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Abstract

We axiomatically characterize a theory of status quo-dependent choice where an agent faces switching

costs that depend upon both the status quo and the alternative he switches to. In a choice problem

with a status quo, the agent chooses the alternatives that yield the highest utility net of switching cost.

This generates status quo bias and also allows for a wide range of reference effects. We examine the

behavior of such agents in Prisoner’s Dilemma (PD) games. In a single PD game, switching costs can

lead to cooperation. However, across different PD games, it is not “anything goes” and instead we derive

necessary and sufficient conditions for cooperation rates to be consistent with our model. We then verify

that these conditions are satisfied by Charness et al.’s (2016) experimental data. We also perform a

similar analysis for other theories such as models of status quo bias, magical thinking, inequity aversion,

and fairness; and find that these theories make either invalidated or looser predictions.
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1 Introduction

It has become widely accepted that a status quo may influence choices. In this paper, we characterize a

new axiomatic choice model which is based upon switching costs from a status quo. Switching costs are

frequently observed in real-life decision problems. For example, an agent faces transaction costs when

changing banks as closing/opening accounts can be tedious and payments must be set up anew. A user

faces learning costs when switching operating systems as it takes time and energy to learn a new system,

and compatibility costs if the new operating system is not fully compatible with his existing hardware and

software. Other examples of switching costs include contractual costs incurred when a customer breaks a

long-term contract by switching providers and moral costs incurred when an agent deviates from a social

norm.1 Empirically, there is a substantial literature documenting the impact of switching costs in the airline

(Carlsson and Löfgren (2006)), credit card (Ausubel (1991)) and phone service (Shi et al. (2006)) markets,

and in pricing (Chevalier and Scharfstein (1996)).

We characterize a choice procedure where an agent has a utility function and a switching cost function.

When there is no status quo, he simply chooses rationally by maximizing his utility function. When there is a

status quo, choosing any alternative other than the status quo involves a switching cost and the agent chooses

the alternatives that maximize his utility net of the switching cost. These switching costs are non-negative

and may depend on both the status quo and the alternative the agent switches to.

In order to characterize this procedure, we incorporate exogenous status quos into the classical choice

framework, as in the canonical model of Masatlioglu and Ok (2005). Following a revealed preference

approach, we impose three axioms: (i) choices are rational across problems with a fixed status quo posi-

tion; (ii) choices weakly exhibit status quo bias (Samuelson and Zeckhauser (1988))2; and (iii) choices are

continuous.

Our model generalizes the status quo model of Masatlioglu and Ok (2005, 2014). There, a status quo

narrows the decision maker’s focus to a smaller subset by ruling out some alternatives.3 In our setting, such
1Norms that are personal or social can serve as status quos and deviating from them can induce moral costs on agents. See

Akerlof and Kranton (2005), Gazzaniga (2005), and Levitt and List (2007).
2Status quo bias refers to the phenomenon that an alternative is viewed more positively if it is the status quo. See also Knetsch

(1989), Madrian and Shea (2001), and Choi et al. (2004).
3To see how it differs from models with exogenous reference points that are not necessarily status quos, refer to Tversky and

Kahneman (1991), Bossert and Sprumont (2003), Munro and Sugden (2003) and discussions in Masatlioglu and Ok (2005, 2014).
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an agent would declare that he faces unbearable switching costs to all the ruled-out alternatives and zero

costs otherwise. Allowing for more general switching costs, our model is able to incorporate a wider range

of reference effects4, which sets it apart from Masatlioglu and Ok (2005, 2014) and other status quo models

that follow it, such as Ortoleva (2010), Ok et al. (2014), and Riella and Teper (2014).5 The advantage of the

model is shown using the Prisoner’s Dilemma games since it is able to explain Charness et al.’s (2016) data

which the fundamental status quo bias model cannot. Thus, the generalized model we suggest is not solely

of theoretical interest, but has practical applications as well.

Apart from decision theory, switching costs are employed in repeated game settings in which a player

incurs a cost whenever he changes his strategy from one stage to another. That framework is developed by

Klemperer (1987,1995), Beggs and Klemperer (1992), and Lipman and Wang (2000, 2009) and is used to

study topics ranging from inflation-targeting to pricing decisions and entry/deterrence decisions (see Farrell

and Shapiro (1989), Von Weizsäcker (1984), Libich (2008), and Caruana and Einav (2008)).

In this paper, we apply our switching cost model to one-shot Prisoner’s Dilemma games. While coop-

eration is possible in the presence of switching costs in a single Prisoner’s Dilemma game, we find that it is

not “anything goes” across such games. We derive necessary and sufficient conditions for the cooperation

rates across different Prisoner’s Dilemma games and verify our model’s predictions using Charness et al.’s

(2016) experimental data. We also do a similar analysis to test the predictions of the models of status quo

bias (Masatlioglu and Ok (2005, 2014)), inequity aversion (Fehr and Schmidt (1999)) and fairness (Rabin

(1993)), and find that they are violated by Charness et al.’s (2016) data. Furthermore, the necessary and

sufficient conditions we derive for the magical thinking model (Daley and Sadowski (2017)) are satisfied by

Charness et al.’s (2016) data, but they are looser than those of the switching cost model. Thus, the switching

cost model has the highest Selten (1991) score; it makes the tightest validated predictions.

4A status quo may affect choices even when itself is not chosen and a reference effect is the change brought about in the relative
ranking of options due to the presence of a status quo. An analysis of Masatlioglu and Uler’s (2013) data reveals that a significant
portion of choices (31.66%) violate status quo irrelevance, the main axiom that we relax (see Section 2 and Appendix II). For
non-status quo reference effects such as the attraction effect, see Huber et al. (1982) and Simonson (1989); the phantom effect, see
Farquhar and Pratkanis (1992, 1993), Pettibone and Weddell (2000), and Guney and Richter (2015); and for a comparison of those
effects, see Highhouse (1996).

5Unlike the status quo-based choice models in the literature, we allow for unavailable status quos. However, it is not the first
model in the literature to allow for the unavailability of reference points. Kalai and Smorodinsky (1975) and Rubinstein and Zhou
(1999) do so in a bargaining setting while Guney et al. (2018) and an earlier version of Masatlioglu and Ok (2014) do so in a choice
theory setting.
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The rest of the paper is organized as follows. Section 2 presents the decision theoretic analysis. In

Section 3, Prisoner’s Dilemma games are analyzed both theoretically and using the data of Charness et

al. (2016). Concluding remarks appear in Section 4. All proofs are presented in Appendix I. The details

regarding Masatlioglu and Uler’s (2013) design and our analysis of reference effects therein are provided in

Appendix II.

2 The Model

Define X to be a compact metric space that represents the grand set of alternatives. A preference relation

� is a transitive and reflexive binary relation on X . A choice problem is a pair (S, x) where S is the set of

available alternatives and x is the status quo position. The set S is a non-empty closed subset of X . The

element x is either in X , in which case it is the status quo, or it is an object � that does not belong to X ,

interpreted as a no status quo situation. If the status quo x ∈ S, then it is feasible and if x ∈ X\S, then it is

infeasible. The set of all choice problems with a status quo is Csq(X) while the set of those without a status

quo is C�(X), and C(X) is their union. A choice correspondence is a non-empty valued map c : C(X)⇒ X

such that c(S, x) ⊆ S for any (S, x) ∈ C(X).6

To illustrate, consider a decision maker who receives a setO of job offers and must choose among them.

If he is just out of college and unemployed, then he faces a choice problem without a status quo, i.e. (O, �).

If he currently has a job, then his choice problem has a feasible status quo, i.e. (O ∪ {x}, x), since he can

always choose to stick with his present job. Finally, he might have just lost his job and even though it is no

longer available to him, the lost job may still affect his choice. In this case, he faces a choice problem with

an infeasible status quo, i.e. (O, x).

In the classical theory, the Weak Axiom of Revealed Preferences (WARP) makes it possible to view

choices as resulting from the maximization of a complete preference relation. Our first axiom extends

WARP to choice problems with the same status quo position (either a fixed status quo, i.e. x ∈ X , or no

status quo, i.e. x = �).

6This notation follows that of Masatlioglu and Ok (2005). It is also consistent with Salant and Rubinstein (2008) who would
refer to the status quo x as a “frame”. Note that, in order to simplify the notation, we drop the curly brackets that would be used to
denote sets within the choice correspondence. For instance, we write c(xy, z) instead of c({x, y}, z).
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Axiom 2.1 (WARP) For any (S, x), (T, x) ∈ C(X) such that T ⊆ S,

c(T, x) = c(S, x) ∩ T , provided that c(S, x) ∩ T 6= ∅.

This axiom states that an agent is rational across problems with the same status quo and across problems

without a status quo. Therefore, irrational behavior can only result from a change in the status quo and the

introduction/removal of a status quo.

The following axiom specifies the choices that are vulnerable to the status quo bias phenomenon.

Axiom 2.2 (Status Quo Bias (SQB)) For any x, y ∈ X ,

(i) if y ∈ c(xy, �), then y ∈ c(xy, y)

(ii) if y = c(xy, �), then y = c(xy, y).

This axiom ensures that designating an alternative as the status quo doesn’t harm its relative value.

Equivalent versions of this axiom can be found in Masatlioglu and Ok (2014) and similar ones in Sug-

den (1999), Munro and Sugden (2003), Masatlioglu and Ok (2005), Sagi (2006), Apesteguia and Ballester

(2009), Ortoleva (2010), and Riella and Teper (2014). It is this axiom that motivates the interpretation of a

reference point in our model as a status quo.

Finally, the following technical axiom ensures that the agent makes similar choices across similar choice

problems. It is vacuously satisfied when X is finite.

Axiom 2.3 (Upper Hemi-Continuity (UHC)) Suppose that x, y, z ∈ X and (xn), (yn) ∈ X∞ are conver-

gent sequences such that xn → x and yn → y. Then,

(i) yn ∈ c(xnyn, xn) ∀n implies y ∈ c(xy, x).

(ii) yn ∈ c(xnyn, �) ∀n implies y ∈ c(xy, �).

(iii) yn ∈ c(xyn, z) ∀n implies y ∈ c(xy, z)

Part (ii) states that an agent behaves continuously when there is no reference point, while part (iii) states

that he behaves continuously given a fixed reference point.7 Part (i) introduces a further requirement that the
7Rather than focusing on tuples, these parts could be phrased more generally and equivalently (given the other axioms) as c(·, �)

being upper hemi-continuous and yn ∈ c(S ∪ yn, z) implying y ∈ c(S ∪ y, z) for any (S, z) ∈ Csq(X). It is straightforward to
show that these formulations are equivalent to Masatlioglu and Ok’s (2014) continuity axiom on their domain of available status
quos.
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effect of continuously changing reference points on choice is continuous, and this is a novel and intuitively

appealing condition.

Below, our main theorem shows the equivalence between the three aforementioned axioms and a choice

procedure of costly switching from a status quo.

Theorem 2.1 A choice correspondence c satisfies Axioms WARP, SQB, and UHC if and only if there exist

(1) a continuous function U : X → R,

(2) a lower semi-continuous function D : X ×X → R+ with D(x, x) = 0 for any x ∈ X , such that

c(S, �) = argmax
s∈S

U(s) for any (S, �) ∈ C�(X)

c(S, x) = argmax
s∈S

U(s)−D(s, x) for any (S, x) ∈ Csq(X).

The “if” direction is straightforward. Regarding the “only if” direction, a straightforward idea would

be to consider status quo-dependent choices and to define rationalizing status quo-dependent preference

relations �x for any x ∈ X . Then, one would represent these preference relations as U(·, x) and define

U(s) := U(s, s) and D(s, x) := −U(s, x) +U(s, s) for any s, x ∈ X . This argumentation is only halfway

successful because although U and D together represent the agent’s choices, the non-negativity of D is not

guaranteed.8 The bulk of the proof (presented in Appendix I) involves the creation of an auxiliary preference

relation from which a function U is shown to exist with the property U(s, s) ≥ U(s, x), ∀s, x ∈ X , thereby

delivering the non-negativity of D.

The representation is based on two endogenously derived functions, U and D. The function U con-

veys the status quo-free utility derived from each alternative, while D reveals, for any (y, x) ∈ X × X ,

the switching cost incurred when the agent chooses alternative y in the presence of the status quo x. As

mentioned earlier, there are different types of switching costs, such as physical costs, transaction costs, and

moral costs. Our model is applicable in all these cases since it does not tie the agent to a specific type of

switching cost. We use the letter D to capture the idea of switching costs as a “decrement” in utility.
8This non-negativity is essential for both our interpretation and the “if” direction.
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In the absence of a status quo, the decision maker behaves rationally by choosing the available alter-

natives that maximize U . However, when there is a status quo, say x, the agent chooses the available

alternatives with the highest utility net of the switching cost, U(·)−D(·, x).

For any status quo x, the cost function D(·, x) is minimized at x. This feature guarantees that whenever

an alternative is (weakly) chosen over a status quo, its status quo-free utility is at least as high as the status

quo option’s utility. As a result, the choices characterized here are immune to money pump arguments

(Echenique et al. (2011)). More precisely, for any distinct x, y, z ∈ X , the following choice cycle cannot

be accommodated in our model.

c(xy, x) = y, c(yz, y) = z and c(xz, z) = x.

Identification: As in most deterministic choice models, observed choices are sufficient for ordinal but not

cardinal identification, and this is true here as well. More specifically, U and U − D can be ordinally

identified given the choice data c(S, �) and c(S, z), respectively. However, D cannot be ordinally identified

when it doesn’t affect choices. For example, take X = {x, y, z} such that U(x) > 10 > 1 > U(y) and

U(x)−D(x, z) > U(y)−D(y, z). Then, D(x, z) and D(y, z) can take any value between 0 and 9 and so

cannot be ordinally ranked. In this case, it cannot be determined whether it is costlier to switch from z to

x or z to y and furthermore this has no effect on choice since these switching costs are not large enough to

alter the agent’s ranking of these alternatives.

We now turn to some special cases of the model. First, if D(y, x) = 0 for any x, y ∈ X , then the agent

behaves rationally. Another important special case is one where the cost of choosing an alternative other

than the status quo is either zero or a prohibitively large fixed amount. Such costs can be mathematically

represented by an indicator function and this restricted model is identical to theQ-model of Masatlioglu and

Ok (2014). It relies on an additional axiom called status quo irrelevance (given below for our setting).

Status Quo Irrelevance (SQI). For any x, y, z ∈ X ,

(i) If y ∈ c(xy, x) and z ∈ c(xz, x), then c(yz, �) = c(yz, x).

(ii) If c(xy, x) = x = c(xz, x), then c(yz, �) = c(yz, x).
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According to this specialized model, if the cost of switching from x to y and from x to z are both zero (or

both prohibitively large), then the presence of the status quo x does not affect the choice from {y, z}. Thus,

the status quo x can generate a reference effect only when it prohibits exactly one of y and z.

In contrast, our model allows for “graded reference effects” whereby the status quo x may reverse the

relative ranking of y and z even when the agent is willing to leave the status quo for each (i.e. neither y nor

z is prohibited). To see this, consider an agent who faces three alternatives {0, 1, 2} with U(x) = 2.5x and

D(x, y) = |x − y|2. When there is no status quo, the agent ranks 2 �� 1 �� 0. However, when the status

quo is 0, the agent ranks 1 �0 2 �0 0. The status quo 0 changes the relative ranking of 1 and 2 without

forbidding either of them. This behavior cannot be accommodated in the Q-model.

Masatlioglu and Ok (2005) consider a further specialization where for each status quo x, an agent faces

a threshold φ(x) > 0 and will only consider other alternatives y for which U(y) − U(x) ≥ φ(x). In our

framework, this can be represented by D(y, x) = φ(x) whenever x 6= y. Thus, the relationship between the

three models can be stated as follows:

φ(x)-model $ Q-model $ Switching Cost model

While some real-life scenarios naturally fit either the φ(x)-model or the Q-model, many important

situations require the fully general model. For example, a move from Windows to a Mac or to a Linux

system involves compatibility costs, since only some Windows programs are available for the Mac and even

fewer for Linux. Moreover, the Mac and Linux systems differ in cost. These switching costs depend on

both the status quo and the alternative the agent switches to. Therefore, they cannot be represented by a φ

function that depends only on the status quo.

Remark 1: Notice that WARP guarantees the existence of preference relations {�x}x∈X and � that

rationalize the status quo-dependent and status quo-free choices, respectively. Axiom SQB then ensures

a link between these preferences (specifically, x % y ⇒ x %x y and x � y ⇒ x �x y). This representation

is equivalent to our switching cost model in terms of the choices it gives rise to, though it does not provide

a direct route to our representation, as discussed immediately after Theorem 2.1. Furthermore, the model

with switching costs has several advantages. First, it is intuitively appealing to explain the status quo bias

through switching costs from a status quo. Second, the switching cost model is tractable for applications as

exemplified by the Prisoner’s Dilemma game (Section 3).
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Remark 2: In our model, D ≥ 0. If D(y, x) were allowed to be negative when y � x, then all the axioms

would continue to hold. In other words, the model in which an agent can receive a utility “increment” rather

than a “decrement” when switching from a status quo to a higher-utility alternative would be equivalent to

our model. On the other hand, if D were allowed to be negative when an agent switches to a lower-utility

alternative, then this could lead to violations of Axiom SQB. While such a model would not be ideal for

the characterization of status quo-based choices, it might still be of interest as a choice model based on a

general reference point. That procedure with a possibly negative D is characterized by the WARP and UHC

axioms. In this case, the halfway successful approach suggested immediately after Theorem 2.1 would now

be fully successful because the non-negativity requirement on D is relaxed.

Remark 3: The two most common loss-aversion models in the literature are Tversky and Kahneman’s

(1991) general loss aversion and additive linear loss aversion models. These models satisfy WARP and

UHC, and therefore nest into the switching cost model with a possibly negative D. Their additive linear loss

aversion model additionally satisfies Axiom SQB and therefore nests within Theorem 2.1.9 In these models,

alternatives are multi-dimensional and each alternative may have multiple gains and losses relative to a

reference point, which the agent must then aggregate to an overall cost function. In contrast, our switching

cost model operates over an abstract space and the function D already gives the overall cost.

3 An Application to Prisoner’s Dilemma Games

In this section, we analyze Prisoner’s Dilemma games using various equilibrium concepts, starting with

one based on switching costs. Formally, a standard one-shot Prisoner’s Dilemma game is a 2 × 2 game

where both players face the same action sets A1 = A2 = {Coop,Defect} and have symmetric utility func-

tions U1(x, y) = U2(y, x) ∀x, y ∈ {Coop,Defect} such that U1(Defect, Coop) > U1(Coop,Coop) >

U1(Defect,Defect) > U1(Coop,Defect). Notice thatDefect is a dominant strategy and (Defect,Defect)

is the unique standard Nash equilibrium of this game.
9Masatlioglu and Ok (2014) show that the general loss aversion model need not satisfy Axiom SQB and therefore does not nest

in Theorem 2.1.
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3.1 Switching Costs

In a one-shot game, both (Defect,Defect) and (Coop,Coop) are possible equilibrium outcomes given

appropriate status quos and sufficiently high switching costs. However, and perhaps surprisingly, it is not

“anything goes” across a constant population and different Prisoner’s Dilemma games. We show this by first

defining a population equilibrium concept and then deriving conditions on cooperation rates across different

Prisoner’s Dilemma games. Finally, we test these conditions using Charness et al.’s (2016) data.

In a Prisoner’s Dilemma game, an agent with a status quo and a switching cost function can be repre-

sented by an element of a type space Θ = {Coop,Defect} × R2
+. This motivates the following definition

of a Prisoner’s Dilemma D-game for a population who is randomly matched into pairs to play it.10,11

Definition: A Prisoner’s Dilemma D-Game is a pair < Γ, F > where Γ is a standard Prisoner’s Dilemma

game and F is a continuous distribution on Θ.

For a player’s decision whether to cooperate or defect, all that matters is his belief about whether others

are choosing Coop orDefect. In equilibrium, all players have correct beliefs and this leads to the following

definition of a population equilibrium.12

Definition: In a Prisoner’s Dilemma D-game < Γ, F >, a population equilibrium is a measurable map

a : Θ→ {Coop,Defect} such that for every θ = (sθ, Dθ) ∈ Θ,

a(θ) ∈ argmax
a∈{Coop,Defect}

p U1(a,Coop) + (1− p) U1(a,Defect)−Dθ(a, sθ)

where p := F ({θ ∈ Θ : a(θ) = Coop}).

Charness et al. (2016) ran a Prisoner’s Dilemma experiment, denoted by Γx, where x is the same for

both players and equals 3, 4, 5, or 6. Payoffs are shown in the following table.

10In the model, agents are randomly matched into pairs to play a Prisoner’s Dilemma D-game. Given expected utility, it would
be equivalent if each player plays with every other player and receives their average payoff.

11We express our thanks to an anonymous referee who suggested the simplifying notation and definition.
12Note that the equilibrium condition in the definition is phrased only in terms of the first player’s utilities because agents face

the same action sets and have symmetric utility functions.
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Coop Defect
Coop x, x 1, 7

Defect 7, 1 2, 2

Table 1: Charness et al.’s (2016) Prisoner’s Dilemma games

For a fixed population F , we study the population equilibria of the Prisoner’s Dilemma D-games

< Γx, F > and denote them as ax. The following proposition shows that the population equilibrium ax

is well-defined and unique (up to a measure 0 set of ties) for each x. For a population equilibrium ax, the

fraction of agents who cooperate is denoted by px and referred to as the cooperation rate.

Proposition 3.1 For each Prisoner’s Dilemma D-game < Γx, F > where F has full support and x ≤ 6,

there is a unique population equilibrium.

The following proposition provides three necessary and sufficient conditions on px for a sequence of

population equilibria to be derived from a fixed population F . First, it must be that px is increasing in x.

Second, there is an upper bound on how quickly px can increase. Third, px is non-trivial, there are both

cooperators and defectors.

Proposition 3.2 Let (px)x∈{3,4,5,6} be a sequence of probabilities. The sequence (px) is a cooperation rate

sequence for some Prisoner’s Dilemma D-games < Γx, F > where F has full support if and only if

• px is strictly increasing in x, (monotonicity condition)

• px <
(

7− x
6− x

)
· px−1 for x ∈ {4, 5}, (threshold condition)

• 0 < px < 1, for all x. (non-triviality condition)

The non-triviality condition is straightforward, given a distribution with full support – some agents will

cooperate and some will defect. The monotonicity condition is intuitive and was a hypothesis in Charness

et al. (2016). On the other hand, the threshold condition is novel. To understand it, notice that an agent

cooperates if and only if his status quo is Coop and

(6− x) · px + 1 < Dθ(Defect, Coop).
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The left-hand side of the above inequality provides a cooperation threshold.13 For more agents to cooperate

when x increases, it must be that the cooperation threshold decreases. The threshold condition is equivalent

to requiring that (6− x)px + 1 is decreasing in x.

In Table 2 below, the observed cooperation rates are those from Charness et al. (2016). We further

calculate the cooperation thresholds and derive bounds on the cooperation rates. To understand these derived

bounds, consider x = 4. By monotonicity, the cooperation rate p4 must be 23.46% ≤ p4 ≤ 50.60%. By the

threshold condition, it must be that p5 < (2/1) · p4 and that p4 < (3/2) · p3. Therefore, 25.30% < p4 <

35.19%. Consequently, max{23.46%, 25.30%} < p4 < min{50.60%, 35.19%} where in both cases the

tighter bounds are due to the threshold condition. Bounds for the other px’s can be derived similarly. Since

both conditions imply bounds, the tighter bound is indicated with anm (monotonicity) or t (treshold) below.

x Observed Coop Rate (6− x)px + 1 Coop Lower Bound Coop Upper Bound
3 23.46% 1.70 22.45%t 33.67%m

4 33.67% 1.67 25.30%t 35.19%t

5 50.60% 1.51 33.67%m 60.47%m

6 60.47% 1.00 50.60%m 100%

Table 2: Cooperation rates from Charness et al. (2016) and bounds derived from Proposition 3.2

Table 2 demonstrates that the monotonicity and threshold conditions both hold, as must the derived

bounds. In a structural estimation, these cooperation thresholds can be used to back out agents’ switching

costs and status quos. For example, when x = 3, it is estimated that 23.46% of the population has a status

quo of Coop and switching costs higher than 1.70.14

3.2 Other Models that Lead to Cooperation

In this section, we examine other theories in the literature that can explain cooperation in Prisoner’s Dilemma

games and study their predictions with the goal of comparing them to our theory’s predictions. Overall, we

find that our theory provides the tightest predictions that are in line with Charness et al.’s (2016) data.
13For further details on this threshold, see Lemma 3.0 in Appendix I.
14Alternatively, 76.54% of the population has a status quo of Defect or switching costs less than 1.70.
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3.2.1 Q-Model (Masatlioglu and Ok (2005, 2014))

In the Q-model, an agent’s type is expressed by his status quo (Coop or Defect) and his constraint sets

(Q(Coop) and Q(Defect)). Any heterogeneous population of agents can be partitioned into three groups.

The first group consists of all agents for whom Defect is the status quo. The alternative Defect is their

highest-utility alternative and is available in theirQ-set (because x ∈ Q(x) for all x). Hence, these agents al-

ways defect. The second group consists of agents for whomCoop is the status quo andDefect ∈ Q(Coop).

These agents also defect because Defect is their best option and it is available in their Q-set. Finally, the

third group consists of agents for whom Coop is the status quo and Q(Coop) = {Coop}. These agents

necessarily cooperate because Coop is the only alternative that they consider. Therefore, for a given x, with

payoffs from Table 1, the cooperation rate px expresses the fraction of agents in this third group. Given a

fixed population, the size of the third group does not vary and therefore the cooperation rate is predicted to

remain constant in x. In other words, Q-model predicts p3 = p4 = p5 = p6. However, this is not the case in

Charness et al.’s (2016) data.

3.2.2 Magical Thinking (Daley and Sadowski (2017))

In the magical thinking model, a decision maker thinks that his opponent takes the same action as he does

with probability λ and takes the equilibrium action with probability 1−λ. Hence, the type space is ΘMT =

[0, 1]. We now define Prisoner’s Dilemma games and population equilibrium for the magical thinking model,

as we did for the switching cost model.

Definition: A Prisoner’s Dilemma MT-Game is a pair < Γ, F > where Γ is a standard Prisoner’s Dilemma

game and F is a continuous distribution on ΘMT .

Definition: In a Prisoner’s Dilemma MT-game < Γ, F >, an MT -population equilibrium is a measurable

map a : ΘMT → {Coop,Defect} such that for every λ ∈ ΘMT ,

a(λ) ∈ argmax
a∈{Coop,Defect}

λ · U1(a, a) + (1− λ) · (p · U1(a,Coop) + (1− p) · U1(a,Defect))

where p := F ({λ ∈ ΘMT : a(λ) = Coop}).
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For a fixed population F , we study MT-population equilibria of the Prisoner’s Dilemma MT-games

< Γx, F >. As before, there exists a unique MT-population equilibrium for each x. The fraction of agents

who cooperate in an MT-population equilibrium is denoted as px and referred to as the magical thinking

cooperation rate.

Proposition 3.3 For each Prisoner’s Dilemma MT -game < Γx, F > where F has full support and x ≤ 6,

there is a unique MT-population equilibrium.

In the spirit of revealed preference, Daley and Sadowski (2017) provide a characterization of their model

over the domain of all simultaneous and symmetric 2× 2 games. However, as is well-known in the revealed

preference literature, the set of axioms which characterize a procedure over a large data set is generally

insufficient for smaller domains. The following proposition offers a novel characterization of magical think-

ing cooperation rates for Charness et al.’s (2016) domain.

Proposition 3.4 Let (px)x∈{3,4,5,6} be a sequence of probabilties.

(i) The sequence (px) is a magical thinking cooperation rate sequence for some Prisoner’s Dilemma

MT-games < Γx, F > where F has full support if and only if

• px is strictly increasing in x, (monotonicity condition)

• px <
(x− 2)(7− x)

(x− 3)(6− x)
px−1 +

1

(x− 3)(6− x)
for x ∈ {4, 5}, (threshold condition)

• 0 < px < 1, for all x. (non-triviality condition)

(ii) The switching cost cooperation rate conditions are analytically tighter than those of magical thinking.

As in the switching cost model, the conditions on cooperation rates here come from three sources: a non-

triviality and a monotonicity condition both of which are the same as in our model, and a threshold condition

that is different than ours. Part (ii) of the above proposition demonstrates analytically that any cooperation

rate px that can be explained by our switching cost model can also be explained by the magical thinking

model. However, the reverse does not necessarily hold since the magical thinking threshold condition is

strictly weaker than the switching cost threshold condition.

14



Table 3 shows that for Charness et al.’s (2016) data, the cooperation rate bounds of the magical thinking

model are strictly weaker than those of the switching cost model. In fact, for this data set, all of the magical

thinking bounds come from the monotonicity condition. Thus, the switching cost model is strictly more

restrictive because its threshold conditions are tighter. Consequently, the switching cost model has a higher

Selten (1991) score than the magical thinking model.15

x Observed Cooperation Switching Cost Model Magical Thinking Model
Rate Lower Bound Upper Bound Lower Bound Upper Bound

3 23.46% 22.33%t 33.67%m 0% 33.67%m

4 33.67% 25.30%t 35.19%t 23.46%m 50.60%m

5 50.60% 33.67%m 60.47%m 33.67%m 60.47%m

6 60.47% 50.60%m 100% 50.60%m 100%

Table 3: Cooperation rates from Charness et al. (2016) and bounds derived from Propositions 3.2 and 3.4

3.2.3 Inequity Aversion (Fehr and Schmidt (1999))

In a general version of the inequity aversion model, an agent derives the following utility:

Vi = Ui − αi max
j

(Ui − Uj , 0)− βi max
j

(Uj − Ui, 0)

where U represents payoffs from the game and 0 ≤ αi < βi < 1.16 Hence, the type space is ΘIA =

{(α, β) : 0 ≤ α < β < 1}. We now define Prisoner’s Dilemma games and population equilibrium for the

inequity aversion model, as we did for the previous models.

Definition: A Prisoner’s Dilemma IA-Game is a pair < Γ, F > where Γ is a standard Prisoner’s Dilemma

game and F is a continuous distribution on ΘIA.

15The Selten score is a measure of the predictive success of a model. It is the proportion of data consistent with the model minus
the probability that any random data is consistent with that model. As both the switching cost model and the magical thinking
model are consistent with the observed data, then the more restrictive model has a higher Selten score.

16An agent with utility Vi cares about his own payoff but is also averse to inequity. The parameters αi and βi specify how
much aversion he feels towards unequal payoffs: αi when the agent himself receives the higher payoff and βi when the other agent
receives the higher payoff. The condition αi < βi states that inequity bothers the agent more when he is receiving the lesser payoff.
The requirement that αi, βi < 1 implies that the agent is not willing to sacrifice his own payoff in order to achieve a more equal
outcome. That is, holding the other player’s payoff fixed, the agent aims to maximize his own payoff.
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Definition: In a Prisoner’s Dilemma IA-game < Γ, F >, an IA-population equilibrium is a measurable

map a : ΘIA → {Coop,Defect} such that for every λ = (α, β) ∈ ΘIA,

a(λ) ∈ argmax
a∈{Coop,Defect}

pU1(a,Coop) + (1− p)U1(a,Defect)− 6pα1a=Defect − 6(1− p)β1a=Coop

where p := F ({λ ∈ ΘIA : a(λ) = Coop}).

For a fixed population F , we study IA-population equilibria of the Prisoner’s Dilemma IA-games

< Γx, F >. Unlike before, an IA-population equilibrium may not be unique.

Proposition 3.5 For each Prisoner’s Dilemma IA-game < Γx, F > where F has full support and x ≤ 6,

there exists an IA-population equilibrium. However, uniqueness is not guaranteed and there is a Prisoner’s

Dilemma IA-game with multiple IA-population equilibria.

For an IA-population equilibrium, we refer to px as the corresponding inequity aversion cooperation

rate. While, for a given F , there may be multiple IA-population equilibria and thus multiple cooperation

rates, the following proposition provides a necessary condition that all of these cooperation rates must

satisfy.

Proposition 3.6 Let px be the inequity aversion cooperation rate for an equilibrium of a Prisoner’s Dilemma

IA-game < Γx, F > where F has full support and x ∈ {3, 4, 5, 6}. Then, either of the following must hold:

• px = 0 (trivial equilibrium)

• px >
7

6 + x
(non-trivial equilibrium)

Notice that the necessary conditions derived in the above proposition are of a different sort. In the

switching cost and magical thinking models, the derived conditions were across different px whereas here

the conditions must be satisfied for each individual px.

Table 4 displays the cooperation rate conditions for each value of x. Generally, the above conditions for

the inequity aversion model are not met by Charness et al.’s (2016) data.
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x Observed Coop Rate Inequity Aversion Conditions
3 23.46% p3 = 0% or p3 > 77.78%
4 33.67% p4 = 0% or p4 > 70.00%
5 50.60% p5 = 0% or p5 > 63.64%
6 60.47% p6 = 0% or p6 > 58.33%

Table 4: Cooperation rates from Charness et al. (2016) and conditions derived from Proposition 3.6

Remark: The multiplicity of IA-population equilibria poses an obstacle to performing an analysis of coop-

eration rates across different x’s as was done for the other models. Moreover, such an analysis would only

serve to further restrict this model’s predictions and therefore they would remain unsatisfied.

3.2.4 Fairness (Rabin (1993))

In order to apply the fairness model to the Prisoner’s Dilemma game, we follow Daley and Sadowski’s

(2017) formulation and perform all possible algebraic reductions. Each agent has the following utility:

Vi(ai, aj) = Ui(ai, aj) + λiK(ai, aj), where λi ≥ 0 and K(ai, aj) =


3/4 if ai = aj

−1/4 if ai 6= aj .

Each agent’s coefficient λi is therefore his type and the type space is ΘFAIR = R+. The kindness function

K creates a coordination motivation: it is good for an agent to cooperate when his opponent cooperates and

to defect when his opponent defects. This reflects an underlying motivation that an agent would like to be

kind when his opponent is kind and mean when his opponent is mean.

We now define Prisoner’s Dilemma games and population equilibrium for the fairness model, as we did

for the previous models.

Definition: A Prisoner’s Dilemma FAIR-Game is a pair< Γ, F >where Γ is a standard Prisoner’s Dilemma

game and F is a continuous distribution on ΘFAIR.

Definition: In a Prisoner’s Dilemma FAIR-game< Γ, F >, aFAIR-population equilibrium is a measurable

map a : ΘFAIR → {Coop,Defect} such that for every λ ∈ ΘFAIR,

a(λ) ∈ argmax
a∈{Coop,Defect}

pU1(a,Coop)+(1−p)U1(a,Defect)+

(
3

4
− p
)
λ1a=Defect+

(
p− 1

4

)
λ1a=Coop

where p := F ({λ ∈ ΘFAIR : a(λ) = Coop}).
17



For a fixed population F , we study FAIR-population equilibria of the Prisoner’s Dilemma FAIR-games

< Γx, F >. As in inequity aversion, a FAIR-population equilibrium may not be unique.

Proposition 3.7 For each Prisoner’s Dilemma FAIR-game < Γx, F > where F has full support and

x ≤ 6, there exists a FAIR-population equilibrium. However, uniqueness is not guaranteed and there is a

Prisoner’s Dilemma FAIR-game with infinitely many FAIR-population equilibria.

To understand this proposition, notice that there is always a FAIR-population equilibrium where all

players defect because both material incentives and the kindness (meanness) motivation lead an agent to

defect when all other players defect. On the other hand, the coordination motivation (created by the kindness

function) often gives rise to a cooperative equilibrium where a majority of agents cooperate. In fact, there

are distributions of agents for which there are infinitely many cooperative equilibria.

For a FAIR-population equilibrium, we refer to px as the corresponding fairness cooperation rate. As

noted, for a given F , there may be multiple FAIR-population equilibria and thus multiple cooperation rates.

The following proposition provides a necessary condition which all of the cooperation rates must satisfy.

Proposition 3.8 Let px be the fairness cooperation rate for an equilibrium of a Prisoner’s Dilemma FAIR-

game < Γx, F > where F has full support and x ∈ {3, 4, 5, 6}. Then, either of the following must hold:

• px = 0 (defect equilibrium)

• px >
1

2
(cooperative equilibrium)

Therefore, the fairness model requires that all cooperation rates are either 0 or above 50%, and this is

inconsistent with Charness et al.’s (2016) data.

x Observed Coop Rate Fairness Conditions
3 23.46% p3 = 0% or p3 > 50%
4 33.67% p4 = 0% or p4 > 50%
5 50.60% p5 = 0% or p5 > 50%
6 60.47% p6 = 0% or p6 > 50%

Table 5: Cooperation rates from Charness et al. (2016) and conditions derived from Proposition 3.8
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3.3 Finitely Repeated Prisoner’s Dilemma Games

Up until this point, we have focused exclusively on one-shot Prisoner’s Dilemma games. Classically, Kreps

et al. (1982) demonstrate that cooperation can be sustained in a finitely repeated Prisoner’s Dilemma game

when there is a small probability that a player is a committed Tit-for-Tat type.17 Interestingly, in all se-

quential equilbria (Kreps and Wilson (1982)), rational players who have full access to all strategies may

then choose to imitate the Tit-for-Tat player in order to develop a reputation that he is actually a Tit-for-Tat

player. His opponent, not knowing the player’s type, may end up cooperating as well, rather than testing

him. This cooperation crucially depends on the game being repeated. In a one-shot setting, there is no

possibility of developing a reputation and thus no rational type would cooperate. Thus, the introduction

of behavioral types is a method that can sustain cooperation only in repeated settings but not in one-shot

settings.

As mentioned earlier, Lipman and Wang (2000) study a model in which an agent incurs a switching

cost every time he alters his strategy from one stage to another. They find that cooperation in the Prisoner’s

Dilemma game depends upon a sensitive trade-off, since the switching costs reduce both the incentives to

defect from cooperation and the incentives to punish others’ defections. As in the commitment models

above, Lipman and Wang’s (2000) model can sustain cooperation only in repeated settings.

On the other hand, our switching cost model can sustain cooperation even in one-shot settings. Thus,

without any additional features (such as behavioral types), it can also sustain cooperation in a finitely re-

peated setting, since the repetition of the one-shot equilibrium is an equilibrium of the repeated game.

Committed behavioral types can also be added, if one wants a model with: (i) cooperation in both one-shot

and repeated settings, and (ii) more cooperation in repeated settings than in one-shot settings (as in Cooper

et al.’s (1996) experimental findings).
17A Tit-for-Tat player plays Coop in the first stage. In every other stage, he imitates the other player’s previous play. This

strategy is called Tit-for-Tat because it has the sensible logic: “If you cooperated yesterday, then so will I today, but if you defected,
then I am going to punish you by defecting today.”
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4 Concluding Remarks

We propose and axiomatically characterize a status quo-based choice model where an agent incurs a cost

when switching from a status quo to another alternative. In a choice problem with a status quo, the agent

chooses the alternatives with the highest utility net of this switching cost. This model accommodates status

quo bias and general reference effects.

We apply the model to a particular class of Prisoner’s Dilemma games, and establish necessary and

sufficient conditions for a cooperation rate in these games to be generated by our model. Using Charness et

al.’s (2016) experimental data, we verify that these conditions hold. We then compare our model’s theoretical

predictions with those of other theories for this class of Prisoner’s Dilemma games and find that our theory

provides the tightest predictions that are consistent with Charness et al.’s (2016) data. While our results are

tailored to Charness et al.’s (2016) domain, they also hold true in other settings.18

It has been suggested that status quos can be paternalistically effective in influencing people’s decisions

in a variety of areas from healthcare to investment (Samuelson and Zeckhauser (1988), Madrian and Shea

(2001), Choi et al. (2004), and Thaler and Sunstein (2008)). Our model provides a more nuanced view of a

status quo’s impact. First, status quos might not only rule alternatives out, as described in the literature, but

may also steer agents’ behavior in other directions. Second, if switching costs provide a basis for the status

quo bias phenomenon, then one needs to be careful when evaluating the welfare implications of paternalistic

policies. This is because, for a proper accounting, the benefits that come from superior choices need to be

weighed against the switching costs incurred by the agents.19 We hope that this viewpoint proves useful in

such policy work.

Finally, a question that naturally arises is whether the switching cost model can also be employed in

extensive form games in general. One approach would be to consider the normal form of such games

(that is, the one-shot game where players choose strategies for the extensive form game) and then to define

switching costs between strategies (rather than between actions). This strategy-based switching cost should

incorporate the dynamic structure of the game, for example, one natural switching cost function would be

the discounted sum of switching costs from each node.

18For example, for Proposition 3.2, if we had data for a continuous range of x, then the conditions would become: px is strictly
increasing in x; (6− x) · px < (6− y) · py for all x < y < 6; and 0 < px < 1.

19Arad and Rubinstein (2018) conduct a survey regarding paternalistic policies. While a majority of respondents support such
policies, a substantial proportion opposes them and switching costs could provide a basis for such a rejection.
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Appendix I

(A) Proof of Section 2 Results

Proof of Theorem 2.1

[Sufficiency] Take any choice correspondence c that satisfies Axioms WARP, SQB, and UHC. Define the

reference-free preference � as follows: a � b if a ∈ c(ab, �). The preference relation � is continuous by

Axiom UHC (ii) and complete by Axiom WARP such that c(S, �) = max
s∈S

(S,�) for any (S, �) ∈ C�(X).

Now, define �∗ as follows:

(x, y) �∗ (z, t) if either y = t and x ∈ c(xz, y), or there exists e ∈ X such that (1) e ∈ c(ez, t), (2) y � e,

and (3) x ∈ c(xy, y).

Notice that �∗ is reflexive and moreover (a, a) �∗ (a, b) for any a, b ∈ X .20

Claim 0: For any x, y, z ∈ X , if (x, y) �∗ (z, y), then x ∈ c(xz, y).

Proof of Claim 0: The preference relation �∗ is defined according to two conditions. We now show that in

the case above, the second condition implies the first, that is, if there exists an e such that (1) e ∈ c(ez, y),

(2) y � e, and (3) x ∈ c(xy, y), then x ∈ c(xz, y). By definition, (2) states that y ∈ c(ey, �). By Axiom

SQB(i), y ∈ c(ey, y). Suppose that x /∈ c(exyz, y). Then, c(exyz, y) ∩ {x, y} 6= c(xy, y), so by WARP

it must be that y /∈ c(exyz, y). But, then c(exyz, y) ∩ {e, y} 6= c(ey, y) and again by WARP, it must be

that e /∈ c(exyz, y). Thus, z = c(exyz, y) and WARP implies z = c(ez, y), a contradiction. Therefore,

x ∈ c(exyz, y) and by WARP, x ∈ c(xz, y).

Claim 1: For any x, y ∈ X , (x, x) �∗ (y, y) if and only if x � y.

Proof of Claim 1: To prove the if direction, let e in the definition of �∗ be equal to y. To prove the only if

direction, suppose (x, x) �∗ (y, y) for some x, y ∈ X . Then, by definition of �∗, there must exist e ∈ X

such that e ∈ c(ey, y) and x � e. If e /∈ c(ey, �), then y = c(ey, �) and axiom SQB(ii) implies that

y = c(ey, y), contradicting the fact that e ∈ c(ey, y). Therefore, e ∈ c(ey, �). Since � represents c(·, �),

we have e � y, which in turn implies x � y.

20Simply choose e = a in the definition of �∗.
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Claim 2: c(S, x) = max
s∈S

((s, x),�∗)

Proof of Claim 2: Let y ∈ c(S, x). Axiom WARP implies y ∈ c(yz, x) for any z ∈ S. Then, by definition

of �∗, we obtain (y, x) �∗ (z, x) for any z ∈ S. To show the other inclusion, suppose s ∈ S such that

(s, x) �∗ (t, x) for any t ∈ S but s /∈ c(S, x). Since c(S, x) 6= ∅, there must exist r ∈ c(S, x). Axiom

WARP implies r ∈ c(rs, x). Since (s, x) is the maximizer of �∗ on S, we have (s, x) �∗ (r, x). By Claim

0, s ∈ c(rs, x). Therefore s ∈ c(rs, x) and so {r, s} = c(rs, x). As r ∈ c(S, x), Axiom WARP states that

s ∈ c(S, x), which is a contradiction.

Claim 3: �∗ is transitive.

Proof of Claim 3: Suppose (x, y) �∗ (z, t) and (z, t) �∗ (m,n) for some x, y, z, t,m, n ∈ X , and we

need to show (x, y) �∗ (m,n). There are four possible cases:

Case 1: y = t = n

By Claim 0, x ∈ c(xz, y) and z ∈ c(zm, y). By standard arguments, since c(·, y) satisfies WARP, it is the

case that x ∈ c(xm, y). Therefore, (x, y) �∗ (m, y).

Case 2: y = t and t 6= n

By Claim 0, x ∈ c(xz, y). By the definition of �∗, there exists e such that e ∈ c(em, n), y � e, and

z ∈ c(zy, y). By Case 1, x ∈ c(xy, y). By the definition of �∗, we have (x, y) �∗ (m,n).

Case 3: t = n and y 6= t

Again, by Claim 0, z ∈ c(zm, t) and by the definition of �∗, there exists an e such that e ∈ c(ez, t), y � e,

and x ∈ c(xy, y). By Case 1, e ∈ c(em, t).21 The definition of �∗ then states (x, y) �∗ (m, t).

Case 4: t 6= n and y 6= t

(x, y) �∗ (z, t) implies that there exists e ∈ X such that e ∈ c(ez, t), y � e, and x ∈ c(xy, y). Similarly,

(z, t) �∗ (m,n) guarantees that there exists f ∈ X such that f ∈ c(mf, n), t � f , and z ∈ c(zt, t). Then,

we obtain

(y, y) �∗ (e, e) �∗ (e, t) �∗ (z, t) �∗ (t, t) �∗ (f, f).

Applying transitivity of �∗ to case 3 type of pairs reduces the above to

(y, y) �∗ (e, e) �∗ (t, t) �∗ (f, f)

Claim 1 together with the transitivity of � gives y � f . Then, by the definition of �∗, we conclude that

(x, y) �∗ (m,n).
21Case 1 is applied to (e, t) �∗ (z, t) and (z, t) �∗ (m, t).
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Claim 4: �∗ is upper semi-continuous.

Proof of Claim 4: Suppose (xn, yn) �∗ (z, t) for all n, where xn, yn, x, y, z, t ∈ X such that xn → x and

yn → y. We need to show (x, y) �∗ (z, t).

Suppose yn = t for infinitely many n. Then, by Claim 0, it is the case that xn ∈ c(xnz, t) for infinitely

many n. Axiom UHC (iii) implies x ∈ c(xz, t). Moreover, by the definition of a limit, y = t. Thus,

(x, y) �∗ (z, t).

Suppose yn 6= t for infinitely many n. Then, there exist infinitely many en ∈ X such that en ∈ c(enz, t),

yn � en, and xn ∈ c(xnyn, yn). Since X is compact, there exists a convergent subsequence enk
of en such

that enk
→ e for some e ∈ X . Axiom UHC (i) gives e ∈ c(ez, t), y � e, and x ∈ c(xy, y). According to

the definition of �∗, we obtain (x, y) �∗ (z, t).

Remember that �∗ is reflexive, transitive, and upper semi-continuous while not necessarily complete

over the entire space. Jaffray’s (1975) result guarantees that �∗ can be extended to a reflexive, transitive,

upper semi-continuous, and complete relation denoted by �∗E .

Remark: As shown in Claim 2, given a fixed status quo, the original preference relation is complete and

rationalizes choices. The extended relation respects this ranking and therefore it rationalizes choices, given

a fixed status quo.

Rader’s (1963) result ensures the existence of an upper semi-continuous utility function U : X×X → R

that represents �∗E . This, together with the remark above, gives

c(S, x) = argmax
s∈S

U(s, x) for any (S, x) ∈ Csq(X).

Claim 1 and the fact that �∗E respects ranking by �∗ allows us to define U : X → R by U(x) :=

U(x, x) for any x ∈ X so that U rationalizes c(·, �). We also define D : X × X → R+ by setting

D(s, x) = −U(s, x) + U(s, s) for any s, x ∈ X . Then,

c(S, x) = argmax
s∈S

U(s)−D(s, x) for any (S, x) ∈ Csq(X).

28



Notice first that D(x, x) = 0 for any x ∈ X . Second, D is lower semi-continuous since U is upper

semi-continuous and U is continuous. Moreover, D(s, x) ≥ 0 for any x, s ∈ X because (s, s) �∗ (s, x)

and therefore (s, s) �∗E (s, x) which in turn implies U(s, s)− U(s, x) ≥ 0.

[Necessity] Take any continuous utility function U : X → R and a lower semi-continuous function D :

X × X → R+ with D(x, x) = 0 for any x ∈ X . Suppose also that c(S, �) = argmax
s∈S

U(s) for any

(S, �) ∈ C�(X) and c(S, x) = argmax
s∈S

U(s)−D(s, x) for any (S, x) ∈ Csq(X).

Axiom WARP is trivially satisfied across a fixed status quo position. To see Axiom SQB(i), take y ∈

c(xy, �). Then U(y) ≥ U(x) and D(y, y) = 0 ≤ D(x, y). Therefore U(y)−D(y, y) ≥ U(x)−D(x, y)

⇒ y ∈ c(xy, y). To see Axiom SQB(ii), take y = c(xy, �). Then U(y) > U(x) and D(y, y) = 0 ≤

D(x, y). Therefore U(y)−D(y, y) > U(x)−D(x, y)⇒ y = c(xy, y).

To show Axiom UHC (i), suppose yn ∈ c(ynxn, xn) for some yn, xn, y, x such that yn → y ad xn → x.

By hypothesis, U(yn) − D(yn, xn) ≥ U(xn) − D(xn, xn) for all n. As D(xn, xn) = 0 for all n, the

inequality reduces to U(yn) − D(yn, xn) ≥ U(xn) for all n. Since U is continuous and −D is upper

semi-continuous, taking the limsup of both sides gives U(y) − D(y, x) ≥ U(x) which is equivalent to

U(y) − D(y, x) ≥ U(x) − D(x, x). This implies y ∈ c(yx, x) as desired. To verify Axiom UHC (ii), it

is enough to notice that U is continuous. Finally, to prove that Axiom UHC (iii) is also satisfied, assume

yn ∈ c(ynx, z) for some yn, y, x, z such that yn → y. This means U(yn)−D(yn, z) ≥ U(x)−D(x, z) for

all n. Taking limsup of both sides and the continuity of U together with the upper semi-continuity of −D

yields U(y)−D(y, z) ≥ U(x)−D(x, z). Thus, y ∈ c(yx, z). 2

(B) Proof of Section 3 Results

Lemma 3.0 In a Prisoner’s Dilemma D-game < Γx, F > with a population equilibrium ax, an agent

cooperates if and only if his status quo is Coop and (6− x) · px + 1 < Dθ(Defect, Coop).

Proof of Lemma 3.0

An agent with a status quo of Defect will necessarily defect as switching to Coop would lower his

utility and he would also incur a switching cost, two negative effects. On the other hand, if an agent has a

status quo of Coop, he will stick with Coop if and only if the following holds:

E [U1(Defect, a2)]−D1(Defect, Coop) < E [U1(Coop, a2)]
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7 · px + 2(1− px)−D1(Defect, Coop) < x · px + 1 · (1− px)

(7− x) · px + (1− px) < D1(Defect, Coop)

(6− x) · px + 1 < D1(Defect, Coop)

The agent will choose Coop if the above holds strictly, will choose Defect if the reverse holds strictly,

and will be indifferent between Coop and Defect if there is an equality. Tie-breaking can be done in any

fashion because the distribution is continuous, and so only for a measure 0 set of agents can the above hold

with equality.

2

Proof of Proposition 3.1

[Existence] The cooperation rate p is an equilibrium if p = 1 − F ((6 − x) · p + 1). Notice that when

p = 0, the LHS is strictly less than the RHS because of the full support condition. On the other hand, when

p = 1, the LHS is strictly higher than the RHS for the same reason. By continuity, there is some p̂ which

solves this condition.

[Uniqueness] Suppose not. Then, there are at least two different population equilibria with cooperation

rates p < q. By Lemma 3.0, an agent will cooperate if his status quo is Coop and his switching costs are

strictly above the cooperation threshold, and will defect if his switching cost is strictly below the cooperation

threshold. Therefore, in equilibrium, p = 1 − F ((6 − x) · p + 1) and q = 1 − F ((6 − x) · q + 1). So,

p < q implies F ((6− x) · p+ 1) > F ((6− x) · q + 1). Furthermore, F is strictly increasing because it is a

distribution function with full support, so it must be that (6− x) · p+ 1 > (6− x) · q+ 1⇒ p > q if x < 6.

If x = 6, then p = 1−F ((6− x) · p+ 1) = 1−F (1) = 1−F ((6− x) · q+ 1) = q. Either way, we arrive

at a contradiction, so there cannot be two distinct cooperation rates p, q. 2

Proof of Proposition 3.2

[Necessity] For the non-triviality condition, notice that in equilibrium px = 1−F ((6−x) · px + 1) and

since F has full support, it must be that 0 < px < 1.

For the monotonicity condition, take x < y ≤ 6. Due to non-triviality, it must be that 0 < px < 1 and

similarly 0 < py < 1. Now, suppose that px ≥ py. Then, (6− x) · px + 1 > (6− y) · py + 1 and because F

has full support, it is the case that px = 1− F ((6− x) · px + 1) < 1− F ((6− y) · py + 1) = py, which is

a contradiction.
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For the threshold condition, notice that we have px = F (θ : sθ = Coop, (6 − x) · px + 1 < Dθ) by

Lemma 3.0. By the monotonicity condition proved above, px−1 < px and so the threshold (6− x) · px + 1

has to be strictly decreasing in x. Rearranging yields the identity.

[Sufficiency] For any given px that satisfies the above two properties, we must construct a distribution

F with full support which generates cooperation rate px. For now, we momentarily assume that all agents

have a Coop status quo, so that F is simply a distribution over switching costs. Lemma 3.0 established

that a type θ cooperates in Γx if (6 − x)px + 1 < Dθ(Defect, Coop). As the distribution is continuous

with full support, switching cost threshold is dx = (6 − x)px + 1. The distribution F must then satisfy

that 1 − F (dx) = px, or F (dx) = 1 − px. That is, there are four given cooperation rates p3, p4, p5, p6 and

four induced switching cost thresholds d3, d4, d5, d6, and F is defined so that F (dx) = 1 − px for each

x. But, it needs to be verified that F is indeed a distribution, i.e. it is increasing, non-negative, and less

than 1. Condition 1 establishes that p3 < p4 < p5 < p6 and Condition 2 establishes that (6 − x)px <

(7 − x)px−1 ⇒ (6 − x)px + 1 < (6 − (x − 1))px−1 + 1 ⇒ dx < dx−1. Therefore, d3 > d4 > d5 > d6,

establishing that F is increasing. Because 0 < px < 1, so is 0 < 1 − px < 1 and therefore, 0 < F < 1

for the defined x-values. Now, we can take any F with full support over switching costs which satisfies

these point restrictions. Then, we can take a full support F so that a fraction of agents with switching costs

beneath the lowest threshold, d3, are reassigned to have Defect as a status quo. Those agents will always

defect, regardless of whether their status quo is Defect or Coop and so can be safely reassigned without

disturbing the cooperation rate so as to guarantee the full support of F . 2

Proof of Proposition 3.3

In a Prisoner’s Dilemma MT-Game< Γx, F >, given that other players are cooperating with probability

p, an agent with type λ chooses Coop if and only if

λ · x+ (1− λ) · (xp+ 1 · (1− p)) ≥ 2λ+ (1− λ) · (7p+ 2 · (1− p))⇔

λ · (x− 2) + (1− λ) · ((x− 7)p− (1− p)) ≥ 0

The second equation is a convex combination of the positive term x − 2 and the negative term ((x −

7)p− (1− p)) = (x− 6)p− 1. Therefore, for any given cooperation rate p, there will be a unique threshold

λ̂ such that types with λ above this threshold will cooperate while types below this threshold will defect.
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This threshold can be calculated by solving:

λ̂ · (x− 2) + (1− λ̂) · ((x− 6)p− 1) = 0 (*)

Also, as only agents above this threshold cooperate, the following must also hold:

p = 1− F (λ̂) (**)

Suppose x < 6. If we solve for p in (∗), we see that p is increasing in λ̂. If we solve for p in (∗∗), we

see that p is decreasing in λ̂. Since an increasing and decreasing function can intersect at most once, there

is at most a unique cooperation rate p and threshold λ̂ which satisfies the equilibrium conditions. Moreover,

that there is an intersection can be gleaned from the following fact:

If p = 0 then

(∗)︷ ︸︸ ︷
λ = 1/(x− 1) <

(∗∗)︷ ︸︸ ︷
λ =∞, and if p = 1 then

(∗)︷ ︸︸ ︷
λ = (7− x)/5 >

(∗∗)︷ ︸︸ ︷
λ = 0.

Therefore, when x < 6, an MT-population equilibrium exists and is unique.

Finally, for the case that x = 6, conditon (*) is λ̂ · 4 + (1 − λ̂) · (−1) = 0 which implies λ̂ = 1/5 and

by (**), p is uniquely defined as p = 1 − F (1/5). Therefore, when x = 6, an MT-population equilibrium

exists and is unique. 2

Proof of Proposition 3.4

[Necessity]

1. Equation (*) above defines λ̂(x− 2) + (1− λ̂)((x− 6)px − 1) = 0 which can then be re-expressed

as λ̂ =
(6− x)px + 1

(6− x)px + x− 1
= 1 − x− 2

(6− x)px + x− 1
. Notice that if x strictly increases and px weakly

decreases, then λ̂ strictly decreases. But, if the threshold λ̂ strictly decreases, then the cooperation rate px

must strictly increase (because 1− F (λ̂) = px), which is a contradiction. Therefore, as x strictly increases,

it must be that px strictly increases.

2. For the cooperation rates to have the relationship px−1 < px it must be that the threshold λ̂

is strictly decreasing in x. That is, 1 − x− 3

(7− x)px−1 + x− 2
> 1 − x− 2

(6− x)px + x− 1
. Therefore,

(x−3)((6−x)px+x−1) < (x−2)((7−x)px−1 +x−2)⇒ (x−3)(6−x)px < (x−2)(7−x)px−1 +1.
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Rearranging yields px <
(x− 2)(7− x)

(x− 3)(6− x)
px−1 +

1

(x− 3)(6− x)
. Notice, the only x for which px and px−1

can be related are x = 4, 5, 6, but the condition holds vacuously for x = 6. Therefore, we are left with the

condition for x = 4, 5.

3. An agent cooperates if and only if λ · (x− 2) + (1− λ) · ((x− 7)px − (1− px) ≥ 0. This condition

is a convex combination of two terms, one positive and one negative. Therefore, for any fixed x ≤ 6, it

always holds if λ is sufficiently close to 1 and never holds if λ is sufficiently close to 0. Therefore, given

full support, there will be a non-zero measure of cooperators and a non-zero measure of defectors.

[Sufficiency] For any given cooperation rate px that satisfies the properties above, we must construct a

distribution F with full support which generates cooperation rate px. From the previous analysis, we have

established that a type λ cooperates if and only if λ(x − 2) + (1 − λ)((x − 7)px − (1 − px)) ≥ 0. As the

distribution is continuous with full support, the threshold λx is defined as λx(x−2) + (1−λx)((x−7)px−

(1 − px)) = 0. That is, agents with magical thinking levels above λx cooperate and those with magical

thinking levels below defect. The distribution F must then satisfy 1−F (λx) = px or F (λx) = 1−px. That

is, there are four given cooperation rates p3, p4, p5, p6 and four induced thresholds λ3, λ4, λ5, λ6, and F is

defined so that F (λx) = 1− px for each x. But, it needs to be verified that F is indeed a distribution, i.e. it

is increasing, non-negative, and less than 1. Condition 1 establishes that p3 < p4 < p5 < p6 and Condition

2 establishes that λ5 < λ4 < λ3. To see that λ6 < λ5, notice that λ6 = 1/5 and that p4 > 0 ⇒ λ5 > 1/4.

This establishes that F is increasing. Since 0 < px < 1, so is 0 < 1− px < 1 and therefore, 0 < F < 1 for

the defined x-values. Now, we can take any F with full support over magical thinking levels which satisfies

these point restrictions.

(ii) From Proposition 3.2, the switching cost threshold condition is px <
(

7− x
6− x

)
·px−1. This upper bound

can be rewritten as
(x− 3)(7− x)

(x− 3)(6− x)
px−1 <

(x− 2)(7− x)

(x− 3)(6− x)
px−1 +

1

(x− 3)(6− x)
. Therefore, Condition 2

of Proposition 3.2 is tighter than Condition 2 of Proposition 3.4. 2

Proof of Proposition 3.5

[Existence] Recall that

Vi = Ui − αi max
j

(Ui − Uj , 0)− βi max
j

(Uj − Ui, 0).
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Every agent defecting is always an equilibrium. To see that cooperating is non-beneficial, notice that it

results in lower utility U and inequity aversion −6β. Since both of these effects are negative, so is the total

effect.

[Non-Uniqueness] For simplicity, take x = 6. An agent cooperates if and only if

6p+ (1− p)− 6β(1− p) > 7p+ 2(1− p)− 6αp⇔

6αp− 6β(1− p) > 1

Given a cooperation rate p, as a best response, a fraction BR(p) of the population would wish to cooperate.

We seek a fixed point, that is BR(p) = p, which will define an equilibrium. First, notice that if p = 1/2,

the above equation becomes 3(α − β) > 1 which never holds because β > α, so BR(1/2) = 0. On the

other hand, if p = 5/6, then any agent who satisfies 5α − β > 1 will cooperate. So, take a distribution

F with full support over ΘIA such that Pr(5α − β > 1) = 0.99. Then, BR(5/6) = 0.99 > 5/6.

Because BR is continuous in p, there must exist some 1/2 < p′ < 5/6 such that BR(p′) = p′, a non-trivial

equilibrium. Recall that all agents defecting is also an equilibrium, so for such an F , the existence of at least

two equilibria is now established. 2

Proof of Proposition 3.6

Given the inequity aversion utility function, an agent cooperates if and only if

xpx + (1− px)− 6β(1− px) > 7px + 2(1− px)− 6αpx

If px > 0, then it must be that some agent prefers Coop to Defect. The RHS of the above inequality is

decreasing in α and bounded above by β. So, the following is necessary:

xpx + (1− px)− 6β(1− px) > 7px + 2(1− px)− 6αpx > 7px + 2(1− px)− 6βpx

⇒ 6β(2px − 1) > px(6− x) + 1.

The RHS of the last inequality above is positive, so cooperation can only be sustained if the LHS is also

positive, that is px > 1/2. Therefore, any cooperation rate px where 1/2 > px > 0 cannot be sustained by

this model. Now, restricting attention to cooperation rates px ≥ 1/2, we derive a tighter necessary condition.

As the LHS is increasing in β and β < 1, it is necessary that

6(2px − 1) > 6β(2px − 1) > px(6− x) + 1
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⇒ px >
7

6 + x

The argument is completed. 2

Proof of Proposition 3.7

[Existence] Every player defecting is an equilibrium. This is because, for any player, switching to Coop

is harmful for both their material incentive U and the kindness payoff λK.

[Non-Uniqueness] We now provide an example for which there are infinitely many cooperative equi-

libria. Take the payoffs of Charness et al. (2016) with x = 6. Thus,

V1(C,C) = 6 + α · 3

4
V1(C,D) = 1 + α · −1

4

V1(D,C) = 7 + α · −1

4
V1(D,D) = 2 + α · 3

4

Therefore, if a p fraction of the population cooperates, a player’s expected payoffs are:

E [V1(C, a2)|p] = 6p+ 1 · (1− p) + α ·
(
p− 1

4

)

E [V1(D, a2)|p] = 7p+ 2 · (1− p) + α ·
(

3

4
− p
)

Thus, an agent cooperates if and only if −1 +α(2p− 1) ≥ 0. This implies that the cooperation rate p is

sustainable in equilibrium if there is a α̂ such that α̂(2p− 1) = 1 and 1−F (α̂) = p. Substituting in, it must

be that α̂(2(1 − F (α̂)) − 1) = 1. Hence, F (α̂) =
α̂− 1

2α̂
. Now define F as such for α̂ ∈ [1, 2] and freely

elsewhere. Then, every α̂ ∈ [1, 2] corresponds to an equilibrium with p = 1−F (α̂) = 1− α̂− 1

2α
=
α̂+ 1

2α̂
.

That is, every cooperation rate from 75% (when α̂ = 2) to 100% (when α̂ = 1) is an equilibrium with such

an F . So we obtain a continuum of equilibria. As F was assigned freely outside of the range [1, 2], there

could be other equilibria as well. Moreover, F could have been similarly assigned on a larger range so as to

generate an even larger set of equilibrium. 2
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Proof of Proposition 3.8

Suppose that 1/2 ≥ px > 0. Then, it is the case that

pxU1(Defect, Coop) + (1− px)U1(Defect,Defect) >

pxU1(Coop,Coop) + (1− px)U1(Coop,Defect)

and

λpxK(Defect, Coop) + λ(1− px)K(Defect,Defect) ≥

λpxK(Coop,Coop) + λ(1− px)K(Coop,Defect)

Notice that plugging in the values of utility and K functions, and with terms matched up as shown, both

these inequalities hold. Therefore, it is the case that:

pxV1(Defect, Coop) + (1− px) V1(Defect,Defect) >

pxV1(Coop,Coop) + (1− px) V1 (Coop,Defect)

So, every agent who chooses Coop can profitably deviate to Defect, which is a contradiction to px > 0. 2

Appendix II
Additional Analysis of Masatlioglu and Uler’s (2013) Data

We focus on Masatlioglu and Uler’s (2013) experimental design to the extent that is relevant for our

study. We consider two types of questions. The first type is status quo-free choice problems where each

subject is asked to make a choice between two alternatives, say x and y, i.e. c(xy, �) is observed for each

subject. In the second type of questions, each subject is asked to imagine that he is given a status quo z that

is dominated by both x and y; and he is asked to decide whether he wants to keep his status quo or change it

for one of the other options x and y, i.e. c(xyz, z) is observed for each subject (Figure 1). Each alternative

is a bundle that is composed of some number of Guylian chocolate boxes and some amount of cash. At the

end of the experiment, a question is randomly drawn for each subject and he receives the bundle that he has

selected there.

We test the following property which is a modified version of the Status Quo Irrelevance axiom discussed

in Section 2.

If c(xz, z) = x and c(yz, z) = y, then c(xy, �) = c(xyz, z)
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Figure 1: Bundles

According to the above property, z has no impact on the agent’s choice between x and y when it is added

into his choice set also with the feature that it is the status quo, because the agent is willing to leave z for

both x and y. While this property must be satisfied by Masatlioglu and Ok (2005, 2014), it need not be the

case in the switching cost model.

Since z is dominated by both x and y, a basic expectation is that z will not be chosen from choice

problems (xz, z) and (yz, z). Thus, the if condition of the above property is expected to be naturally

satisfied. Based on this expectation, Masatlioglu and Uler (2013) do not include questions of this type in

their design and therefore the if condition cannot be directly verified in their data. However, they include

questions of the type (xyz, z) and no subject chooses z there.

We test whether c(xy, �) = c(xyz, z) holds. When c(xy, �) is different from c(xyz, z), we say that

a choice reversal occurs at the status quo z. Otherwise, no reversal occurs at the status quo z. For each

subject, there are three possible instances where a reversal may occur. We define a variable called REV to

summarize the percentage of reversals each subject exhibits. The mean of REV is 31.66%. That is, 31.66%

of the time, agents switch their choice from x to y or y to x upon the addition of a dominated status quo z

into their choice problem. A Wilcoxon signed-rank test shows that this percentage is significantly different

from zero (p=0.005). Therefore, the above property is violated significantly.22

22If these choice reversals are driven by a preference for randomness or are simply mistakes, then the frequency of reversals
should be independent of the dominated status quo’s location. Using McNemar test, we reject the hypothesis that reversals at two
different status quos occur at the same rate (p = 0.0082).
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