment grain at the surface of a sloping bed will only begin to move when the force 

resisting the downstream motion is balanced by the drag force and the gravitational force.  

Lamb et al. (2008), expressed the force balance on a sediment grain for a sloping bed as; 

FD + (FG − FL) sin β = [(FG −  FL) cos β − FL] tan  ∅0                                                              (2.6)  

Where ∅0 is called the grain angle of repose (or frictional angle) and β is the bed slope.  
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2.5.4 Influence of bed roughness 

 

Bed roughness have been noted to be irregularities, relief structures or obstacles on the 

boundary (bed) of a flow which generate eddies that influence the magnitude of flow 

resistance, mean flow, turbulence and grain motion in a flow. It is produced by bedforms as 

well as individual sediment grains. Bed boundary roughness expresses the magnitude of the 

frictional resistance and effect that the underlying bed or boundary has on the flow. There 

are two main components of bed roughness and these includes the form roughness and 

sediment grain roughness. The sediment grain roughness relates the effect of frictional 

resistance to the grain size.  

 

 

Form roughness on the other hand relates to the bedforms produced by sand ripples, 

biogenic mounds as well as benthic seagrasses.  Nielsen (1981), Grant and Madsen (1982) 

carried out extensive research on flow boundary roughness.  Also, there are a few published 

Figure 2.3a and b: Schematic diagram hydraulic smooth and rough surfaces 
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studies conducted to evaluate the boundary roughness of sediment grain saltation in flows 

(You and Nielsen, 1997; Raudkivi, 1998).  

Currently, estimates of bed roughness with biogenic mounds on sea beds is empirically 

carried out from photo images of the seabed (Grant et al., 1984; Wheatcroft, 1994) and as a 

result, it is a huge challenge to estimate the total roughness of sediment grain which 

constitute the irregular sand ripples, biogenic mounds, benthic seagrasses and sediment 

saltation in the field. Alternatively, therefore, the total bed roughness is now directly 

determined by fitting measured velocity current profiles to the logarithmic distribution, using 

the von Karman–Prandtl velocity equation. The roughness length generally, is taken as the 

distance above the bed of the position at which the extrapolation of the logarithmic profile 

has zero velocity (Burchard et al., 2008). 

From Von Karman’s turbulence model, z0 represents the surface roughness length or height, 

where the instantaneous velocity equals to zero.  Raudkivi (1998), provided a relationship 

between zo and the size of the elements producing the roughness, in the form 

                                                             𝑧0 =  
𝑥

30.2
                                                                         (3.10) 

where x represents the size of the roughness elements (equivalent sand roughness which 

provides indication of the grain diameter).  

Hence, rougher floors should have higher values of zo.  

The natural enhancement of turbulence in flows by bed forms and bed floor roughness has 

been discussed by (Nelson et al., 1993; 1995). Their findings, however, complimented 

Bagnold (1966), theory by considering how bed form variation and bed roughness 

significantly impact on turbulence generation especially in natural flows with erodible beds. 

Their studies also indicated that, in addition to bed shear stress, sediment transport was a 

function of the near-bed turbulence which could have been impacted by the bed roughness 
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with a strong correlation between the sediment flow velocity and the observed near-bed 

velocity fluctuations. 

2.6 Settling velocity of sediment grains 

The transport of sediment grains in water settling or fall velocity of sediment grains is one of 

the fundamental variables in the study and modelling of sediment grain transport which is 

significant for understanding how sediment grains are suspended, deposited as well as the 

mixing and exchange processes in a flow (Zhiyao et al., 2008). A sediment grain which is under 

the influence of gravity and falling in a stationary body of water will continue to accelerate 

until the gravitational force is exactly balanced by the resisting force such as the drag force 

(Gabitto and Tsouris, 2008). Thus, the Settling velocity is the velocity so attained when a 

sediment grain finally settles in a flow with the drag force being exactly equal to the 

downward gravitational force (Winterwerp and Van Kesteren, 2004; Mantovanelli and Ridd, 

2006; Ha and Maa, 2010). It is a function of sediment grain properties (especially grain size, 

density and shape), the grains concentration as well as the character of the ambient fluid 

medium (density and viscosity).  

In the estimation of sediment grain settling velocity, Nielsen (1992) had advocated equating 

gravity and drag forces using an appropriate drag coefficient for both cohesive and non-

cohesive sediment grains. Similar recommendations for sand grains, in particular, was made 

by Fredsøe and Deigaard (1992).  

Previous study of settling velocity of natural sediment grains dates back to 1851, when Stokes 

first developed the quantitative equation for non-cohesive spherical sediment grains (that 

are not subject to aggregation) in stationary fluids of low Reynolds number (Stokes, 1851; 

Dyer, 1989; Le Roux, 1992; Cartwright et al., 2011; Cartwright et al., 2013). Therefore, non-

cohesive sediment grains with a specific gravity greater than that of water should settle 
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under the action of gravity, after certain initial acceleration with constant velocity and 

depend however, on the flow viscosity and density.  

From Stokes (1851), the setting velocity of a spherical grain in a low Reynolds number still 

fluid, is estimated from the mathematical expression below; 

𝜔𝑠 =
(𝜌1−𝜌)𝑔𝑑𝑔

2

(18𝜇)
                                                                                                                                     (2.12) 

Where 𝜔𝑠 is the settling velocity, 𝜌1 is the density of grain, ρ is the fluid density, 𝑔 is the 

gravitational acceleration, 𝑑𝑔 is diameter of grain and μ viscosity of fluid.  

There are now several new equations that have been derived and proposed to estimate the 

settling velocity of natural sediment grains applicable to all sediment grains irrespective of 

shape as well as for a wide range of Reynolds numbers such as Dietrich (1982), Graf (1984), 

Van Rijn (1993), Ahrens (2000), Ahrens (2003), Camenen (2007) and Zhiyao et al. (2008). The 

assumption of a sphere, according to Jiménez and Madsen (2003), have some consequences 

in which case, the settling velocity will be lower than that of a sphere with a nominal 

diameter.  

The determination of the settling velocity for cohesive sediments, on the other hand, has 

been seen as a rather complicated process in contrast to non-cohesive sediment grains. 

According to Manning et al. (2011), the interactions factors such as the organic content, 

degree of flocculation, suspended sediment concentration, mineralogy and properties of the 

ambient fluid make the prediction very challenging. Therefore, suggestions of carrying out 

estimates of settling velocity for cohesive sediments in situ in the field due to the flocs 

sampling and transport issues have become popular (Winterwerp and Van Kesteren, 2004).  

Finally, just as the settling velocity of sediment grains is important in flow and sediment 

grains transport, processes that equally affect or impede the settling of individual sediment 

grains in a natural flow are also known to exist and have been a subject of investigation. This 
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process is referred to as hindered settling of grains and will be briefly discussed in the next 

section below. 

 

2.7 Hindered settling 

The settling of sediment grains in a flow is influenced not only by the size of the grains and 

the surrounding ambient fluid, but also by the presence of a high concentration of other fine 

grains held in suspension. Hindered settling is the reduced sedimentation rate and/or 

inability of sediment grains to be deposited or settle on the bed floor due to increasing grain 

concentration in the flow (Tomkins et al., 2005). Previous studies by Winterwerp (2002),  

Dankers and Winterwerp (2007), described hindered settling of grains as a process which 

occurs when there is an over-population of fine sediment grains in a flow, resulting in greater 

grain-grain interactions and collisions as well as interference which makes the fine grains able 

to fill-up spaces in the flow. The effect is the considerable reduction of the settling velocity 

of the sediment grains, facilitating their suspension in the flow and the creation of a slower-

moving mixture culminating in the hindered motion the grains. Hindered settling has also 

been known to greatly suppress the turbulence structure of a flow (Bagnold, 1954). 

 

2.8 Sediment grain transport 

Sediment grains are transported in fluvial, coastal and aeolian sedimentary environments. In 

natural water flows such as rivers, Einstein (1950) and Vanoni (1975), based on the grain 

characteristics such as size, shape and density as well as the viscosity of the transporting 

medium, clearly identified and distinguished the modes of sediment transport as the bedload 

and suspension load. In bed load sediment transport, the grains normally move by rolling, 

sliding or hopping (saltate) along the bed and usually have velocity significantly different from 

that of the flow. In suspended load transport, sediment grains are supported above the bed 

by the turbulent forces in the water and can travel far distances without coming directly in 



59 

 

contact with the bed as well as have velocity similar to the flow velocity. A third mode, 

identified as the wash load (which are usually clay-dominated and are >8m in size) are 

generally considered part of the suspended load. 

An estimated volume of over 10 billion tons of sediments is reported to be transported yearly 

by rivers to continental shelves and further delivered to the oceans and seas (Milliman and 

Syvitski, 1992; McCool and Parsons, 2004). Bed load transport, however, account for up to 

60% of the total sediments transported in rivers, oceans, lakes, seas as well as other bodies 

of water with most having gravelly base (Métivier et al., 2004; Meunier et al., 2006; Liu et al., 

2008; Lajeunesse et al., 2010).  

The movement of sediment grains appear to be simple, but the process is a rather more 

complex phenomenon. To fully understand the motion of sediment grains, several 

investigations on the mechanisms had led to theories proposed and developed more than 

half a century ago by Shields (1936); Einstein (1950) and Bagnold (1956, 1966, 1973) with 

later significant contributions from  Graf (1984), Raudkivi (1998)  Wilcock (2001), Wilcock and 

Crowe (2003), Parker (2008), Lajeunesse et al. (2010), Hurther and Thorne (2011), Buscombe 

and Conley (2012), Schmeeckle (2014) and Hill et al. (2017) among several others. In 

particular, Bagnold (1956, 1966) derived quantitative relations for the transport of sediment 

grains as bed load and suspended load based on the Energetics-based theory, with the 

assumption that a fixed fraction of the stream power of a flow is used to move sediment 

grains as bed load while the remaining is used to move the suspended load.  

The flow stream power, P, is given by  

P =  τu̅ = ρghSu̅                                                                                                                                  (2.13) 

Where P is the total stream power, 𝑔 is the acceleration due to gravity, h is flow depth, S is 

slope, 𝜏 is the basal shear stress and 𝑢̅ is mean flow velocity. 

An outline of Bagnold’s arguments is that sediment grains entrained in a flow are either 
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• supported by the upward diffusion of turbulence from the bed boundary (implying 

that the weight of the sediment grain is balanced by the upward component of the 

flow momentum transferred to it) or 

• supported by the vertical upward component of forces due to the transfer of 

momentum from grain to grain and grain to bed (Raudkivi, 1998). 

Flows laden with sediment grains has also been known to generate turbulence due to shear 

at the bed and consequently hinders the downward settling of grains moving them higher 

above the bed in the flow. A review of the mechanism of the two principal modes of sediment 

transport is discussed below. 

 

2.8.1 Bed load sediment transport 

 
Bed load transport is characterised by movement of sediments with grain sizes above 

0.10mm (sand and gravel), and are in frequent contact with the bed. Bagnold (1956), 

explained that apart from the sediment grains being in successive contacts with the bed, they 

are also limited by the effect of gravity. Einstein (1950), in addition, was of the opinion that 

bed load sediment grains transport takes place within the thin two grain diameters thick layer 

above the bed. It is known that within the bed layer, mixing due to turbulence is very minimal 

and thus cannot support the suspension of grains.  

It is well established that bed load grains travelling along the bed in a flow is facilitated by 

sliding, rolling and saltation resulting largely due to the shear stress exerted on the bed by 

the flowing water. Saltation (jumping of grains over the bed) has been identified as the most 

common pattern, with the other two, rolling and sliding (movement of the grains in 

continuous contact with the bed (Gao et al., 2005), which rarely occur and does so slowly at 

low sediment-transport rates and at the verge of the grain entrainment in the flow as well as 

between saltating jumps (Bridge and Dominic, 1984). An increase in the flow velocity could 

induce a relative increase in the speed of the rolling or sliding grains until saltating motion 
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begins. The key mechanism of saltating bed load grains especially at a relatively higher 

sediment transport rate may be attributed to the grain collision enhancement which results 

in the transfer of momentum between grains.  

The mechanism of bedload sediment grain transport has been well explained by Bagnold, 

(1956, 1966, 1973). Bed load grains move relatively slower than the surrounding fluids due 

to grain-grain collisions and with the bed. Collisions of the moving grains with the bed layer 

exert both a tangential and normal stress on the bed surface. According to Bagnold (1966, 

1973), for a steady maintenance of bed load sediment grains transport, there must be an 

upward dispersive stress balanced by an equal immersed weight of the grains in motion. Also, 

for low bed grain concentrations, the turbulent bed shear stress at the base of flow is 

expected to balance the critical bed shear stress of the fluid component at the threshold of 

sediment grain movement.  

Recently, bed load sediment grain transport has been seen not only being influenced by fluid 

shear from above but also by the granular creep on the bed surface (Houssais et al., 2015). It 

is worth noting that the continuous contact of bed load grains with the immobile bed usually 

result in a resistance to grain motion. According to Bridge and Dominic (1984), this resisting 

force, could be overcome when the fluid exert a mean downstream force.  

On a sloping bed for instance, this downstream force, parallel to the bed is expressed as  

τ0 + w′ sin β = T + τ1                                                                                                                       (2.14) 

Where 𝜏0 represent the bed shear stress applied by the fluid, 𝑤′ sin 𝛽 is the downslope weight 

component of moving grains per unit bed area, 𝑇 is the shear resistance due to the moving bed load 

and 𝜏1 is the residual shear stress carried by the mobile bed.  
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Most of the derived equations on bedload transport rely upon the data from laboratory or 

in-situ field data in river channel beds and are later tested.  

Durafour et al. (2015), had observed that bedload sediment transport in the coastal areas is 

affected by the heterogeneity (in terms of the grain size, shape and density) of the sediment 

and the hydrodynamic forcings (such as the waves and currents) in the flow.  As in other 

transport regimes, the shields parameter is critical in the initiation of sediment grain motion. 

Thus, when the dimensionless shear stress exceeds the critical value, grains movement 

begins.  

 

2.8.2 Suspended load transport 

 
Theoretically, sediment grains can be moved by suspension irrespective of size as long as the 

flow current is strong enough. Parsons et al. (2015), described suspended sediment transport 

to include the transport of fine sediments such as fine sand, silt and clays supported by 

turbulent eddies whose magnitude exceeds the fall velocities of the grains. Due to the 

relative absence of grain collisions with the bed layer, the sediment grains move at almost 

the same velocity as that of the flow. However, to maintain these sediment grains in 

Figure 2.4: Sketch of modes of sediment grain transport 
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suspension, there must be a disparity between the upward-trending lifting forces associated 

with the flow turbulent eddies and the fall velocities causing the sediment grains to fall and 

settle towards the bottom of the flow or bed. Bagnold (1966) had postulated that sediment 

grains are able to remain in suspension when the upward-trending fluctuating velocity 

associated with turbulence is greater on average than the downward fluctuations. 

Thus, in natural flowing waters, sediment grains transport by suspension is facilitated with 

the support of the turbulence shear stress which prevents the grain from falling to the flow 

bottom. Shields (1936) had emphasised that suspension of sediment grains occur when the 

local bottom shear exceeds the critical value. Thus, suspension will occur when the ratio  

Vrms.max
′ /𝑈𝑠

̅̅ ̅  1, where Vrms.max
′  is the maximum root mean square velocity and 𝑈𝑠

̅̅ ̅  is the 

average flow velocity (Leeder et al., 2005).  

Naturally, Sediment grains with density greater than water is expected to fall through a 

standing body of water since the gravitational forces acting on the grains are unopposed by 

the flow-induced lifting forces. Bagnold (1966) had emphasised that the residual vertical 

momentum flux prevents sediment grains from falling into the flow under gravity. Therefore, 

a sediment grain will be transported by suspension in a flow with the support of the 

turbulence field of the flowing water (Komar, 1980). The flow shear velocity will always be 

greater than the fall or settling velocity before gravitational force acting on the sediment 

grain will facilitate the grains falling back to the bed.  
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2.9 Chapter summary 

The key points of this chapter are: 

• Sediment grain properties (especially grain size, density and shape) the grains 

concentration as well as the character of the ambient fluid medium (density and 

viscosity) significantly influence a sediment grain’s transport and it’s settling velocity.  

• Sediment grains transported by turbulent fluid motion are predominantly in the form 

of suspended load, in which case, grains are usually relatively finer while the grain-

grain contact with the bed or bedload motion is usually characterised by very coarse 

grains that are usually less significant.  

• Cohesion of sediment grains may significantly affect grains resistance to shear and 

influence its suspension in a flow during transport. 

• A sediment grain which is under the influence of gravity and falling in a stationary 

body of water will continue to accelerate until the gravitational force is exactly 

balanced by the resisting force such as the drag force. Thus, the Settling velocity is 

the velocity so attained when a sediment grain finally settles in a flow with the drag 

force being exactly equal to the downward gravitational force. 

• Hindered settling of grains in natural flows occurs when there is high amount of 

suspended fines above a defined threshold value in a flow. 

• Sediment grains are suspended in a flow when the rms amplitude of the vertical 

velocity fluctuation exceeds the grain’s fall velocity. 
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3 Chapter Three; Character and Behaviour of turbulent flows 

 

 

 

 

 

 

                Review of governing equations. 
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3.1 Introduction; Key terms 

This chapter provides background key concepts that relates to the character and behaviour 

of turbulent flows as well as the governing equations for understanding the turbulent 

suspension theory with respect to movement of sediment grains in a flow. It should be noted 

that this work considers unidirectional flows that move only along one direction such as 

turbidity current flows. In figure 3.1 below, a turbulent flow moving in a channel is 

represented, where the x-direction is taken as parallel to the channel slope, y is across the 

channel and z as perpendicular to the channel floor.  These will be used later in the thesis. 

 

 

 

 

 

 

 

 

 
 
 

3.2 Laminar and Turbulent Flow Regimes; Reynolds number 

A flow can be either laminar or turbulent depending on the viscosity and inertia. Most water 

flows exhibit laminar character when moving at low velocities or relatively shallow water 

depths while turbulent flows are characterised by swirling motions of fluid particles.  

Both laminar and turbulent flow regimes may occur in a single natural turbidity current flow 

as described in Bouma’s (1962) depositional model, in which case only the Ta division 

represented deposition from suspension while the other three divisions, Tb, Tc, Td were 

Figure 3.1: Sketch diagram of a unidirectional flow 
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described as products of mostly traction (laminar flow) or combined traction and suspension 

(turbulence). Sanders (1965) also suggested that turbulent suspension and laminar flow 

simultaneously exist in moving sand grains, but the laminar flow is mostly observed in the 

final stages of sand deposition, as the sand go through tractional ranges. Figure 3.2 below is 

a schematic diagram describing the two types of flows.  

 

 

 

 

The Reynolds number (Re), named after Osborne Reynolds, is used to distinguish between 

laminar and turbulent flows.  It has been widely used since 1883, after a classical experiment 

to demonstrate the behaviour of flows with changing velocity, using a thread of dye through 

a glass tube.  

Equations 3.1 and 3.2 below provides the relationship between inertia and viscous forces in 

flows. 

Re =  
inertia (inviscid) forces

viscous forces
                                                                                              (3.1) 

Figure 3.2: Sketch diagram showing the character of laminar and turbulent flows 
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Flow is generally considered fully turbulent at flow Reynolds numbers of 2000 or above (e.g. 

Massey, 1989) and laminar when Re is less than 2000,  

Re =  
𝜌𝑢𝐷

𝜇
                                                                                                       (3.2)    

where, 𝜌 is the density of fluid, 𝑢 is the velocity of the flow, D is the flow depth and 𝜇 is the 

flow dynamic viscosity. 

                                                                                        

 

3.3 Behaviour of turbulent flows 

3.3.1 The flow boundary layer 

 

Turbulent flows moving over or near a solid boundary such as the sea bed are usually 

retarded arising from viscous effects which are significantly prominent on the bed boundary. 

The concept of boundary layer was first discovered by Prandtl (1904), who noted the 

boundary layer to be characterised by a no-slip condition, velocity shear and where most 

erosion of sediment grains takes place. The flow boundary layer is the region of flow that is 

influenced by its proximity to the bed surface. Theoretically, if there is no motion of sediment 

grains on the bed, the thin layer of water having direct contact with the bed usually have a 

zero velocity and increases with the perpendicular distance away from the boundary due to 

a decrease in the effects of friction.  

According to Nezu (1993), the structure of the turbulent boundary layer or bed (fig 3.3), is 

comprised of the following parts namely,  

• A thin laminar viscous sublayer (usually less than 1.0mm to several mm thick) 

characterised by very slow viscous flow at the base (due to friction) and this layer 

tends to dampen any form of mixing and turbulence. It is a very important layer 

because grains are protected from large turbulent shear stresses above. Here the 

flow velocity increases linearly with the flow height.  
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• A transitional turbulent or buffer layer above the base characterised by a flow 

structure that is intermediate between laminar and turbulent. 

• The Logarithmic boundary layer which is fully turbulent, and which obeys the “Law 

of the wall”, called the logarithmic layer. Here, the time-averaged velocity is often 

observed to increase logarithmically with flow height above the bed.  

• As well as upper turbulent region, which no longer obeys the “law of the wall” and 

may be referred to as the free stream layer. 

A velocity gradient and profile would resemble figure 3.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                (modified from Soulsby, 1983) 

Figure 3.3 : Velocity profile and boundary layers for turbulent flow 
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It should be noted that the top of each “layer“of water is acted upon by a shear stress, which 

is a frictional force due to the layer above (because of the faster moving flow and drag) as 

well as by a shear stress due to the layer below (that moves slowly and tends to drag it back). 

The next section will describe two key terms used in this thesis and their relevance. 

 

3.3.2 Steady and Unsteady Flows 

 

Steady flows refer to flows in which the water velocity and thickness (height) do not change 

with respect to time. Thus, 

                                                           
𝜕𝑣

𝜕𝑡
= 0                                                                                              (3.3)                                   

Where 𝑣, represent flow velocity and could be any other flow variable such as height 

However, where there are changes in the flow velocity, in which case they differ from point 

to point along the flow over time, such a flow is described as unsteady.  

                                                          
𝜕𝑣

𝜕𝑡
 ≠ 0                                                                                               (3.4) 

Most natural flows such as rivers are turbulent as the water particles move in swirling 

motions (turbulent eddies) and are remarkably unsteady in nature. Examples include 

turbidity currents as well as flows along river channels.  

 

3.3.3 Uniform and non-uniform Flows 

Uniform flows are flows whose velocity and depth do not change in space at any point of the 

flow. Due to changes in the cross-section along the channel path, uniform flow conditions 

rarely occur in either natural flows or laboratory flume. Thus, uniform flow exists only when 

there is constant flow depth (thickness), roughness and slope in the direction of flow.  

Non-uniform flows are usually characterised by spatial variation in flow velocity and cross 

sectional area. Non-uniform flows are common in most natural flows such as rivers, where 
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the flow speed near the bed is usually zero. Also, in river flows, variation in bed slope could 

cause the depth and velocity to vary in which case the water surface is not parallel to the 

bed. Non-uniform decelerating flows are usually associated with deposition while the 

accelerating flows are erosive. 

3.3.4 Froude Number 

Froude number expresses the ratio of inertial forces to gravitational forces. It was named 

after an English Engineer, William Froude (1810-1879), to essentially indicate the flow state 

and resistance of an object moving through water. The greater the Froude number, the 

greater the resistance. Froude number for a turbidity current can be mathematically 

expressed as below: 

𝐹𝑟 =
𝑈ℎ𝑒𝑎𝑑

√(
𝜌𝑡  

𝜌
−1)𝑔ℎ

                                                                                                        (3.5) 

Where 𝑈ℎ𝑒𝑎𝑑 is the mean velocity of the turbid flow, 𝑔, is gravitational acceleration, 𝜌 is 

density of ambient water,  𝜌𝑡  is density of grains in suspension and  ℎ is the hydraulic depth. 

As summarised in table 3.1 three states of flow is described using the Froude number and 

these are the subcritical flow, where 𝐹𝑟  < 1(such a flow is tranquil); the supercritical flow, 

where 𝐹𝑟  >1(flow is rapid and there is considerable mixing of flow with ambient). Turbidity 

currents can be either subcritical or supercritical depending on the bed slope, bed roughness 

and the magnitude of suspended concentration. Supercritical flows due to their fast nature 

can entrain more fluids from the ambient fluid above, with their maximum velocity very 

proximal to the bed relative to the flow interface. The subcritical turbidity current flow is 

Flow type                          Froude Number                             Qualitative flow description 

Supercritical flow                      𝑭𝒓 > 1                                                Fast and shallow 

Critical flow                               𝑭𝒓 = 1                                                 Intermediate 

Subcritical flow                         𝑭𝒓 < 1                                                 Slow and deep 

Table 3.1: Froude number and the states of flow 
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characterised by a negligible entrainment from the ambient fluid above and the velocity 

maximum is near the flow interface. Sequeiros (2012) from his experiment, and analysis of 

available flow data confirmed that the steeper the slope, the smoother the bed, and the 

heavier the suspended material are, the higher the Froude number is.   

 

3.3.5 The Rouse Number 

Rouse (1937), provided a criterion for characterising the mode of transport of sediment 

grains in a shear flow. It is expressed as the ratio of sediment grain settling velocity to the 

shear velocity of the flow. 

𝑅𝑁 = κ 
𝜔𝑠

𝑢∗
                                                                                                                (3.6) 

Where κ, is von Karman’s constant. 

Rouse number can be an effective criterion for suspension of sediment grains.  According to 

Allen (2009b), as presented on table 3.2, a Rouse number of 2.5 corresponds to the criterion 

that the settling velocity is equal to the shear velocity and this implies a rough criterion for 

sediment grain suspension. 

 
 

 

Table 3.2: Froude number and the states of flow 

Rouse Number                                                           Mode of Sediment transport 

𝑹𝑵 > 2.5                                                                         Bedload 

𝑹𝑵 2.5                                                                          Suspension    

 
𝑹𝑵 <0.8                                                                          Washload 
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3.4 Shear Stress and Shear Velocity 

The bed shear stress of a flow, 𝜏0,  is the flow force per unit area parallel to the bed which is 

available to move sediment grains in moving turbulent water against the bed of a flow 

channel. It represents the resistance of a bed to flows above it (Zhang et al., 2016).  

Bed shear stress is a function of the flow depth, h, the bed slope, s and indirectly a function 

of the flow velocity. The shear stress exerted by a moving turbulent flow is proportional to 

the square of the velocity of flow. However, in additional to frictional drag, the motion of 

sediment grains is usually subjected to the lift force by the moving turbulent flow. 

According to Bagherimiyab and Lemmin (2013), the bed shear stress is an “important 

turbulence scaling parameter in river studies as it relates to scour and channel changes”. Bed 

shear stress is also related to the near-bed velocity gradient, which increases with the 

steepness of the gradient and it is affected by the roughness of the channel bed. Also, 

because flow velocity increases systematically with distance from the bed, the rate of 

increase has been used to determine the shear stress at the bed as measuring it directly has 

been very challenging in natural systems (such as rivers and coastal water bodies) as well as 

in the laboratory. Hence practically, it is inferred from the shear velocity estimates, 𝑢∗. 

According to Rowiński et al. (2005), Shear velocity is a measure of the bed shear stress having 

a dimension of velocity. It is the degree of variation of the velocity fluctuation due to 

turbulence around a point near the bed boundary. At the bed boundary, the shear velocity is 

known to reduce to zero (called the no-slip condition) due to the opposing frictional forces 

to flow. Shear velocity, therefore is a measure of the rate of change of the velocity of flow 

with distance from the bed boundary. The shear velocity, 𝑢∗ is defined as  

𝑢∗ =  √𝜏0 /𝜌                                                                                                                                    (3.7) 

Also, 
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𝜏0   =  𝜇 
𝜕𝑢

𝜕𝑧
                                                                                                                                       (3.8) 

By substitution, 𝑢∗ =  √
𝜇

𝜌
 
𝜕𝑢

𝜕𝑧
                                                                                                                                       (3.9) 

Where 𝜏0, is the bed shear stress,  𝜇 is the dynamic viscosity of the fluid, 
𝜕𝑢

𝜕𝑧
 is the vertical 

velocity gradient (rate of change of velocity with depth) and 𝜌 is water density.  

In the absence of adequate measuring equipment, direct measurements of   𝜕𝑢/𝜕𝑧 and 𝑢∗ 

are difficult to quantify but has been carried out with acceptable error (Ortiz and 

Klompmaker, 2015). Generally, shear velocity is a derived quantity from the gradient of the 

velocity profile related to the bed shear stress, 𝜏0, (Bagnold, 1966; Middleton and Southard, 

1984; Komar, 1985; Garcia and Parker, 1993; Leeder, 2012).Sediment grains on the bed (fig 

1.1) only begins motion when the bed shear stress, 𝜏0, becomes sufficiently great enough to 

overcome the frictional and gravitational forces holding the grains on the bed (Critical shear 

stress).  

 

3.5 Estimating Shear Stress 

Several methods exist in the literature for estimating bed shear stress and these include 

Bergeron and Abrahams (1992), Wilcock (1996), Kim et al. (2000), Biron et al. (2004), 

Rowiński et al. (2005), Pope et al. (2006), Sherwood et al. (2006), Sime et al. (2007),  

Bagherimiyab and Lemmin (2013), Liu and Wu (2015), Lee and Baas (2016), Shivpure et al. 

(2016), and Zhang et al. (2016). Figure 3.4 shows the pictorial diagram illustrating the main 

methods used in bed shear stress estimation. 

3.5.1 Bed Slope Method 

 

Under defined conditions of flow, shear stress can be estimated based on the force balance 

over a control section of an open-channel which is used as a reference.  This method makes 

use of bed slope data, S0 and flow section characteristics (Graf, 1998; Rowiński et al., 2005). 
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Equation 3.23 and 3.25 expresses how estimation of shear velocity is done based on the bed 

slope method. 

 

 

 

However, according to Biron et al. (2004), this method may not be appropriate for local, 

small-scale estimates of the variation in shear stress and is prone to large uncertainty. 

 

3.5.2 The Logarithmic Profile Method  

 

This method has been commonly referred to as the Law-of-the-Wall or von Karman’-Prandtl 

law of vertical velocity distribution equation (Shivpure et al., 2016). The equation, derived 

Figure 3.4: Basal shear stress estimation methods 
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from the von Karman-Prandtl mixing length theory expresses the logarithmic relation 

between the shear velocity and the variation of mean velocity with height.  

The von Karman-Prandtl mixing length theory has been expressed in equations 3.10-3.11 and 

are used in conjunction with equation (3.12) to estimate the shear stress of a bed. Estimates 

of basal shear stress can be carried out by fitting the measured experimental velocity profiles 

to equation 3.10. 

By expanding equation 3.10, we can have a more simplified expression; 

𝑢 = (
𝑢∗


) ln(𝑧) −  (

𝑢∗


) ln(𝑧0)                                                                                                    (3.10) 

 

Hence, when velocities at different flow heights or depths are plotted, the best fit line 

through the plot (such as u vs In (z)) will have a gradient of (u*/ 𝜅) and an intercept of (u*/ 𝜅) 

ln (zo). Where, 𝜅  is the von Karman constant. Thus, 

𝑢∗ =  𝜅. Gradient                                                                                                                           (3.11) 

 

and  

𝑧0 = exp(
intercept

Gradient
)                                                                                                                        (3.12) 

The fitting procedure involves an ordinary least square regression to the profile and 

calculating the values of 𝑢∗ and 𝑧0 from the slope and intercept of the computed regression 

equation. The logarithmic law method requires that the level of profile origin ( 𝑧= 0) is known 

in computing the flow parameters. 

For a uniform flow where there is no sediment transport (clear water experiment), it has 

been established that von Karman’s constant 𝜅  varies from 0.16 to 0.41. For example, Wang 

and Larsen (1994), κ = 0.16; Einstein and Chien (1955), κ = 0.168-0.406; Vanoni and Nomicos 

(1960); κ = 0.209-0.384; Gust and Southard (1983), κ = 0.28. All these values are substantially 
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smaller than the frequently assumed value of 0.4 – 0.41 (Felix et al., 2006; Darby and Peakall, 

2012; Dorrell et al., 2014; Yin et al., 2016). 

This method has been widely used for open-channel flows and river studies (Nezu and 

Nakagawa, 1993).  

 

3.5.3 Reynolds Stress Method 

 

This method relies on the theory that in a fully turbulent flow, shear stresses are related to 

the rate of momentum exchange between adjacent levels in a flow (Duncan, 1960) from 

which follows that; 

                                      𝑢∗ =  √−𝑢′𝜔′                                                                (3.13) 

where u′ and 𝜔′ are the velocity fluctuations of the streamwise and vertical components 

respectively and the overbar denotes time-averaged values (Pope, 2001; Babaeyan-Koopaei 

et al., 2002). 

Reynold stresses may be represented by the fluctuations in instantaneous velocity values 

measured by an appropriate velocity sampling instrument such as the Acoustic Doppler 

Velocimeter. To obtain the basal shear stress, the time-averaged product of the streamwise 

and vertical fluctuations at the flow base is required. This is usually practically carried out by 

linear extrapolation from the heights at which the product of the streamwise and vertical 

fluctuating velocities could be determined. The velocity fluctuations are estimated from the 

deviation above the mean velocity value from the direct measurements that is taken at the 

base of flow.  

Reynolds stresses has been observed to vary linearly from the base of flow to the free 

surface, and in particular where there is significantly rough-beds underlying steady open 

channel flows. The linearity is used to extrapolate the total fluid stress acting on the bed. 
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Nikora and Goring (2000) had advocated extrapolating the Reynolds stress profile to the bed 

in estimating the shear velocity. 

𝑢∗ =  √ (− 𝑢′ 𝜔′)  z  0                                                                                                            (3.14) 

 

 

3.5.4 Uncertainty in Shear stress estimation  

 

Shear stress estimation from velocity profiles could be plagued with uncertainty which affect 

the reliability of the results generated. Specifically, Bauer et al. (1992) identified three 

potential sources of uncertainty in the log profile method and these are listed below; 

1. Instrument Error; Imprecision of measuring instruments such as the ADV and flow 

velocity meters could introduce errors during measurement.    

2.  Inappropriate application of velocity profiles equation under conditions that may be 

essentially different from those assumed when derived. 

3.  Errors from the statistical analysis while determining shear velocity and roughness 

length. 

Also, using Reynolds shear stress methods, uncertainty mainly arises from instrument 

positioning and reading as well as in the statistical analysis of generated data. 

 

3.6 Review of Governing Equations 

The governing equations for a turbulent flow are the conservation of mass, the momentum 

as well as the mass of the sediment. Detailed derivation is in Parker et al., (1986) and 

Waltham et al., 2008). Sections below reviews aspects of these equations in relation to this 

research. 
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3.6.1 Basal Reynolds Shear Stress 

 

Kneller et al. (1997), described Reynolds stress as representing the rate at which eddies 

transfer flow momentum towards the bed boundary. Thus, Reynolds stresses measure the 

amount of turbulent energy within a turbulent flow.  

In the experiments performed that will be reported in the next chapter, it assumes that flow 

used in the flume-tank is quasi-steady, i.e. there are short term fluctuations in velocity due 

to turbulence but, on sufficiently long-time scales, it is meaningful to describe it about steady 

average velocities.   

With this assumption, the instantaneous velocity can be decomposed into a steady part plus 

a fluctuating part, i.e. 𝑢̅  is the steady part while 𝑢′ is the fluctuating part. 

Throughout this report, an overbar (—), implies a time averaged velocity and so primed 

quantities are the instantaneous deviations from the average velocity. Thus, 

  𝑢 = 𝑢̅ + 𝑢′                           (3.15) 

  𝑣 = 𝑣̅ + 𝑣′                                           (3.15)  

  𝑤 = 𝑤̅ + 𝑤′                              (3.16) 

where u is the x-component, v the y-component and w the z-component.   

This expression is not limited, however to velocity fluctuations in flows but also pertains to 

other quantities (Φ) (e. g. pressure, temperature) affected by the turbulent flow field such 

that,  

                                      Φ =  Φ +  Φ′                                                                                           (3.17) 

In turbulent flows, Reynolds stresses are much larger than viscous stresses and the Reynolds’ 

averaged Navier Stokes (RANS) equation in the x-direction takes the form as below;  

  𝑢̅
𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
+ 𝑤̅

𝜕𝑢̅

𝜕𝑧
=  −

𝜕𝑃

𝜕𝑥
− 𝑔𝑠′ − [

𝜕𝑢′2̅̅ ̅̅ ̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
].                 (3.18) 
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(Tennekes and Lumley, 1972; Hinze, 1975; McComb, 1990; Foias et al., 2001). 

where P is pressure, g is the acceleration due to gravity and s’ is the tank slope.  

The continuity equation, after substituting equations (3.15)-(3.17) and taking a time average, 

gives (Bridge and Demicco, 2008):  

    
𝜕𝑢̅

𝜕𝑥
+

𝜕𝑣̅

𝜕𝑦
+

𝜕𝑤̅

𝜕𝑧
= 0                           (3.19) 

and, since x and y derivatives are zero, this equation implies that 𝑤̅ does not change with 

height. But 𝑤̅=0 at the tank floor and so 𝑤̅=0 everywhere.  Hence, the left-hand side of 

equation (3.18) disappears (for a uniform in x flow) and the right-hand side simplifies to 

   0 =  −𝑔𝑠′ −
𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
.            (3.20) 

Equation (3.20) states that the gradient of 𝑢′𝑤′̅̅ ̅̅ ̅̅  is –gs’ and this property will be used later to 

test whether the flows are really uniform in the x-direction.  Equation (3.20) also allows 

calculations of the shear stress at the base of the flow i.e.  

𝜏𝑥𝑧 = −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅    at z=0                     (3.21)  

by linearly extrapolating 𝑢′𝑤′̅̅ ̅̅ ̅̅  down to z=0.  

 This equation above will be the primary measurement against which other estimates of basal 

shear stress will be compared. 

 

3.6.2 Slope Calculated Basal Stress 

 

This thesis assumes a steady uniform flow in calculating the basal shear stress. Also, 

assumptions of the weight of the flow being balanced by friction at the flow base is 

significant.  This leads immediately to the expression 

  𝜏𝑥𝑧 = 𝜌𝑔ℎ𝑠′ at z=0                         (3.22) 
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where h is the flow thickness.  However, this expression will not be correct in the case of a 

narrow flume (such as the one that is available and used in this experiment which is 

approximately 30cm in width) due to likely additional frictional forces on the flume side-

walls.  Hence equation (3.22) can only provide an upper limit to the basal shear stress and 

therefore needful to be rewritten as 

  𝜏𝑥𝑧 ≤ 𝜌𝑔ℎ𝑠′ at z=0.                         (3.23) 

 

3.6.3 Mixing Length Theory; Basal Shear Stress 

 

The mixing length theory of turbulence provides the log-law for mean velocity distribution in 

turbulent flows. A major objective of this research is to evaluate the accuracy and robustness 

of mixing-length theory-based estimates of basal shear stress.  The key prediction of the 

theory is that the depth profile of velocity is logarithmic (the law of the wall), i.e. 

  𝑢̅ =
𝑢∗

𝑘
𝑙𝑛 (

ℎ

𝑧0
)                          (3.24) 

where the “shearing velocity”, 𝑢∗, is related to basal shear stress by 

  𝜏𝑥𝑧 = −𝜌𝑢∗
2               (3.25) 

and k is von Kármán’s constant.   

An important parameter, z0, is the height where flow velocity is predicted to be zero, 

although, in practice, at this very small distance from the flow base the flow has become 

laminar and follows a simple linear profile.  These small heights are not measured in this work 

and, hence, the failure of the law of the wall in that zone is not of primary interest.  The 

resulting estimate of basal shear stress is independent of that obtained by equation (3.22) 

and so equation (3.22) can be used to evaluate the accuracy of equation (3.25). 
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From a practical point of view, equation (3.22)’s estimate of basal shear stress can be related 

to the average velocity, 𝑣𝑎𝑣, in the flume  

  𝜏𝑥𝑧 = −𝜌𝐶𝑑𝑣𝑎𝑣
2              (3.26) 

where Cd is a Chezy coefficient of friction.  

 

 

3.6.4 Flow Average Velocity 

 

As outlined in table 3.4, several instruments are available for measuring the instantaneous 

velocity of flow in a both in the field and laboratory. However, in the experiments 

undertaken, the Nortek II acoustic Doppler velocimeter (ADV) was used to measure the flow 

velocity. Also, of mention is the fact that due to the narrow nature of the flume, these 

instantaneous flow velocity measurements could not account for the effect of flume side-

wall friction, on the flow hence the need to find alternate ways to estimate the flow average 

velocity. From personal interaction with Dave Waltham, the flow average velocity, 𝑣𝑎𝑣, could 

be estimated using the Law-of-the-Wall equation to check any side wall frictional effect.  

Thus, From the Law-of-the-Wall,  

𝑣𝑎𝑣 =  
𝑢∗


 𝑙𝑛 (

𝐻

𝑧0
) = 

𝑢∗


ln(𝐻) − 

𝑢∗


 𝑙𝑛 (𝑧0)                                                                                     (3.27) 

𝑣𝑎𝑣 =  
∫ 𝑢𝛿𝐻

𝐻
𝑧0

 

∫ 𝐻
ℎ

𝑧0

=  
𝑢∗


𝐻−𝑧0
 (∫ ln(𝐻)  𝛿 𝐻 − ln (𝑧0

𝐻

𝑧0
) ∫ 𝛿𝑧)

𝐻

𝑧0
                                                          (3.28) 

          = 
𝑢∗


𝐻−𝑧0
 ( [𝐻𝑙𝑛𝐻 − ℎ]𝑧0 

𝐻 − ln (𝑧0)[𝑧]𝑍0

𝐻 )                                                                             (3.29) 

          =
𝑢∗


 ( 

𝐻𝑙𝑛𝐻−𝐻

𝐻− 𝑧0
−  

𝑧0𝑙𝑛𝑧0 − 𝑧0

𝐻− 𝑧0
− ln(𝑧0))                                                                              (3.30) 

          ~ 
𝑢∗


 (𝑙𝑛𝐻 − 𝐻) −  

𝑢∗

 
 (𝑧0)                                                                                                           (3.31) 

         = 𝑚(ln{𝐻} − 𝐻) + 𝑐                                                                                                                       (3.32) 
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Therefore, the average velocity estimate from flume centre line will be done using the 

relation as in equation 3.30 above; 

𝑣𝑎𝑣 =  𝑚 ∗ (ln  (ℎ) − 1) + 𝑐                                                                                                         (3.33)                                                                                                   

Where 𝑚 is gradient, ℎ is the flow thickness and 𝑐 is the intercept. 

 

3.6.5 Chezy equation 

 

This equation relates uniform turbulent flow to bed resistance. It was formulated in 1775 by 

the French engineer, Chezy.  The equation was first used to determine the relationship 

between the average velocity of steady uniform open-channel flow to channel slope, s, 

radius, 𝑟ℎ (hydraulic) and a coefficient which expresses the boundary roughness. 

𝑢 = 𝐶√𝑟ℎ𝑠                                                                                                                                              (3.34) 

Where C is the Chezy coefficient of friction 

 

3.6.6 Turbulent suspension of sediment grains 

 

Bagnold (1966), developed a mathematical equation for sediment grain suspension in flows 

which primarily centred on the criteria for fluids to oppose the gravitational settling of 

sediment grains as in autosuspension. However, the process was believed to be flawed with 

high uncertainty with respect to the criteria set for the turbulent suspension. (Pantin, 1979; 

Southard and Mackintosh, 1981), and this led to further investigations in various aspects of 

turbulent suspension of sediment grains, including researches by Leeder (1983); Wei and 

Willmarth (1991); Kneller et al. (1997); Bennett et al. (1998) and Leeder et al. (2005).  

This current research will attempt to determine the maximum grain-size that could be 

potentially be transported in suspension in a turbulent flow based on the assumption that 
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grains will only be suspended if the rms amplitude of vertical fluctuations is greater than the 

grain fall-velocity in natural flows. This underlying theory was first proposed by Bagnold 

(1966) and expressed as in equation (3.35) below: 

√𝑤′2̅̅ ̅̅̅ > 𝜔𝑠                                                                                                                                            (3.35) 

Where the fall velocity, 𝜔𝑠 can be estimated from relationships such as Stokes’ law (Stokes, 

1851). 

Also, Kneller et al. (1997), adopted a Suspension criterion of, 

𝜔𝑠 = 𝑏𝑢∗                                                                                                                                            (3.36) 

Where b was taken as a constant value of 0.8 

 However, going back to Bagnold (1966), suspension criterion,  in practice, 𝑤′2̅̅ ̅̅̅ is not usually 

measured and hence a further assumption is made that it can be replaced by 𝑢∗
2  as in 

equation (3.36), so that the suspension criterion becomes 

 𝑢∗ = √
𝜏0

𝜌
> 𝜔𝑠                                                                                                                            (3.37)                                                                                           

𝑢∗ = √
𝜏𝑥𝑧

𝜌
> 𝜔𝑠                                                  (3.38) 

 Our flume tank experiments allow this assumption to be directly tested. 

However, in an un-instrumented flow, the rms velocity fluctuations are not known and 

therefore a further assumption is made that turbulence is approximately  

 

𝑤′2̅̅ ̅̅̅ ≈ 𝑢′𝑤′̅̅ ̅̅ ̅̅                                                                                                                                        (3.39) 

 

The accuracy of this relationship will be determined later in this work. 
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Technology Operating Principles Advantages Disadvantages 

Hot-wire 

Anemometry 

Essentially a thermal method, based on 
the convective heat transfer from a 
heated sensor element to a relatively 
cold surrounding fluid which varies 
with the flow rate  

• Cost is relatively very cheap 

• Small measurement volume 

• Low SNR 

• Good spatial and temporal 
resolution 

• It is an intrusive technique 
which can modify the local flow 
field 

• Contamination from deposition 
of impurities on sensor 

• Probe could easily break 

• Needs calibration 

Laser-Doppler 

Velocimetry 

Based on the Doppler shift effect. The 
difference in the frequency between the 
original beam and the moving particle 
known as the Doppler shift is proportional 
to the velocity of the moving particle. 

• Does not require pre-
calibration 

• Negligible probe interference 

• Can measure a wide range of 
flow velocities (eg from 0.0001 
to 1000m/s) 

• High resolution as probe 
volume as small as 10-6 size can 
be obtained. 

 

• Relatively very expensive  

• Need for eye protection against 
the direct laser beam 

• Flows ceases to be single phase 
flow as soon as particles are 
introduced into flow 

• Not very suitable for 3D flows 

Acoustic-

Doppler 

Velocimetry 

Based on the principle of the Doppler shift 
effect. 

• Non-intrusive and relatively 
cheap 

• 3D flow measurements 

• Relatively high SNR 

• No calibration required 

• Rugged and convenient to use 
in difficult to reach areas 

• Measures very low velocity 

• Signals affected by velocity 
shear across the sampling 
volume and nearness to 
boundary 

• Requires post-processing 

Particle-image 

Velocimetry 

Photographic recording of tracer 
particle motion in a fluid which are 
usually well illuminated. Image 
processing determines the flow 
velocity from the recording 

• Non-intrusive 

• Captures velocity data in 
multiple points in the flow 

• High spatial resolution 

• Expensive 

• Size of area need to be small 
for greater accuracy 

   Table 3.3: Some Flow Velocity measuring equipment 
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3.7 Chapter Summary 

The key conclusions of this chapter are 

• Most natural unidirectional flows such as rivers and streams are non-uniform, 

unsteady turbulent flows as the water particles move in swirling irregular pattern 

(turbulent eddies) and are characterised by physical quantities having random 

variation in time and space. 

• Turbulence creates eddies that facilitates mixing and momentum exchange in a flow 

as amply demonstrated by the mixing-length theory of Prandtl-von Karman. 

• The turbulent boundary layer is characterised by three parts, a thin laminar layer, the 

logarithmic layer and an outer layer. While the Logarithmic layer obeys the “law of 

the wall” in which the mean flow velocity increases logarithmically with flow height, 

the laminar viscous layer is characterised by very slow motion due to friction and 

mean flow velocity increases linearly with flow height.  

• Both laminar and turbulent flow regimes may occur in a single natural turbidity 

current flow as described in Bouma’s (1962) depositional model. 

• Bed roughness imparts on turbulence generation in flows 

• Basal shear stress is related to the flow shear velocity and estimates can be carried 

out using the slope, log profile and Reynolds stress methods.  
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4 Chapter Four; Experimental Set-up, Instrumentation and 

Procedure 
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4.1 Introduction 

This chapter describes the experimental methods used in this thesis. As previously discussed 

in chapter one, this research seeks to, among others, understand the role of turbulence in 

supporting sediment grains transport in long run-out turbidity current flows. However, 

designing scaled-flume experiments for this purpose poses a huge challenge as it is quite 

difficult to adequately simulate natural long run-out turbidity currents in the laboratory. 

Scaling of natural turbidity currents such as size of current is limited by the available 

laboratory facilities and hampers its recreation. Other scaling issues such as the time of 

propagation cannot be integrated into the experimental model. Because of this, experiments 

were designed as clear water open channel flows in order to generate instantaneous and 

fluctuating flow velocity data that will be used to validate the mixing-length theory of 

turbulent suspension. 

The sections below describe the experimental design, set-up and procedure as well as 

instrumentation.  

All flume experiments described here was carried out in collaboration with the School of 

Earth & Environmental Sciences of the University of Leeds, at the Sorby Fluid Dynamics 

Laboratory where the flume experimental facility is located.   

 

4.2 Design and set-up of experiment  

As explained in the previous section (4.1), the experiments were designed to make use of 

clear water in turbulent open channel flows. The set-up of the experiment includes using a 

slightly tilting (0.0010-0.0020) re-circulating rectangular glass-sided flume, measuring 

approximately 8.5m long, 0.3m deep and 0.3m wide and instrumented with a three-

dimensional (3-D) Acoustic Doppler Velocimeter measuring system. The re-circulating flume 

tank was used to ensure a steady uniform flow in the tank. The clear glass-sided walls 
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provided clear views of the flow and allowed for measurement of flow properties. The test 

section was located at the centre of the flume, about 4.2m from the downstream end and all 

instantaneous velocity sampling were taken at this point, since it is within the test section 

that we should expect a fully developed turbulent flow regime.  

A Hidrostal centrifugal pump was fitted to the flume tank to drive clear water into the flume 

which was recirculated through the flume via a return PVC pipe of 0.20 m diameter. The re-

circulating flume was necessary to maintain uniform flow of water circulation in the flume. 

The flow discharge rate into the flume tank was monitored using an ABB electromagnetic 

flow meter which was controlled via an inverter control unit. A pack of stainless steel pipes 

of 25 mm radius was placed at the upstream end of the flume tank to reduce vortex flow. 

Water temperature was kept at 20±2°C.  

A schematic diagram showing the set-up of the experimental flume is shown in figure 4.1 

while Figure 4.3 shows a photograph of the measurement and observation section as well as 

the ADV instrumentation and PC for recording signals.  

 

 
 
 
 
The experiments were conducted in six series, labelled as cases 1-6, characterised by 

parameters as listed in table 4.1. Experiments investigating the effect of bed roughness on 

flow turbulence was designed by comparing flows over smooth concrete (D50 < 0.5mm) as in 

Figure 4.1: Sketch diagram of the laboratory flume tank used in this research 
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flow cases 1 and 2 (smooth floor; figure 4.2) and rough gravelly floors (D50 approx. 3.0mm) 

for flow cases 3-6, made of gravelly slabs (figure 4.3).  

All six experimental flow cases (1-6) comprised of a total of forty-five flow runs with the 

measuring ADV instrument set at defined depth intervals. However, prior to the 

commencement of each experiment the metal flume tank floor was covered with slabs of 

either concrete or gravel to fit the entire floor to check interference of the floor with the ADV 

measuring instrument. 

 

 
 

 

  

 

 

 

 

 

 

Figure 4.2: Photograph of concrete slab floor of flume tank, flow cases 1 and 2 

Figure 4.3: Photograph of gravel slab floor of flume tank, flow cases 3-6 
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Table 4.1: Summary flow character for the six cases 

Experiment Flow Character 

Case1 
Flow thickness =0.192m; Mean discharge rate= 0.023m3/s; Fixed Concrete 
slab floor 

Case 2 
Flow thickness =0.180m; Mean discharge rate= 0.040m3/s; fixed Concrete 
slab floor 

Case 3 
Flow thickness =0.192m Mean discharge rate= 0.025m3/s; Fixed gravel slab 
floor 

Case 4 
Flow thickness =0.192m; Mean discharge rate= 0.031m3/s; Fixed gravel slab 
floor 

Case 5 
Flow thickness =0.140m, Mean discharge rate= 0.022m3/s; Fixed gravel slab 
floor 

Case 6 
Flow thickness =0.140m; Mean discharge rate= 0.033m3/s; Fixed gravel slab 
floor 

Figure 4.4: Photograph of the Flume (Measurement and Observation section) 
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4.3 Instrumentation 

Among the several flow velocity measuring devices earlier outlined in Table3.4 of this thesis, 

the Acoustic Doppler Velocimeter is more popular and widely used. This is due to its relatively 

simplicity, portability, easy-operated and use without any calibration.   

In this study, the flume experiment made use of the Nortek Vectrino II Acoustic Doppler 

Velocimeter for measuring the flow fluctuating velocity. It is briefly described in the section 

below. 

 

4.3.1 The Acoustic Doppler Velocimetry 

 

The Acoustic Doppler Velocimeter (ADV) is a well-established modern technique for sampling 

instantaneous flow velocity and turbulence measurements using the principle of Doppler 

shift effects to measure instantaneous flow velocity in a small volume. It measures the 

Doppler shift of any moving particles to determine their speed. A key assumption in the use 

of Acoustic Doppler Velocimetry is that the scattering particles in the water have the same 

velocity as the flow velocity itself. Measurements are obtained by sending out a beam of 

acoustic waves at a fixed frequency from the centre transducer to the sampling volume. The 

reflection from the mobile suspended particles within the sampling volume causes a Doppler 

shift which is received by the receivers (3 or 4, depending on the specification) positioned at 

x, y, z1 and z2 directions. Details of the operation of the ADV is in Kim et al. (2000), Biron et 

al. (2004), García et al. (2005), Liu and Wu (2015), Shivpure et al. (2016) as well as the 

Vectrino Velocimeter User guide (Nortek, 2004). 

The Acoustic Doppler Velocimeter consists of a probe, connected by a cable or a fixed term 

to the housing where the transmitter resides. Although the ADV is an intrusive device, with 
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the probe dipping into the flow, it has a sampling volume located about 50mm below the 

probe which helps to minimise the interference of the probe with the flow.  

 

  

 

 

Figure 4.5: Nortek ADV probe with transducer, receiver, and sampling volume 

Figure 4.6: The Four signal receiving beams of an ADV 
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There have been significant improvements in modern single point ADVs unlike previous 

generation velocimeters where the measurements are done about 10.0mm from the bed 

boundary to obtain reliable results. The ADV (Nortek Vectrino II Profiler) in use today now 

have 4 receivers as in figure 4.4 and 4.5, (e.g. Lohrmann et al. (1994), Lane et al. (1998), 

Doroudian et al. (2010), Khorsandi et al. (2012), Durgesh et al. (2014) ) which enhance its 

sampling capability. Two of the beams, 1 and 3 predominantly contributes to the 

downstream velocity, (u) and one vertical (w1) measurement of velocity, and beams 2 and 4 

predominantly contributing to the cross stream (v) and second vertical (w2) measurement of 

velocity. The addition of the 4th receiver and the collection of two independent 

measurements of vertical velocity permit a method for estimating the contributions of 

instrument and Doppler noise to estimates of Reynolds normal and shear stresses (e.g. 

Hurther and Lemmin (2001). Furthermore, the Vectrino Profiler permits the simultaneous 

measurement of velocities within 35 one-millimetre-high sampling bins, yielding a 34 mm-

high profile from 40 to 74 mm below the transmitter (Craig et al., 2011). However, this 

research only reports measurements collected in a 1 mm-high bin at the focal point of all 

four beams and the transmitter (i.e. at a height of 50 mm below the transmitter, for highest 

data quality since it is at the intersection).  

It is worthy to note that the experiment made use of the latest version of the Vectrino profiler 

ADV (Vectrino II), which was configured to simultaneously measure flow velocities at 17 

different distances from the transmitter at each of the chosen probe position as set with the 

trolley which was vertically beneath the transducer (oriented perpendicular to the flume 

bed). The 17 multiple positions were performed to generate multiple overlapping vertical 

profiles so that a single time-averaged profile encompassing most of the water column could 

be formed.  
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The velocity profiles were constructed by moving the Vectrino profiler in 10 mm increments 

from 50 mm above each bed surface until the water surface began to interfere with the 

transmitter. At each location, velocities were sampled at 100 Hz for 300 seconds. According 

to Chanson et al. (2007), raw ADV velocity data do not represent true flow turbulence unless 

it has been post-processed to remove spikes, Doppler noise and any filtering effects arising 

from the ADV sampling method. In the experiments, the acquired flow velocity data were 

post-processed in-house by the University of Leeds Sorby Laboratory team using an 

intelligent correlation threshold filter comprising of a phase unwrapping algorithm and the 

phase space threshold spike filter (see Thomas and Mclelland (2015) for more details). 

Errors arising from the use of the ADV which have been identified by earlier researchers to 

include mainly the Doppler noise and velocity gradient errors but these have also been 

observed not to have any significant effect on the turbulence analysis such as shear stress 

estimation (Lohrmann et al., 1994; Voulgaris and Trowbridge, 1998). However, precautions 

were taken to minimise instrument associated errors by following the suggestions of 

McLelland and Nicholas (2000), García et al. (2005) that measuring errors of the ADV can be 

controlled by the probe orientation, sampling frequency, instrument velocity range, and local 

flow properties.  

 

4.4 Experimental Procedure  

Soon after the flume was set up, clear water was pumped from an overhead tank into the 

flume and allowed to recirculate until a steady flow was achieved. The water level was 

carefully adjusted by varying the discharge rate until the water depth (flow thickness) in the 

flume tank was up to the desired flow height. 
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The slope of the flow surface was determined as shown in figure 4.6.  The flume slope was 

adjusted using a hydraulic jack beneath the flume. This was done to check that the water 

surface slope was parallel to the flume tank floor. A manual estimation of the flow slope was 

done by measuring the height of the upstream and downstream ends of the water flow 

surface as well as their horizontal distance apart. The water depth was measured in two 

steps, first by taking the static water surface depth level which served as a reference (see 

figure 4.6). After the pump was switched on, the water levels at the same positions were 

measured again and the change in heights, since the static flow measurements gives the 

estimate of the flow slope. 

It was not possible, to fully achieve a steady uniform flow in the experiments (as there were 

minor variations of about 0.5-1.0 mm in the flow depth across the flume). Care was always 

exercised to avoid hydraulic jump/vortex flow occurring along the flow path and especially 

at the upstream end of the flume by maintaining a discharge rate of 0.030 ± 0.010 m3/s. The 

initial flow speed was calculated from the volumetric discharge with respect to the cross-

sectional area. This was varied for the different experimental flow cases (see table 5.1).  

The instantaneous flow velocities were sampled using the Vetrino II three-dimensional, 

down-looking ADV profiler mounted on a transverse boom so that it can easily be moved 

between the sampling points in the flow. The first flow velocity sampling by the ADV Vetrino 

profiler was done at 50 mm above the flume floor (slab surface) and subsequently moved 

higher at 10mm interval in the flow until it became too shallow as the water surface 

interfered with the transmitter. For each run and instrument position, instantaneous 

velocities were sampled at 100 Hz for 300 seconds.  

Each flow velocity profile consisted of six to thirteen sampling positions with over 30,000 

velocity data obtained at each sampling point. The monitored signals were first transferred 

to a computer and later analysed by the Vetrino II software (see figure 4.3).   
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Figure 4.7: Sketch diagram of how slope of flow was measured 
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4.5 Constraints of Experiment 

This flume experiment was set up to investigate turbulence generation and the local 

influence of boundary conditions such as roughness on sediment grain transport.  

Overall objective, however, was to generate enough velocity fluctuating data that 

would be used to test the current mixing length theory of turbulence using a clear 

water flow.  

However, it is known that an improperly designed flume could impede turbulence 

generation which could impact on the realisation of set objectives. There were 

unavoidable constraints encountered in the course of the experiments.  

First, the dimensions of the available flume tank used for this experiment was 

approximately 8.5m long, 0.4 deep and 0.3m wide. This falls short of the 

recommendation by experts including Williams (1970), who advocated that as a 

general rule, “the width of the flume should be at least 4 times the water depth”. 

The implication of using a smaller size flume may be far reaching as there could be 

a high level of wall interference and complications which may affect the velocity 

distribution result generated. In addition, the flume tank height limited the volume 

of water that it could contain, and this directly affected the number of velocity 

profiles that could be produced from a single flow with the array of flow velocity 

measurements.  This issue was however checked by positioning the ADV probe at 

least 50mm away from the flume tank floor when taking measurements, though the 

specifications of the ADV Nortek II equipment recommended 10.0mm from the tank 

floor and at least 5.0cm below the upper water surface (Rusello and Allard, 2012). 

As reported in section 4.2.3, the flume tank had a metallic floor. This type of flume 

floor is expected to impact on the accuracy of velocity measurements from the ADV. 
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Hence there was the need to provide alternative non-metallic materials to cover the 

floors and this case, concrete and gravelly slabs were used. The actual roughness 

level of the fixed gravel and concrete slabs used to cover the flume tank floor could 

not be determined as there was no equipment to adequately carry out such 

measurement at the time of investigation.  Also, constraints of using only two types 

of bed floor simulated roughness conditions was a limiting factor in the research.  

The research would have been more robust with slabs having some bedforms 

features such as ripple marks and perhaps slabs that could simulate a ripple-bed 

floor condition to enable us to make more useful comparison on the effect of floor 

roughness on turbulence intensity generation.  

With regards to measuring the flume tank and water surface slope, it was very 

challenging conducting iterative adjustments between the flume slope (using the 

hydraulic jack) and the discharge level to get a good water surface slope.  
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4.6 Chapter Summary  

The major conclusions that can be drawn from this chapter are as follows: 

1. Clear water flow experiments were carried out in a slightly tilting 

rectangular glass-sided laboratory flume, approximately 8.5m long, 0.3m 

deep and 0.3m wide instrumented with a three dimensional (3-C) Acoustic 

Doppler Velocimeter (ADV) to investigate turbulence in a quasi-steady flow.  

2. The experiments comprised of six flow cases of 45 flow runs carried out 

under defined flow conditions with over 30,001 flow velocity measurements 

taken for each run.  

3. To avoid any unnecessary interference between the flume tank and the 

measuring instrument (the ADV), slabs made of smooth concrete and rough 

gravel was used to cover the flume tank bottom. 

4. The influence of bed floor roughness on turbulence in natural flows was 

investigated using fixed concrete slabs and fixed gravel slabs respectively. 
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5 Chapter Five; Results 

 

 

 

 

 

 

 

Presentation of Raw Results and Data 

Analysis. 
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5.1 Introduction 

This chapter presents the results of the flume experiment and analyses the large 

dataset comprising instantaneous flow velocities measured against flow height 

using a modern 3-C Acoustic Doppler Velocimeter in clear turbulent flow 

experiments from 45 flow runs in six different flow cases. The huge amount of 

velocity data generated from the flume experiment will be analysed andused for the 

first time to validate the Mixing-length theory of turbulent suspension.  

 

5.2 Flow Velocity Measurements 

5.2.1 Experimental Conditions  

 

All the flume experiments were grouped into six flow cases with each flow case 

characterised by a set of flow conditions earlier described in the preceding chapter. 

Table 5.1 provides a summary of flume and hydraulic data that was used in this 

research such as the flume tank floor character, flume tank slope, the mean 

discharge rate of clear water entering the flume tank as well as the flow height.  

Flow conditions Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Type of floor Concrete Concrete Gravel Gravel Gravel Gravel 

Flow height to roughness (m) 0.92 0.18 0.192 0.192 0.14 0.14 

Flow area (m2) 0.058 0.054 0.058 0.058 0.042 0.042 

Flume average slope 0.053 0.071 0.079 0.088 0.132 0.141 

Mean discharge rate (l/s) 21.6 39.6 24.6 31.3 21.6 33.19 

Mean discharge rate (m3/s) 0.022 0.04 0.025 0.031 0.022 0.033 

Mean flow velocity (m/s) 0.36 0.551 0.333 0.512 0.443 0.616 

 

 

 

 

Table 5.1: Summary of flume hydraulic data for all six experimental cases 
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5.2.2 Velocity-depth profiles 

 

Velocity profiles for all six clear water flow cases as computed based on averaging 

of the instantaneous velocity measurements are presented in figure 5.1 below.  The 

profiles show a velocity maximum near the water surface and a velocity minimum 

near the base of flow. 

 

 

5.2.3 Instantaneous streamwise velocity- time series 

 

Figures 5.2 and 5.3 show the instantaneous streamwise velocity-time series for both 

concrete and gravel floors for the flume experiments. The instantaneous streamwise 

velocity, here implies the sum of the time-averaged velocity and the fluctuating 

velocity components in the streamwise direction (see equation 3.17). Separate 

profiles correspond to different heights of the velocity sampling device (ADV) above 

the tank floor and different experimental flow conditions. 

The quality of data generated was checked to ensure presence of less “spikes” or 

“blips” during initial processing. Spikes are artefacts occasioned by noise mainly 
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Figure 5.1: Vertical velocity profiles relative to flow height for flow cases 1-6 
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from the equipment proximity to the metallic floor of the flume. These “spikes” or 

“blips” were removed by increasing the cut-off values for real data from instrument 

configured value of 30% to 40 %. From figures 5.2 and 5.3, it is observed that the 

data spikes mostly occurred proximal to the base of flow. Further processing of 

velocity data was done in-house by the Sorby Fluid Dynamics team, University of 

Leeds. Table 5.2 below, provides the statistics of the velocity data showing how 

scattered (or consistent) the measured velocity is for all flow cases. 

Descriptive statistical data for all six flow cases investigated  
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Floor type Concrete Concrete Gravel Gravel Gravel Gravel 

Flow thickness 0.234 0.222 0.234 0.234 0.182 0.182 

Velocity analysis 

Mean velocity (m/s) 0.359945 0.551131 0.332889 0.511534 0.442539 0.616385 

Standard Error 0.003887 0.005038 0.005402 0.006208 0.008732 0.013348 

Mean velocity (m/s) 0.371767 0.562076 0.339471 0.5251 0.46449 0.642842 

Standard Deviation 0.040957 0.046177 0.056918 0.061765 0.08511 0.118636 

Variance 0.001678 0.002132 0.00324 0.003382 0.007244 0.014075 

Kurtosis -0.04681 -0.23866 -0.64554 -0.58372 -0.42589 -0.40918 

Skewness -0.89354 -0.72081 -0.53037 -0.63414 -0.70948 -0.67656 

Range 0.167648 0.191836 0.22527 0.233562 0.332815 0.47102 

Minimum 0.243438 0.424169 0.189146 0.356796 0.214919 0.311517 

Maximum 0.411085 0.616005 0.414416 0.590358 0.547734 0.782536 

Sum 39.95392 46.29499 36.95063 50.64188 42.04125 48.6944 

Count 111 84 111 99 95 79 

 

 

 

 

 

Table 5.2: Descriptive statistics of measured velocity for all six flow cases 
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Occasional “blips” in this data were removed during processing by increasing the cut-off values until the blips reduce. Bold numbers give height above tank    
floor at which measurements were taken. Note that the fluctuations around the mean show the degree of turbulence in the flow and that this is consistent at 
any given height. Also note that the mean velocity increases with height whilst the fluctuation strength drops with height. 

Figure 5.2: Instantaneous velocity –time series for case 1(Concrete floor) 
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Occasional “blips” in this data were removed during processing by increasing the cut-off values until the blips reduce. Bold numbers give height above tank    
floor at which measurements were taken. Note that the fluctuations around the mean show the degree of turbulence in the flow and that this is consistent at 
any given height. Also note that the mean velocity increases with height whilst the fluctuation strength drops with height. 

Figure 5.3: Instantaneous velocity –time series for case 1(Gravel floor) 
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5.3 Shear Stress Estimates 

Results of shear stresses obtained by traditional methods of bed slope, Law-of-the-Wall and 

Reynolds decomposition for the quasi-steady flow are presented below. These shear stress 

estimates will later be used to validate the mixing-length turbulence theory.  

5.3.1 Bed slope method 

 

With an assumed gravitational acceleration of 9.81, equation 3.24 and 3.25 (chapter three) is 

used to estimate the shear velocity. Shear stresses are further determined and are presented in 

table 5.1 below. An important observation is that the shear stresses increases with increase in 

bed slope. 

Flow Case 1 2 3 4 5 6 

Flow thickness (m) 0.2340 0.2220 0.2340 0.2340 0.1820 0.1820 

Bed slope, S (degree) 0.0006 0.0010 0.0016 0.0016 0.0021 0.0021 

Shear Velocity, m/s 0.0371 0.0467 0.0546 0.0606 0.0612 0.0612 

Shear stress (Pa) 1.3764 2.18089 2.9812 3.6723 3.7454 3.7454 

Uncertainty 0.00012 0.000126 0.0002 0.0002 0.0002 0.0001 

 

 

5.3.2 Reynolds Shear Stress Method 

 

Table 5.9 is the summary of the results of shear stress estimates from the Reynolds stress 

methods. Equation 3. 21 (in chapter three) was used to estimate the Reynolds stresses at the 

base of flow. Figures 5.9 to 5.15 shows the plots of  𝑢’𝑤’̅̅ ̅̅ ̅ against flow height for all six cases 

investigated. 

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Reynolds Basal Stress (Pa) 0.5185815 0.9480 0.88963 2.06748 1.41377 3.07707 

Uncertainty 0.017597 0.027 0.0165 0.0591 0.0237 0.0726 

 

Table 5.3: Shear stress estimates using the bed slope method 

Table 5.4: Shear stress estimates using the Reynolds Stress method 



 

 

 

 

108 

 

Equation 3.21 predicts that the vertical profile of the Reynolds shear stress should be a straight 

line. Also, the corresponding values at z = 0, should give the Reynolds basal shear stress (Pa) at 

the base of flow (<u’w’>). Figures 5.4 to 5.9 below significantly corroborates this. 
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Figure 5.4: Vertical profile of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅,   Case 1 

Figure 5.5: Vertical profile of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅, case 2. 
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Figure 5.6: Vertical profile of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅, case 3 

Figure 5.7: Vertical profile of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅, case 4 
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Figure 5.8: Vertical profile of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅, case 5 

Figure 5.9: Vertical profile of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅, case 6 
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5.3.3 The Logarithmic Profile Method 

 

Table 5.10 below, shows the analytical results of the shear stress estimates for all six flow cases 

using the log profile approach. More detailed analytical dataset comprising measured and 

modelled velocities as well as shear stresses for all six flow cases are presented in tables 9.3-9.8 

(in Appendix). 

A single graph of the velocity profiles for all six flow cases, produced by plotting 𝑢 against (𝑧) 

was earlier presented in figure 5.1 above. All profiles show excellent curves signifying an 

increasing trend of 𝑢  with (𝑧). For more clarity, Separate plots of velocity profiles for each flow 

case utilising both measured and modelled velocity are presented in figures 5.10 to 5.15 below.  

 

 
 
 
 

 

 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Mean flow velocity (m/s) 0.359080 0.550810 0.332260 0.510980 0.441680 0.615150

u * / k 0.065070 0.101417 0.132780 0.160400 0.134420 0.206920

Roughness height (z0) 0.000120 0.000139 0.003574 0.001574 0.001096 0.001321

LoW basal shear stress (Pa) 0.033190 0.080630 1.382280 2.017030 1.416480 3.397750

Uncertainty ±0.00286 ±0.01042 ±0.04384 ±0.07948 ±0.04112 ±0.04198
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Table 5.5: Shear stress estimates using the Logarithmic Profile 

Figure 5.10: Velocity profile for flow case 1 (Measured vs Modelled dataset) 
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Figure 5.11: Velocity profile for flow case 2 (Measured vs Modelled dataset) 

Figure 5.12: Velocity profile for flow case 3 (Measured vs Modelled dataset) 
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Figure 5.13: Velocity profile for flow case 4 (Measured vs Modelled dataset) 

Figure 5.14: Velocity profile for flow case 5 (Measured vs Modelled dataset) 
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The gradient of the curves was used to determine the shear velocity, from which the basal shear 

stresses were estimated. Bed shear velocity was calculated by multiplying the slope of the 

straight line by the von Karman constant, .  However, due to the large data involved, the 

Regression package in Excel was used to calculate the shear stress estimates. An assumed, 

value of 0.29 was used in the data analysis to minimise mismatch between the Law-of-the-Wall 

and Reynolds stresses.  

Flow velocities at different depths were re-plotted against log of flow height (In(z)) as presented 

in figures 5.11 to 5.15, below. These plots show straight lines (see equation 3.10 – 3.11) and give 

the same information as earlier curves (figures 5.11-5.15). Also worthy of note in the figures is 

the observed significant agreement between measured and modelled velocities.  
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Figure 5.15: Velocity profile for flow case 6 (Measured vs Modelled dataset) 
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Figure 5.16: Plot of average velocity, 𝑢̅ vs log of height, In (z), flow case 1 

Figure 5.17: Plot of average velocity, 𝑢̅ vs log of height, In (z), flow case 2 



 

 

 

 

116 

 

 

 
 
 

 

 
 

 

y = 7.5311x - 5.6341
R² = 1

-4.3

-4.1

-3.9

-3.7

-3.5

-3.3

-3.1

-2.9

-2.7

-2.5

-2.3

0.18 0.23 0.28 0.33 0.38 0.43

In
(z

)

Flow average velocity (m/s)

Plot of flow average velocity with log of height (In(z)): Case 3

Measured Data

Modelled Data

Linear (Modelled Data)

y = 6.2345x - 6.454
R² = 1

-4.3

-4.1

-3.9

-3.7

-3.5

-3.3

-3.1

-2.9

-2.7

-2.5

0.35 0.4 0.45 0.5 0.55 0.6

In
 (

z)
 

Flow average velocity (m/s)

Plot of flow average velocity with log of height,In (z): Case 4

Measured Data

Modelled Data

Linear (Modelled Data)

Figure 5.18: Plot of average velocity, 𝑢̅ vs log of height, In (z), flow case 3 

Figure 5.19: Plot of average velocity, 𝑢̅ vs log of height, In (z), flow case 4 
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Figure 5.20: Plot of average velocity, 𝑢̅ vs log of height, In (z), flow case 5 

Figure 5.21: Plot of average velocity, 𝑢̅ vs log of height, In (z), flow case 6 
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5.4 Comparing Measured Data with Model Predictions 

5.4.1 Measured and Modelled Flow Velocities 

 

Experimentally derived mean flow velocity data were matched with modelled velocities to 

determine how well both data agree as presented in figures 5.11 to 5.21.  A regression statistical 

analysis using excel analytical tool confirmed a significant positive relationship between both 

velocities. Regression statistical analysis was further done including the R-squared and P-values 

for all six flow cases and results presented in table 5.6 below. 

Summary of Regression statistics of velocity data for all six flow cases 

Regression statistics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Observations 112 85 112 110 96 80 

Multiple R 0.99978 0.99962 0.997 0.995893 0.997855 0.999677 

R-squared 0.99955 0.99925 0.99402 0.991802 0.995715 0.999354 

Standard Error 0.00086 0.00127 0.00443 0.005615 0.005598 0.003029 

P-value 3.10E-18 2.10E-131 3.80E-124 4.80E-104 4.10E-113 3.70E-126 

 

The method used to derive estimates of modelled velocities was earlier explained in section3.5. 

The approach is based on the Reynolds shear stress and Law-of-the-Wall or the von Karman-

Prandtl mixing length theory. For example, using the Law-of-the-Wall approach, different 

measured velocities are plotted against flow height and then using the fitting procedure, 

estimates of shear velocities and roughness are derived from the slope and intercept of the 

computed regression equation. A Karman’s constant of 0.29 was used in this thesis to get the 

best fit line 

 

5.4.2 Reynolds Stress Validation 

 

Equation (3.13 and 3.21) predicts that a plot of  𝑢’𝑤’̅̅ ̅̅ ̅ against height above base of flow should 

be a straight line with an intercept such that 𝑢’𝑤’̅̅ ̅̅ ̅ goes to zero. Figures 5.9 to 5.14 confirms this 

as the vertical profiles of the Reynolds shear stress, 𝑢’𝑤’̅̅ ̅̅ ̅ for each flow case align to a straight 

Table 5.6: Summary of Regression statistics of velocity data for all six cases 



 

 

 

 

119 

 

line. The corresponding value @ h=0 also gives the Reynolds Basal Stress (Pa) at base of 

flow 𝑢’𝑤’̅̅ ̅̅ ̅.  

Table 5.7 below shows the comparison of Reynolds shear stress estimates from both calculated 

and derived from as inferred from base of flow.  

These results show similarity in the Reynolds stress calculated as well as that estimated from 

base of the flow as all data points align to a reasonable extent to a straight line as predicted by 

the theory.  

Comparison of calculated and predicted Reynolds shear stress estimates  

Flow cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Reynolds Basal Shear Stress (Pa) at 
base of flow(<u'w'>) @h=0 

0.48 0.9 0.88 2.02 1.39 3.1 

Calculated Basal Reynolds Stress 
(<u'w'>) 

0.429 0.948 0.889 2.067 1.144 3.008 

 

5.4.3 Law-of-the-Wall Validation   

 

From equations (3.23), the Law-of-the-Wall predicts that a plot of 𝑢̅ against (z) should be a 

straight line. Figures 5.3(b) to 5.8 (b) shows very good agreement with this expectation.  Also, 

as shown in the figures, model predictions such as the mean velocities are observed to be 

consistent with measured values as both are well aligned on the straight line. This good 

agreement between modelled and measured parameters confirms the validity of the Law-of-

the-Wall in predicting flow parameters such as mean and shear velocity.  

 

5.5 Hydraulic slope estimates from Reynolds Stress 

Equations 3.26 and 3.27 (chapter 3) were used to determine the flow slope from Reynolds stress. 

The results are presented in the bar chart below (Figure 5.22). Comparison of slope estimates 

from Reynolds shear stress with directly measured slope estimates as in table 5.8, will be used 

to provide clues with regards to the flow conditions. 

 

Table 5.7: Comparison of calculated and predicted RSS estimates 
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5.6 Floor Surface Roughness and Drag coefficient 

5.6.1 Surface Roughness 

Bed roughness could significantly contribute to turbulence in a flow. The surface roughness 

height, z0, of the two types of slabs (concrete and gravel) used on the floor flume tank were, 

from the velocity profiles generated by the von Karman’s turbulence model (described in 

chapter 3, section 3.2.2; see equation (3.25). The roughness estimates and their uncertainties 

are presented in table 5.9 below. 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Direct Slope 0.00061 0.001066 0.001176 0.001595 0.002121 0.002121

Uncertainty 0.00012 0.000126 0.000146 0.00016 0.00015 0.00012

Reynolds Slope 0.000477 0.00103 0.000775 0.002024 0.001 0.002692

Uncertainty 2.17E-05 3.71E-05 1.67E-05 7.00E-05 3.11E-05 0.0001074
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Table 5.8: Estimates of direct and Reynolds slope with their uncertainties 

Figure 5.22: Comparison of direct slope with Reynolds slope estimates 
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Also, Figure 5.23 below is a bar chart which shows the variation in roughness lengths between 

the concrete and gravel floors 

 

 
Note that bars 1 and 2 are the roughness lengths of concrete floors while bars 3 to 6 are for the 
gravelly floors 

 

5.6.2 Drag coefficient 

 

Equations 3.30 was used to estimate the drag coefficient, 𝐶𝐷 , of the flows over both the concrete 

and rough gravel floor. Estimate of the basal shear stress (from the Law-of-the-Wall) was done 

by using the flume centre line average velocity due to effect of side-wall friction. (See equation 

3.34). Table 5.10 below, shows the flume data and analytical results of the basal shear stress 

from both the Law-of-the-Wall and Reynolds Stress methods. 

 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Floor type Concrete Concrete Gravel Gravel Gravel Gravel

Flow thickness (m) 0.19200 0.18000 0.19200 0.19200 0.14000 0.14000

Roughness (m) 0.00012 0.00014 0.00357 0.00157 0.00109 0.00132

Uncertainty 0.00003 0.00005 0.00023 0.00014 0.00008 0.00040
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Table 5.9: Estimates of roughness lengths for surfaces used in the experiment 

Figure 5.23: Comparison of roughness length (concrete and gravelly floors) 
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Figures 5.24 and 5.25 show how the estimates of drag coefficient, 𝐶𝐷 of the flows over smooth 

concrete and rough gravel floors were determined. Estimation was from the plots of the square 

of average velocity, 𝑽𝒂𝒗 and the shear stress obtained from the Law-of-the-Wall (Log profile) as 

well the Reynolds shear stress methods respectively. However, consideration was on comparing 

the obtained results from the two methods as presented in table 5.11 

 

 

The gradients of the straight line gives the estimate of 𝐶𝐷 
 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Floor type Concrete Concrete Gravel Gravel Gravel Gravel

Ave. Velocity (m/s), from flume centre-line, Vav 0.415024 0.625290 0.396204 0.610113 0.517470 0.757540

Sq of Ave. Velocity from flume centre-line (Vav )
2 0.172245 0.390876 0.156978 0.372238 0.267775 0.573867

LoW Basal shear stress (Pa) 0.331980 0.806370 1.382280 2.017020 1.416489 3.397750

Reynolds Basal shear stress (Pa) 0.429990 0.948060 0.889630 2.067480 1.413770 3.007960
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Table 5.10: Estimates of basal shear stress from LoW and RSS (flume center) 

Figure 5.24: Drag Coefficient estimates from Law-of-the-Wall. 
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5.7 Linking Turbulence and Sediment Grain Suspension 

The foregoing experimental results all concern relationships between different estimates of 

turbulent fluctuation magnitude. However, in this section we focus on the capacity of a 

turbulent flow to maintain sediment particles suspension by turbulence. Turbulent suspension 

occurs when the vertical velocity fluctuations, near the flow base exceed the fall velocity 

(Bagnold, 1966).  Characterizing these fluctuations by their root mean square (rms) value then 

gives a suspension criterion as in equation (3.37). Here, attempt is made here to test this 

suspension criterion and the result is presented in figure 5.26 below. 
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Drag Coefficient, CD Estimates   Concrete base     Gravel base

Law-of-the-Wall 2.0405 5.8433

Reynolds Stress 2.4364 5.3418

Figure 5.25: Drag coefficient estimates from Reynolds Stress 

Table 5.11: Comparison of 𝐶𝐷 estimates from LoW and Reynolds Stress 
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Equation (3.41) implies that these should be equal and hence plot along the red line. 
 

The key assumption of the theory therefore, is that equation (3.37) holds true (i.e., that the 

vertical rms velocity variations, 𝑤′2̅̅ ̅̅̅, are approximately the same as 𝑢′𝑤′̅̅ ̅̅ ̅̅  and that, therefore, the 

shearing velocity is an estimate of the maximum fall-velocity consistent with suspension). 

This assumption was tested using data from the flume-tank experiment. Figure 5.26 shows a 

plot of 𝑤′2̅̅ ̅̅̅, against 𝑢′𝑤′̅̅ ̅̅ ̅̅  for the data from all six experimental set-ups. Figure 5.26 makes it clear 

that this is an excellent approximation and that, therefore, the suspension criterion of equation 

(3.37) is valid.  

 

 

 

 

 

Figure 5.26: Comparison of vertical Reynolds normal stress, 𝑤′2̅̅ ̅̅̅, to 𝑢′𝑤′̅̅ ̅̅ ̅̅  
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5.8 Chapter Summary 

From the results analysed, the following key conclusions can be made: 

• Modelled and measured flow velocities show a significant positive relationship with an 

statistical derived R-squared value of almost unity.  

• Basal shear stress estimates obtained from the Law-of-the-Wall and Reynolds stress 

show reasonable agreement suggesting reliability of the Mixing Length turbulent 

suspension theory. Drag coefficient estimates obtained from both methods also show 

a significant correlation. 

• The turbulent suspension theory has been supported by the good fits of measured data 

to predictions of the Law-of-Wall, good fits to the predictions of RANS as well as the 

good fits of stress=Cd.v^2.  

• Basal shear stress is attenuated by increased bed roughness  

•  
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6 Chapter Six 

 

 

 

 
 
 
 
 
 
 
 
 

Application of the Turbulent-Suspension Model to 

Turbidity Current Flows in Agadir Basin, NW Africa.  
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6.1 Introduction 

This chapter presents a novel attempt to understand controls on long run-out turbidity current 

flows transporting coarse grains and mainly supported by flow turbulence using both field-scale 

data and numerical modelling approach. The case study is the flow that deposited Bed A5 in 

Agadir basin, offshore Morocco, where sands were reportedly transported and deposited by a 

relatively thin flow near the bed (Talling et al., 2007; Stevenson et al., 2014).  It is unclear if it is 

possible for a thin flow to transport sand across the over 250 km wide Agadir basin from the far 

Moroccan margin without its settling.  Flows moving sediment grains near the bed are mainly 

controlled by the size of grains in the flow, terminal settling velocities, flow thickness and 

turbulent accelerations (Bagnold, 1966; La Porta et al., 2001).  

This work seeks to re-create the flows transporting sediment grains into the Agadir basin and 

establish if turbulence can singly act to supress the settling of sand grains in the turbidity current 

flow, although suggestions of multiple support mechanisms such as grain-to-grain interaction 

(as in debris flow origin, Tailing et al., 2007) has been proposed. Since there is apparent lack of 

debris flow deposit features (giant scours and minimal deposition) in Bed A5 deposits and 

evidence of fast flow velocities, sands are expected to be mainly supported by turbulence. This 

study applies a simple 2-D depth-averaged analytical model, developed by Waltham et al., 

(2008), using algorithms of Reynolds-Averaged Navier Stokes (RANS) as well as the Chezy 

equations, based solely on turbulence-suspension theory to carry out this novel investigation.  

The following goals and questions will be addressed by this research: 

  To understand, firstly, whether unusually detailed field measurements of long run-out 

turbidity currents can be replicated by a numerical model?  

To a first order, is it possible to re-create the extent, thickness and grain size trends of long 

run-out turbidity current flows that extend beyond the continental slope using a depth-

averaged numerical flow model? 
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  To quantitatively determine the maximum suspended grain size moved by a flow 

using a turbulence‐ suspension theory  

Can we infer flow properties of long run‐out oceanic turbidity currents based on relatively simple 

inputs? 

The next section below, provides a brief description of the Agadir basin, offshore Morocco. 

6.2 The late Quaternary Agadir Basin, Offshore NW African Margin 

6.2.1 Introduction 

 

 

White dots are recovered core locations used by Stevenson et al., (2014) study. Red outline indicates the 
position of Agadir basin in relation to other basins within the Moroccan Turbidite System. 
 

 
The Agadir basin is situated offshore Morocco in North-western Africa (Wynn et al., 2002) (see 

figure 6.1). It is part of a triple- member interlinked Moroccan Turbidite System (MTS), and is 

centrally located with regards to the relative position with the other two; the Seine Abyssal Plain 

(SAP) and the Madeira Abyssal plain (MAP), that are located to the northeast and to the western 

Figure 6.1: Location map of Agadir Basin showing the pathway of Bed A5 flow 
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most extent of the system respectively.  The basin covers an estimated total area of about 

35000km2, with water depths in the range of 4300m to 4500m (Wynn et al., 2002).  

Flows responsible for the transport and deposition of sediments into Agadir basin were mainly 

from the Moroccan Margin (siliclastic flows); Canary Islands (volcanoclastic flows) as well as from 

localised seamount collapses which supply the carbonate-rich flows (Weaver et al., 1992; Wynn 

et al., 2002b). These flows, averaging 30 to 120 m in thickness extend across the entire width of 

the basin with the highest amount of sand transported by flows about 5 to 14 m thick with sand 

transported in the lower 5 to 7 m of the flows (Stevenson et al., (2014).  

The Agadir basin unlike other deep-water basins, presently provides the only location where 

sediment cores of turbidity current deposits taken from the modern sea floor have been mapped 

out across distances of over 250km wide in exceptional details. 

6.2.2 Bathymetry 

 

The Agadir basin has been described as a large intraslope basin, with an almost flat topography, 

having an ENE-WSW slope gradient ranging between 0.010- 0.030. There is an intrabasinal sill 

of over 100m height above the basin floor, which separates the basin from the Seine Abyssal 

Plain in the north-east while the western end is marked by a series of distributary channels with 

much lower gradients (Wynn et al., 2002). Stevenson et al., 2014 used the GEBCO dataset to 

generate the slope maps of the basin.   

 

 

Adapted from Talling (2013). 

 

Figure 6.2: Change in seafloor gradient (red line) along the axis of Agadir basin 



 

 

 

 

130 

 

The seafloor slope was estimated from the spot depths, followed by a general smoothening 

within a 3.0km2 grid (see figure 6.2). GEBCO grid (General Bathymetric Chart of the Oceans) is a 

continuous terrain model for ocean and land with a spatial resolution of 30-arc-seconds. This 

level of detail is expected to aid the capture of any small-scale roughness of the seabed. The 

GEBCO grid was generated by combining quality-controlled ship depth soundings with 

interpolation between sounding points aided by satellite gravity data. 

The Agadir basin act as a bypass and/or area for deposition for both confined and unconfined 

turbidity current sediments conveyed through the Agadir Canyon (fig 6.1 A). According to Ercilla 

et al. (2003), between the Oligocene and Lower Miocene, the basin was a bypass area and flows 

entering the basin came through the channels that runs along the basin and the flow pathway 

was essentially controlled by the paleotopography. However, later, during the Miocene and 

Upper Quaternary, the basin became a site for turbidite deposition (such as the channel-fills, 

overbank and lobe deposits). 

 
 

6.2.3 Agadir basin sedimentary facies 

 

Wynn and Cronin (2005), Talling et al., (2007), Wynn et al., (2012) and Stevenson et al., (2014) 

reported their findings of studying shallow ca 12m piston of over fifty sediment cores from the 

Agadir basin (core locations are shown in figure 6.1A). Two distinct sedimentary facies 

associations dominate the sedimentary sequence of Agadir basin and these are the hemipelagic 

muds and submarine flow deposit sands and muds. Using the facies scheme of Sumner et. al., 

(2012), these facies have been further described to include the structureless sand (no 

sedimentary structures but has mud contents between 5-10%); mud-rich structureless sand 

(mud rich of up to 40 - 50% and found within bed 5 across the basin, largely ungraded and 

directly overlie the relatively clean structureless sand); Laminated sand (which include the 

planar laminated sand occurring at the base of the deposits, Ripple cross laminated sand 
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occurring at the upper part of the deposits or at the base if the deposit is thin, usually graded 

and have a higher mud content of up to 20% compared with the planar laminated sands) and 

the Contorted laminated sand intervals (which also occur at mid-height in the beds with up to 

25 % mud content and characterised by normal and/ or inverse grading).  

 

Inset 1-3 are the sand fraction mineralogy. Figure adapted from Wynn et al., (2002). 
 

Figure 6.3Core photograph of turbidites from the Agadir basin 
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Finally, there are Turbidite muddy facies which are volumetrically, the most abundant facies in 

the Agadir basin. Turbidite muds contains up to 70% smectite and illite with less than 40 % 

kaolinite and chlorite.  

They normally grade into ungraded structureless mud with silt: clay ratio of ca 1:1. Five beds, 

namely A3, A5, A7, A11 and A12 extend laterally throughout the basin with sand having 

distinctive mineralogy generally occurring at the base (Fig 6.2). These beds are well described, 

interpreted and documented in Stevenson et al., (2014). However, Bed A5 will be focus of this 

chapter, being the product of a high-volume flow with the highest sand fraction observed a few 

metres above the basal part of the cored sequences.  

 

6.2.4 Why study Bed A5 flows? 

 

Bed A5 is one of the flow deposits of the Agadir basin, NW Africa, previously studied by Talling 

et al., 2007; Stevenson et al., 2014 from shallow sediment cores. Results suggest that the flow 

that deposited Bed A5, is from transformation, following a landslide on the Moroccan Margin.  

Field evidence and analysis of sediment cores show that the flow contained over 120 kg3 of 

sediment (approximately 22.5 x 1013 kg of sediment, assuming a density of 1800kgm-3). 

Therefore, the flow that deposited Bed A5 is considerably very large as it is apparently ten times 

more voluminous than the annual flux contributed by all rivers of the world (river flows hardly 

transport sediments in excess of 109- 10 11kg to the ocean, even at very high floods and the 

annual flux of sediments from all world rivers to the oceans is approximately 2 X 1013 kg 

(Khripounoff et al., 2003)). 

Bed A5 is also documented to contain the highest proportion of sand (ca 40%) and drapes 24 to 

33m up the basin margins, with sand suspended just a few meters (5.0-7.0m) from the bed, 

making it the thinnest flow that transport sand-sized sediment grains (Stevenson et al., 2014). 

The basin-wide extent of the sandy facies in Bed A5 suggest that the flow maintained high 

concentration state throughout the length of the basin (fig. 6.3).  
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However, the thickness of flows that deposited bed A5 in Agadir basin, NW Africa was inferred 

from the deposit height as it drape-up basin margin and documented to be ca 120m thick, with 

the highest fraction of sand deposited less than 5 to 7 m above the bed floor. The relationship 

between flow thickness and grain size has been well elucidated in Rouse, 1937; Bowen et al 

1984; Normark et al., 2009, with fine-grained flows tending to be relatively thicker. Also, 

variation in flow thickness have been suggested to influence the run-out distances and the size 

of the resulting deposits (Kneller and Branney, 1995; Kneller et al., 1997; Kneller and McCaffrey, 

1999).  

 

(A) Vertical and spatial distribution of grain size. Positions (B) Color denotes interpreted facies. 
 

Figure 6.4: Bed A5 interpreted facies profile (from Stevenson et al., 2014). 
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Models of turbidity current flows suggest that thin turbidity current flows dissipate fast on low 

slopes (Kneller et al., 2016), and therefore, the persistence travel of thin flows that deposited 

bed A5 across the Agadir basin is very unclear. The key question is how thin flows (of about 5-7 

m) is able to suspend sand through a long run-out distance of over 250km wide Agadir basin, 

Northwest Africa?  

 

6.3 The Numerical flow model 

The numerical flow model used in this thesis is a simple two-dimensional depth-averaged flow 

model that can be used to understand sediment grain transport supported by turbulence as well 

as predict flow properties. The model assumes no vertical change in velocity, concentration and 

grain size distribution and adopts the von Karman-Prandtl mixing length turbulence-suspension 

theory to predict bed shear stress and velocity profiles of oceanic turbidity current flows. It was 

developed by Waltham et al., (2008a) using algorithms of Reynolds-Averaged Navier Stokes 

(RANS) as well as the Chezy equations earlier discussed in chapter three of this thesis. A detailed 

discussion of the governing equations of the flow model is in Waltham et al., (2008). The main 

reason for choosing this 2D depth averaged flow model is because it is computationally fast to 

run and its use of few input parameters. More advanced models such as the DNS are 

computationally very expensive, slow to run and would require a lot of initial input parameters.  

However, this 2D depth-averaged flow model like other depth-averaged models have its own 

limitations especially in the procedure of vertical integration. For instance, it is unable to 

simulate vertical changes in velocity, concentration and grain size distribution. It does not also 

recognise erosion or any form of mixing and basal entrainment into flow. It is only applicable to 

turbulence-supported flows transporting sediment grains in long run-out distances therefore 

Laminar flows are not particularly suited to be captured by the flow model and may not 

adequately be used to understand debris flows. The numerical flow model is also unable to 

model flows that are essentially laminar and with particle concentration greater than 10%.  
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Finally, the flow model may not be able to capture the vertical density stratification such as 

reported by Stevenson et al., (2014) for flows in Agadir basin, offshore NW Africa, being strongly 

stratified by the facies characterisation.  

Despite these limitations, the 2D depth-averaged numerical flow model seems sensible for this 

thesis given the large area to be accessed. Moreover, as it can only simulate turbulence-

supported transport processes, the flow model will be used to investigate the likely origin of the 

large-volume (over 100kg3) long run-out flow that deposited Bed A5 of the Agadir basin and 

isolate its grain support mechanism. Field data from Stevenson et al., (2014) will be used as input 

parameters to further determine the possibility of this large-volume flows suspending sand only 

a few meters from the bed. This observation contradicts many models whereby thick flows could 

transport sand across very long distances.  

 

6.3.1 Model inputs 

Model input includes parameters such as grain size data (comprising both the coarse and fine 

fractions), flow thickness and particles concentration (comprising both coarse and fine 

concentration). Other inputs were based on the seafloor topography, using regional bathymetric 

data adopted from GEBCO, (see fig 6.1C), Canyon width, inflow time, run width and the Chezy 

coefficient. Table 6.1 outlines all the parameters used in the flow model with their default 

values.  

These default input parameters and their values such as particle concentration are for a typical 

turbidity current while others are assumed field data of Agadir basin reported in Talling et al 

(2007) and Stevenson et al., (2014). However, to ensure quality assurance of the model output, 

it was necessary to first carry out sensitivity analysis of the input parameters as it affects the 

predictions of the model. 
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Quantified observations from Bed A5 (Talling et al., 2007; Stevenson et al., 2014) Default 
values 

  Parameter                                               Description              

1. Grain size (µm) coarse 
diameter 

The diameter of individual coarse grains 
carried by the flow 

250 µm 

2. Grain size (µm) fine 
diameter 

The diameter of fine grain fraction carried by 
the flow 

50 µm    

3. Flow thickness (m) Approximates the size of flow entering the 
basin through the canyon 

200.0m 

 

Estimated Parameters   

1. Concentration (coarse) % The amount of fine particles in the flow 1.5% 

2. Concentration (fine) % The amount of fine particles in the flow 3.5% 

3. Inflow width (km) The width of the Canyon conveying flow into 
the basin 

15.0km 

4. Inflow time (hrs) The total time it takes for the flow to enter 
the basin 

7.0 hrs 

5. Chezy coefficient The drag on the flow controlled by the 
seafloor roughness 

0.004 (set by 
Talling et al., 
2007) 

6. Run time (hrs) The total time allowed for the Model to run 50.0hrs 

 

 

6.4 Method: Sensitivity Analysis 

Sensitivity analysis was carried out to identify those input parameters that significantly influence 

the flow model output or alternatively those that are less influential in re-creating the desired 

flow model output and to establish whether model predictions are robust to the variations in 

the input parameters. Figures 6.5 – 6.16 below, shows the model output arising from doubling 

the default values to determine their sensitivity. 

Table 6.1: Input variables used in the flow model. 
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6.4.1 The default run 

 

Figure 6.5 shows the default run of the modelled prototype flow based on the default data 

presented in Table 6.1. Note the tiny red circular dots in the map which are the sediment core 

sampling locations used in the study as reported in Stevenson et al (2014). This default run 

shows a flow with a run-out distance of about 200.0 km which was unable to reach the distal 

part of the basin. Sediment grains held in the flow were deposited in the middle of the basin 

after about 50.0hours run time. The default model also showed that the flow could transport a 

large amount of sand-sized sediments carried through the canyon to the proximal and mid part 

of the basin.  

6.4.2 Coarse diameter doubled 

 

The effect of doubling the coarse diameter of grains (to 500 µm) is presented in Figure 6.6 below. 

it was observed that such increase does not significantly affect the model’s output. The reason 

is that the modelled flow is dominated by the fine-grains and, hence, doubling the coarse grain 

diameter is insignificant. The flow run-out distance is essentially the same. 

Figure 6.5: Default run of the Numerical flow model 
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 Flow model is not sensitive to such increase 
 
 

6.4.3 Fine diameter doubled 

 

Increase in the fine diameter from the default value of 50m to 100m may have led to an early 

settling of sediment grains from the flow into the basin. This may be attributed to the fine grains 

being now larger than they were and settle out more quickly. From Fig 6.7, it is evident that the 

run-out distance is now reduced.  

 

Flow model is sensitive to the increase as the flow run-out distance decreases 
Figure 6.7: Effect of increasing the fine diameter to 100m 

Figure 6.6: Effect of increasing grains coarse diameter to 500m 
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6.4.4 Coarse concentration doubled 

 

Increase in the coarse concentration from the default value of 1.5 to up to 3.0% do not show a 

clear difference when compared to the default run as flow behaviour is dominated by the fine-

grains. The flow is essentially the same (See fig 6.8).  

 

6.4.5 Fine concentration doubled 

 

Here, with the fine concentration doubled from 3.5 % to 7.0%, there is a clearly observed 

increase in the flow’s run-out distance. The flow is able to propagate further into the distal part 

of the basin (see fig 6.9). The increased flow density allows the flow to travel further and faster. 

 

 

Flow model is sensitive to the increase as the flow run-out distance increased marginally 

 

 

 

 

Figure 6.8: Effect of increasing the coarse concentration to 3.0%. 
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Flow model is sensitive to the increase as the flow run-out distance increases  

 

 

Flow model is sensitive to the increase as the flow run-out distance increases. The diameter of 
the flow channel or canyon also determines the amount of flow being delivered into the basin 
 

6.4.6 Inflow width doubled 

 
Increase in inflow width from a default value of 15.0km to 30.0 km showed a significant increase 

in the run-out distance of the flow. The increase in inflow width allowed greater volume of flow 

Figure 6.9: Effect of increasing the fine concentration to 7.0%. 

Figure 6.10: Effect of flow width of the canyon to 30.0km 
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into the basin, thus enhancing the ability of the flow to propagate more into the distal margin 

of the basin (see fig 6.10). 

 

6.4.7 Flow thickness doubled 

 

As observed in figure 6.11, doubling the flow thickness in the flow model to 400m showed a 

significant influence on the flow ability to propagate far into the basin.  From the figure, it is 

noted that the flow run-out distance increased considerably when compared to the run distance 

of the default run and the flow could get to the distal basin margin and even beyond. Also, a 

thicker flow should contain a wide range of sediment grain sizes and more sand-sized grains are 

able to be moved up in suspension by the flow. Thicker flows will have relatively higher grain 

density than thin flows and so the momentum of such a flow should be higher, which makes it 

able to travel far. 

 

 

Flow model is sensitive to the increase as the flow run-out distance increases even beyond the 
basin margin 
 
 

Figure 6.11: Effect of increasing the flow thickness to 400.0m 
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6.4.8 Chezy coefficient doubled 

 

With every other parameter in default state apart from the Chezy coefficient which is increased 

by a factor of two, it is clearly observed from the output, (fig 6.12), that the flow travelled less 

far distance when compared to the default run (fig 6.5). Here, there is early deposition of 

sediment grains near the middle of the basin as a result of increased friction.  

 

 

Output flow model shows a higher drag of flow and flow seems retarded leading to early 
deposition of grains occurring in the middle of basin 
 
 
 

6.4.9 Model run time doubled 

 
Doubling the model run time, shows a significant increase in the run-out distance of the flow 

(see figure 6.13 below). This confirms time as a very important factor in flow modelling. When 

compared to the default run, it is clearly observed that the flow could move further down the 

basin with relatively more fine sediment grains in suspension. Hence, the default run-time is not 

sufficient to capture the full flow behaviour and simulations will have to be run for longer. 

 

Figure 6.12: Effect of increasing Chezy co-efficient by a factor of two 
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Flow model is sensitive to doubling the model run time as the flow run-out distance increases  
 
 

6.4.10 Inflow time doubled 

 

In the default run, the total time it takes the flow to enter the basin through the channel or 

canyon was assumed to be 7.0hrs. However, when this was doubled, it was observed that the 

flow volume is higher and the run-out distance of flow have increased too. The model output is 

shown in figure 6.14 below. 

 

 
Flow model is sensitive to doubling inflow time as flow volume and the flow run-out distance 
tend to have increased considerably 

Figure 6.13: Effect of increasing model run time by a factor of two 

Figure 6.14: Effect of increasing inflow time by a factor of two 
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6.5 Model output  

6.5.1 Modelled bathymetry and flow evolution of Agadir basin 

 

 

Red outline (not to scale) represent the location of the study area. The yellow curve indicates the Agadir 
canyon while arrows show flow direction. 
 

Figure 6.15 above is the modelled bathymetry of the Agadir basin using input parameters from 

Talling et al., (2007), Wynn et al., (2012) and Stevenson et al., (2014). Flow into the Agadir 

basin comes from the Moroccan margin through the Agadir canyon.  

Based on a series of simulations of turbidity currents flow in the basin, the evolution of the 

Agadir flow is presented in Fig 6.16 (A-H). This justifies the capacity of the flow model to simulate 

field-scale turbidity current. From the flow model (fig 6.16A and B), it is observed that within the 

first five hours run time, flow emanating from the Moroccan margin was channelized with no 

evidence of spill in adjacent overbank areas, and it continued to maintain its course within the 

Agadir canyon.  

At 10.0hour, the flow is observed to continue in its northward direction until it made a sharp 900 

bend (fig 6.15C) to begin its course into the basin.  

Figure 6.15: Modelled Bathymetric map of Agadir basin 
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Recall, the flow model does not allow for basal entrainment, or erosion and if Stevenson et al., 

(2014) observation is true, the flows in Agadir basin is largely non-erosive so the flow velocity 

should gradually reduce due to the dissipation of the flow energy. At about 15.0 hr of the flow, 

Figure 6.16: Modelled flow evolution of Agadir basin 
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its average speed gradually reduced to about 10.0m/s, and the flow further propagated 

downstream into the basin developing submarine fans (Fig 6.16D).   

At 20.0 hr propagation of the turbidity current flow continue to increase down the gentle sloping 

basin sea floor and maintained its momentum following an increase in the flow thickness (Fig. 

6.16E). At 25.0hrs, the flow speed reduced to about 8.0m/s due to weakening of the current (Fig 

6.16 F). The flow continued its downstream motion and subsequent deposition of its load in the 

basin gradually began due to further waning of current speed (Fig 6.16F and G). Figure 6.16H 

shows that at 60hr, the flow’s thickness has drastically reduced to less than 2.0m/s and 

deposition of the suspended sediments within the basin is almost complete. 

 

6.5.2 Approximate fit to data; comparison to field evidence 

 

Based on the outcome of the model sensitivity analysis, the main input parameters influencing 

run-out distance and competence of the subaqueous flows are the thickness, volume of fine 

concentration, model run time as well as the inflow time. This agrees with existing models such 

as Rouse, (1937); Bowen et al (1984); Kneller and Buckee, 2000 and Normark et al., (2009).  

Using field data of Bed A5 flow deposit as input parameters of the 2D depth-averaged numerical 

flow model, attempt is made here to investigate the findings of Stevenson et al., (2014) on how 

the large- volume Bed A5 flows with very long run-out capacity could only suspended sand-sized 

grains just a few meters from the bed.  

Here, the flow model output is compared with field observations to see how well the model and 

the data fits.  
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Note the dark grey colour tone expressed in the red circular dots (the sediment core sampling 
points in the basin), is suggestive of fine grains. However, white colour predominates in greater 
part of the flow in basin, suggesting more of coarse sediment grains deposition. 
 
 
 
This flow model confirms that flows coming from the Moroccan margin through the Agadir 

channel are able to deposit its suspended load in Agadir basin after a long-distance travel. From 

the flow model, it was observed that the flow model is mostly dominated by coarse grains 

transported by flow with an average thickness of approximately 100.0m into the basin.  

As previously noted, the flow model transport sediment grains that are relatively coarse and to 

be able to propagate farther into the basin, (to attain a long run-out flow), the flows thick be 

thick. Fig 6.16 above, supports this explanation. But these model observations contradict 

Stevenson et al., (2014) field observation.  

It will be naturally expected that turbidity current flows as thick as the one prescribed in the 

flow model, could attain a long run-out distance, far across the basin and will be able to laterally 

advect a range of sediment grain sizes including the coarse sand grains identified. However, the 

flow model is unable to account for the possibility of thin flows carrying these coarse sediments 

far into basin without deposition and therefore reproducibility of field observations in Agadir 

basin is not achievable by this model. 

Figure 6.17: Flow model with approximate fit to data 
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6.5.3 Resulting maximum flow thickness; comparison to field evidence 

 

Figure 6.17 shows the model output of flow thickness in relation to the distance moved by the 

flow. It is observed from the flow model that maximum thickness of flow occurs at proximal part 

of the basin due to reduced deposition and high turbulence, but the flow subsequently spread 

out, carrying a range of sediment grain sizes coarse sediments in suspension and move farther 

into the basin.  According to Talling et al. (2007), a thick flow will be able to carry most of its 

sediment load well above the flow bed and could deposit only a small percentage on the bed at 

any point in time during transport. In the analogy to field evidence by Stevenson et al. (2014), 

suggestions of thinner flows transporting sand size sediment grains across over 250 km wide 

Agadir basin cannot be substantiated by the flow model. Thin flows unless heavily turbulent and 

characterised by high concentration of fines, encourage rapid settling of sediment grains as the 

flow momentum could easily get dissipated.  

 

 

The dark colour tone suggests flow thicknesses of about 200.0 meters transporting sediment 
grains across the basin. The lighter colour tone observed in the canyon suggest initial thicker 
flows which subsequently spreads and gets thinner with distance across the basin 

 

Figure 6.18: Flow model showing the flow thicknesses with distance 
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6.5.4 Maximum suspended grain size in Bed A5 flow 

 
The size of a sediment grain exerts a first order control on its suspension and subsequent 

transport in a flow. In near bed zones, other parameters apart from grain size such as terminal 

settling velocities, flow thickness and turbulent accelerations which should be greater than the 

gravitational force are the main controls (Bagnold, 1966; La Porta et al., 2001).  

For sediment grains transported in the region far above the bed, turbulent diffusion and vertical 

settling are the dominant competing processes which determine the particle concentration and 

transport process.  

Here, a novel attempt is made to quantitatively determine the maximum grain size that can be 

suspended and moved by a turbidity current flow using Bed A5 flow of the Agadir basin, offshore 

Morocco as a case study.  This research follows inferences from earlier work by Talling et al., 

2007; Wynn et al., 2012 and Stevenson et al., 2014, suggesting that the flows that deposited 

sand in the voluminous bed A5 is less than 7.0m thick.  

It is unclear if Bed A5 flow can generate enough turbulence to sustain sand grains suspension 

throughout its long-distance transport from the Moroccan Continental margin, which is the 

primary source of the siliclastic sediments. Essentially, it is expected that coarse siliclastic grains 

such as sand grains transported by a thin turbidity current flow should settle faster under the 

action of gravity and moved within relatively short distances from source. But the reverse seems 

the case here, as it was reported that sands (about 250 µm) were transported for well over 

250km by thin flows resulting in the deposition of Bed A5 in Agadir basin. This could only be 

justified if sands were suspended and transported in flows higher up from the bed, where 

turbulence predominates, and vertical settling is insignificant.  

Table 6.2 (A and B) below, show the key assumptions as well as the field data of Bed A5 flow 

from published work of Stevenson et al., (2014).  
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Particle volume concentration (%) 0.1 For very dilute flow 

                         10.0 Maximum concentration in flow at the base of flow 

Density of water (kg/m3) 1000   

 

Using the mathematical expressions provided by Waltham (2008), the basal shear stress re-

expressed as shearing velocity (see equation 3.7 of chapter 3) was estimated using the data 

provided in tables 6.2A and B above. Also, the mean velocity (Eqn 6.1) was estimated from the 

mixing-length theory (Duncan et al., 1960) with full details also in Waltham (2008), where it is 

shown that 

                                                                    𝜏0 =  − 𝜌 (
𝜅𝑢

𝑏𝑖𝑛(
𝐻𝑓

𝑧0
)
)                                (6.1) 

Where 𝜅 is Karman’s constant, 𝑢̅ is the mean velocity of flow, 𝑓 is the turbulent bed-layer 

fractional thickness (approx. 0.05, from Kneller et al., 1999) and 𝑏 is a constant (order of one). 

The drag coefficient was equally estimated using the expression (Eqn 6.2) below: 

                                                            𝐶𝑑 = [
𝜅

𝑏𝑙𝑛(𝑓ℎ/𝑧0
)]2                                 (6.2) 

Finally, the depth averaged velocity was then calculated from the expression (Eqn 6.3) below: 

                                                                               𝑢 ̅ =  √−
𝑔′ℎ𝑠′

𝐶𝑑
                                       (6.3) 

In estimating the maximum suspended grain size, the formulae from Stokes’s Law was adequate. 

For the grain diameter modelling. Five different scenarios were modelled, and maximum grain 

Table 6.2A: Key Bed A5 field data from Stevenson et al., (2014) 

Flow bed Lithology 
Bed geometry 

downslope 
Grain diameter 

(µm) 
Flow height with 
sand fraction (m) 

Basin slope 
(degrees) 

A5 
Clean sands 
Mud-rich sands 

tubular 
lenticular 200 5.0 0.02-0.05 

Table 6.2B:  Key assumptions for estimating Max. Suspended grains in bed A5 flow  
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size diameter estimated.  Table 6.3 below shows the estimates of the maximum grain sizes for 

bed A5 flows for 5.0m thick flow on the gentle sloping (0.02) Agadir basin.  

The results affirm that we can infer flow properties of long run‐out oceanic turbidity currents 

based on relatively simple inputs and it is possible to quantitatively determine the maximum 

suspended grain size moved by a flow using the Mixing-length turbulence‐ suspension theory  

Parameter Case 1  Case 2 Case 3 Case 4 Case 5 

Reduced gravity, g' 0.0161865  0.080933 0.161865 0.809325  1.61865 

Drag coefficient 0.025  0.025 0.025 0.025      0.025 
density of flow 
(kg/m3) 1001.65 

 
1008.25 1016.5 1082.5    1165 

Density of water 
(kg/m3) 1000 

 
1000 1000 1000    1000 

density excess (T.C) 1.65  8.25 16.5 82.5    65 

Bed roughness, z0 0.01477  0.00457 0.00457 0.00457    0.00457 

Concentration (%) 0.1  0.5 1.0 5.0    10.0 
  

Mean Velocity  0.08046489  1.7992494 2.544523 5.689727 8.046489 

Shear Velocity  0.040232  0.089962 0.127226 0.284486 0.402324 

       

Max.  Suspended 
grain size (m) 

0.000211  0.000316 0.000376 0.000563 0.000669 

 

These estimates show that apart from the flow thickness and assuming all other flow parameters 

such as particle volume concentration are within the limits that can drive the flow, the maximum 

grain size that can be suspended by bed A5 is well influenced by the flow velocity. The results of 

this modelling show that as the flow velocity increases, the 5.0 m thick flow is able to suspend 

and transport increasing and larger sediment grain sizes. For example, the five different 

scenarios or cases show that a flow travelling with velocities of 0.080m/s (case 1), 1.799m/s 

(case 2), 2.54m/s (case 3), 5.69m/s(case 4) and 8.05m/s (case 5) can suspend and transport 

sediment grain sizes of 211µm, 316 µm, 376 µm, 563 µm and 669 µm respectively. 

Table 6.3: Estimates of maximum suspended grain size for bed A5 flow 
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Therefore, it is possible for the 5.0m thick flow to suspend and transport sand across the 250km 

long Agadir basin. However, turbulence alone may not be the only grain support mechanism in 

the flow as observed from the 2-D analytical model.   
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6.6  Chapter summary  

The following are the key points of this chapter: 

• The simple 2D depth-averaged numerical flow model has been unable to reproduce the 

observed real-world long run-out thin turbidity current flows observed in Agadir basin. 

The flow model output is thick and observed to suspend mainly coarse grains.  

• Suggestions of thin flows transporting sand grains across over 250 km wide Agadir basin 

cannot be substantiated by the flow model. Thin flows unless heavily turbulent and 

characterised by high concentration of fines, encourage rapid settling of sediment grains 

as the flow momentum could easily get dissipated. 

• Initial sensitivity analysis of model flows suggests that input parameters influencing run-

out distance and competence of the subaqueous flows are the thickness, volume of fine 

concentration, model run time as well as the inflow time. This agrees with existing 

models such as Rouse, (1937); Bowen et al (1984); Kneller and Buckee, 2000 and 

Normark et al., (2009). 
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7 Chapter Seven  

 

 

 

 

 

 

              Discussion/Implications of Study  
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7.1 Validation of the turbulence-suspension theory 

7.1.1 Comparison of bed shear stress estimates  

 

Bed shear stress determined by the three traditional approaches are expected to give similar 

estimates but in reality, they are hardly the same and no particular trend in estimates can be 

predicted. In this work, the slope method, Law-of-the-wall or Logarithmic profile method as well 

as the Reynolds stress method were all applied in estimating the basal shear stress.  

As described in chapter three, the slope method, requires measurement of the flow slope, 

density and thickness, but limited as it only provides an upper limit value of the shear stress 

estimate. The Reynolds stress method, on the other hand, requires measurement of velocity-

fluctuations and extrapolating the linear distribution of 𝑢’𝑤’̅̅ ̅̅ ̅ to the base of the turbulent flow. 

The third approach, called the Law-of-the-wall or Logarithmic profile method involves the 

extrapolation of the mean flow velocity to the base of the flow.  

These three methods are expected to yield similar estimates if the von Karman-Prandtl 

turbulence suspension theory is to remain valid with respect to sediment transport.  

 

 
Figure 7.1: Agreement between measured and modelled dataset 
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Figures 7.1 and 7.2 shows the comparison of the velocity profiles obtained from modelled and 

measured dataset. Both profiles can be said to show a significant degree of agreement. All six 

experimental flow cases show similar trend in similarity with an R-squared value of 

approximately 0.99. 

 

 

 
 

Also, figure 7.1 provides a graphical representation of the estimates for all six flow cases which 

demonstrates how well the shear stress estimates from the Law-of-the-wall or Logarithmic 

profile and Reynolds stress methods agree with each other.  

The key observation from figure 7.1 above, is that the basal shear stress estimates from both 

the Law-of-Wall and Reynolds stress methods significantly agree although the estimates do not 

exactly match as the Law-of-the-Wall estimates were comparatively higher in two of the six flow 

cases (3 and 6). For example, bed shear estimates in cases 3 and 6 were higher with about 40.0% 

and 15.6 % respectively. Other researchers such as Kim et al., (2000), Biron et al., (2004) and 

Sherwood et al., (2006) in their respective works also noted higher Law-of-the-Wall estimates in 

comparison to Reynolds Shear stress derived estimates. Also, Wilcock (1996), flow experiments 
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showed that four out of the nine flow experiments had estimates from the logarithmic profile 

higher than estimates from other methods. 

 

 

 

Similarly, Rowinski et al., (2005), also noted higher values of shear stress estimates from 

logarithmic profile method in their flow experiments. Following these observed comparatively 

lower Reynolds stress estimates, arguments attributing potential source of error and 

uncertainties has been traced to instrument sensitivity as the Reynolds stress method is very 

sensitive to sensor alignment, which make the Reynolds stress estimates liable errors arising 

from improper instrument positioning. A very important observation is that the higher estimates 

from logarithmic profile method were all from flows over rough floor surfaces. It is unclear why 

the estimates from the logarithmic profile method, in particular, were consistently higher in all 

the flows over rough floors. The other two flow cases (1 and 2) were flows over smooth concrete 

surface and have comparatively lower estimate values when compared to the Reynolds stress 

methods (Cases 1 (-45.6 %) and 2 (-9.6 %)). Flow cases 1, 2, 4 and 5, show good correlation as 
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they have very similar shear stress estimates (difference of less than 9.7% in estimate). The 

choice of κ = 0.29 in this work as earlier explained in the methodology, arrived by manual 

adjustment had contributed largely to minimising the difference between the Law-of-the-Wall 

and the Reynolds stresses. Clearly, on an overall scale, and as expected, the fit between the Law-

of-the-Wall and Reynolds Shear Stress estimates is not perfect but can be regarded as acceptably 

good for a theory which only approximates the complex, true behaviour of turbulent flows.  

Hence, the shear stress estimates by any of the two methods should be a reasonable, first 

approximation to the eddy stresses at the base of the flow.   

 

7.1.2 Comparison of direct slope with Reynolds slope 

 

Slope derived from Reynolds shear stress could provide clues to the flow regime from laboratory 

flume experiment. For example, comparing the directly measured slope with that estimated 

from the Reynolds stress could provide clue on whether the flow was uniform or non-uniform. 

It is expected that in uniform flows, both slope estimates should agree while in non-uniform 

flows there could be some disparity in the estimates.  

Figure 7.4 below shows a comparison of directly measured slope estimates with the Reynolds 

derived slope estimates for each of the six experimental flow cases reported in this thesis. It can 

be observed from the figure, that flow cases 1 and 2 show reasonable agreement between 

directly measured slope and estimates from the Reynolds shear stress methods. It can be 

inferred that these flows (cases 1 and 2) are uniform flows. Also, flow cases 3, 4, 5 and 6 whose 

estimates do not agree are inferred to signify non-uniform turbulent flows.  
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7.1.3 Influence of roughness 

 
Bed roughness can be produced by bed forms (ripples and mega ripples) as well as by individual 

sediment grains. From the turbulence model, z0 represents the surface roughness length or 

height, where the instantaneous velocity equals to zero.  In this work, the value of roughness 

length, z0, was derived from the fitting of the velocity profiles. The relationship between z0 and 

the size of the roughness element which provides a measure of the bed grain size as derived by 

Raudkivi (1998) is presented in equation (3.10).  

It is expected that rougher floors should have higher values of z0 and consequently, greater 

turbulence.  To test this, the roughness length, z0, was estimated from the log-profile method, 

through a best fit and by adjusting κ to a value of 0.29 (to minimise the difference between the 

basal stress from Law-of-the-Wall and the Reynolds stress (see table 5.12 and figure 5.16)). 

Clearly, from the results, gravel has a higher z0 than concrete and there is a clear dichotomy 

between the gravel cases with z0 ~ 0.002 m and the concrete-base case with z0 ~ 0.0001m.  

However, these results also show that roughness elements, 𝑥, is greater than the roughness 

length, z0, which interestingly confirms Raudkivi (1998).  
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The drag coefficient, CD, of the flows was estimated using expression provided by Waltham 

(2008). Table 5.11 (Chapter five) provides the estimates as well as the comparison of drag 

coefficient, CD, of the flows over concrete and rough floors from the Law-of-the-Wall and the 

Reynolds shear stress methods. It is clear from the results as well as figures 5.17 and 5.18 

(Chapter five) that both methods produce similar estimates of drag coefficient, CD, and are thus 

reliable. A key observation from these figures confirms that the estimates of the drag 

coefficients for the rough gravel surfaces are higher than that of the smooth concrete surface. 

Table 5.10 also shows that that the basal shear stress of the rough gravelly floor is higher than 

that of the smooth concrete floor. This confirmed earlier works of Poggi et al. (2003), suggesting 

that shear stress should increase with bed roughness. Chen and Chiew (2003), in their 

experiment also found that shear velocity in marble bed was higher compared to sand bed due 

to the relative roughness of the marble bed. The implication is that rough beds create more flow 

turbulence and facilitate sediment grain suspension. Mazumder et al. (2005), from investigation, 

also revealed that higher bed roughness significantly controls the size distribution of suspended 

load and accounts for keeping sand-size sediment grains in suspension.  

 

7.2 Bed A5 flow: comparing flow model with field-scale data 

7.2.1 Areal extent of deposit 

 
Figure 7.5 (A) shows the modelled areal extent of bed A5 flow deposit (using field scale input 

data from Talling et al., (2007); Stevenson et al., (2014)). It is observed from the figure that the 

modelled flow deposit was unable to get to the distal part of the basin and thus do not reflect 

exactly, the extensive nature of the flow given by the field description of Stevenson et al., (2014). 

The modelled flow had a thickness of 120.0 m and was deposited mid-way into the basin (see 

figure 7.5 B). The inability of the flow to reach the distal end of the basin may be attributed to 

the size of the flow as well as the fine sediment concentration. However, Talling et al., (2007), 

Wynn et al., (2012) and Stevenson et al., (2014) from field study, had reported basin-wide 
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occurrence of Bed A5 deposited from a large volume far-travelling turbidity current flow (figure 

7.4B). Comparatively, both deposits, (fig 7.5 A and B), do not exactly match in areal extent with 

regards to their run-out distances. Estimating the actual size of deposits is outside the scope of 

this thesis.  

 

 

 

 

 

 

 

 

 

 
Figure 7.5: Areal extent of modelled (A) and mapped flow deposit (B) 
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7.2.2 Downstream grain-size trends  

 
Spatial changes in grain size parameters of natural sediments in a flow usually vary with sampling 

locations due mainly to the sediment grain transport process such as abrasion and mixing of bed 

materials derived from multiple sources. Existing theories and empirical evidence suggest that 

grain sizes gradually fine downstream with distance, thus allowing prediction of sediment 

transport directions. 

In this study, the grain size trends for sediments transported by bed A5 flow was assessed with 

a 2-D numerical model using input field data from 11 shallow sediment cores of Agadir basin, 

offshore Morocco, (fig. 7.6) reported by Stevenson et al., (2014). 

Results showed no systematic change in grain size as it conforms to expected grain size 

distribution prediction, in which coarser grain sizes are at the proximal part of the basin near 

the canyon and marginally fining downstream further down the distal part of the basin (Fig. 

7.7A). The observed downstream marginal grain size fining in Bed A5 deposit may be attributed 

to intense abrasion due to the grain-grain interaction in the flow and a possible decrease in 

mean flow velocity as the flow moves downslope.  

Grain sizes ranged between 155µm to 265µm, with the lowest values recorded for core location 

22 at the distal part of the basin. It was however, difficult to undertake a quantitative correlation 

of both modelled and measured grain size trends due to limitations of the model used but 

generally, both appear to have similar D50  grain size ranges (Fig. 7.7A and B).  
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(Figure 7.7A from Stevenson et al., 2014). 
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Figure 7.7(A & B): Comparison of measured (b) and modelled (a) D50 grain sizes 
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7.3  Variation of flow thickness 

The thicknesses of turbidity current flows have been suggested to control the flow’s run-out 

distances, its deposit size as well as how it interacts with topography (Kneller and Branney, 1995; 

Kneller et al., 1997; Kneller and McCaffrey, 1999). Flow thicknesses of turbidity currents can be 

determined from the heights to which the flow deposits drape-up channel or basin margins 

(Bowen et al., 1984; Kneller and Buckee, 2000). Alternative method such as using the channel 

topography and overbank levee deposits analysis has been applied in several other studies such 

as the Monterey Canyon, (Komar, 1969) and the Amazon Channel (Hiscott, 1997; Pirmez and 

Imran, 2003). In the Agadir basin, Stevenson et al., (2014) inferred thicknesses of turbidity 

current flows from the height to which the flows extend the margin topography. This method 

seems more sensible as the height provides the maximum estimate of the flow thickness as well 

as thickness of the depositional part of the flow.  

In demonstrating the relationship between flow thickness and the run-out distances, numerical 

simulations on varied flow thickness using iterative values of 50.0m, 100.0m, 150.0m and 

200.0m in the flow model produced outputs as presented in figures 7.8 (A-D). It is obvious from 

the figures that the thicker the turbidity current flow, the greater the distance the flow can 

travel, assuming all other flow parameters are constant. Kneller et al., (2016), from numerical 

evidence and field data also observed that turbidity currents propensity to travel long distances 

depends mainly on its thickness. 

From figure 7.8A-D, the flow thickness of 50.0 m could not get the flow to reach the distal end 

of the depositional basin unlike the thickness of about 200.0m which propagate far into the 

distal part of the basin.  
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  Figure 7.8: Variation of flow thickness with run-out distances  (A= 50.0m thick; B =100.0m thick; C= 150.0m thick; D= 200.0m thick;) 
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7.4 Evolution of Bed A5 flow 

The results of the numerical flow modelling (simulations), show that the flows that deposited 

Bed A5 do not exactly match with the field-scale dataset presented by Stevenson et al., (2014). 

The modelled flow deposit shows a flow thickness of approximately 60.0m suspending sand 

grains (ca 400µm) but not travelling far into the distal end of the basin. This is at odds with Talling 

et al., (2007) and Stevenson et al., (2014) observation of thin long run-out flows (of <5.0-7.0m), 

suspending sand grains just above the flow bed. 

As previously explained the numerical flow model applied simply works on the assumption that 

turbulence alone facilitates the suspension of sediment grains in the turbidity current flow.  

The series of initial simulations of the turbulence flow model showed that among other model 

input parameters, the thickness of the flow is a key factor that influence the competence and 

run-out distance of turbidity current flow. It was demonstrated in fig 6.11 that increasing the 

average flow thickness to 200.0m, the flow can adequately support the transport of coarse 

sediment grains to distal parts of the offshore basin. The implication is that thin flows are unable 

to generate enough turbulence to suspend sand grains over long distances. However, the 

question of how large volume long run-out flows suspended sand only a few meters (thin flows) 

from bed A5 in Agadir basin, raises more questions than answers. Are there alternative grain 

support mechanisms (such as hindered settling/ grain-grain collisions/matrix strength), apart 

from turbulence that keep the grains the flow? Similarly, do the physical properties of the non-

Newtonian turbulent flow such as viscosity play any major role in precluding the settling of sand 

grains to allow its continuous propagation to the distal end of the basin?  

The competence of a turbidity current flow and its run-out distances have been examined by 

several authors including Komar, (1970); Hiscott (1994); Gladstone et al., (1998), Felix (2002), 

and Kneller et al., (2016). It has long been speculated that fine grained sediments such as clays 

and silts are essential elements in turbidity currents which aid the transport of sand over long 
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distances. From experimental modelling of turbidity currents, bottom gradient and grain size 

have also been recognised as invaluable in the long-distance transport of sand. Thus, flows on 

low gradient and transporting a lot of fine sediments in suspension were observed to achieve 

long run-out distances (Reading and Richards, 1994). This was equally corroborated by 

Gladstone et al., (1998) laboratory experiments which indicated that despite the presence of a 

small fraction of fine-grained sediment in a turbidity current flow, its run-out distance is usually 

substantially increased. 

The sedimentary facies of Bed A5 as earlier interpreted by Talling et al., (2007b), comprise simply 

of sand overlain by mud showing convincing evidence of stratification, dense near-bed layers 

and muddy debris flows. However, not all the facies identified in Bed A5 provide evidence of 

dilute, well mixed turbulent flow. Unfortunately, the numerical turbulent flow model can only 

be used to understand flow processes associated with turbulent suspension of sediment grains. 

Therefore, suggestions of bed A5 resulting from a higher-concentration mud-rich flow, 

described as a cohesive debris flow, documented in Talling et al., 2007 (a and b; Sumner et al., 

2012; Stevenson et al., 2014 will come into more focus.  In addition, Talling et al., (2007, 2013) 

inferred Bed A5 to be a linked-debrite (see figure 7.9 (a) and (b)) that particularly demonstrates 

flow transformation along their course, in which case there is the possibility of a switching from 

turbulence supported flows to muddy debris flows that are dominated by a laminar flow regime 

(which then switch back again). In the figure below, Talling et al., (2007) explained two 

perspectives of the likely evolution of Bed A5 flow (fig.7.9 provides a schematic description and 

evolution of bed A5 flow from two distinct perspectives for generating debris flows.  

Generally, Talling et al., (2007) and Stevenson et al., (2014) showed that the flow that deposited 

Bed A5 may have been generated by a landslide on the Moroccan continental margin, proximal 

to the head of the Agadir Canyon, which produced a debris flow. This debris flow according to 

Talling et al., 2007, was transformed into a turbidity current at the base of the exit ramp located 
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at the mouth of the Agadir Canyon (See Figure 7.9 a). Within the Agadir basin, there was another 

transformation to debris and turbidity current leaving the coarse sands at the base of the flow 

and near to the bed.  

 

 

 (a) Evolution of the entire flow event from Agadir canyon to Agadir basin and beyond.  

(b) Debris flow forms owing to flow transformation from turbidity current beyond the break in 

slope  

(c) Debris flows may form by disintegration of initial landslide in the Upper Canyon (From Talling 

et al., 2007b). 

 

Figure 7.9: Possible mechanisms for deposition of Bed A5 
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This idea of a likely cohesive debris flow origin from the Moroccan margin landslide, for flow Bed 

A5 may well be the reason why the 2D depth- averaged flow model failed to reproduce the 

turbidity current flow as the grain support mechanism in a debris flow is quite at different from 

that of a turbidity current flow. Shanmugam (1997) exhaustively discussed the differences 

between a turbidity current and debris flows. The most interesting of these differences, as it 

relates to the theme of this thesis, is that turbidity current flow is considered a two-phase 

turbulent flow (water and solid) while debris flow is a one-phase laminar flow in which the whole 

mass undergoes large and continuous deformation (Coussot and Meunier,1886). Also, sediment 

grains transport by turbidity currents are held in suspension by the fluid turbulence (Middleton 

and Hampton, 1973), while in debris flows, it is supported essentially by multiple support 

mechanisms including matrix strength, dispersive pressure and buoyancy (Middleton, 1993). It 

has been observed from field evidence, that turbidity currents transport only fine-grained 

sediments (due to turbulence) whereas debris flows could transport sediments of all sizes (due 

to the multiple grain support mechanisms).  

The 2-D depth averaged flow model used in this thesis has been able to confirm that the flows 

transporting sand that led to the deposition of Bed A5 is not necessarily supported by turbulence 

alone but a likely multiplicity of mechanisms including grain-grain interaction and matrix 

strength. 
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7.5 Implications of study 

The results of the flume experiments and analysis presented in this thesis demonstrates the 

validity of the turbulence-suspension theory and therefore advocates its continuous relevance 

in sedimentology, particularly in solving sediment transport challenges.  

This work reviewed the theoretical link between turbulence and sediment grain suspension 

which is yet to be fully understood. Although early researchers have developed different criteria 

for sediment grain entrainment into suspension (Bagnold (1966), Engelund (1965a, b) van Rijn 

(1984), Leeder (2005)), a common assumption among them remains the significant influence of 

turbulence of the flow.  Ideally, for sediment grain to be entrained into suspension in a turbulent 

flow, the vertical flow velocity, 𝑤, must exceed the grain settling velocity, 𝜔𝑠, (Bagnold 1966). 

However, a suspension criterion validated from the experimental data and based on the 

assumption that sediment grains will be suspended if the rms amplitude of vertical fluctuations, 

𝑤′2̅̅ ̅̅̅ , is greater than the grain settling-velocity in flowing water. Since 𝑤′2̅̅ ̅̅̅ is not usually 

measured, a further assumption made was for 𝑤′2̅̅ ̅̅̅ to be replaced by the shear velocity, 𝑢∗
2 . The 

vertical rms velocity variations 𝑤′2̅̅ ̅̅̅, was found to be approximately equal to 𝑢′𝑤′̅̅ ̅̅ ̅̅  and that, 

therefore, the shearing velocity 𝑢∗
2, gives the same magnitude as the maximum fall-velocity that 

is consistent with suspension. More work will be needed, however, to further confirm this 

criterion. 

Over the years, the turbulent-suspension theory has been fundamentally related to a steady, 

uniform flow such as the body of a turbidity current where the width, gradient and direction are 

almost constant or vary slowly. However, from the experimental results, by comparing direct 

slope with Reynolds slope, the theory can be applied to flows that are non-uniform. This is a 

very important result as the theory is valid in natural flows such as rivers and streams, which are 

almost never uniform.  



 

 

 

 

171 

 

Bedforms produced from flows over erodible beds have been known to attenuate turbulence in 

flows which subsequently facilitate sediment grain suspension. In the absence of bedforms, 

turbulence is controlled by the roughness at the flow base and the size of this coefficient can be 

predicted from the turbulence-suspension theory. This work has been able to demonstrate 

further that drag due to friction on gravelly surfaces exceeds that of the smooth floor.  

There are many other obvious implications of the results of this work. First, based on the 

turbulence-suspension theory, it has been demonstrated that flow thickness of turbidity 

currents exerts a first order control on the flow’s run-out distances. For example, thicker flows 

are relatively able to achieve long run-out distances as they have higher grain density and 

momentum compared to thinner flows. Secondly, thicker flows can advect a range of sediment 

grain sizes including coarse grains due to the increased turbulence in the flow. Thirdly, the 

continued suspension of fines in the flow is suggestive of the non-Newtonian behaviour of the 

likely muddy water in the flow (due to increased viscosity) and this drives the flow further in the 

basin. Fourth, it was noted that the flow model being based solely on turbulence suspension 

mechanism, suggest additional mechanisms may have contributed to Agadir’s thin flow 

achieving a long run-out distance and being able to suspend sand sized sediment grains.  

The numerical flow model used in this thesis discriminates only flows supported by turbulent-

suspension, and unable to recognise any other additional grain support mechanisms not 

originally incorporated in the model. Thus, suggestions of flows evolving from a likely debris 

laminar flow which seem a possibility, cannot be captured by the flow model. This however, 

does not preclude the possibility of additional mechanisms supporting the transport of sand 

near the bed in the long run-out large volume flows. 

Several field and laboratory evidence has been documented, supporting long run-out behaviour 

of turbidity current flows on flat basin floors (Komar, 1977; Underwood and Norville, 1986; 

Kneller et al., 2016).  However, arguments for multiple support mechanisms facilitating the 



 

 

 

 

172 

 

suspension of sediment grains within a single flow at any one time is therefore proffered. These 

additional suspension mechanisms may include dispersive pressure,  hindered settling and/or 

grain-grain collisions (Pickering and Hiscott, 2015). Hindered settling of sediment grains in 

turbidity current flow is due to increased concentration of fine grains leading to a greater grain-

grain interaction that precludes the early settling of sediment grains in turbidity current flows 

(Tomkins et al., 2005; Dankers and Winterwerp, 2007), and also enhance its long distance travel. 

Therefore, the combination of flow turbulence, grain-grain collisions and hindered settling are 

the likely support mechanisms for the transport of sand in turbidity current flows that deposited 

Bed A5 in Agadir basin. 
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8 Chapter Eight: Summary 
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8.1 Summary and Conclusion 

Nobody pretends that mixing-length (turbulence-suspension) theory is a precise model of flow 

turbulence.  Instead, the contention has been how sufficiently well it approximates turbulence 

to be useful.  This thesis has validated this for turbidity current flows under assumed uniform 

and non-uniform conditions at a level of detail not previously attempted. The outcome of this 

investigation demonstrate that the underlying approximations are indeed reasonably good and 

that, therefore, sedimentologists can continue to apply mixing-length theories and estimates of 

basal shear velocities to provide insights into the transport of suspended sediments.  Using the 

combined experimental and numerical modelling investigative approach, the following key 

conclusions can be drawn from this study: 

1. Modern measurements of flow turbulence confirm that shear stresses within a steady, 

uniform water flow are balanced by eddy stresses of the kind predicted by Reynolds 

(1896). 

2. Mixing-length theory of turbulent suspension of sediment grains work well within a 

steady, uniform flow and, hence, the law of the wall provides a good model of the 

vertical velocity profile. However, the results of this study have also demonstrated that 

the theory is applicable to unsteady, non-uniform flows such as rivers. 

3. Time-averaged velocity versus height is well approximated by the Von Karman 

turbulence model. This is well illustrated by Figures 5.16- 5.21. 

4. Reports, from earlier studies, that von Karman’s constant, is not after all universal but 

varies and can be significantly smaller than the widely accepted value of 0.41, are 

strongly supported. Based on the clear water flow experiments, a κ value of 0.29 is 

recommend for low concentration flows. Low values for κ have been reported by several 

other researchers and so the derived κ value of 0.29 in this research is not unreasonable.   

5. Basal shear stress calculated from the Von-Karman turbulence model agree with the 

Reynold’s estimates provided a von Karman constant of 0.29 is used.  
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6. Modelled and measured flow velocities show a significant positive relationship with an 

R-squared value of almost unity.  

7. Basal shear stress estimates obtained from the Law-of-the-Wall and Reynolds stress 

show reasonable agreement confirming the reliability of the Mixing Length turbulent 

suspension theory. Drag coefficient estimates obtained from both methods also show a 

significant correlation. 

8. The turbulent suspension theory has been supported by the good fits of measured data 

to predictions of the Law-of-Wall, good fits to the predictions of RANS as well as the 

good fits of stress=Cd.v^2.  

9. Flow turbulence is controlled by the roughness at the flow base and the size of this 

coefficient is greater than the roughness element, z0, which interestingly confirms 

Raudkivi (1998). Drag coefficient estimated from Waltham (2008) also confirms that 

drag due to friction on gravelly surfaces exceeds that of the smooth floor used in the 

flume experiment. 

10. A numerical flow model developed by Waltham et al., (2008) using algorithms of 

Reynolds-Averaged Navier Stokes (RANS) as well as the Chezy equations was used to 

understand sediment grain transport in Agadir basin, NW Africa, supported by 

turbulence only as well as predict flow properties.  

11. Streamwise grain size trend from modelled and field data suggest a systematic change 

in grain size across the Agadir basin with relatively coarse grain sizes more dominant at 

the proximal part of the basin, near to the Agadir canyon and gradually grades to finer 

grain sizes in the central and distal areas of the basin. 

12. Bed A5, which is one of the flow deposits of the Agadir basin, and a focus of this 

investigation is generally assumed to have evolved from flows generated by a landslide 

on the Moroccan margin which transported sands few meters from the base of the bed.  
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13. Recreating Bed A5 flow deposit using a 2-d depth averaged numerical model and 

comparing with field-scale data inputs was not very successful as the model output 

could not exactly match due to differences in the run-out distances and the grains 

suspended by the flow.  

14. However, suggestions of Bed A5 flows evolving from a likely debris laminar flow, by 

earlier researchers seem a possibility, as the 2-D model used in this study was limited to 

capturing turbulent suspension of grains only.  

15. Therefore, the reported evolution of Bed A5 from an initial landslide followed by flow 

transformation to turbidity current as proposed by Tailing et al., 2007 and Stevenson et 

al., 2014, remains the only acceptable plausibility for now until a more advanced model 

capable of capturing multiple sediment grain support mechanisms with a wide range of 

sediment grain sizes is applied to test the field inferences.  

 

8.2  Future work 

There is no doubt, from the results of this work, that the turbulence-suspension theory is still 

very valid. However, there are a few identified areas that will be of interest for future research 

and these are: 

1) More research will be needed to investigate fine-grained suspension mechanisms. 

Possibilities are effect of grain collisions, increased viscosity of muddy waters as well as 

the non-Newtonian behaviour of muddy water. 

2) More work is needed in confirming the theoretical link between turbulence and 

suspension. 

3) The numerical flow model applied can be improved upon by including modelling of bed-

load sediment grains with additional support mechanism such as grain-grain interaction 

as well as incorporating varied grain sizes (more than 2 grain sizes). 
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 APPENDIX 

A1. Glossary of notations 

A Cross sectional area of the flow channel 

 Bed slope angle 

𝑪𝑳 Lift coefficient 

𝑪𝑫 Drag coefficient 

𝑫𝒈 Grain diameter 

Dw Sediment grain fall diameter in cm 

Dv Sediment grain sieve diameter in cm 

D50 Grain median size (50th percentile) 

D90 Grain size at 90th percentile 

𝑭𝑫 Drag Force 

𝑭𝑮, g Force due to gravity 

𝑭𝑳 Lift Force 

𝜹𝒔𝒖𝒃 Thickness of the laminar sublayer 

h Flow depth 

K Permeability 

L Distance over which flow moves 

P Total stream power 

Q Flow discharge rate 

𝑹𝒆 Fluid Reynolds Number 

𝑹𝒆∗ Grain Reynolds number 

∅ Porosity 

∅𝟎 Frictional angle (grain angle of repose) 

s Channel or sediment bed slope 

T Shear resistance due to the moving bed load 

𝝆 Density of fluid 

𝝆𝒔 Density of grain 

 Excess flow density 

𝝂 Kinetic viscosity 
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𝜿 von Karman constant 

𝝁 Dynamic viscosity 

𝒖̅ Depth averaged flow velocity 

𝒖∗ Shear velocity 

𝝎𝒔 Settling velocity 

𝝉𝟎 Bed or basal shear stress 

𝛉𝒄𝒓𝒊𝒕 Dimensionless Critical Bed Shear Stress 

𝝉𝒄𝒓𝒊𝒕 Critical Bed or Basal shear stress 

g Acceleration due to gravity  

W’sin Downslope weight of moving sediment load 

 𝒛𝟎 Surface roughness length 

𝒗𝒑𝒐𝒓𝒆 Volume of all pores 

𝒗𝒃𝒖𝒍𝒌 Volume of sediment sample 

𝒗𝒔𝒐𝒍𝒊𝒅 Volume of solid grain 
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A2. Key to graphic log on Bed A5 facies, Agadir basin (Fig 6.4) 
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             A3. Measured and modelled flow velocity data Case 1 

 

 

Flow height h (m) Ln (h) Measured <u> <u'w'> Turbulent stress (Pa) shift Model <u> sq error

0.014395 -4.24085 0.311025 -0.00041 0.406187 -9.5413E-05 0.311520 2.44726E-07

0.009295 -4.67823 0.283796 -0.00035 0.345943 0.283058 5.45313E-07

0.008295 -4.79205 0.276597 -0.00033 0.331460 0.275651 8.9364E-07

0.007295 -4.92051 0.268396 -0.00031 0.310756 0.267292 1.21774E-06

0.006295 -5.06793 0.258854 -0.00029 0.289932 0.257699 1.33385E-06

0.005295 -5.24091 0.243438 -0.00027 0.274156 0.246442 9.02935E-06

0.023001 -3.77223 0.341531 -0.00036 0.357275 0.00152216 0.342014 2.33452E-07

0.019969 -3.91359 0.331983 -0.00036 0.360549 0.332815 6.92461E-07

0.018958 -3.96553 0.328824 -0.00036 0.359081 0.329436 3.74498E-07

0.032796 -3.41746 0.364591 -0.00033 0.332112 0.00151371 0.365100 2.59632E-07

0.031785 -3.44876 0.362650 -0.00033 0.333984 0.363063 1.70368E-07

0.030774 -3.48108 0.360681 -0.00033 0.328766 0.360960 7.78905E-08

0.029764 -3.51447 0.358201 -0.00033 0.333278 0.358787 3.43299E-07

0.028753 -3.54902 0.356072 -0.00034 0.335604 0.356539 2.18491E-07

0.022689 -3.78589 0.340886 -0.00034 0.338291 0.341125 5.75339E-08

0.021678 -3.83146 0.338549 -0.00033 0.333025 0.338160 1.5113E-07

0.020667 -3.8792 0.335505 -0.00034 0.341356 0.335053 2.03775E-07

0.042263 -3.16385 0.382979 -0.00029 0.289934 0.00238809 0.381604 1.89255E-06

0.041252 -3.18806 0.381146 -0.00029 0.288539 0.380028 1.2506E-06

0.040241 -3.21288 0.379297 -0.00031 0.314658 0.378413 7.81074E-07

0.039229 -3.23833 0.377304 -0.00031 0.311469 0.376757 2.98981E-07

0.038218 -3.26444 0.375584 -0.00031 0.310965 0.375058 2.76531E-07

0.037207 -3.29125 0.373732 -0.00029 0.291243 0.373313 1.75901E-07

0.030130 -3.50225 0.359376 -0.0003 0.304647 0.359583 4.29152E-08

0.029118 -3.53638 0.357807 -0.00031 0.307539 0.357361 1.98696E-07

0.028107 -3.57173 0.354259 -0.00032 0.322624 0.355062 6.44864E-07

0.027096 -3.60836 0.351593 -0.00033 0.327355 0.352678 1.17627E-06

0.026085 -3.64639 0.347920 -0.00036 0.355504 0.350203 5.21242E-06

0.050586 -2.98409 0.393520 -0.00023 0.234200 0.00387949 0.393301 4.77701E-08

0.049575 -3.00428 0.392206 -0.00023 0.231700 0.391987 4.78245E-08

0.048564 -3.02488 0.390773 -0.0002 0.204800 0.390646 1.61287E-08

0.047552 -3.04592 0.389647 -0.00023 0.229700 0.389277 1.36602E-07

0.046541 -3.06741 0.388385 -0.00024 0.237000 0.387879 2.55943E-07

0.045530 -3.08938 0.386508 -0.00025 0.251000 0.386449 3.43147E-09

0.044519 -3.11184 0.385205 -0.00026 0.256600 0.384988 4.72016E-08

0.043508 -3.13481 0.383695 -0.00024 0.235700 0.383493 4.06226E-08

0.059169 -2.82736 0.403596 -0.00014 0.139200 0.00507245 0.403500 9.37665E-09

0.058158 -2.8446 0.402613 -0.00014 0.138800 0.402378 5.53492E-08

0.057146 -2.86214 0.401655 -0.00014 0.142800 0.401237 1.7525E-07

0.056135 -2.87999 0.400405 -0.00015 0.150100 0.400075 1.08661E-07

0.055124 -2.89817 0.399153 -0.00015 0.154300 0.398892 6.78319E-08

0.054113 -2.91668 0.397792 -0.00016 0.161200 0.397688 1.09664E-08

0.053102 -2.93554 0.396740 -0.00016 0.163500 0.396460 7.85505E-08

0.052091 -2.95477 0.395737 -0.00017 0.168500 0.395209 2.78613E-07

0.051080 -2.97437 0.394344 -0.00017 0.170900 0.393934 1.68236E-07

0.050069 -2.99436 0.393195 -0.00018 0.175300 0.392633 3.16682E-07

0.049058 -3.01476 0.391663 -0.00018 0.176600 0.391305 1.28191E-07

0.068272 -2.68426 0.411085 -7.3E-05 0.073100 0.00592345 0.412812 2.98179E-06

0.067261 -2.69918 0.410546 -7.2E-05 0.072240 0.411841 1.6785E-06

0.062205 -2.77732 0.406402 -0.0001 0.104600 0.406756 1.25823E-07

0.061194 -2.7937 0.405492 -0.00012 0.116400 0.405690 3.90603E-08

0.060183 -2.81036 0.404774 -0.00012 0.121000 0.404606 2.82697E-08

0.059172 -2.82731 0.403564 -0.00013 0.125300 0.403503 3.63008E-09
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A4. Measured and modelled flow velocity data Case 2 

 

Flow height, h(m) Ln (h) Measured <u> <u'w'> Turbulent stress (Pa) shift Modelled <u> sq error

0.025618739 -3.66443 0.524617 -0.0007008 0.700760 0.000381 0.528977993 1.9E-05

0.024608046 -3.70468 0.524336 -0.000695 0.695035 0.524895889 3.13E-07

0.023597352 -3.74662 0.520397 -0.0007142 0.714241 0.520642558 6.02E-08

0.022586658 -3.7904 0.516191 -0.0007327 0.732662 0.516203008 1.48E-10

0.021575965 -3.83618 0.512380 -0.0007385 0.738483 0.511560188 6.73E-07

0.032607559 -3.42321 0.555133 -0.0006655 0.665460 0.002992 0.553441853 2.86E-06

0.031596866 -3.4547 0.551030 -0.0006621 0.662079 0.550248612 6.11E-07

0.030586172 -3.48721 0.547490 -0.0006652 0.665244 0.546951546 2.9E-07

0.029575478 -3.52081 0.543059 -0.0006715 0.671460 0.543543681 2.35E-07

0.028564785 -3.55558 0.538806 -0.0006845 0.684475 0.540017314 1.47E-06

0.027554091 -3.5916 0.534643 -0.0006897 0.689688 0.536363897 2.96E-06

0.043990292 -3.12379 0.584067 -0.0005757 0.575703 0.00201 0.583808677 6.65E-08

0.042979599 -3.14703 0.581633 -0.0005838 0.583812 0.581451396 3.3E-08

0.041968905 -3.17083 0.578540 -0.0005862 0.586181 0.579038014 2.48E-07

0.040958211 -3.1952 0.576709 -0.0005942 0.594160 0.576565799 2.05E-08

0.039947518 -3.22019 0.574112 -0.0005926 0.592572 0.574031814 6.45E-09

0.038936824 -3.24581 0.571497 -0.0006077 0.607668 0.571432886 4.06E-09

0.037926131 -3.27211 0.569142 -0.0006115 0.611492 0.568765605 1.42E-07

0.036915437 -3.29913 0.566767 -0.0006065 0.606540 0.566026273 5.48E-07

0.035904743 -3.32689 0.563462 -0.0006098 0.609838 0.56321089 6.29E-08

0.03489405 -3.35544 0.560997 -0.0006244 0.624370 0.560315117 4.65E-07

0.033883356 -3.38483 0.557202 -0.0006625 0.662504 0.557334222 1.75E-08

0.032872663 -3.41511 0.554373 -0.0006467 0.646731 0.554263054 1.21E-08

0.031861969 -3.44634 0.551098 -0.0006621 0.662064 0.551095968 5.62E-12

0.030851275 -3.47858 0.548768 -0.0006449 0.644851 0.547826782 8.87E-07

0.029840582 -3.51189 0.544388 -0.0006618 0.661784 0.544448698 3.63E-09

0.028829888 -3.54634 0.540422 -0.0006856 0.685627 0.540954201 2.83E-07

0.027819194 -3.58203 0.535389 -0.0006916 0.691570 0.537334985 3.79E-06

0.051592266 -2.96438 0.597593 -0.0003573 0.357301 0.004408 0.599974862 5.68E-06

0.050581573 -2.98417 0.596088 -0.0003977 0.397720 0.59796838 3.53E-06

0.049570879 -3.00435 0.593650 -0.0004055 0.405465 0.595921396 5.16E-06

0.048560185 -3.02495 0.593233 -0.0004199 0.419909 0.593832244 3.59E-07

0.047549492 -3.04598 0.591927 -0.0004269 0.426882 0.591699151 5.18E-08

0.046538798 -3.06747 0.590150 -0.000411 0.410957 0.589520226 3.97E-07

0.045528105 -3.08943 0.588996 -0.0004249 0.424945 0.587293459 2.9E-06

0.039463943 -3.23237 0.573822 -0.0004632 0.463236 0.572796642 1.05E-06

0.038453249 -3.25831 0.571651 -0.0004739 0.473946 0.570165452 2.21E-06

0.037442556 -3.28495 0.566920 -0.0004891 0.489079 0.567464177 2.96E-07

0.036431862 -3.31231 0.563155 -0.0005019 0.501928 0.564688977 2.35E-06

0.035421168 -3.34045 0.557952 -0.0005343 0.534299 0.561835694 1.51E-05

0.060592019 -2.80359 0.616005 -0.0003371 0.337106 0.005408 0.616281874 7.68E-08

0.059581326 -2.82041 0.614517 -0.0003493 0.349312 0.614575937 3.43E-09

0.058570632 -2.83752 0.613153 -0.0003543 0.354319 0.612840812 9.75E-08

0.057559938 -2.85493 0.611415 -0.0003624 0.362351 0.611075483 1.15E-07

0.056549245 -2.87264 0.609572 -0.0003857 0.385675 0.609278882 8.59E-08

0.055538551 -2.89068 0.607483 -0.0003989 0.398939 0.607449878 1.12E-09

0.054527858 -2.90904 0.606276 -0.0004115 0.411488 0.605587284 4.74E-07

0.053517164 -2.92775 0.604462 -0.0004196 0.419609 0.603689839 5.96E-07

0.05250647 -2.94682 0.602286 -0.0004292 0.429229 0.601756216 2.81E-07

0.051495777 -2.96626 0.600724 -0.000443 0.443049 0.599785012 8.81E-07

0.050485083 -2.98608 0.598332 -0.0004574 0.457379 0.59777473 3.11E-07

0.04947439 -3.0063 0.595815 -0.0004748 0.474760 0.595723797 8.35E-09
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A5. Measured and modelled flow velocity data Case 3 

 

 

Flow height,h (m) Ln (h) Measured <u>(m/s) <u'w'> Turbulent stress (Pa) shift Modelled <u> Sq error

0.024943 -3.69118 0.262056 -0.000691 0.690655 -0.00891 0.257988 1.65E-05

0.023936 -3.73239 0.257783 -0.000683 0.683439 0.252516 2.77E-05

0.022928 -3.77538 0.251288 -0.000692 0.692436 0.246809 2.01E-05

0.021921 -3.82029 0.245057 -0.000702 0.702415 0.240845 1.77E-05

0.020914 -3.86732 0.237450 -0.000709 0.708586 0.234600 8.12E-06

0.035244 -3.34545 0.278349 -0.000677 0.676843 -0.00917 0.303895 0.000653

0.034237 -3.37445 0.284943 -0.000686 0.685731 0.300044 0.000228

0.033229 -3.40432 0.293022 -0.000713 0.713034 0.296078 9.34E-06

0.032222 -3.43511 0.292835 -0.000714 0.714046 0.291990 7.14E-07

0.031214 -3.46688 0.288617 -0.000704 0.703507 0.287772 7.14E-07

0.030207 -3.49968 0.285820 -0.000707 0.707454 0.283415 5.78E-06

0.029199 -3.5336 0.280683 -0.000697 0.696804 0.278911 3.14E-06

0.028192 -3.56872 0.278904 -0.000687 0.687113 0.274249 2.17E-05

0.027185 -3.60511 0.275648 -0.000685 0.685405 0.269417 3.88E-05

0.026177 -3.64287 0.270864 -0.000702 0.702151 0.264403 4.17E-05

0.044285 -3.11712 0.323817 -0.000602 0.601521 -0.00867 0.334214 0.000108

0.043277 -3.14013 0.329365 -0.000621 0.621132 0.331158 3.21E-06

0.042270 -3.16368 0.327828 -0.000613 0.612538 0.328031 4.11E-08

0.041262 -3.18781 0.321034 -0.000599 0.598903 0.324827 1.44E-05

0.040255 -3.21252 0.322077 -0.000619 0.618916 0.321545 2.83E-07

0.028165 -3.56966 0.271738 -0.000679 0.679030 0.274123 5.69E-06

0.051852 -2.95935 0.346641 -0.000431 0.431348 -0.00548 0.355162 7.26E-05

0.046815 -3.06155 0.340982 -0.000519 0.518810 0.341592 3.72E-07

0.045808 -3.0833 0.339471 -0.000518 0.517647 0.338703 5.89E-07

0.044800 -3.10554 0.336871 -0.000532 0.531947 0.335750 1.26E-06

0.043793 -3.12829 0.334472 -0.000537 0.537115 0.332730 3.03E-06

0.039763 -3.22482 0.323200 -0.000563 0.563042 0.319912 1.08E-05

0.038755 -3.25049 0.319763 -0.000570 0.570187 0.316505 1.06E-05

0.037748 -3.27682 0.312966 -0.000566 0.566392 0.313007 1.73E-09

0.036740 -3.30388 0.311348 -0.000566 0.565909 0.309415 3.74E-06

0.035733 -3.33168 0.304109 -0.000577 0.577164 0.305723 2.61E-06

0.063256 -2.76056 0.386560 -0.000365 0.365015 -0.0069 0.381558 2.5E-05

0.062249 -2.77662 0.384457 -0.000366 0.366310 0.379426 2.53E-05

0.061241 -2.79294 0.382313 -0.000373 0.372880 0.377259 2.55E-05

0.060234 -2.80952 0.379782 -0.000389 0.389446 0.375057 2.23E-05

0.059226 -2.82639 0.377195 -0.000397 0.396979 0.372817 1.92E-05

0.058219 -2.84355 0.374372 -0.000414 0.414342 0.370539 1.47E-05

0.057211 -2.861 0.371936 -0.000425 0.425359 0.368221 1.38E-05

0.056204 -2.87877 0.369210 -0.000434 0.433616 0.365862 1.12E-05

0.047137 -3.0547 0.332890 -0.000514 0.513702 0.342501 9.24E-05

0.073467 -2.61093 0.401964 -0.000324 0.324308 -0.00757 0.401427 2.88E-07

0.072459 -2.62474 0.400202 -0.000328 0.328165 0.399593 3.71E-07

0.071451 -2.63875 0.398651 -0.000338 0.338412 0.397733 8.44E-07

0.059356 -2.8242 0.372395 -0.000437 0.436804 0.373108 5.09E-07

0.058348 -2.84132 0.367908 -0.000445 0.444785 0.370834 8.56E-06

0.057341 -2.85875 0.361147 -0.000444 0.444357 0.368521 5.44E-05

0.080816 -2.51558 0.414416 -0.000278 0.277946 -0.00417 0.414087 1.08E-07

0.079808 -2.52813 0.412518 -0.000285 0.284721 0.412421 9.51E-09

0.078800 -2.54084 0.410908 -0.000299 0.298891 0.410733 3.05E-08

0.077792 -2.55371 0.409375 -0.000302 0.302498 0.409024 1.23E-07

0.076785 -2.56675 0.407347 -0.000310 0.310448 0.407292 3.02E-09

0.065698 -2.72269 0.385706 -0.000431 0.431030 0.386587 7.76E-07

0.064690 -2.73815 0.382192 -0.000441 0.440708 0.384534 5.49E-06
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A6. Measured and modelled flow velocity data Case 4 

 

 

Flow height, h(m) Ln (h) Measured <u> (m/s) <u'w'> Turbulent Stress (Pa) shift Modelled <u> Sq error

0.028532 -3.55674 0.455964 -0.00158 1.576911 -0.00236 0.464716 7.66E-05

0.027521 -3.59282 0.456715 -0.00157 1.573998 0.458928 4.9E-06

0.026509 -3.63025 0.429201 -0.00151 1.509985 0.452924 0.000563

0.025498 -3.66914 0.444066 -0.00162 1.620324 0.446687 6.87E-06

0.024487 -3.7096 0.434100 -0.00152 1.519082 0.440197 3.72E-05

0.036165 -3.31967 0.506896 -0.0014 1.397202 0 0.502741 1.73E-05

0.035154 -3.34803 0.502844 -0.00141 1.411514 0.498193 2.16E-05

0.034143 -3.37721 0.498375 -0.00146 1.460242 0.493512 2.37E-05

0.033131 -3.40727 0.493017 -0.00147 1.466384 0.488690 1.87E-05

0.032120 -3.43827 0.488390 -0.00148 1.475405 0.483719 2.18E-05

0.031109 -3.47025 0.483851 -0.00152 1.516572 0.478588 2.77E-05

0.030098 -3.50329 0.479084 -0.0015 1.504350 0.473288 3.36E-05

0.029087 -3.53746 0.473588 -0.00151 1.507870 0.467808 3.34E-05

0.028076 -3.57284 0.467803 -0.00149 1.494628 0.462133 3.21E-05

0.044352 -3.1156 0.535273 -0.00132 1.322112 0.001596 0.535473 4.01E-08

0.043340 -3.13867 0.532366 -0.00138 1.383282 0.531773 3.52E-07

0.042329 -3.16229 0.527714 -0.00137 1.370265 0.527985 7.35E-08

0.041317 -3.18647 0.525210 -0.00139 1.389002 0.524105 1.22E-06

0.040306 -3.21126 0.522118 -0.00136 1.362878 0.520130 3.95E-06

0.039294 -3.23668 0.518080 -0.0014 1.395876 0.516053 4.11E-06

0.038283 -3.26276 0.514401 -0.00142 1.417144 0.511870 6.4E-06

0.037271 -3.28953 0.510212 -0.00143 1.426477 0.507575 6.96E-06

0.036260 -3.31705 0.505104 -0.00147 1.467691 0.503162 3.77E-06

0.035248 -3.34534 0.500106 -0.00147 1.468403 0.498623 2.2E-06

0.034237 -3.37446 0.494714 -0.00149 1.485741 0.493953 5.79E-07

0.033225 -3.40445 0.489082 -0.00154 1.539265 0.489143 3.74E-09

0.032214 -3.43537 0.483366 -0.0015 1.503830 0.484184 6.69E-07

0.031202 -3.46727 0.478267 -0.00148 1.483983 0.479066 6.39E-07

0.030191 -3.50022 0.471601 -0.00149 1.485168 0.473781 4.75E-06

0.029179 -3.5343 0.465799 -0.00154 1.536324 0.468314 6.33E-06

0.028168 -3.56958 0.458693 -0.00154 1.542012 0.003738 0.462655 1.57E-05

0.051709 -2.96213 0.549514 -0.00123 1.225096 0.560089 0.000112

0.050697 -2.98189 0.549043 -0.00129 1.290747 0.556921 6.21E-05

0.049686 -3.00204 0.548534 -0.00127 1.270198 0.553688 2.66E-05

0.044628 -3.10939 0.542027 -0.00133 1.327219 0.536469 3.09E-05

0.043616 -3.13232 0.538472 -0.0013 1.302242 0.532791 3.23E-05

0.035524 -3.33754 0.492010 -0.00135 1.351792 0.499875 6.19E-05

0.063987 -2.74907 0.579533 -0.00068 0.677320 0.001566 0.594263 0.000217

0.062976 -2.76501 0.583039 -0.00072 0.724243 0.591707 7.51E-05

0.061964 -2.7812 0.587993 -0.00076 0.757219 0.589110 1.25E-06

0.060953 -2.79766 0.583686 -0.00077 0.768476 0.586470 7.75E-06

0.059941 -2.81439 0.585644 -0.0008 0.796759 0.583786 3.45E-06

0.058930 -2.83141 0.584102 -0.0008 0.798309 0.581056 9.27E-06

0.057918 -2.84873 0.580187 -0.00084 0.838358 0.578279 3.64E-06

0.056907 -2.86635 0.579676 -0.00085 0.852498 0.575453 1.78E-05

0.055895 -2.88428 0.576844 -0.00087 0.871898 0.572576 1.82E-05

0.054883 -2.90254 0.574206 -0.00091 0.906268 0.569647 2.08E-05

0.053872 -2.92114 0.570300 -0.00091 0.911743 0.566663 1.32E-05

0.064786 -2.73667 0.581306 -0.00067 0.665164 0.000744 0.596253 0.000223

0.063774 -2.75241 0.586107 -0.00071 0.712374 0.593728 5.81E-05

0.062762 -2.7684 0.590358 -0.00075 0.752731 0.591163 6.48E-07

0.061750 -2.78466 0.588624 -0.00077 0.767287 0.588555 4.73E-09

0.060738 -2.80118 0.588006 -0.00079 0.790571 0.585905 4.41E-06

0.059726 -2.81798 0.586079 -0.00082 0.818437 0.583210 8.23E-06
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A7. Measured and modelled flow velocity data Case 5 

 

 

Flow height,h(m) Ln (h) Measured <u> (m/s) <u'w'> Turbulent Stress (Pa) shift Modelled <u> Sq error

(m) (m/s) (m/s) (Pa) (m/s)

0.015608 -4.15999 0.360346 -0.0013 1.295239 0.00012 0.356995 1.12E-05

0.014597 -4.22696 0.350806 -0.0013 1.304134 0.347993 7.91E-06

0.013586 -4.29875 0.340888 -0.00129 1.294325 0.338344 6.47E-06

0.012574 -4.37609 0.329762 -0.00129 1.292806 0.327948 3.29E-06

0.024546 -3.70719 0.395723 -0.00121 1.207451 0.001281 0.417858 0.00049

0.023535 -3.74926 0.403886 -0.00121 1.212729 0.412204 6.92E-05

0.022524 -3.79317 0.399142 -0.00123 1.234042 0.406301 5.13E-05

0.021513 -3.8391 0.395791 -0.00121 1.209445 0.400128 1.88E-05

0.034023 -3.38073 0.468845 -0.00109 1.089735 0.002231 0.461740 5.05E-05

0.033012 -3.4109 0.464490 -0.00108 1.083802 0.457685 4.63E-05

0.032001 -3.442 0.459573 -0.00109 1.092373 0.453503 3.68E-05

0.030989 -3.47411 0.454944 -0.0011 1.100440 0.449188 3.31E-05

0.029978 -3.50728 0.450337 -0.00113 1.126417 0.444729 3.14E-05

0.028967 -3.54159 0.445052 -0.00114 1.141126 0.440117 2.44E-05

0.027956 -3.57712 0.439659 -0.00115 1.145575 0.435342 1.86E-05

0.026945 -3.61396 0.434572 -0.00117 1.166038 0.430390 1.75E-05

0.025934 -3.6522 0.428882 -0.0012 1.199359 0.425249 1.32E-05

0.024923 -3.69197 0.423157 -0.00121 1.211156 0.419904 1.06E-05

0.023912 -3.73339 0.416171 -0.00121 1.209871 0.414337 3.37E-06

0.022901 -3.77659 0.408068 -0.00126 1.259490 0.408529 2.13E-07

0.021889 -3.82175 0.395397 -0.00126 1.262951 0.402460 4.99E-05

0.045301 -3.09443 0.483199 -0.00085 0.853119 0.001709 0.500223 0.00029

0.044290 -3.117 0.488997 -0.0009 0.900853 0.497189 6.71E-05

0.043279 -3.14009 0.490023 -0.00091 0.907308 0.494085 1.65E-05

0.042268 -3.16373 0.490458 -0.00095 0.950342 0.490907 2.01E-07

0.037212 -3.29112 0.477693 -0.00101 1.012176 0.473784 1.53E-05

0.036201 -3.31867 0.474009 -0.00101 1.011337 0.470081 1.54E-05

0.035190 -3.347 0.469081 -0.00104 1.041060 0.466274 7.88E-06

0.034179 -3.37615 0.464964 -0.00105 1.053742 0.462355 6.81E-06

0.033168 -3.40618 0.460430 -0.00106 1.056032 0.458319 4.46E-06

0.032157 -3.43714 0.455669 -0.00109 1.088958 0.454157 2.28E-06

0.031146 -3.46909 0.450073 -0.00108 1.078607 0.449863 4.41E-08

0.030134 -3.50209 0.444483 -0.00109 1.090131 0.445427 8.91E-07

0.029123 -3.53622 0.437971 -0.00109 1.086674 0.440840 8.23E-06

0.057918 -2.84872 0.537964 -0.00085 0.850623 -0.00114 0.533249 2.22E-05

0.056907 -2.86633 0.535718 -0.00087 0.872462 0.530882 2.34E-05

0.055896 -2.88426 0.532493 -0.00093 0.925801 0.528472 1.62E-05

0.046796 -3.06196 0.503697 -0.00094 0.938017 0.504588 7.94E-07

0.045785 -3.0838 0.500040 -0.00097 0.966594 0.501651 2.6E-06

0.044774 -3.10613 0.496915 -0.00099 0.990610 0.498650 3.01E-06

0.043763 -3.12897 0.491704 -0.00103 1.029056 0.495580 1.5E-05

0.042752 -3.15235 0.487540 -0.00106 1.056594 0.492438 2.4E-05

0.041741 -3.17628 0.482257 -0.00109 1.094317 0.489220 4.85E-05

0.067640 -2.69356 0.531540 -0.00074 0.735501 -0.00034 0.554106 0.000509

0.066629 -2.70862 0.539371 -0.00078 0.781782 0.552081 0.000162

0.065618 -2.72391 0.544184 -0.00079 0.788397 0.550026 3.41E-05

0.064607 -2.73944 0.546972 -0.00078 0.777729 0.547939 9.34E-07

0.063595 -2.75521 0.547734 -0.00079 0.792651 0.545818 3.67E-06

0.062584 -2.77124 0.547604 -0.00075 0.753263 0.543664 1.55E-05

0.061573 -2.78753 0.546576 -0.00073 0.725048 0.541475 2.6E-05

0.060562 -2.80409 0.545035 -0.00073 0.733417 0.539249 3.35E-05

0.059551 -2.82092 0.542085 -0.00074 0.741224 0.536986 2.6E-05

0.058540 -2.83805 0.540161 -0.00074 0.737746 0.534684 3E-05

0.057529 -2.85547 0.536780 -0.00076 0.762939 0.532342 1.97E-05



 

 

 

 

185 

 

A8. Measured and modelled flow velocity data Case 6 

 

 

Flow height,h (m) Ln (h) Measured <u>(m/s) <u'w'> Turbulent Stress (Pa) shift Modelled <u> Sq error

0.016834 -4.084338 0.517591 -0.002700 2.699706 -0.00023 0.526694727 8.29E-05

0.015823 -4.146306 0.506347 -0.002702 2.701978 0.513872172 5.66E-05

0.014811 -4.212368 0.502031 -0.002622 2.622389 0.500202287 3.35E-06

0.013800 -4.283107 0.486621 -0.002643 2.643112 0.485565002 1.12E-06

0.025761 -3.658904 0.611993 -0.002423 2.422619 0 0.614726595 7.47E-06

0.024749 -3.698978 0.603696 -0.002507 2.507282 0.606434338 7.5E-06

0.023737 -3.740725 0.595325 -0.002486 2.486433 0.597795844 6.1E-06

0.022725 -3.784292 0.586298 -0.002406 2.406104 0.588780917 6.16E-06

0.021713 -3.829843 0.577121 -0.002443 2.442864 0.579355315 4.99E-06

0.020701 -3.877569 0.567169 -0.002441 2.440999 0.569479779 5.34E-06

0.019689 -3.927688 0.557474 -0.002414 2.413688 0.559109168 2.67E-06

0.018677 -3.980451 0.547520 -0.002408 2.407638 0.548191292 4.5E-07

0.017665 -4.036154 0.535323 -0.002412 2.411537 0.536665099 1.8E-06

0.016653 -4.095143 0.523994 -0.002397 2.396925 0.524458805 2.16E-07

0.015641 -4.157832 0.510623 -0.002416 2.416182 0.511487076 7.47E-07

0.014629 -4.224716 0.497835 -0.002429 2.429404 0.497647384 3.53E-08

0.036030 -3.323397 0.683198 -0.002272 2.272410 0 0.68415048 9.08E-07

0.035018 -3.351884 0.676445 -0.002268 2.268219 0.678255771 3.28E-06

0.034006 -3.381207 0.670202 -0.002269 2.268910 0.672188194 3.94E-06

0.032994 -3.411416 0.662680 -0.002300 2.299943 0.665937291 1.06E-05

0.031983 -3.442566 0.656436 -0.002283 2.282890 0.659491682 9.34E-06

0.030971 -3.474718 0.648836 -0.002378 2.378024 0.652838814 1.6E-05

0.029959 -3.507937 0.642842 -0.002356 2.356028 0.6459649 9.75E-06

0.028947 -3.542299 0.635277 -0.002402 2.401864 0.638854794 1.28E-05

0.027935 -3.577883 0.627228 -0.002381 2.380508 0.631491649 1.82E-05

0.026923 -3.614780 0.619959 -0.002396 2.395980 0.623856803 1.52E-05

0.025911 -3.653091 0.610873 -0.002445 2.444695 0.615929417 2.56E-05

0.024899 -3.692928 0.602480 -0.002471 2.470568 0.60768616 2.71E-05

0.023887 -3.734419 0.593177 -0.002508 2.508075 0.599100873 3.51E-05

0.022875 -3.777705 0.585625 -0.002551 2.551379 0.590143894 2.04E-05

0.021863 -3.822951 0.574619 -0.002620 2.619535 0.580781558 3.8E-05

0.020851 -3.870341 0.565139 -0.002591 2.590500 0.570975499 3.41E-05

0.019839 -3.920089 0.553501 -0.002655 2.654870 0.560681511 5.16E-05

0.046271 -3.073247 0.738340 -0.001771 1.771426 -0.0002 0.735912122 5.89E-06

0.045258 -3.095367 0.732476 -0.001826 1.825728 0.731334985 1.3E-06

0.044246 -3.117988 0.728142 -0.001794 1.794378 0.726654288 2.21E-06

0.043234 -3.141132 0.722864 -0.001859 1.859410 0.721865256 9.97E-07

0.034123 -3.377773 0.672701 -0.002084 2.083895 0.6728989 3.91E-08

0.033111 -3.407887 0.667391 -0.002043 2.043393 0.666667637 5.23E-07

0.032099 -3.438936 0.659604 -0.002089 2.088648 0.660242857 4.09E-07

0.031087 -3.470980 0.650762 -0.002170 2.169913 0.653612184 8.12E-06

0.030074 -3.504085 0.641756 -0.002230 2.230127 0.646762009 2.51E-05

0.056844 -2.867443 0.782536 -0.001408 1.407832 -0.00048 0.778497641 1.63E-05

0.055832 -2.885411 0.778779 -0.001428 1.427840 0.774779586 1.6E-05

0.054820 -2.903708 0.774156 -0.001485 1.484664 0.770993485 1E-05

0.053807 -2.922346 0.769135 -0.001592 1.592480 0.767136816 3.99E-06

0.052795 -2.941339 0.764491 -0.001600 1.599525 0.763206913 1.65E-06

0.051783 -2.960698 0.760262 -0.001577 1.576764 0.759200925 1.13E-06

0.050770 -2.980441 0.756468 -0.001641 1.640576 0.755115833 1.83E-06

0.049758 -3.000580 0.752229 -0.001654 1.653871 0.750948464 1.64E-06

0.048746 -3.021134 0.746869 -0.001639 1.639351 0.746695455 3.01E-08

0.047734 -3.042119 0.742462 -0.001748 1.747999 0.742353194 1.18E-08

0.040648 -3.202813 0.703228 -0.001980 1.980028 0.70910203 3.45E-05
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