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Abstract

Understanding the magnetic properties of matter is of paramount interest

from a principal and technological point of view. For example, transition-metal

compounds tuned to a magnetic quantum phase transition often form unconven-

tional superconductivity and exhibit non-Fermi liquid behaviour. The discovery

of novel magnetic states such as the skyrmion lattices might lead to new magnetic

storage technologies if a full understanding of the magnetic, electronic, and struc-

tural material properties is obtained. This thesis presents results on composition

and pressure-tuned magnetic compounds: the itinerant ferromagnet Nb1−xFe2+x

and the insulating helimagnet Cu2OSeO3.

The continuous ferromagnetic transition in Fe-rich Nb1−xFe2+x can be sup-

pressed and a ferromagnetic quantum phase transition can be reached by replac-

ing Fe with Nb. Nb1−xFe2+x follows a trend that nature tends to avoid ferromag-

netic quantum critical points. They are typically either replaced by a first order

transition or masked by unconventional superconductivity. Nb1−xFe2+x offers a

predicted third scenario: masking by a spin density wave phase. With neutron

diffraction, the extension of the spin density wave phase in the field-temperature

phase diagram has been determined. Additionally, cold neutron spectroscopy re-

vealed low-energy magnetic excitations at zero field including soft quasi-elastic

scattering in an extended region in reciprocal space, which reflects the proximity

of the tuned system to different types of magnetic order.

The recently discovered skyrmion lattice in Cu2OSeO3 has created partic-

ular interest in this compound as its insulating properties allow the skyrmion

lattice to be moved by an electrical field. Moreover, its magnetic ordering tem-

perature increases with pressure, in contrast to the metallic helimagnets. In

order to obtain information on the microscopic changes that might be responsi-

ble for the strengthening of the magnetic interactions, the structural properties

of Cu2OSeO3 have been examined by X-ray diffraction. These studies reveal un-

usual changes in some Cu-O distances in the low pressure phase that undergoes

an irreversible structural transformation to a yet unsolved high-pressure phase
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at 9.7 GPa. Complementary Raman scattering and infrared absorption measure-

ments confirm subtle changes in the low pressure phase and a marked change in

optical properties accompanies the structural phase transition.
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Chapter 1

Introduction

1.1 Physics of Magnetic Quantum Criticality

Understanding the new physics emerging from quantum phase transitions and

quantum criticality remains one of the central goals in contemporary studies of

correlated electron physics. The combination of the correlations found in the

vicinity of continuous phase transitions, and quantum effects observed at low

temperatures, combine to form the genesis of a large variety of exotic behaviour.

This is most evident at the boundaries of magnetic order. Because of this, many

compounds with magnetic phase transitions have been tuned in a way which

suppresses their magnetic phase transitions to low temperatures. As a system

is tuned towards a quantum critical point (QCP) a number of novel phases may

emerge, such as non-Fermi liquids, which cannot be described in terms of in-

dependent fermionic quasiparticles and magnetically mediated unconventional

superconductivity. Examples of this evolution of states may be found in heavy

fermion systems [1], organic metals [2], alkali metal fullerides [3] and the high TC

cuperates and iron pnictides [4][5].
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1.2 Ferromagnetic Quantum Phase Transitions

With ferromagnetism (FM) being the simplest example of magnetic order, the

switch from a paramagnetic (PM) to FM state is considered the archetypal mag-

netic phase transition. As such, a FM transition seen to be continuously sup-

pressed to zero temperature (0 K) may be thought of as the archetypal FM

quantum critical point (QCP). However, in real materials such a point is rarely

observed, the system instead utilising one of a number of alternative scenarios in

order to avoid quantum criticality. Figure 1.1 show a schematic representation of

these various scenarios. There are numerous examples in which a system instead

Figure 1.1: Schematic phase diagrams of transitions observed in ferromagnetic sys-
tems. (a) a discontinuous transition and tricritical wings in a magnetic field, (b) a
continuous transition, (c) a transition to an antiferromagnetic or spin density wave
state and (d) a continuous transition to a strongly disordered system, accompanied by
a spin-glass freezing in the transition tail. Figure taken from [6]
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Figure 1.2: Phase diagrams of ZnZr2 (left) [7] and UGe2 (right) [8].

undergoes a first order transition, such the transition metals ZrZn2 [7] and Ni3Al

[9], transitioning at critical pressures of 1.6 GPa and 8 GPa respectively. There

are then the ferromagnetic superconductors UGe2 [8] and URhGe [10], these ma-

terials preferring to enter a superconducting state, demonstrating the intimate

relation between magnetic order and superconductivity. Sum systems, such as

U1−xThxNiSi2 [11] present a continuous transition accompanied by a spin-glass

freezing in the transition tail, simply never reaching a QCP.

A fourth option is presented by the itinerant ferromagnet Nb1−xFe2+x during

composition tuning, see figure 1.3. Here, replacement of Fe atoms by Nb atoms

suppresses the continuous FM transition however, before the QCP is reached, a

spin density wave (SDW) order emerges between the PM and FM phase masking

the FM QCP. Other examples of this response are the PrPtAl system which

orders into complex spirals at the PM-FM boundary [13] and ultra-pure samples

of Sr3Ru2O7 in which a quantum critical end point at finite magnetic field is

avoided via the appearance of a nematic phase, featuring a spin-density wave

order [14]. With the aim of further understanding this escape method, we probe

the evolution of the low-energy excitation spectra through the PM, SDW and FM

phases, as well as map the response of the SDW order to the application of an

external magnetic field
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Figure 1.3: Temperature vs doping phase diagram of Nb1−xFe2+x, showing quantum
critical point (QCP) and Lifshitz point, adapted from [12].

1.3 Helimagnetism

The rich physics already associated with ferromagnetism motivates the study of

systems displaying far more complex magnetic order. Helimagnetic alloys with

B20 structure, such as MnSi, have been found to demonstrate field-induced mag-

netic phases with interesting topological properties, such as the so-called skyrmion

phase, while pressure tuning these systems has revealed extended regions of non-

Fermi liquid behaviour [15].

A skyrmion is a vortex like configuration of spins which forms a topologically

stable, magnetic, particle-like object, between 10 and 100 nm in size. These

quasiparticles can then be manipulated through the application of an external

electrical field, creating the potential for use in high density magnetic storage

and spintronic devises. In order to utilise this however, material problems, such

as a low crystallisation temperature and low stability, must be overcome.

The formation of an ordered skyrmion lattice phase (SkX), until recently,

has only ever been experimentally detected in specific metallic alloys with B20

structure, noted examples being MnSi [15], FeCoSi [17] and FeGe [18]. Each of

4



Figure 1.4: Schematic representation of the field-temperature phase diagram of

Cu2OSeO3 , illustrating spin alignments of various phases. The inset shows the crystal

structure with the two different Cu2+ ion sites [16].

these systems orders in the chiral P213 space group and possesses a well defined

helimagnetic ground state, linked intrinsically to the structure of the system.

The application of pressure has been documented to induce both magnetic and

electronic phase transitions [19], despite the structure of the systems remaining

stable up to 30 GPa [20]. The distortion of the crystal lattice at higher pressures

in hence likely linked to these phenomena.

In this thesis we will explore the Cu2OSeO3 system, the first insulator known

to house a skyrmion lattice phase. Cu2OSeO3 crystallises in the P213 phase and

displays a high level of structural stability down to low temperatures [21, 22].

Like in the intermetallic B20 compounds, field tuning induces then suppresses

a Skyrmionic order, labelled as the A-phase in figure 1.4. Here, we perform

an extensive investigation into the pressure response of the crystal structure of

Cu2OSeO3 with the idea that even slight structural changes could result in sig-

nificant changes to the magnetic phase of the system.
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1.4 Synopsis

The remainder of this thesis is organised as follows: Chapter 2 contains a review

of the basic concepts of solid-state crystal lattices along with diffraction from a

crystal. It expands upon the concepts of phase transitions, quantum phase tran-

sitions and quantum criticality, with a focus on magnetic order. This includes a

simple outline of spin fluctuation theory for low-energy excitations near magnetic

quantum criticality. Chapter 3 then details the tools and techniques utilised in

the measurement process, including a review of high pressure techniques, Ra-

man and Infrared Spectroscopy and the practical set-up of X-ray and Neutron

diffraction. Chapter 4 focuses on NbFe2, discussing the evolution of the spin

density wave order as a function of both temperature and applied magnetic field.

The low-energy magnetic excitations in zero field, found through the paramag-

netic, spin-density-wave and ferromagnetic phases are then probed and discussed.

Chapter 5 presents measurement performed on the Cu2OSeO3 system, with an

emphasis on the structural evolution of the system under pressure. Finally, in

Chapter 6, the work is summarised and some avenues for future investigation

suggested.
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Chapter 2

Theoretical Basis

The majority of work presented in this thesis uses the elastic and inelastic scatter-

ing of X-rays and Neutrons to probe the lattice dynamics of crystalline systems.

This chapter aims to provide the theoretical base, on which the practical investi-

gations are performed; building first the picture of a crystal at the atomic level,

before expanding to how the structural composition of a substance affects the

fundamental behaviours of that system.

2.1 Description of a Crystal

The symmetries governing atomic positions observed within a crystal possess an

intrinsic influence over the properties of the system. The ability, therefore, to

accurately describe and categorise crystallographic structures is integral to the

pursuit of understanding the physical properties shaping condensed matter.

A crystal may be described as the convolution of a “crystal lattice” with a

“basis” of atoms or molecules. Hence, an idealised crystal lattice is an infinite

array of discrete points positioned in three dimensional space [23], each described

by a set of translational vectors:

Rn = n1a + n2b + n3c (2.1)

where n = (n1, n2 and n3) are integers, R is the resulting position vector and a,

b and c are primitive vectors describing three non-coplanar axes. The vectors a,
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Figure 2.1: Crystallographic axes a, b and c of a unit cell of a primitive tetragonal

crystal lattice [23].

b and c must be closed under vector addition and subtraction and for any chosen

Rn the lattice must look identical in all respects.

These lattice vectors then define the unit cell, the simplest repeating unit

within the structure of the crystal. This is a polyhedron constructed of edges

with lengths a, b and c and separated by angles α, β and γ, as depicted in figure

2.1. The size of the unit cell is defined by the minimum lengths of a, b and c

required for the cell to still fulfil the translational symmetry of the crystal lattice.

An atomic basis is then applied, anchoring singular or groups of atoms at the

corners of the domain and creating a primitive cell [23]. Building on this, we

also find face centred, body centred and base centred unit cells, each containing

additional basis sights. Face centred describing a primitive cell with additional

basis positions at the centre of each face, body centred an additional basis at the

centre of the cell body and a base centred with additional positions found at the

centre of two opposing faces [24].

In 1850, Bravais deduced that any three dimensional lattice may be classified

as one of fourteen “types” dictated by the symmetry that it possessed, these are

described in table 2.1 [24]. Each “symmetry” describes an operation which brings
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Table 2.1: The 14 Bravais lattices [25]. Descriptions of the lattice arrangements are

provided in the text of this section.

Crystal System Unit Cell and angles Bravais lattices

1 Cubic
a = b = c

α = β = γ = 90◦

Primitive

Face Centered

Body centred

2 Orthorhombic
a 6= b 6= c

α = β = γ = 90◦

Primitive

Face Centered

Body centred

Base Centered

3 Tetragonal
a = b 6= c

α = β = γ = 90◦

Primitive

Body centred

4 Monoclinic
a 6= b 6= c

α = γ = 90◦ β 6= 90◦

Primitive

Base Centered

5 Rhombohedral
a 6= b 6= c

α = β = γ 6= 90◦
Primitive

6 Triclinic
a 6= b 6= c

α 6= β 6= γ 6= 90◦
Primitive

7 Hexagonal
a = b 6= c

α = β = 90◦ γ = 120◦
Primitive

the crystal to a position indistinguishable from its original position. There are

several types of symmetry, namely; rotational, reflection, inversion and rotation-

reflection.

Taking the symmetry of the lattice as well as that of the basis allows the

crystal to be classified as one of 32 possible point symmetry groups and, from

here, one of 230 possible space symmetry groups. A space group is an array

of symmetry elements within a space lattice [25]. Each symmetry element has

a specific orientation and location within a unit cell and each cell contains an
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identical array of symmetry elements, repeated throughout the crystal. Each

element is positioned such that each symmetry operation will bring all elements

into self-coincidence. Many space groups simply describe a rotational, reflection,

inversion or rotation-reflection symmetry possessed by point groups located at

lattice sites, some however go further, taking into account glide planes and screw

axes; glide planes describing a reflection followed by a translation and screw axes

describe a rotation followed by a translation. Determining the space group of a

crystallographic system is, in many cases, the ultimate goal of a crystallographer.

Once the lattice parameters and unit cell are determined, in order to complete

the description of the crystal it is necessary to specify the atoms contained within

the unit cell, along with their position relative to the origin [23]. The atomic

positions is therefore defined such that the position of atom j is given by the

basis vector rj, defined as:

rj = xa + yb + zc (2.2)

where x, y and z are fractional coordinates. Combining this with equation 2.1, it

becomes possible to describe the position of any atom within a crystal through

the combination of position vector and basis vector, R = Rn + rj.

2.1.1 Scattering from a Crystal

Now we are able to describe accurately the positions and symmetries found within

a crystal, we can work on developing a picture of how photons and neutrons

interact with a crystalline systems. In 1913 Bragg laid out the first formulation

for the condition of constructive interference:

2d sin(θ) = nλ (2.3)

In which d is the inter-atomic spacing, θ is the incident angle of radiation and

n is an integer. The formula dictates that constructive interference will occur

when the spacing between the scattering planes, d, is an integer multiple of

the wavelength of incident light, λ. When scattered from a three dimensional

crystal, this constructive interference manifests as an array of diffraction peaks,
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known as Bragg peaks, each corresponding to a specific set of atomic planes. Al-

though Braggs law is sufficient to provide information on inter-atomic distances,

it provides no information regarding diffraction intensities, hence, a more detailed

approach is required. For simplicity we will consider the elastic case.

Let us begin with a plane wave of the form A0e
ik, with amplitude A0 and

wave vector k = 2π/λ. We next assume it is incident on some atom, within our

crystal, at position R. If the scattering is weak, then the contribution of that

atom to the scattering intensity at the detector may be written as:

AR = A0e
ik.R × f × eik(D-R)

|D−R|
(2.4)

where D is the distance between the detector and the crystallographic origin

and f is the atomic “form” or “scattering” factor. Given the very small distance

between the origin and our atom, D and D −R may be taken as being parallel

to the scattering vector q and we can therefore reduce equation 2.4 to:

AR ≈ A0
eik.R

D
fe−iq.R (2.5)

where q = ki − kr, with ki and kr being the incident and reflected wave vectors

respectively. From here, A0e
ik/D can be factorized out, given it is the same for

all the atoms in the crystal, leaving an expression that describe the scattering

amplitude of the nth atom:

F (q) =
∑
R n

eiq.Rn (2.6)

If we now expand R, in equation 2.6, it becomes clear that the total scattering

amplitude is the product of a lattice term, containing Rn, and an atomic basis

term, rj:

F (q) =
∑
Rn

eiq.Rn ×
∑
rj

f(q)je
q.rj (2.7)

where, q dictates the direction of scatter and f(q)j the scattering length.

Breaking this down further, the first factor in equation 2.7, the lattice sum

contribution, is non-zero only for q.Rn = 2πn, where n is an integer. In order to

find a solution, reciprocal space basis vectors a*, b*, and c* are introduced:

a* =
2πb× c

a · (b× c)
b* =

2πc× a
a · (b× c)

c* =
2πa× b

a · (b× c)
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From these definitions the following conditions are fulfilled:

a · a* = 2π

b · b* = 2π

c · c* = 2π

(2.8)

From these basis vectors, any point in the reciprocal lattice can be specified using

the reciprocal lattice vector:

Ghk` = q = ha* + kb* + `c* (2.9)

where (h, k, `) are the Miller indices. This shows that scattered intensity is only

observed when q = G, i.e. the Laue condition is fulfilled. When this condition is

satisfied, the lattice sum is then simply proportional to the number of unit cells

within the crystal [23].

Figure 2.2: Ewald sphere construction.

The Bragg equation remains consistent, following readily from the Laue con-

dition (eq.2.9). From figure 2.2 it can be inferred that the scattering triangle

yields:
q
2

= k sin(θ) (2.10)

With q = 2π/dhk` and k = 2π/λ one obtains the Bragg equation:

2dhk` sin(θhk`) = λ (2.11)
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The second term in equation 2.7 represents a sum over all the atoms contained

within the basis. If, therefore, the basis consists of a single atom, rj = 0, then:

F (q) = f(q) (2.12)

where f(q) is the atomic form factor of the atom under consideration. The

physical implication of this is then that any variation of diffraction peak intensities

is due only to the atomic form factor f(q) [23].

In the case of a diatomic basis, for example the hexagonal close-packed struc-

ture, in which atoms are located at r1 = 0 and r2 = 1
3
a + 2

3
b + 1

2
c, one obtains:

F (q) = f(ei0 + ei2π(h
3

+ 2k
3

+ `
2

)) (2.13)

For some combinations of (h, k, `), the expected intensities will be zero (all (0 0

`) with ` = odd), due to the destructive interference of the scattering. However,

it is important to remember that this is an idealised case, and assumes chemi-

cally identical atoms, in idealised crystallographic environments. In reality, slight

variations and imperfections in the chemical make-up of a system result in devi-

ations in f and generate very weak diffractions peaks arising in these forbidden

directions.

The atomic form factor is a measure of the scattering amplitude of a wave by

an isolated atom [23]. It is also dependent on the nature of the incident radiation,

be it X-ray, neutron or electron. X-rays are scattered by the electron cloud of

the atom, hence the scattering amplitude is proportional to the atomic numbers

Z of the atoms in the sample [26]. Neutrons, no the other hand, are scattered by

two distinct interactions, nuclear and magnetic [27]. Nuclear scattering sees the

neutron scattered from the nucleus of the atom, which then acts as a point source,

radiating scattered neutrons as a spherical wave. This interaction is mediated

by the strong nuclear force, with each isotope possessing a different scattering

amplitude. Magnetic scattering refers to the interaction between the neutrons

magnetic moment and that of the unpaired electrons in outer shell orbits, and is

therefore independent from the specific atomic isotope.
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Figure 2.3: Geometry of neutron scattering [27].

When scattering via the strong nuclear force, the direction of scatter is de-

scribed via the polar coordinates θ and φ, see figure 2.3. The total scattering

cross section describes the total number of neutrons scattered, per second, in

all directions divided by the initial flux [27]. From this, the partial differential

cross-section is defined as the number of neutrons scattered per second into a

small solid angle dΩ in the direction θ, φ and with a final energy between E ′ and

E ′ + dE ′. This is expressed as:
d2σ

dΩdE ′
(2.14)

Let us now take a neutron, of the form ψk = eik.r and with wavevector k.

This neutron is incident on a scattering system, χ, in state λ, expressed χλ, and

interacts with that system via a potential V . This scattering event is described

via the probability, | 〈k′λ′|V |kλ〉 |2, and leads to an expression for the partial

differential cross section:(
d2σ

dΩdE ′

)
λ→λ′

=
k′

k

(
m

2πh̄2

)2

| 〈k′λ′|V̂ |kλ〉 |2δ(Eλ − Eλ′ + E − E ′) (2.15)

describing a scattering event in which the system goes from state λ to λ′. Con-

servation of energy is accounted for by the Dirac delta term, with E and E ′ being
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initial and final energies of the neutron and Eλ and Eλ′ being the initial and

final energy of the scattering system. Here k′ represents the dependence of the

infinitesimal phase space volume on E ′ and 1/k normalising by the flux.

Equation 2.15 describes the nuclear scattering of unpolarised neutrons, how-

ever, the spin states of the incoming and outgoing neutron, σ and σ′, respectively,

may also be specified. Thus leading becoming:(
d2σ

dΩdE ′

)
σλ→σ′λ′

=
k′

k

(
m

2πh̄2

)2

| 〈k′σ′λ′|V̂m|kσλ〉 |2δ(Eλ − Eλ′ + h̄ω) (2.16)

We now have an expression that details the system changing from state λ to

λ′, while the neutron changes from kσ to k′σ′, through a magnetic potential

interaction, Vm = −µn ·B where B is the total magnetic field due to an orbiting

electron, µn is the magnetic moment of the neutron and h̄ω is the neutron energy

change.

Assuming unpolarised neutrons allows us to take the probability for each spin

orientation of incoming neutrons to be equal [28]. This leads us to a scattering

probability of:

〈λ′|Q̂|λ〉 =
∑
ld

eiκ·R`dFd(κ) 〈λ′|Ŝld|λ〉 (2.17)

where Q̂ = (1/2µB)M(κ) is the Fourier transform of the total magnetisation op-

erator, Ŝ`d is the total spin operator, which delivers the total angular momentum

(including orbital angular momentum and spin) of the outer shell electrons of

magnetic ion d in unit cell ` and Fd(κ) is the form factor of the scattering vector

κ = k−k′ from ion d, the form factor being the Fourier transform of the spacial

spin distributions of the magnetic ions. Finally, R`d is the position vector of the

unit cell, within the lattice. Using this equation as the scattering probability

leads to:

d2σ

dΩdE ′
=

(
m

2πh̄2

)2

(2γµnµB)2(4π)2k
′

k

∑
λλ′σσ′

pλpσ

× 〈λσ|(σ̂ · Q̂⊥)†|λ′σ′〉 〈λ′σ′|σ̂ · Q̂⊥|λσ〉 δ(h̄ωEλ − Eλ′)

(2.18)

where Q̂⊥ is the total magnetic moment, combining spin and momentum contri-

butions and γ = −1.91 is the gyromagnetic ratio. This equation, in turn, leads to
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an expression for the partial differential cross-section for the magnetic scattering

by ions:

d2σ

dΩdE ′
=r2

0

k′

k

∑
αβ

(δαβ − κ̃ακ̃β)
∑
λλ′

pλ
∑
ld

∑
l′d′

F ∗d (κ)Fd′(κ)eiκ·(Rl′d′−Rld)

× 〈λ|Ŝαld|λ′〉 〈λ′|Ŝ
β
l′d′|λ〉 δ(h̄ω + Eλ − Eλ′)

(2.19)

here, F ∗d (κ) and Fd′(κ) are form factors, α and β are Cartesian components of

scattering, pλ expresses the probability of the system being in the initial state

λ and 〈λ|Ŝαld|λ′〉 and 〈λ′|Ŝ
β
l′d′ |λ〉 are overlap integrals, from which the scattering

probability can be determined. In this equation, the neutron selection rule is

expressed via the term
∑

αβ (δαβ − κ̃ακ̃β).

Next, using the identity:

Â(t) = e
iĤt
h̄ Âe−

iĤt
h̄ (2.20)

and assuming only a Bravais lattice or a non-Bravais lattice with only one mag-

netic ion per unit cell, it is possible to reduce equation 2.19 to:

d2σ

dΩdE ′
= r2

0

k′

k

{g
2
F (κ)

}2

e−2W (κ) ×
∑
αβ

(δαβ − κ̃ακ̃β)
1

2πh̄

∫ ∞
−∞

dte−iωt 〈ŜακŜ
β
−κ(t)〉

(2.21)

in which r2
0 is a scaling constant, g is the Landé splitting factor for the ion, F (κ)

the ion form factor and e−2W (κ) is the Debye-Waller temperature dependence of

the scattering process, previously contained within the set of state probabilities

pλ. Finally, 〈ŜακŜ
β
−κ(t)〉 defines the thermal averaging for the system.

Evaluation of the thermal average leads to the expression:

d2σ

dΩdE ′
=r2

0

k′

k

{g
2
F (κ)

}2

e−2W (κ)
∑
αβ

(δαβ − κ̃ακ̃β)

×

[
(1 + n(ω))

(
−N
πgµβ

)
Imχαβκ (−ω)︸ ︷︷ ︸

Inelastic scattering

+ δ(h̄ω) 〈Ŝακ〉 〈Ŝ
β
−κ〉︸ ︷︷ ︸

Elastic scattering

]
(2.22)

which contains the elastic and inelastic components of the scattering signal. The

inelastic component includes the detailed balance factor, (1 − n(ω)), and the

Imaginary part of the dynamical susceptibility, Imχαβκ .
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2.2 Phase Transitions

As a material undergoes a finite temperature phase transition, the low temper-

ature phase is typically characterised by a higher degree of order corresponding

to a lower total entropy of the system [29]. This low-temperature ordered phase

is described by an order parameter and characterised by a decrease in the overall

symmetry, the archetypal example being an isotropic paramagnet transitioning to

a non-isotropic ferromagnet. At zero magnetic field, the symmetry of the system

is lowered due to the magnetic spins no longer being randomly aligned, meanwhile

the order parameter, in this case magnetisation M , increases from zero to some

nonzero value, see figure 2.4.

Figure 2.4: Second order phase transition between ferromagnetic and paramagnetic
states, driven by temperature and a tuning parameter x. While in the PM phase,
the magnetic moments are misaligned producing no net magnetisation, M = 0. As the
system transitions to the FM phase, moments align and a net magnetisation arises,M 6=
0. Accompanying the magnetisation, the symmetry of a previously isotropic PM system
is lowered by the formation of FM with an associated direction of net magnetisation.

To expand this, let us consider the first law of thermodynamics applied to the

case of a magnet at fixed volume [30]. The change in internal energy dU is simply

given by:

dU = TdS −MdH (2.23)

where T is temperature, dS is the change in entropy, M is magnetisation and dH
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is the change in applied field. The thermodynamic definition of free energy F is:

F = U − TS (2.24)

with F dependent on field and temperature: F ≡ F(H,T ). Next, taking the

partial derivative with respect to field, one obtains the magnetisation:(
∂F
∂H

)
∝M (2.25)

If a discontinuity is observed in the order parameter of a system, in this

scenario M , the transition is considered to be of the first order. If we then take

the second partial derivative of the free energy with respect to external field we

arrive at: (
∂2F
∂H2

)
∝
(
∂M

∂H

)
= χ (2.26)

A second order transition then presents a discontinuity (typically a divergence) in

the second derivative of the order parameter. In the FM-PM transition, this man-

ifests as a divergence in the susceptibility and is hence characterised by thermally

excited critical spin fluctuations.

The study of phase transition, and the physical processes governing the be-

haviour of the system as they are approached, can in many ways can be considered

a central tenet of condensed matter physics. At the core of this, lies ferromag-

netism. In the early 1900s, the study of these transitions by Weiss lead to the

formation of the first iteration of mean-field theory [31]. This was then built

upon in 1938, by Stoner, who established the mechanisms by which a nonzero

magnetization may arise through the spontaneous splitting of conduction bands

[32].

The Landau theory of ferromagnetism is able to apply mean field theory to

build a model of a FM-PM transition, without the need for microscopic calcula-

tions. Instead, the system’s free energy is assumed to be a power expansion of

the order parameter, magnetisation M :

F = a(T )2 + bM4 + c (2.27)
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where b and c are constants, with b assumed to be greater than 0, and a(T ) is

dependent on the temperature of the system. Due to the symmetry of the system

(M = −M), odd terms are excluded.

A ferromagnetic phase transition at T = TC is modelled with a(T ) of the form

a(T ) = a0(T − TC), where a0 is a positive constant. The partial derivative, with

respect to M yields the equation:(
∂F
∂M

)
= 2aM + 4bM3 = 0 (2.28)

and the minimum of F is located at:

M = 0 for T > TC

or

M = ±
( a

2b

)1/2

= ±
(
a0(T − TC)

2b

)1/2

for T < TC

(2.29)

which includes the square root temperature dependence of the magnetic order

parameter. As studies continue and measurement techniques improved however,

it becomes clear that mean-filed theory is not sufficient to fully describe the

behaviour of FM in the vicinity of phase transitions [33], many materials critical

exponents deviating from this power 1/2 value. Thus ferromagnetism became the

testing grounds for the theory of critical phenomena [34].

Phase transitions can be suppressed by non-thermal tuning parameters, such

as chemical composition, pressure, magnetic or electric fields, to zero temperature

[29], this is called a quantum phase transition. When such a transition is of

second order it may also be referred to as a quantum critical point (QCP). The

classical free-energy functions used in Landau-Ginzburg-Wilson interpretations

can no longer accurately describe the system . Hertz generalised this approach

by introducing imaginary time [35]. Millis determined the range in which the

electrons can be integrated out and the system can be described by an effective

bosonic theory [36], which describes the system’s spin fluctuations.

Closer inspection of these points finds that the critical spin fluctuations are

no longer classical in nature but instead modified by quantum statistics. These
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quantum fluctuations strongly influence the physics near a QCP [37, 35]. More

recently, focus has been drawn to metallic ferromagnets displaying low Curie

temperatures (< 100 K). In some heavy fermion systems it has been observed

that selective Mott transitions, i.e., the exclusive localisation of f -electrons at the

magnetic quantum critical point, might be observed and influence the physics near

the QCP [38]. In other cases, these strong correlations near quantum criticality

can lead to new emergent phases such as unconventional superconductivity, seen

in UGe2 [8], or a modulated magnetic order, such as is present in the weak metallic

d-metal ferromagnet NbFe2 [39]. This thesis continues the investigation of NbFe2

with the aim to explore the itinerant limit of quantum criticality, where selective

Mott localisation is not expected.

2.3 Spin Fluctuation Theory

As one might expect, spin plays a vital role in determining the order of the

system and, when combined with electron-electron interactions, often lead to

unconventional phenomena. In the case of conducting materials, the Coulomb

interaction leads to strong local, non static, spin alignment. In such a state the

electrons are still able to move rapidly, but the spin density they produce is seen

instead to undergo slow, large-amplitude spontaneous fluctuations. In the case

of a typical ferromagnet, these fluctuations are found to possess specific wave

vectors with a finite amplitude. Increasing the temperature of the system then

“melts” the frozen-in magnetic structure, increasing the entropy of the system

and reducing the overall order [40].

However, when this transitions occurs isothermally, driven instead by some

alternate parameter such as field or pressure, this change in entropy is not longer

present. Hence, the system cannot be viewed as moving from an ordered to

disordered state, but rather from a conventional order to a hidden order. In such

a transition, the conventional order parameter undergoes spontaneous quantum

fluctuation.
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To understand this, let us consider first the effects of the electron-electron

interaction under an applied magnetic field H, producing a magnetisation M of:

M = χ0(H + λM) (2.30)

where λM is the exchange field, λ is a coupling constant and χ0 is the magnetic

susceptibility when λ→ 0. Solved for M , we obtain a final susceptibility of:

χ = χ0/(1− λχ) (2.31)

From this, we can then see than while λχ0 ≥ 1, magnetic polarisation can occur

spontaneously in the absence of the applied field, with the feedback produced by

the exchange field being critical or over-critical in nature. This is similar to a

self-oscillating feedback amplifier, the amplitude of the spontaneous polarisation

governed by the anharmonicities of the system [40].

We shall next expand on this, in order to build a space and time dependent

picture of the average magnetisation M(r, t) in the presence of an applied mag-

netic field H(r, t). This is achieved using the Ginzburg-Landau postulate of the

field equation. In order to simplify the model only fluctuations with frequencies,

ω, and wavevectors, q, far smaller than the Fermi energy and Brillouin zone are

considered, giving rise to relatively slow, large amplitude fluctuations.

To begin we recall the case of a uniform static field H, stabilising a magneti-

sation M via some relation H = H(M). This function must be odd in M for an

isotropic system, hence, through Taylor expansion, we arrive at the expression:

H = a0M + b0M
3 (2.32)

where a0 is the inverse Pauli susceptibility and b0 is the anharmonicity parameter.

Including the effects of the exchange field, λM , we come to:

H(M) = aM + bM3 (2.33)

with a = a0 − λ, and b = b0 if the exchange field is assumed to be linear in

M . Given ours is the non linear case, we may assume b = 0. With this initial

condition, we then consider the spatial variation of the magnetisation, introducing
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a parameter dependant on the systems resistance to the magnetic modulation, c,

bringing us to the equation:

H = H[M ] = aM − c∇2M (2.34)

The square brackets indicating a mapping of one function of r to another.

It is useful at this point to introduce an effective field:

Heff = H −H[M ] (2.35)

where H is the applied field and H[M ] is equal to equation 2.34, and vanishes

when the system is in equilibrium (equation 2.34 is satisfied).

A time dependence is next applied to this model through the introduction of

a linear restoring term:

Ṁ = γ ∗Heff (2.36)

here, Ṁ indicating the time derivative and ∗ a spatial convolution, and γ is a

relaxation function.

If one then performs a Fourier transform on this model, as described in [40],

we find the dynamical susceptibility χ(q, E) is defined by the following set of

expressions:

H(q, E) = χ−1(q, E)M(q, E) (2.37)

where:

χ−1(q, E) = χ−1
q (1− i E

Γq
) (2.38)

χ−1
q = χ−1 + cq2 (2.39)

and:

Γq = γqχ
−1
q (2.40)

With this, χ(q, E) is the generalised linear susceptibility, equal toM(q, E)/H(q, E),

analogues to the uniform case. The spectrum Γq is interpreted as the rate at which

a component magnetisation, Mq(t), will relax to the equilibrium H = 0, while

γq = γqn and is the Fourier component of γ.

Considering the implications of this in a physical system, we are able to build

a picture of how a disturbance will relax in the absence of an external field.
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If the system is a homogeneous non-interacting Fermi system then relaxation

occurs purely via the ballistic motion of the fermions, typically moving at the

Fermi velocity. Hence, so long as the wavelength remains in the low q limit,

the relaxation time is proportional to the wavelength of the disturbance, Γ ∝ q,

implying n = 1. This is seen in the case of ferro and paramagnetism.

This linearity, known as Landau damping, survives in a Fermi liquid, however

breaks down as a critical point is approached where upon the critical fluctuations

tend to freeze. The slowing down of the fluctuations is naturally indicative of

a second order transition. Once frozen, the relaxation of fluctuations is instead

Figure 2.5: This plot demonstrates the effect of increased damping Γ, with fixed χ

and E values.

governed by diffusive rather than ballistic motion and hence the relaxation time

becomes proportional to the the wavelength squared, Γ ∝ q2, n = 2.

Turning next to susceptibility of the excitation, this represents the energy

dependent response of each magnetic mode. In the case of the ferromagnetic phase

transition, the imaginary part of the dynamic susceptibility is well described by

the over-damped harmonic oscillator function [41]:

χ′′(q, E) = χ(q, 0)
EΓq

E2 + Γ2
q

(2.41)

23



This can be derived from equation 2.38:

χ−1(q, E) = χ−1
q (1− i E

Γq
)

⇒ χ(q, E) =
χq

1− i E
Γq

=
χq(1+i E

Γq
)

1 + E2

Γ2
q

⇒ χ′′ =
χq

E
Γq

1 + E2

Γ2
q

=
χqΓqE

Γ2
q + E2

(2.42)

It is using this model that we look to interpret our findings near the magnetic

phase transitions found in NbFe2.

2.4 Thermodynamic description of pressure

Experimentally, quantum phase transitions can be reached by tuning a system

with a finite temperature phase transition to the point that the transition tem-

perature is suppressed to zero. A common tuning parameter, used extensively

in this work, is the application of external pressure. The structural response of

a system to pressure is described by an Equation of State (EoS), which details

the relations between volume, pressure and temperature. Isothermal EoSs give

the pressure-volume (p-V ) relationship at constant temperature. From thermo-

dynamic principles, we know that the energy of a system is proportional to pV

[29], and when maintaining a constant temperature, we arrive at the relation:

p = −
(
∂F
∂V

)
T

(2.43)

where F represents the Helmholtz free energy. We see here that a change in the

volume of the system may be viewed as a change in the total available energy

of the system. The general expression for the total free energy of a crystal is

expressed in terms of three functions [42]:

F(V, T ) = E(V ) + Eel(V, T ) + Evib(ω, T ) (2.44)

The first term (E(V )) is the static contribution to the internal energy at volume

V at 0 K and, in most cases, is considered the dominant term [42]. The second
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term, Eel, corresponds to the electronic excitation energy contribution, this is

generally considered negligible when away from the melting point of the material

under consideration. The final term, Evib, represents the energy contributed

by the thermal vibrations and are therefore used primarily in high temperature

corrections.

The internal energy of a system may be thought of as the sum of an attrac-

tive potential, holding the atoms together, and a repulsive potential, forcing the

atoms apart [42]. At p = 0 and V = V0 these forces are in equilibrium. A sys-

tem’s compressibility is defined by the reduction in volume due the application

of external pressure, with stiffness being the inverse of this. When presented at a

constant temperature, this quality is referred to as the isothermal bulk modulus

KT and is given by the expression:

KT = −V
(
∂p

∂V

)
(2.45)

If we assume K to remain constant with increasing pressure this would predict

a linear relation between pressure and volume. However, the elastic nature of

solids and liquids means that as the volume is reduced, the strength of the inter

atomic forces opposing any further compression increases. This manifests as an

increase in the bulk modulus and therefore the Murnaghan EoS assumes a linear

increase in K with applied pressure [43]:

K = K0 + pK ′0 (2.46)

in which K0 represents the bulk modulus at zero pressure and K ′0 its first pressure

derivative [44]. Integration of this linear dependence yields the Murnaghan EoS:

p(V ) =
K0

K ′0

[(
V0

V

)K′0
− 1

]
(2.47)

where V0 is the zero pressure volume. This can then be rearranged as a function

of V (P ), generating the inverse-Murnaghan EoS:

V (P ) = V0

[
1 +

K ′0P

K0

]−1
K′0 (2.48)
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The Murnaghan EoS is able to reliably reproduce the bulk modulus, K0, of a

compound for compression of less than 10% of the V0 (V/V0 > 0.9) [45]. Beyond

this the system requires the use of more complex models such as the Birch-

Murnaghan equations of state, which utilises a truncated Taylor expansion of

finite Eulerian strain to calculate higher order derivatives of K0 [44]. However,

given the work presented in this thesis does not exceed this limit, the simple

Murnaghan EoS will suffice.

When studying a system under pressure, a common practice is to use Raman

spectroscopy to identify phonon modes via their resonant frequencies. The evolu-

tion of these modes is then used to highlight pressures of interest. The Grüneisen

ratio γ is a thermodynamic parameter used to quantify the relationship between

the thermal and elastic properties of a solid [46]. It is therefore often considered

the measure of the change of pressure resulting from an increase in the energy

density at a constant V :

γ = V

(
∂P

∂E

)
V

(2.49)

More specifically, it can be used to describes the effect the volume of a system has

on the internal vibrations of that system. The Grüneisen parameter of an indi-

vidual vibrational mode i is hence defined as the (negative) logarithmic derivative

of that modes frequency ωi:

γi = −V
ωi

∂ωi
∂V

(2.50)

Tracking phonon modes and calculating their Grüneisen parameters allows one

to build a picture of which bonds are changing in length at the fastest rate, offering

an indication to how the atomic positions are shifting and, in turn, developing

an understanding of the inter atomic forces in play.
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Chapter 3

Experimental Techniques

The ability to tune a materials physical properties is, in many ways, the central

focus of all condensed matter physics. The work presented in this thesis utilises

temperature, pressure and chemical composition to drive the systems into novel

phases, through a verity of means. These phases are then explored using a range

of spectroscopy, scattering and diffraction techniques, employing thermal neutron

and photons, ranging in energy from the far infra red in to the X-ray spectrum.

This chapters focus will be the specificities of the techniques used in generating

the phases under investigation, as well as the methods used to measure them and

the processes used in the analysis of the resulting data.

3.1 The Diamond Anvil Cell

The first diamond anvil cell (DAC) was engineered in 1905, its development driven

by Bridgman, with the aim of producing a more stable high pressure environment

in which to conduct bulk property measurements [47]. Years later (1950s) two

separate research groups, studying high pressure X-ray diffraction and infra-red

absorption, adapted the cells to include diamond anvils, acting as windows into

the sample chamber [48] [49]. Since then, little has changed in the design of the

basic cell.

Conceptually a simple device, a DAC contains two opposing diamonds, aligned
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Figure 3.1: (a) Schematic of a diamond anvil cell depicting its fundamental elements;
diamonds, gasket, backing plate, cell body, pressure marker and sample. (b) Modified
Drukker Dubbledee cut diamond. Angles α and β are used to define the overall height h,
as well as the culet diameter d. The culet size then dictates the maximum pressure at-
tainable by the cell, ranging between d = 0.05 mm for pressures of several hundred GPa
to d = 0.9 mm and pressures less than 5 GPa. (c) A single crystal sample (Cu2OSeO3)
loaded alongside a ruby sphere pressure marker and KBr as the pressure transmitting
medium inside a diamond anvil cell. The sample dimension is ≈ 50×75×30 µm3 in size
and the sample chamber about 45 µm deep.

point to point, separated by a thin metallic sheet and held within a mechanical

vice, shown in figure 3.1a. The sample is placed between the diamonds, suspended

in a pressure transmitting medium, held within a small chamber drilled into

the gasket. Tightening the vice then drives the diamonds together, generating

pressure and compressing the sample. Given that pressure is defined as force F

per area A, a relatively small amount of force is required to generate very large

pressures. Considering diamonds with 300 µm culets, d as shown in figure 3.1.b,

around 2 kN of force will generate ∼30 GPa of pressure.

Diamond is chosen as the anvil material because it possesses a number of

qualities that make it ideally suited for the job. Diamond is naturally one of the

hardest materials on earth, with a bulk modulus of 443 GPa, exhibits excellent

transparency to the electromagnetic spectrum, is highly stable over a wide range

of temperatures and also chemically inert below 300 K [50]. Initially, researchers
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used standard brilliant cut diamonds purchased directly from jewellers, however,

as the field grew the Drukker Dubbledee cut was developed [51], see figure 3.1.b.

This design maximises the belt and table section, increasing stability and pro-

viding a better table to culet ratio. The diamonds for use in spectroscopy and

diffraction measurements are chosen to be of the highest quality; any inclusions

within the gem may alter results or become stress points under extreme pressures.

Scientific diamonds are also classified according to their nitrogen content, as ni-

trogen absorbs in the IR region and may obscure results. Diamonds of type Ia

contain up to 0.3% nitrogen, type Ib up to 0.05% nitrogen, while type IIa contain

so little nitrogen it becomes no longer detectable in IR or UV absorption spectra.

becoming a p-type semiconductor [50].

When assembling the DAC, it is vital that the diamonds are correctly aligned.

The opposing culets must sit as close to parallel as is physically achievable and

coincide exactly. Any misalignment will create stress points when the cell is

pressurised and risks damaging or destroying the diamonds. In order to check

alignment, the diamond anvils are very gradually brought together, without a

gasket. If the culets are not parallel, a rainbow pattern (Newtons rings) emanating

from the culet edges in contact will appear. When observed through a microscope,

this phenomenon is easily observable. The diamonds are then separated, their tilt

adjusted and alignment checked again. Once the anvils are positioned correctly,

the mechanical stability of the alignment is checked through a series of pressure

tests. For this, a blank gasket (a 300 µm thin metallic foil, typically made of

steel, Rhenium (Re) or Tungsten (W)) is placed between the diamonds and the

pressure is increased, released and the culet alignment checked. This is repeated

several times and, so long as the alignment remains stable, the preparation of the

cell may progress.

A hydrostatic pressure environment is highly desirable, as this ensures that

all stresses are applied to the sample uniformly. Non-hydrostatic environments

may cause changes to the system due to sheering or torsion forces acting on

the atomic bonds, rather than purely pressure. In order to create a hydrostatic
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pressure environment the sample is placed into a chamber drilled into the gasket,

along with a pressure transmitting medium (PTM) and pressure marker.

The sample chamber is created by loading a blank gasket between the dia-

monds and indenting to a thickness of ∼45 µm. The chamber is then drilled

in the centre of this indent, usually with spark erosion but also through laser

ablation or via a micro drill depending on the size of the hole required. Care

must be taken that no burrs or blemishes are left on the walls of the chamber,

as at high pressure these become stress points that may lead to cell failure. As

well as housing the sample chamber the gasket serves to improve the safety of

the diamonds, preventing them from coming into direct contact with one another

and providing a stabilising ring of excess material around the edge of the indent,

see 3.1.a.

The sample chamber is then loaded with the PTM, that serves to transform

the uniaxial pressure created by the diamonds into a hydrostatic pressure, com-

pressing the sample uniformly in every direction. There are many different PTMs

used in the high pressure community, existing as solids, liquids or gasses at ambi-

ent conditions and each operating with specific working limits. As such, the choice

of PTM often depends on the maximum pressure intentions of the experiment

and any interference that may be caused by the PTM e.g. overlapping Raman

bands, absorption regions, additional diffraction peaks or increased background

signal, see table 3.1.

The most hydrostatic pressure environments are created using gaseous PTMs

(He, Ne), however require the use of specialist gas loading systems. To perform

such loading, a partially open DAC is mounted into a pressure vessel, which is

then filled with the chosen gas via a number of automated hydraulic pistons. Once

at the desired pressure, typically around 1.5 kbar, the DAC is closed. Through-

out this process, the sample chamber is observed via an in-line camera system,

situated behind a sapphire window located in the base of the vessel. At lower

pressures, gaseous PTMs are still highly compressible, the implication of this be-

ing that the sample chamber may shrink by up to 75% as the pressure is increased.
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Table 3.1: Various pressure transmitting media used in this thesis. Pf indicates

freezing pressure and Ph indicates the hydrostatic limit.

Medium Pf (GPa) Ph (GPa)

Meth:Etha (4:1) 10.4 ∼20

Heb 11.8 >60

Neb 4.7 16

KBr 2

aMixture of Methanol and Ethanol in a ratio of 4:1.
bCryogenic or gas loading, requiring specialist equipment.

It is therefore important that the sample chamber is large enough initially that

even with this reduction in volume, the sample dose not bridge the chamber walls.

Once a cell is closed there must still be a means of accurately determining

the pressure within the sample space. When DACs were first developed, pressure

was established via measuring the specific volume of a metallic marker (usually

Cu, Mo, Pd or Ag) placed in the sample chamber and calculating the absolute

pressure through the isothermal EoS for these metals [52]. This method, however,

is extremely prohibitive, given the requirement of a dedicated X-ray diffraction

measurement at each pressure. This subsequently lead to the development of the

ruby florescence technique. When excited by laser light, ruby (Al2O3 doped with

0.5% Cr) exhibits two very strong luminescence doublets (R1 and R2 lines). As

pressure is increased, the wavelength λ of this luminescence shift, as seen in figure

3.2. The pressure dependence of this shift was calibrated against the compression

of NaCl up to a pressure of 195 kbar [53], establishing the following dependence:

P =
A

B

[(
1 +

∆λ

λ0

)B
− 1
]

(3.1)

Here A = 1904 GPa and B represents an empirically determined constant taken

as 7.665 in the quasi-hydrostatic case and 5 for the non-hydrostatic case. The

sift of the ruby line ∆λ is with respect to its position λ0 = 694.33 nm at ambient

pressure. The pressure dependence of the R1 line in ruby is now well established
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Figure 3.2: Ruby fluorescence lines R1 and R2 at two different pressures. Using
the shift of the R1 line with respect to its ambient pressure value the pressure can be
estimated via eq.3.1.

up to 150 GPa [54][55].

The diamonds, gasket, PTM and pressure marker are all housed within the

cell body. Through the years, various different DACs have been developed and

adapted, each to match specific experimental needs [56]. The plate DAC, shown in

figure 3.3.a, is the simplest form of a DAC; comprising two opposing steel plates,

separated by three precisely machined pillars and held together by three screws.

To drive the diamonds together, these screws are tightened using a gearbox that

ensures each screw is turned by the same amount, generating pressure while

maintaining alignment. Plate cells are often used when the experiment requires

the use of a microscope, given their minimal height. Their simplicity also results in

a relatively easy sample loading process, given excellent access to both diamonds.

A DAC that utilises a lever arm system to drive the diamonds together [58] is

depicted in figure 3.3.b. One diamond is aligned in the centre of a piston which

is gently pushed into the cell body. The two arms are placed over the piston,

using a specialised gearbox attached to two lead screws, both arms are then

drawn outwards, leading to them pushing the piston into the cell body, generating
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(a) (b) (c)

Figure 3.3: (a) For the plate DAC pressure is generated via tightening three screw
using a separate gearbox [57]. (b) A leaver-arm DAC uses a lever mechanism driven by
a gearbox attached to two lead screws; this design minimises the mechanical stress on
the lead screws as the applied force is amplified by the lever mechanism [58]. (c) The
membrane DAC uses gas pressure inside a membrane to exert force on he anvils [57].

pressure between the two diamonds. This design minimises the mechanical stress

on the lead screws as the applied force is amplified by the lever mechanism. The

cell is often used in low temperature or Raman experiments given its relatively

compact size. The piston-cylinder design however limits access to the diamond

in the cylinder which can impede the loading process.

The membrane DAC, figure 3.3.c, utilises an expandable metallic ring mem-

brane. The membrane is inflated with gas (with pressures up to 300 bar), driving

the diamonds together. This DAC requires additional specialist equipment to op-

erate, but allows for highly accurate adjustments in pressure given the pressure

in the membrane may be adjusted very precisely. The loading of a membrane cell

is similar to that of a plate cell, however, given the extra equipment required to

operate (capillaries attached to a gas cylinder and pressure controller), it is best

suited to experiments where the cell need not be moved.

3.2 X-ray Sources

X-rays serve a wide range of scientific, medical and industrial needs, making

the ability to produce them in a stable and reliable fashion a necessity. All
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X-ray sources operate on the same principle: a charged particle accelerating or

decelerating through a magnetic field will emit electromagnetic radiation [59], this

is known as Bremsstrahlung. When that charged particle has sufficient energy,

the spectrum of electromagnetic radiation emitted reaches into the X-ray region.

In order to achieve this on a laboratory scale, electrons are produced via thermal

emission from a cathode, accelerated by a high voltage and collided with an anode

made of a heavy metal material (with high atomic number Z ) [24]. When these

high energy electrons collide with the atoms in the anode, their trajectories are

altered via the fields created by the atomic electron cloud, resulting in a loss of

kinetic energy and leading to the emission of Bremsstrahlung. The majority of

electrons colliding with the target will lose their energy over a number of collisions,

producing a continuous spectrum of X-rays, shown in figure 3.4.a. The maximum

energy of an X-ray created in this fashion is given by:

Emax = hνmax = hc/λmin = eVmax (3.2)

Vmax =
12.398

λmin
(3.3)

where h is Planck’s constant, νmax is the photon frequency, e is the charge of the

electron, λmin (Å) the wavelength of the photon and Vmax (kV) the accelerating

potential. The minimum X-ray wavelength obtainable via this process is thus

limited by the initial accelerating voltage. With each collision, the probability of

the electron converting all its remaining energy into radiation is very low. As a

result of this the emission spectrum produces maximum intensity at λ ≈1.5×λmin,

see figure 3.4.b.

When the energy of the electron striking the target exceeds certain thresholds,

discontinuous sharp lines appear on top of the Bremsstrahlung spectrum. These

correspond directly to ionisation energies of the target material. Upon collision,

electrons with high enough energy are capable of ejecting electrons from the inner

atomic shells of the anode material. This allows electrons sitting at higher energy

levels to drop down and fill the vacancy, emitting a characteristic X-ray photon

in the process. These emissions are labelled the K, L and M lines, referring to
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(a) (b)

Figure 3.4: (a) X-ray radiation spectrum as a function of the accelerating voltage. (b)
Characteristic emission spectrum of Cu [24].

the process of higher-energy electrons relaxing to fill vacancies in the K, L and M

orbitals [24]. When the two orbitals involved in the emission are adjacent to one

another the line is called an α line, while if they are separated by another shell

they are called β lines. Although all elements have characteristic emission lines,

the two most frequently used by standard laboratory sources are the copper Kα

line, λ = 1.5418 Å, and the molybdenum Kα line, λ = 0.7107 Å.

An alternative method for the generation of X-rays is employed at synchrotron

facilities. These dedicated research sites accelerate charged particles to relativistic

speeds, before utilising a combination of bending magnets and insertion devices

to decelerate the particles and produce X-rays. The “zeroth” generation of syn-

chrotrons were originally built for high energy physics research, taking the form

of particle colliders. Before long, researchers at these facilities found that the

light generated as a by-product of the particle acceleration could be utilised in

separate experiments. Following this they quickly developed secondary projects,

operating simultaneously to their main research.

Eventually, first generation synchrotron facilities were upgraded to include a
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high energy storage ring, designed to provided a continuous, stable source of high

energy radiation. The growth in demand for synchrotron radiation (SR), follow-

ing this upgrade, prompted the building of second generation sources, facilities

dedicated solely to SR research [60]. These were followed shortly by third genera-

tion facilities, such as Diamond light source, which use a series of insertion devices

(wigglers and undulators), built into straight segments of their storage ring, to

generate X-rays ∼1013 times brighter than previously possible. Looking forward,

fourth generation facilities such as the ‘ultimate diffraction-limited storage-ring

X-ray source’ are seeking to exceed even this.

Figure 3.5 shows the basic elements of the synchrotron storage ring at Di-

amond Light Source (DLS). Electron “packages” are first produced via thermal

emission from a cathode. An electron gun then delivers them to a linear acceler-

ator (linac), where they are accelerated and injected into a “booster” synchrotron

ring. Here they reach relativistic speeds with their precise energy dependent on

the facility; Diamond Light Source operates at 3 GeV. Once at the appropriate

speed, the electron packages are passed into the storage ring, where series of bend-

ing magnets keeps them on track. These storage rings are kept under extremely

high vacuum in order to minimise degradation of the electron current (typically

300 mA at DLS) through collision with residual molecules. Even then, this is

not a perfect system, DLS for example has a current degradation of around 2%

over 10 minutes and hence additional electrons are injected every 10 minutes.

Operating in this ”top-up" mode, synchrotrons are able to constantly generate

X-rays for extended periods of time, with a beam cycle typically lasting several

days.

Beginning with second and third generation facilities, insertion devices (IDs),

known as wigglers and undulators, were introduced to produce radiation with

characteristics different to bending magnets. These IDs consist of a series of pe-

riodically spaced magnets with alternating polarity and are built into straight

sections of the storage ring. As electrons travel through such devises, the mag-

netic field exerted on them (Lorentz force) forces them to “wiggle” in the plane
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Figure 3.5: Schematic of Diamond Light Source, showing the key components of a
synchrotron facility [61].

of their orbit. This accelerated motion leads to the emission of X-rays. Wigglers

and undulators serve distinct purposes. Wigglers have an emission spectrum

qualitatively very similar to Bremsstrahlung, however show an intensity increase

proportional to the number of magnets in the array. Undulators on the other

hand utilise interference between emissions from the same electron at different

points along its sinusoidal path, to create a series of sharp emission peaks. In-

sertion devices are therefore used by beamlines to tailor the radiation produced,

increasing flux and optimising specific spectral ranges as required.

3.3 X-ray Diffraction Beamlines

Once generated, X-rays must be guided to the sample and the diffracted X-rays

collected for analysis. This all takes place in the instrumentation comprising a

beamline. The results presented in this thesis were taken on the I15, I19 and B22

beamlines at Diamond Light Source, as well as the laboratory based Xcalibur

diffractometer at Royal Holloway. Given my affiliation with I15, I will use this

beamline to exemplify the beam conditioning and diffraction process.

Before reaching the sample, X-rays are first passed into the optics hutch where

the beam is conditioned for use. I15 uses a wiggler to produce its X-rays, meaning
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Figure 3.6: I15, depicted schematically, specialises in exposing samples to extream
conditions whilst performing diffraction measuements, namely; cryo-cooling, laser heat-
ing and very high pressures. I15 primarilly performs powder diffraction measuremnts,
but is capable of single crystal diffraction if required by the user [58].

initially it receives a wide spectrum of polychromatic radiation. For both powder

and single crystal diffraction the incident beam should be as monochromatic as

possible. I15 achieves this through the use of a double crystal monochromator

(DCM), made up of two cryogenically cooled Si single crystals [58]. The desired

wavelength is then selected by setting the angle of the Si(111) crystal according

to Bragg’s equation. Double-crystal monochromators diffract the incident beam

twice, using two similar crystals, and are hence able to yield extremely narrow

bandwidths (on the order of ∆λ/λ ≈ 10−4). When monochromators are incor-

porated into conventional laboratory based generators, they are even capable of

resolving Kα characteristic emissions into their constituent Kα1 and Kα2 doublets.

From here, the now monochromatic beam is focused on the sample position via

a pair of 1 m long horizontal and vertical bendable mirrors, each made of single

crystal Si. Keeping the angle of tilt below a critical angle (of the order of one

milli-radian) allows for total external reflection of the beam. This critical angle

is proportional to the wavelength of the X-rays and also depends on Z/A, the
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ratio of atomic number and atomic weight of the reflecting material. By bending

the mirrors to an elliptical shape, the image of the X-rays leaving the wiggler is

focussed (de-magnified) at the sample position, achieving a typical spot size of

120×80 µm (horizontal × vertical). Any smaller sizes are produced by collimating

the X-rays via a pinhole, collimation also serves to reduce angular divergence of

the beam. The pinhole itself is an assembly of tungsten disks, each 200 µm thick,

with a 20 - 80 µm hole drilled in their centres, these may be changed so as to

accommodate various sized samples.

3.3.1 X-ray Powder Diffraction Set-up at I15

Figure 3.7: Schematic illustration of Debye-Scherrer cones created by powder diffrac-
tion. Each ring represents many crystals orientated so as to satisfy Braggs law for a
particular hk` plane. The intensity at each 2θhk` is distributed over the entire ring.
Integrating the intensity along the azimuth angle gives the total intensity of the peak
representing that hk` plane.

Diffraction of a powder sample may be thought of as the simultaneous diffrac-

tion of many thousands of single crystal samples, each one orientated at random

with respect to the incoming beam. If every orientation is assumed to be equally
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Figure 3.8: The sample space on the I15 beamline at Diamond Light Source. Here
a leaver-arm DAC, containing the sample, is fixed in a kinematic mount, ready for
exposure. The sample is often rocked around the vertical axis to ensure a good averaging
of the scattered signal. A collimating pinhole and the direct beamstop in front of the
detector are seen to the right and left side of the DAC, respectively.

likely, then all orientations may be considered to be present within the powder.

In an ideal powder, for each hkl plane, there should be present a statistically sig-

nificant number of crystals orientated such that the Bragg condition is satisfied

for that plane.

The projection of the diffracted beam manifests as series of diffraction cones

known as Debye-Scherrer cones, see figure 3.7. On an area detector, these cones

form a series of consecutive rings, centred around the axis of the beam, an example

of this is shown in figure 3.7. The intensity of each hk` plane is distributed over

the entire ring, such that integrating along the azimuth angle provides the total

intensity of the diffracted plane. These rings sit at a distance of D tan(2θhk`) from

the beam centre, where D is the distance between the detector and the sample

and 2θhk` is the scattering angle.

The DAC is mounted at the sample stage via a kinematic mount, designed to

allow the DAC to be removed and replaced at the same position to a high level of
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accuracy (several 10 µm), see figure 3.8. The stage itself is capable of rotating the

sample around a vertical axis and translating it along the directions perpendicular

and parallel to the incoming beam. To centre the sample in the beam, the DAC

is scanned in both directions perpendicular to the beam. A diode, downstream

of the DAC, is used to record the transmitted X-rays as a function of the DACs

position. Once the sample is centred with respect to the X-ray beam it is rotated

about the vertical axis, to check if it is located at the centre of rotation. If this

is not the case a routine is used to correct for any mismatch.

I15 has a number of detectors, although only two area detectors were used in

this thesis: a MAR345 image plate, and a Perkin Elmer flat panel detector.

The MAR345 is capable of absorbing X-rays from a large energy range, 5

keV to 100 keV [62]. The detector has a pixel size of 100×100 µm, with a diameter

of 345 mm and a total cycle time of around 80 seconds, depending on the scan

type. Image plate scanner are virtually noiseless, meaning they are still able to

detect very weak X-ray signals. The image plate itself contains a photo-stimulated

phosphor, typically BaF(Br,I):Eu2+. This compound is able to store X-rays by

pumping electrons from the valence into the conduction band, where they can

stay over longer periods of time. Later, when stimulated by laser light (λ = 630

nm), the trapped electrons return to their ground state, emitting a photon of λ =

390 nm. These photons are counted by a photomultiplier and have an intensity

proportional to the previously absorbed X-rays.

The Perkin Elmer - XRD 1621 is a flat panel detector based on an amor-

phous silicon sensor operating as a two-dimensional photodiode array [63]. The

detector is designed to capture X-rays with energies above 40 keV, with a 2048×2048

square array of 200×200 µm pixels, capable of capturing up to 15 frames per sec-

ond. X-rays are converted into visible light using a CsI scintillator. The light

is then absorbed via the photodiodes and converted into an electrical current.

The resulting current produces an electrical pulse which is then analysed and

interpreted [64].

Before a diffraction experiment is started, the detector geometry must first
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be calibrated. For this purpose a well defined sample, typically Si, LaB6 or CeO2

from the National Institute of Standards and Technology [65], is exposed and

the diffraction pattern captured, see figure 3.10. The result is then analysed

using the Fit2D software package [66] (although more recently I15 has moved to

the DAWN package [67]). Fit2D uses the shape, spacing and intensities of the

resulting diffraction rings to determine parameters such as detector tilt (rotation),

beam centring and sample-detector distance. The software then reduces the 2D

diffraction patterns into 1D diffraction, by integrating over the entire azimuth

angle as a function of 2θ. It is important to mask any single crystal peaks observed

in the diffraction patterns, often arising from the diamonds but also as a result

of poorly ground powder and other impurities in the beam.

3.3.2 I19 at Diamond Light Source

I19 uses an undulator to generate X-rays, with energies ranging between 5 keV

and 25 keV (λ = 2.5 Åto 0.5 Å) [68]. The desired wavelength is selected using

a cryo-cooled double-crystal monochromator (DCM) which is currently equipped

with a Si-111 crystal. The beam is then focused, via a pair of bimorph mirrors, to

a 2 mm diameter at the sample position. Results presented in this thesis used an

energy corresponding to the Zr K-edge (E = 17.998 keV, λ = 0.6889 Å). I19 uses

a Rigaku Saturn 724 CCD detector [68] in combination with a 4-axis goniometer

capable of rotating through nearly every possible angle. The sample was mounted

into a plate DAC, see figure 3.3, designed specifically to maximise the apertures of

the cell and increase access to available diffraction angles, although some positions

are still masked by the cell body.

3.3.3 Xcalibur X-ray Diffraction system

A number of single-crystal diffraction experiments were performed at Royal Hol-

loway, all at ambient pressure. The Royal Holloway physics department is in

possession of an Xcalibur X-ray Diffraction system, pictured in figure 3.9. X-rays

are generated using a molybdenum source, these are then monochromated and
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Figure 3.9: Xcalibur single crystal diffractometer at Royal Holloway

passed through a collimator so as to select a single wavelength of 0.709 Å. X-

rays are then diffracted in transmission through the sample and collected by a

CCD camera, following the same principles for conversion into visible light as are

described for the detectors above. The system is designed to accept samples be-

tween 0.1 and 0.5 mm in thickness. The sample is placed on a 4-axis goniometer

capable of rotating through nearly every possible angle, enabling the capture of

the accessible reciprocal space. The CrysAlisPro software paired with the system

allows for almost complete automation of the measurement process, and includes

a powerful analysis software package, CrysAlisPro.

3.3.4 Refinement of powder and single-crystal diffraction

data

The single crystal diffraction data was collected using the CrysAlisPro software

sweet [69]. This software controls all aspects of the measurement, including ex-

posure times, absorption corrections due to sample geometry and sample orien-

tation. As each exposure is performed, CrysAlisPro records the orientation of

the crystal, with respect to the incident beam and detector. The sample is ro-

tated through real space in order to access as many (hk`) planes as possible,
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see section 2.1.1. Once measurements are complete, each exposure is analysed,

and diffraction peaks identified. CrysAlisPro then builds a 3D map of reciprocal

space, occupying it with diffraction peaks. Although this software does offer some

basic symmetry analysis, for full analysis the diffraction data is imported into a

crystallographic refinement software, in this case Jana2006 [70].

Figure 3.10: Integrated intensity vs. 2θ pattern of a Si calibration sample. Refinement
of the pattern has determined λ = 0.429 Å, with a sample to detector distance of 624.171
mm. The inset shows the Si powder diffraction detector image of the pattern presented,
as captured with the Mar 345 image plate detector on the I15 beam line.

The powder diffraction patterns presented in this thesis were analysed using

the Topas refinement package [71]. In this work a Le Bail type refinement was

used, requiring the user to know the space group and approximate lattice param-

eters. A theoretical diffraction pattern is then calculated with the addition of an

nth order polynomial (background) when required. Theoretical diffraction peaks

are modelled using a pseudo-Voigt peak function [72], which is a convolution of

a Gaussian and a Lorentzian distribution:

fpV (x) = (1− η)fG(x; γG) + ηfL(x; γL) (3.4)

where fG(x; γG) and fL(x; γL) are the normalised Gaussian and Lorentzian func-
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tions, with FWHM Γ = 2(ln2)1/2γG = 2γL,

fG(x; γG) = (1/π1/2γG)exp(−x2/γ2
G) (3.5)

and

fL(x; γL) = (1/πγ)(1 + x2/γ2
L)−1 (3.6)

and η is a parameter which mixes the two functions [72].

Topas then determines the difference between the calculated and measured

pattern and employs a least squared fitting algorithm, adjusting the lattice pa-

rameters to minimise the differences between the two. This refinement process

looks to minimise the quantity:

Sy =
∑

wi(yi − yci)2 (3.7)

Here yi and yci are the measured and calculated intensities at the ith 2θ position

respectively, and wi is a weighted factor equal to 1/yi. The overall goodness of

fit of the refinement is calculated, giving the weighted profile factor Rwp, by the

following equation:

Rwp =

(∑
iwi(yi − yci)2∑

iwiy
2
i

) 1
2

(3.8)

The goodness of fit and the interpretation of the Rwp value is often limited by

the background present in the diffraction pattern.

Given pressure cells inherently produce data with a higher level of background,

the Bragg or intensity R-factor is a better indicator as it provides a measure of

agreement between the intensities calculated by the model and those observed in

the measurement. The Bragg R-factor is given by [71]:

RBragg =

∑
i |I iobs − I icalc|∑

i |I iobs|
(3.9)

where Iobs and Icalc are the 2θ positions of the ith peak of the observed and

calculated patterns. The RBragg goodness of fit hence relies only on the position

of the peaks rather than their profiles.
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3.4 Light Scattering

There are many ways in which the interactions between matter and the electro-

magnetic spectrum may inform us about the inner workings of a material. Minute

changes in the wavelengths of scattered photons allow us to build a picture of

inter-atomic structures and vibrations, while the absorption of specific energies

can reveal details regarding the chemical composition of substances. This sec-

tion will provide an overview of two such techniques, used in this thesis, namely

Raman and Infrared (IR) spectroscopy.

3.4.1 Raman Spectroscopy

Raman spectroscopy utilises slight shifts detected in the wavelength of a scattered

photon, to probe the inter-atomic vibrations (phonons) of a system. These subtle

changes are often indicative of far more complex transition in the structural,

electrical or magnetic state of the compound, making Raman spectroscopy ideal

for preliminary investigations. The measurement process itself is non-destructive

to the sample and requires no specialised mounting or sample preparation, while

the systems are relatively cheap and have very low running costs. This makes

Raman spectroscopy an ideal first step in any structural investigation.

The principle of Raman spectroscopy is straight; positioning a molecule in an

electric field E induces a dipole moment p within that molecule. The relation

between this induced moment and said electric field is expressed by the power

series:

p = αE +
1

2
βE2 +

1

6
γE3... (3.10)

where α β and γ are the tensor values for polarisability, hyperpolarisability and

2nd hyperpolarisability respectively. Given α ∼ 10−40 C·V−1 and β ∼ 10−50

C·V−2, in practice, β and γ reduce by a factor of 10 billion each time and are

hence usually negated [73]. This leaves the dependence of the induced moment

p directly proportional to the electrical field:

p = αE (3.11)
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The polarisability of the sample varies as inter atomic distances change due to

lattice vibrations. This periodic variation may be modelled as:

α(t) = α0 + αv cos(2πvpt) (3.12)

where α0 is the polarisability in equilibrium position and αv is the change in

polarisability during a vibration of frequency v. From this equation it is clear

that a phonon is only Raman active if αv 6= 0.

We may consider light as an oscillating electrical field, described by:

E(t) = E0 cos(2πvλt) (3.13)

where E0 is the maximum field value, vλ the frequency of the photon and t is

time.

Combining these models brings us to an approximation of the induced dipole

moment relative to the internal vibration and the frequency of the incident pho-

ton:

p = α0E0 cos(2πvλt) + αvE0 cos(2πvpt) cos(2πvλt) (3.14)

which equates to:

p = α0E0 cos(2πvλt) +
1

2
E0[cos(2π(vλ − vp)t)− cos(2π(vλ + vp)t)] (3.15)

Thus, we see it is possible to split the induced dipole moment into 3 components,

each with a different frequency. The first term corresponds to the elastic scat-

tering (Rayleigh scattering ) of light, possessing the same frequency and hence

the same energy as the incident photon, vλ. The 2nd and 3rd terms describe the

inelastic scattering of light, known as Raman Scattering. The energy gain term

is known as Anti-Stokes scattering and the energy loss side as Stokes scattering.

This process is depicted schematically in in figure 3.11. Given there are exponen-

tially fewer molecules starting in the higher energy vibrational state, the intensity

of anti-Stokes scattering is far less than that of Stokes scattering.

When performing a Raman measurement, an intense, monochromatic beam

of electromagnetic radiation (usually a laser) is focussed on the sample. The
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Figure 3.11: Schematic energy level diagram illustrating the processes that occur
during Raman and Rayleigh scattering.

intensity of scattered radiation is measured as a function of wavelength, and

typically presented as a function of the Raman wavenumber, ω, expressed in

cm−1. This relates to the difference in frequency between scattered and incident

light via the expression:

ω =
νm
c
− ν0

c
(3.16)

Where νm and ν0 are the frequencies of scattered and incident light respectively

and c is the speed of light [73].

The Raman spectra presented in this thesis have been measured at I15, using

a LabRam HR800 spectrometer, available in one of the peripheral laboratories

of the beamline [58]. In order to excite Raman-active phonons, either a 532 nm

(green) or 473 nm (blue) laser is used. Spectra may be obtained above 100 cm−1

and the spectral coverage determined by the gratings (1200 or 1800 grooves per

mm) used. Results presented in this work were collected using the grating with

1200 grooves/mm and captured using a Peltier-cooled CCD, kept at an operating

temperature of -70◦ ∼C.

A built in microscope allows the system to focus on µm scale samples, nec-

essary for DAC experiments. For alignment, the sample is illuminated using an

in-line white light, operating in both reflection and transmission and observable
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via a live camera feed, used to position and focus on the sample. The sample

stage itself has a full range of motion in the x, y and z axis, with a very high

degree of accuracy (µm scale) so as to allow focusing on the very small samples

found in DAC experiments.

3.4.2 Infrared Spectroscopy

Infrared (IR) spectroscopy relies on the absorption of IR radiation by matter.

When the frequency of a vibrational mode matches that of the incident photon,

that photon may be absorbed by the system, increasing the energy of that system.

The resulting absorption lines observed in the spectra are proportional to the

energy difference between the vibrational ground and excited states. For a lattice

vibration to be IR “active” it must associate with a change in the dipole moment

of the system.

The IR region of the electromagnetic spectrum may be broken into three

parts; near infrared (NIR) contains the higher energy portion of the spectrum, λ

= 0.8 to 2.5 µm, and can be used to excite higher harmonic structural vibrations.

The mid-IR range covers λ = 2.5 to 25 µm and is used to study fundamental

vibrations. Finally, far infrared (FIR) lies on the border of the microwave region,

λ = 25 to 1000 µm , and is used primarily in rotational spectroscopy.

The IR-absorption experiment were conducted at beamline B22 at DLS. B22

specialises in Infrared Micro-Spectroscopy and Infrared imaging. The IR radiation

produced at B22 spans the entire IR spectral range, extending from near-IR (λ

= 700 nm - 2500 nm) up to the far-IR or THz region (λ = 15 µm - 1 mm) and is

between 100 and 1000 times brighter in the mid-far-IR region than conventional

broadband IR sources [74].

Mounting a DAC onto the B22 Hyperion 3000 IR microscope requires the use

of a custom plate fitted to the mapping stage. Fine alignment of the beam is

optimised to the aperture of the DAC with only partial clipping by the cell, due

to the limited numerical aperture of the DAC. The full synchrotron Radiation

Infrared beam (at 233 mA) was delivered in standard 15× reflection and trans-
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mission modes. A standard Ge coated lowpass filter limits the spectral range

below 3950 cm−1. B22 uses a Bruker Vertex 80 V FTIR detector, with a scanner

velocity of 40 kHz and spectral resolution of 4 cm−1.

3.5 Neutron Scattering

Thermal neutrons possess four key characteristics that make them an excellent

tool for probing the many important features of matter. Their wavelength range

in the order of inter-atomic distances, allowing for scattering and diffraction,

while the fact they possess no charge means they scatter directly from the atomic

nuclei via the nuclear force. Neutrons have a magnetic moment, meaning they

interact with unpaired electrons. Elastic scattering from these magnetic ions pro-

vides information on the arrangement of electron spins and density distributions.

Inelastic scattering gives the energies of the magnetic excitations. Finally, the

energies of neutrons are of the order of atomic excitations, meaning that when

scattered inelastically, via the creation or annihilation of an excitation, their

change in energy is easily measured. This section will explore the nature of these

scattering events, as well as provide an overview of the measurement process.

3.5.1 Neutron Sources

Neutron sources, designed specifically for research, typically operate in one of

two ways, generating neutrons through spallation of heavy nuclei by accelerated

particles or through fission processes confined within a nuclear reactor [24]. Reac-

tor sources provide a constant flux of thermal neutrons, while spallation sources

are used to produce bursts of neutrons, generating a beam with a time structure

dependent on the frequency with which incident particles strike the target. The

work of this thesis has utilised only reactor based sources.

Much like their energy providing counterparts, scientific reactors are built

based on generating controlled fission reactions [75]. Neutrons are absorbed by

nuclei of 235U, exciting them and causing them to fragment into nuclides of a lower
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Figure 3.12: The Maxwellian distribution of thermal neutrons from a nuclear reactor
source [24].

atomic number. This process releases, on average, ∼2.5 neutrons. Of these, 1.5

are reabsorbed by the reactor fuel, continuing the fission process, and 1 escapes,

emitted with an energy of ∼2 MeV. The majority of the energy created in the

fission reaction (∼200 MeV per event [75]) manifests as heat, the management of

which quickly becomes the limiting factor of any reactor design. A reactor with a

thermal power of 1 MW will radiate 3×1016 neutrons/s globally; these must then

be extracted from the core and guided to the instrumentation. The flux available

at the sample site is hence proportional to the core’s neutron density, the solid

angle of extraction from the core and the efficiency of the guides’ reflectivity.

For example, obtaining a flux of 1015 n/cm2s at the instrumentation requires a

reactor with a thermal power of the order of 60 MW.

Despite their vastly inferior intensities, where neutrons excel over X-rays is in

their ability to resolve excitations within a compound [75]. However, while typical

excitation energies are on the order of tens of meV or less, neutrons emitted from

the core have an initial energy of 2 MeV (λ ≈ 0.0064 Å). Therefore neutrons

must first be “cooled” before they interact with the sample. This is done through

collisions with light elements, H, D or Be. Once in thermal equilibrium with

these moderators the neutrons, now called thermal neutrons, take on an energy

distribution described by a Maxwellian spectrum, see figure 3.12. The typical

naming conventions for neutron energies are provided in table 3.2.
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Table 3.2: Typical parameters of neutron beams [24].

E(meV) λ(Å) ν(m/s)

Epithermal neutrons 8180 0.1 39560

Hot neutrons 327 0.5 7912

Thermal neutrons 36.4 1.5 2637

Cold neutrons 0.818 10.0 396

Ultra-cold neutrons 0.00818 100.0 40

A modest estimate for the energy resolution of a detector would be ∼10%

(∆E/E) [75]. This puts the resolution of a thermal neutrons with E ≈36 meV

around∼3 meV. By comparison, X-rays, with energies between 5 keV and 15 MeV,

would have a maximum energy resolution around ∼500 eV. As such neutrons are

often used to probe structural or magnetic (phonons and magnons) lower-energy

excitations within a material.

3.5.2 Triple Axis Spectrometry

Much like X-rays, once generated neutrons are tailored to their specific task,

guided to the sample and the scattered neutrons collected for analysis. Although

the instrumentation is, necessarily, physically different, the laws informing its op-

eration remain largely the same. This thesis presents data collected through both

elastic and inelastic neutron scattering, with the use of triple-axis spectrometers

at the FRM II reactor in Munich Germany [76] and the ORPHEE reactor at LLB

in France [77].

Triple axis spectrometry (TAS) acquires its name from the three axes of ro-

tation central to the process; namely the monochromator, the sample and the

analyser. These are indicated in figure 3.13, along with scattering angles, 2θM

scattering from the monochromator, 2θS scattering from the sample and 2θA scat-

tering from the analyser. The incident, ki, and final, kf , scattering vectors of the

neutron are also shown.
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Triple axis spectrometry requires a constant beam of neutrons for diffraction

and hence a reactor based source. In order to attain the highest levels of neutron

flux, detectors are often constructed right next to the reactor core. Where this

is not an option, neutrons are guided down a beam pipe to their research station

targets, much like a beam line at a synchrotron facility. However, unlike the

highly collimated beam produced by synchrotrons, neutrons emerge from the

reactor with a high level of angular divergence, making collimation far more

important in the beam conditioning process.

Once collimated, neutrons are projected onto a single crystal monochromator

(typically Cu(111), Si(111) or pyrolytic graphite (PG) (002)), where a single

wavelength is selected, again utilising the diffraction angles dictated via Braggs

Law. Adding curvature to monochromators allows them to also serve as focussing

mirrors, the aim being to create a beam with geometry similar to the dimensions

of the sample under inspection. An artefact of the energy selection process is that

monochromators will also reflect neutrons of higher order wavelengths, e.g. 2ki,

3ki... etc. These higher order neutrons will contribute to the neutron monitor

count, however are far less likely to be scattered by the sample and as such must

be corrected for, either through instrumentation or in the analysis process.

Once the single energy is selected, the beam is focused on and diffracted by

the sample. The sample sits on a stage mounted on a two axis goniometer,

capable of rotating or tilting the sample to a very high degree of precision. The

majority of facilities will also have the ability to control the sample environment,

changing parameters such as temperature, pressure and magnetic field strength

at the sample position.

Incident neutrons scatter from the sample position in all possible directions

with a range of energies. The analyser sits at an angle 2θS, with respect to

the beam incident on the sample, and selects neutrons of a specific energy, di-

recting them towards the detector. Analysers operate under the same principles

as monochromators, utilising Braggs law to select and focus specific wavelengths.

For the majority of TAS experiments, kf is held constant. From this, the neutron
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Figure 3.13: Schematic diagram of a triple axis spectrometer, showing the arrange-
ment of the source, monochromator, sample, analyser and detector.

energy loss is calculated via:

h̄ω =
h̄2(k2

i − k2
f )

2mn

(3.17)

where mn is the mass of a neutron and ω is its angular frequency.

3.5.2.1 MIRA-2 - FRM II

The Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) reactor, at the

Technische Universität München (TUM), is a heavy water moderated reactor with

a thermal power of 20 MW, producing a neutron flux of up to 8×1014 neutrons

cm−2s−1 [76]. The core is an aluminium - U3Si2 alloy, containing ∼8.1 kg of

enriched 235U and is capable of running for 60 days at full power. The cold

neutrons used by the MIRA instrument are produced via a liquid deuterium (D2)

moderator, kept at a temperature of ∼25 K. Wavelengths are selected using a

horizontal focusing highly oriented pyrolytic graphite (HOPG) monochromator,

capable of selecting wavelengths between λmin = 3.5 Åand λmax = 6 Å. Scattered

neutrons are collected via an analyser consisting of 2 cavities and a 3He-spin

filter. MIRA-2 uses a 1 inch 3He finger detector. The MIRA-2 triple axes system

sits on a series of motorised tables, which enables extremely fine control of the

diffraction geometry and allows the system to resolve energies down to ∼220 µeV,
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dependent on ki.

For the measurements on MIRA presented in this thesis, the sample has been

mounted in a dry fridge with a base temperature of ∼7.2 K [76]. The MAG-2.2T-

HTS magnetic sample environment was used, capable of producing fields up to

±2.2 T, with a homogeneity range of � = 15 mm.

3.5.2.2 TAS 4F2 - LLB

The ORPHEE reactor found at the Laboratoire Léon Brillouin (LLB) is a swim-

ming pool type reactor with a thermal power of 14 MW and a flux of 3×1014

neutrons cm−2s−1 [78]. The core is an aluminium - uranium alloy, enriched with

6 kg of 235U, which requires renewal every 100 days. The cold source, used by the

4F instrumentation, is mediated via liquid hydrogen and has a flux of 17.5×109

neutrons cm−2s−1, providing a flux at sample of ∼3.5×106 neutrons cm−2s−1.

Neutron energies are selected using a double crystal monochromator (DCM) set-

up of pyrolytic graphite, capable of selecting wavelengths between λmin = 2 Å

and λmax = 6 Å. Scattered neutrons are then collected via an analyser consisting

of a combination of pyrolytic graphite and Ge(111). The detector is 3He based

with dimensions, � = 5 cm h = 15 cm. The 4F2 triple axis system sits on a

series of motorised tables, which enables extremely fine control of the diffraction

geometry and allows the system to resolve energies down to ∼220 µeV, dependent

on ki.

For the measurements at 4F2 presented in this thesis, the sample has been

mounted into a 4He cryostat with base temperature of 1.5 K [78].
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Chapter 4

Exploration of NbFe2

The Nb1−xFe2+x system displays a rich magnetic phase diagram over a very small

doping range. What truly marks this as a system of particular interest, however,

is the non-Fermi liquid like behaviour indicative of ferromagnetic quantum crit-

icality in the region where the border of magnetism is masked by a spin density

wave (SDW) phase [79, 80] (section 4.1). In Section 4.2 previous knowledge of

the Nb1−xFe2+x system is reviewed. Section 4.3 contains the observation of the

response of the SDW phase to a magnetic field. In Section 4.4 the low-energy

excitation spectrum at zero field of slightly Fe-rich Nb0.981Fe2.019 is presented.

4.1 Instability of Ferromagnetic Quantum Critical

Points and masking by modulated order

As has been mentioned in previous sections, the exploration of ferromagnetic

quantum phase transitions in metals has been under close inspection in recent

years, leading to a number of theoretical and experimental studies [6]. These

investigations have revealed numerous examples of non-Fermi liquid states [7, 9]

and unconventional superconductivity [8, 81, 82], however have not been able to

answer the question: can a ferromagnetic quantum critical point exist in clean

band magnets. To date, systems with the potential of possessing a FM QCP

instead present one of two avoidance scenarios; the transition becomes first order
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(discontinuous) in nature [83] or, the low temperature order of the system changes

completely, be that to some nematic order or a long-wavelength spin density wave

state [84].

Ferromagnetic quantum phase transitions have been traditionally described in

terms of the generalised Landau-Ginzburg-Wilson approach of free energy func-

tionals, it has however been found that additional non-analytical corrections are

required to describe these states accurately. The intuitive interpretation of this

is that fluctuations in an excitation spectrum, the disorder of a system, may sta-

bilises phases, presenting a new order that would not be stable in their absence

[85]. This mechanism is referred to as order by disorder. The fundamentals of this

theory are that changes in the Fermi surface of a system, for example through

the introduction of some order parameter, modify the electron dispersion. As a

result, this reconfigures the spectrum of low-lying excitations and hence shifts the

zero-point energy of the fluctuations.

A key prediction of order by disorder is the increase of the spiral ordering

wavevector with temperature. This is observed clearly in PrPtAl which, rather

than a simple FM-PM transition, presents three separate transitions in close

proximity [86]; the first, around ≈5.85 ±0.05 K, to a doubly modulated incom-

mensurate spin density wave state, then to a single incommensurate modulation

of different period about ≈ 5.5 ±0.2 K and finally to uniform ferromagnetism be-

tween 5.04.3 K. This is observed in both neutron and resonant X-ray scattering

results across multiple samples, with signatures of the transitions also present in

thermodynamic measurement such as heat capacity and d.c. and a.c. suscepti-

bility.

Similar to this, Sr3Ru2O7 offers an example of a field-tunable metamagnetic

quantum phase transition masked by SDW order [87]. Here the system undergoes

a rapid increase in magnetisation, from 0.2 to 0.35 µBRu−1, near the metamag-

netic field, BC ≈ 7.95 T, which, however, is masked by a 1 T region of two distinct

SDW phases. The relatively small field range in which this ordered state exists

suggests that their origin is due to a new mechanism related to the details of the
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electronic structure near the Fermi energy, possibly combined with the stabilising

effect of magnetic fluctuations.

Nb1−xFe2+x presents as an ideal candidate for the investigation of the SDW

scenario in a clean itinerant system, due to the presence of a ferromagnetic phase

transition extrapolating to zero temperature at zero field.. This allows for a

multi-probe approach, with particular attention paid to neutron scattering [39].

4.2 Properties of Nb1−xFe2+x

Figure 4.1: (left) Crystal structure of NbFe2 with sites Fe(6h) red, Fe(2a) blue, and
Nb(4f) gray. (right) View along the c axis. The upper and lower kagome layers formed
by the Fe(6h) sites are separated into red and green, respectively. Red Fe(6h) shows
upper kagome, green Fe(6h) shows the lower kagome, while Fe(2a) sites are blue and
Nb(4f) sites are grey. Images taken from [88]

NbFe2 crystallises in the hexagonal C14 Laves phase, space group P63/mmc,

see figure 4.1. The unit cell consists of 4 formula units, 8 Fe atoms and 4 Nb

atoms. Within the unit cell, the Fe atoms occupy two distinct sites, 2a(0, 0, 0)

and 6h(y, 2y, 3
4
). Together, these form a layered structure consisting of a kagome

lattice (Fe(6h)), separated by Fe(2a) atoms centred on the line drawn between

alternate kagome triangles [89]. The Fe atoms situated at these two distinct sites

may, in principle, host two different magnetic moments. Nb atoms occupy the
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interstices in the Fe structure at the 4f(1
3
, 2

3
, x) site, lying slightly out of plane

with respect to the Fe(2a) atoms, and are hence considered to lie within Fe cages.

Amongst Fe sites, nearest neighbour distances between Fe(2a) and Fe(6h) sites

are similar, Fe(2a)-Fe(6h) = 2.42 Å, Fe(6h)-Fe(6h) = 2.37 Å, meaning that, when

doping, the dopant site is likely determined by the bonding network of Fe cages

rather than the volume available at the site [88].

Nb1−xFe2+x is metallic, with its electronic properties governed by the 3d or-

bitals of Fe and 4d orbitals of the Nb atoms [90]. Experimentally, at low temper-

atures, Nb1−xFe2+x reveals a rich phase diagram across a narrow range of compo-

sitions, x = -0.06 to 0.04 [80, 91, 92], shown in figure 4.2. The high temperature

PM phase is characterised by a clear Curie-Weiss behaviour in the inverse sus-

ceptibility [93]. Further susceptibility measurements point towards this being an

easy c axis system [94].

Figure 4.2: Temperature vs doping phase diagram of Nb1−xFe2+x , adapted from [12].

The Fe-rich compositions at x = 0.04 is found to exhibit remanent magnetisa-

tion below the Curie temperature TC ≈ 70 K and is thus labelled ferromagnetic

[92]. This transition is also seen as a kink in the resistivity temperature depen-

dence Tρ [80], see figure 4.3. At lower temperatures, hysteresis loops are observed

in the M(H) curves. As x decreases so too does TC , being suppressed to zero
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Figure 4.3: (left) Resistivity ρ of Nb1−xFe2+x with x = 0.015. Clearly visible is the
FM transition temperature at TC = 25 K. At this point the ρ is seen to follow a T

5
3

law, shown in lower inset. The magnetoresistance is almost flat at 100 mK, upper inset.
(right) Temperature dependence of dc magnetic susceptibility for Nb1−xFe2+x samples
with x = 0.04 and x = −0.035. Results are taken from [91].

temperature near stoichiometry [92].

At the border of FM, evidence for a further magnetically ordered phase has

been found [94]. The transition temperature TN into this phase has been initially

observed in magnetisation and NMR measurements [93]. TN is also clearly visible

in the magnetic susceptibility and magnetoresistnance measurements [95]. The

phase appears at a Lifshitz point located near x = 0.02 at 38 K [91] and TN

extrapolates to zero at x ≈ -0.015.

The lack of any ordered moment in the magnetisation previously suggested

that this phase is characterised by a modulated magnetic order. Recent electron

spin resonance (ESR), muon spin relaxation (µSR) and Mössbauer spectroscopy

studies have, pointed to a spin density wave (SDW) as the order of this phase

[96]. This has since been verified, using neutron scattering measurements [39].

For x = 0.0019, at T = 36.4 K a magnetic ordering wavevector QSDW = (0 0

`SDW ) with `SDW = 0.095 r.l.u. is observed. Meanwhile, `SDW displays a T and

x dependence where `SDW decreases on approaching the FM phase, but remains

finite up to Tc.

Beyond x = -0.015 the system enters a second FM state [93], however demon-

strates qualitative differences to the Fe-rich FM phases, confirming the two states
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are different in nature [91]. The FM states are demonstrated to be intrinsic to the

C14 Laves phase, rather than originating from an impurity phase, as suggested

by [88].

There has been significant effort to simulate the effects of both Nb and Fe Dop-

ing using density functional theory calculations (DFT) [88, 89]. At stoichiometry,

Figure 4.4: Potential spin configurations of Fe atoms in NbFe2. Configuration (c),
having the lowest energy, is believed to represent the ground state of the stoichiometric
system [89].

x = 0, the lowest energy and hence dominant order is ferrimagnetic [89]. Here,

Fe(2a) sites have a moment of 1.18 µB while each Fe(6h) has 0.75 µB in the oppo-

site direction, this is shown in figure 4.4.c. Supporting this, a combination of ab

initio calculations and spin-dependent Compton scattering was used to determine

a ferrimagnetic arrangement of Fe moments, through which the Fe(2a) sites were

found to align antiparallel to the bulk moment [88].The disparities found between

experimental and computational results show that the DFT models used do not

capture all of the physics relevant for the Nb1−xFe2+x system.

An important aspect of Nb1−xFe2+x seems to be the presence of strong elec-
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tronic correlations [80]. This is characterised by a very high magnetic susceptibil-

ity, χ ∼ 0.02, along with an enhancement in the specific heat capacity Sommerfeld

coefficient of γ = C/T ' 45. This results in a Wilson ratio of RW ' 60, suggesting

extreme proximity of ferromagnetism.

This is particularly apparent at x ≈ -0.015, where the SDW is suppressed.

Here, the resistivity and heat capacity deviates from conventional Fermi-liquid

behaviour, implying the presence of a quantum critical point (QCP) [91, 97,

80, 39]. Measurements at x = -0.01 reveal a T 3/2 power-law dependence of the

resistivity ρ as well as a logarithmic temperature dependence of the Sommerfeld

coefficient γ = C/T . This spans near 2 orders of magnitude in T , extending down

to 0.1 K [80].

4.2.1 Nb0.981Fe2.019 - OFZ28 Growth and Characterisation

The Nb0.981Fe2.019 crystal presented here (OFZ28.3.2.4) was grown and charac-

terised by Dr. William Duncan, in collaboration with Andreas Neubauer and

Wolfgang Münzer. Seed and feed rods were grown in the radio frequency in-

duction furnace at Royal Holloway, before the crystal was then grown using the

ultra high vacuum (UHV) optical floating zone (OFZ) furnace, at the E21 in-

stitute of the Technical University Munich, which has been adapted for metallic

growths. The growth rods were rotated via a magnetic mechanism, allowing the

atmosphere to remain completely isolated, and the chamber connected to a turbo

pump generating a vacuum of ≤ 10−9 mbar. The feed and seed rods used 99.99%

Puratronic niobium powder and 99.99% Puratronic iron powder, which were de-

gassed in UHV down to 10−8 mbar, prior to being melted into rods. The Nb bar

was then annealed in an UHV radio frequency furnace at ∼ 2400◦C, for one week.

The single crystal was then characterised extensively via resistivity, suscep-

tibility and magnetisation measurements, as well as by X-ray diffraction and

neutron depolarisation [98]. Neutron diffraction reveals the OFZ28 growth to be

polycrystalline in nature, with several regions. Towards the end of the growth

rod is a large section of single crystal Nb0.981Fe2.019, with mosaicity between 0.3◦
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Figure 4.5: Temperature vs doping phase diagram of Nb1−xFe2+x , displaying the
positioning of the Fe-rich OFZ28 sample, adapted from [12].

and 0.4◦. Depolarisation measurements were performed on the entire rod which

showed a wide range of depolarisation temperatures.

A range of physical property measurements were performed on the sample, in

both c||H and a||H orientations. Real and imaginary parts of the AC suscepti-

bility show a maximum at 29.5 K for c||H and 28 K for a||H, although there is

no corresponding peak or anomaly in any resistivity measurements.

4.3 Neutron Diffraction

As described in previous sections, the Nb1−xFe2+x composition-temperature phase

diagram, in zero field, contains a spin-density wave (SDW) phase, at the ferro-

magnetic quantum phase transition. This section investigates the evolution of

that SDW state, with increasing field. In particular, the field-temperature phase

diagram, for H||c, of a sample with composition Nb0.981Fe2.019. This experiment

was performed at the FRM II facility on the MIRA triple axis spectrometer. The

ac scattering plane was chosen.
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4.3.1 Data Analysis

Data is first normalised to a monitor value of 140,000 counts, corresponding

to an exposure time of ≈5 minutes. Data is fitted using a standard Gaussian

distribution plus constant background:

f(x) = ae
(x−b)2

2σ2
x + c (4.1)

where a is the peak intensity, b the peak position in Q(SDW,x), σx the standard

deviation and c the constant background. The Full Width at Half Maximum

(FWHM) is calculated using the formula:

FWHM = 2
√

2ln2σx ≈ 2.355σx (4.2)

In order to generate the phase diagram, intensities, I(B, T ), were calculated using

the following formula:

I(B, T ) = FWHMl × FWHMh × al (4.3)

Only the amplitude of the ` scans are used in this determination due h scans not

always passing precisely through the peak maxima, due to the T dependence of

QSDW .

4.3.2 Diffraction Results

Measurements were performed over a wide region of the temperature - field space,

as shown in figure 4.6. Presented below are a number of measurement sets exem-

plifying the diffraction of neutrons by the magnetic order at key T −B positions.

Scanning first in temperature, at zero field, we see clear magnetic diffraction

at (1 0 2-`SDW ), with `SDW ∼ 0.092, between 30 and 36 K, see figure 4.7. As the

temperature is lowered towards TN , at ≈ 37 K, a broad peak begins to emerge

signalling the onset of the SDW phase. The amplitude of this peak reaches its

maximum at T ≈ 33 K and is then completely suppressed again by T ≈ 30

K. This suppression is expected given the observation of ferromagnetism below
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Figure 4.6: Field-temperature phase diagram of the SDW order found in
Nb0.981Fe2.019. The position of the diffraction measurements shown in figures 4.7, 4.8
and 4.9 are marked by the red dashed lines. A rough phase boundary, serving purely
as a guide to the eye, is shown by the solid black line.

TC ≈ 32 K [80]. This rise and fall of intensity is shown in figure 4.7.a, calculated

via equation 4.2 and normalised to the peak at 33 K and 0 T. As temperature

is decreased, the FWHM of the SDW peak remains fairly constant, broadening

very slightly at lower temperatures (figure 4.7.b). While, in the ` direction at

least, the SDW peak is observed to shift towards the nuclear position at lower

temperatures (figure 4.7.c).

With zero external field, the highest SDW diffraction intensity is found at 33

K, just above the critical temperature of TC ≈ 32 K. Figure 4.8 shows diffraction

at the QSDW position of (1 0 -2-`SDW ) at fields between 0.0 T and 0.06 T. As

the field strength is increased, the magnetic ordering is suppressed and the peak

amplitude reduced, with complete suppression just after Hc ' 0.02 T. Figure 4.8

shows only the measurements made with decreasing field, however measurements
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Figure 4.7: (top) Temperature dependence of neutron diffraction of the SDW satellite
peak near (1 0 2.092) between 38 K and 29 K in zero field. As temperature decreases,
the magnetic order emerges around the ordering temperature TN ≈ 37 K, increases to
a maximum amplitude at 33 K, then decays completely by 30 K. (a) Normalised peak
intensity vs temperature, showing a maximum at 33 K. Values are calculated using
equation 4.2. The large error at 32 K is due to poor h scan data. (b) Evolution of
the full width at half maximum with decreasing temperature. The area marked by the
dashed lines indicate the FWHM of the nuclear peak. (c) ` position of the SDW peak.

with increasing field strengths yielded similar results, shown in figures 4.8.a-c.

Here the effect of increasing field is clearly visible; intensity decreases, the FWHM

remains roughly constant and the Q(SDW,`) value shifts towards the nuclear peak

at lower fields.
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Figure 4.8: (top) Field dependence of neutron diffraction of the SDW satellite peak
near (1 0 2.092), at 33 K. As the field strength is increased, order is suppressed. Be-
tween H = 0.02 and H = 0.03 T the SDW order fully disappears. Only down sweep
measurement are shown for clarity.(a) Normalised peak intensity vs field at 33 K, as
field is increased the peak intensity is suppressed. Values are calculated using equation
4.2. (b) Evolution of the full width at half maximum value with increasing (red) and
decreasing (black) magnetic fields. The area marked by the dashed lines indicate the
FWHM of the nuclear peak at 33 K. (c) ` position of the magnetic Bragg peak, from
measurements with increasing (red) and decreasing (black) field.

Figure 4.9 shows the temperature dependence of neutron diffraction at the

QSDW position at a constant field of 0.01 T. Measurements were taken with

both decreasing and increasing temperature sweeps. The SDW order begins to
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Figure 4.9: (top) Temperature dependent neutron diffraction of the QSDW position
in Nb0.981Fe2.019 at H = 0.01 T. As temperature decreases, the magnetic order emerges
around the ordering temperature TN ≈ 37 K, increases to a maximum amplitude at 33
K, then decays completely by 30 K. (a) Normalised intensity vs temperature plot at
0.01 T. Visible is a clear maximum at 33 K, amplitude decreasing out to 30 and 36 K.
Values are calculated using equation 4.2. The large error at 32 K is due to poor h scan
data. (b) Evolution of the full width at half maximum value with increasing (red) and
decreasing (black) temperatures at H = 0.01 T. The area marked by the dashed lines
indicate the FWHM of the nuclear peak at 0.01 T. (c) ` position of the SDW order
peak, from measurements during heating (red) and cooling (black).

emerge at 36 K, just below TN ≈ 37 K at zero field, increases to a maximum

coherence at 33 K and then decaying, disappearing by ≈30 K. Despite a very

similar temperature range to the zero field measurements, the intensities of the
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diffraction peaks at 0.01 T are slightly weaker, indicating some suppression of the

order. This is clear when comparing figures 4.7 and 4.8. Comparison of heating

and cooling data sets show the peak amplitudes, FWHM and peak position values

to remain consistent, within the established error.

4.3.3 Discussion

The final temperature-field phase diagram is presented in figure 4.10. The relative

diffraction peak intensities have each been normalised to the 33 K, H = 0 T peak,

given this position shows the strongest diffraction. This diagram clearly show

the existence of a SDW region between ≈ 30 K and 36 K, the darker regions

indicating a stronger order. This spin density wave ordering is suppressed via the

introduction of an external field, becoming undetectable after ≈ 20 mT at 33 K.

Away from 33 K however, this critical field reduces rapidly, the parabola in figure

4.10 serving as a guide to the eye and indicating a suggested phase boundary.

Figure 4.10: Field-temperature phase diagram of the SDW order found in
Nb0.981Fe2.019. The position of the diffraction measurements shown in figures 4.7, 4.8
and 4.9 are marked by the red dashed lines. A rough phase boundary, serving purely
as a guide to the eye, is shown by the solid black line.

These results are qualitatively similar to those published in [99], the H − T
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phase diagram obtain through neutron diffraction and bulk susceptibility mea-

surements, shown in figure 4.11. In their case the field required to suppress the

SDW order is of the same magnitude but slightly larger, ∼0.06 T, simply due to

the sample being slightly less Fe-rich. This results in a slightly weaker initial FM

phase, demonstrated by the lower transition temperature.

Figure 4.11: Temperature-magnetic field phase diagram for Fe rich Nb0.985Fe2.015.
Colour shows the real part of the a.c. magnetic susceptibility χ′(H, T) [99].

4.4 Inelastic Neutron Scattering

In the previous section we have shown that the phase diagrams detailing the

SDW phase masking FM order, obtained through magnetic susceptibility and

neutron scattering measurements, agree not only in zero field but also at finite

field. Presented in this section are inelastic neutron scattering measurements,

performed using the triple-axis spectrometer 4F2 at LLB (section 3.5.2.2), probing

the low-energy spectra in the vicinity of the SDW phase. These findings are then

compared to the model of a damped harmonic oscillator, as is predicted for the

behaviour of ferromagnetic quantum criticality, the details of which are outlined

in Section 2.3.
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4.4.1 Data Correction

Figure 4.12: Background measurement of inelastic neutron scattering found in
Nb0.981Fe2.019 at (0.85 0 -1.4) at 8.4 K. The red line shows the Gaussian fit function
including a constant background, the black dashed lines indicates the points at which
the elastic line contribution is less than 1 count.

The first step in the analysis process is to attain the true value of the monitor

count. As discussed in previous sections (3.5.2), higher harmonic neutrons are

not filtered by the monochromator and therefore contribute to the monitor count,

but not the final signal. To correct for this, a ki dependent factor, supplied by

the beamline, is applied to the count value. From this, a true monitor count can

be determined. This value was then normalised to 10,000, equating roughly to a

5 min exposure.

Next the background of the normalised data is determined using measure-

ments at (0.85, 0, 1.4), see figure 4.12. This measurement is far enough from

nuclear Bragg peaks or regions of significant excitations as to consist only of an

incoherent elastic line and background noise. The elastic line is fitted using a

simple Gaussian function and the background with a constant:

I = Ae−
(E−E0)2

2σ2 + c (4.4)
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Figure 4.13: Background of the inelastic neutron scattering data as measured at (0.85
0 -1.4). Data sets at different temperatures have been fitted with a constant. The inset
shows the temperature dependence of the background, fitted with a linear function (red
line). The slope is within the error of this set of experiments. The average background
in the measured temperature range is indicated by the turquoise dashed line.

Here A denotes the amplitude, E0 peak position, σ, the standard deviation and

c the constant background. From the fitted data the energy at which the elastic

line contribution becomes insignificant (less than 1 count) is determined, here a

value of ±0.25 meV. The stability of E0 was also checked and found not to move

from the E0 = 0 position. The remaining background signal was checked for any

forms or incoherent structure using Gaussian and Lorentzian functions, however,

in each case the best fit was found to be a simple constant. This process was

repeated over a number of temperatures.

The constant background at a number of temperatures is shown in Figure

4.13. Although there appears to be a weak temperature dependence, this is

within the error of this set of measurements and a temperature independent

constant background of 29 counts/5 mins has therefore been subtracted from the

normalised data.

After background subtraction, the normalised raw data, the remaining signal
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Figure 4.14: Energy Temperature dependence of detailed balance factor.

has been divided by the detailed balance factor of 1/(1 − e−E/kBT ) in order to

obtain the imaginary part of the magnetic susceptibility χ′′. Figure 4.14 demon-

strates how this factor increases with temperature. The simultaneous effect of

background subtraction and division by the detailed balance factor is shown in

figure 4.15.
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Figure 4.15: Inelastic neutron scattering measurement at (0 0 2.05) and 8.5 K. Black
points represent raw normalised data, prior to background subtractions and detailed
balance correction. Red points depict the same data set after the detailed balance
correction has been applied.

4.4.2 Data Fitting

As shown in section 2.3, the excitations predicted for the vicinity of a FM-PM

transition are modelled by over-damped harmonic oscillations. Even as measure-

ments move away from this point, the system is assumed to be described by a

simple damped harmonic oscillator model. The imaginary part of the magnetic

susceptibility, representing the energy dependent response of each magnetic mode,

is given by:

χ′′ =
χ0DE

2
0E

(E2 − E2
0)2 + E2D2

(4.5)

here χ0 is the static susceptibility, E0 the resonance energy and D the damping

factor. In the over-damped regime, D >> E0. Equation 4.5 is reduced to:

χ′′ =
χ0ΓE

Γ2 + E2
(4.6)

where Γ = E2
0/D. In the limit of critical fluctuations, i.e. Γ → 0, equation 4.6

further reduces to:

χ′′ =
A

E
(4.7)

where A = χ0Γ.
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4.4.3 Inelastic Neutron Scattering Results

Figure 4.16: h-`-T space indicating the cuts (dashed lines) of the inelastic neutron
scattering measurements of Nb0.981Fe2.019. Also indicated are the Néel temperature,
TN =37 K, Curie temperature, TC = 32 K, as well as the regions of the various magnetic
phases.

It is well established that at the stoichiometry of our sample, x = 0.019,

Nb1−xFe2+x exists as paramagnetic down to the Néel temperature of TN = 37

K [99]. At this point, the systems orders into a spin density wave state, which

remains down to the Curie temperature of TC = 32 K, where upon it undergoes yet

another magnetic phase transition, to an ordered ferromagnetic state. Presented

below are inelastic neutron scattering measurements of the low-energy excitations,

found near the (0 0 2) position. Figure 4.16 provides a pictorial representation of

the measurement space.

This section begins with measurements taken with the system firmly in the

FM phase, at T = 8.4 K, before moving to measurements taken at the transition

temperatures of TC and TN , at the QFM and QSDW positions. The temperature

dependence of the low energy excitations is then investigated, both at the QFM

and QSDW positions.
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Figure 4.17: The ` dependence of the low energy excitations found in Nb0.981Fe2.019

at (0 0 2±d) and 8.4 K. In the FM region, well defined damped excitations are visible,
which broaden as the measurements move away from the QFM position. The legend
specifies where the data has been fitted using a damped or over-damped harmonic
oscillator model (dho or Odho respectively).

Figure 4.18: Fit parameters characterising the ` dependence of the low-energy spectra
in Nb0.981Fe2.019 at 8.4 K. Parameter obtained via fits using the damped harmonic
oscillator (equation 4.5) and the over-damped harmonic oscillator (equation 4.6) models.
(a) shows excitation energy E0 (blue circles) and damping factor D (red triangles).
(b) shows static susceptibility χ0 (black circles) and quasielastic line width Γ (purple
triangles). Dashed lines serve as guides to the eye.
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4.4.3.1 Low energy excitations in the FM phase

Figure 4.17 displays measurements of the low energy-spectra between (0 0 1.8)

and (0 0 2.5), at 8.4 K, firmly in the FM region. Clearly visible are damped low

energy excitations, which are soft (low energy) over a wide range of Q. These en-

ergy spectra have been fitted using either a damped harmonic oscillator (dho) or

over-damped harmonic oscillator (odho) model. As the measurements are taken

further away from the QFM position, we see a general increase in the excita-

tion energy, as well as broadening of the excitation. The precise fit parameters,

describing the excitation, are shown in figure 4.18. Here we can see that these

damped excitations have an energy of less than 1 meV, over a considerable Q

range, the minimum energy being 0.51 ± 0.11 meV at a position of d` = 0.1 r.l.u,

roughly the QSDW position at TC of d` = 0.093. We observe a minimum damping

of 0.29 ± 0.037 meV at d` = 0.025 r.l.u, again away from the QFM position.

Both the excitation energy and the damping then increase as d` increases. For

the quasi-elastic line width, we see a minimum of 0.4 ± 0.024 meV at d` = 0.2

and a considerable increase away from this point. Finally the static susceptibility

of the excitations shows a decrease away from the QFM position.

The h dependence of the low energy excitations is shown in figure 4.19. Clearly

visible are the damped low energy excitations increasing in energy and becoming

broader away from the QFM position. Again, the energy spectra is fit with either

the dho or odho models, attaining the the fit parameters displayed in figure 4.20.

Here it is clear that the lowest value of E0, D and Γ, with ` = 2, are located at

the h = 0 position, with E0 = 0.58 ± 0.016 meV, D = 0.36 ± 0.039 meV and Γ

= 0.93 ± 0.079 meV. The static susceptibility displays a maximum at h = 0 and

decreases with increasing |h|.
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Figure 4.19: The h dependence of the low energy excitations found in Nb0.981Fe2.019

at (0±d 0 2) at 8.4 K. In the FM region, well defined damped excitations are visible,
which broaden as the measurements move away from the QFM position. The legend
specifies whether the spectra are fitted using a damped harmonic oscillator (dho) or
over-damped harmonic oscillator (odho) model.

Figure 4.20: Fit parameters characterising the h dependence of the low-energy spec-
tra in Nb0.981Fe2.019 at 8.4 K. Parameters obtained via fits using the damped harmonic
oscillator (equation 4.5) and the over-damped harmonic oscillator (equation 4.6) mod-
els. (a) shows excitation energy E0 (blue circles) and damping factor D (red squares).
(b) shows static susceptibility χ0 (black circles) and quasielastic line width Γ (purple
triangles). Dashed lines serve as guides to the eye.
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4.4.3.2 Low energy excitations at TC

Figure 4.21: The ` dependence of the low energy excitations found in Nb0.981Fe2.019

at (0 0 2±d) at TC = 32 K. At the boundary between the ferromagnetic and spin
density wave region we observe strongly damped low energy excitations, which broaden
as the measurements move away from the QFM position. The legend describes whether
the data has been fitted with an over-damped harmonic oscillator (odho) model or the
model of critical fluctuations (crit).

The low-energy excitations of Nb0.981Fe2.019 at the SDW-FM transition tem-

perature of TC = 32 K are shown in figure 4.21. Here we see the ` dependence

of the low energy excitations found at the phase boundary. These low-energy

spectra are here dominated by quasi-elastic scattering, the line width of which

broadens when moving away from QFM in the ` direction. The resulting spec-

tra were fit using the over damped harmonic oscillator model (odho), with the

parameters shown in figure 4.22. For ` values close to 2, the line width Γ lies

within the energy resolution of the experiment, resulting in a 1/E dependence of

the data. The quasielastic line width has therefore been taken as 0.1 ± 0.1 meV.

The line width remains below 0.2 meV for a considerable range, ` = 2 to ` =

2.2 r.l.u., before rising for larger ` while the static susceptibility simultaneously

decreases.

The h dependence of the quasi-elastic scattering at TC is shown in figure
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Figure 4.22: Fit parameters characterising the ` dependence of the low-energy spec-
tra in Nb0.981Fe2.019 at 32 K. Parameters are obtained via fits using the over-damped
harmonic oscillator model, (equation 4.6) or, near (0 0 2) and in the limit Γ << E,
χ′′ = χ0Γ/E. (a) displays static susceptibility χ0 (black circles), and the quasi elastic
line width Γ (purple squares).

Figure 4.23: The h dependence of the low energy excitations found in Nb0.981Fe2.019 at
(0±d 0 2) and TC = 32 K. At the boundary between the ferromagnetic and spin density
wave region we observe strongly damped low energy excitations, which broaden as the
measurements move away from the QFM position. The legend describes whether the
data has been fitted with a damped harmonic oscillator (dho), over-damped harmonic
oscillator (odho) model or the over-damped model in the limit Γ << E (crit).
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4.23. Here the low energy excitations are suppressed far more quickly along the

h direction than along the ` axis. By dh = 0.025 r.l.u., the line width is already

larger than the energy resolution of 0.2 meV, with the quasi elastic scattering

becoming broader and weaker with increasing h and being almost completely

suppressed by h = 0.1 r.l.u. By comparison, the same level of damping is not seen

until d` = 0.25 r.l.u., with excitations still not completely suppressed at d` = 0.4

r.l.u.. Figure 4.24 shows the h dependence of the resulting fitting parameters,

as was qualitatively observed in figure 4.23, there is a clear decrease in static

susceptibility coupled with an increase in the quasi elastic line width.

Figure 4.24: Fit parameters characterising the h dependence of the low-energy spectra
in Nb0.981Fe2.019 at 32 K, centred about the QFM position. Parameters are obtained
via fits using the damped harmonic oscillator model (equation 4.7) or over-damped
harmonic oscillator model (equation 4.6), sometimes in the limit Γ << E (equation
4.7). Here, static susceptibility χ0 is depicted with black circles, and the quasielastic
line width, Γ, by purple squares.

4.4.3.3 Low energy excitations at TN

The low-energy excitations measured at the PM-SDW phase transition, TN =37

K, are presented in figure 4.25, showing the ` dependence of the low energy

excitations between (0 0 2) and (0 0 2.5). These spectra are characterised by the

quasielastic scattering line width, which increases with increasing `. Curves are

fitted using the damped harmonic oscillator and over-damped harmonic oscillator
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Figure 4.25: The ` dependence of the low energy excitations found in Nb0.981Fe2.019

at (0 0 2±d) at TN = 37 K. At the boundary between the spin density wave and
paramagnetic region we observe strongly damped low energy excitations, which broaden
as the measurements move away from the QFM position. The legend describes whether
the data has been fitted with a damped harmonic oscillator model (dho), over-damped
harmonic oscillator (odho) or, the odho model in the limit Γ << E (crit).

models, at times in the Γ << E limit, with the fit parameters displayed in figure

4.26. For ` up to 2.1, the line width lies within the experimental resolution

(Γ < 0.2 meV) and therefore the data can be fitted with the 1/E dependence

expected for the critical fluctuations. In this case Γ is taken to be 0.1 ± 0.1 meV.

Further increasing `, we observe a reduction of static susceptibility χ0 and an

increase in the quasielastic line width Γ. The downturn observed out at d` = 0.5

r.l.u. is likely due to a poor fit of such a broad feature opposed to anything of

physical interest.

The h dependence of the quasielastic scattering near the QSDW position, (0

0 2.093) to (0.1 0 2.093), is shown in figure 4.27. We see that with increasing

dh, the quasielastic scattering broadens. The data are fitted using the damped

harmonic oscillator or over-damped harmonic oscillator models, sometimes in the

limit Γ << E, with the fit parameters displayed in figure 4.28. Once again, we see

a rapid decrease in static susceptibility, alongside an increase in the quasielastic
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Figure 4.26: Fit parameters characterising the ` dependence of the low-energy spectra
in Nb0.981Fe2.019 at 37 K, near the (0 0 2) position. Parameters are obtained via fits
using the damped harmonic oscillator model (equation 4.5) or over-damped harmonic
oscillator model (equation 4.6) sometimes in the Γ << E limit (equation 4.7). Here,
static susceptibility χ0 is depicted via black circles, and the quasielastic line width, Γ,
by purple squares.

Figure 4.27: The h dependence of the low energy excitations found in Nb0.981Fe2.019

at (0±d 0 2.093) at T = 38 K. At the boundary between the paramagnetic and spin
density wave region we observe strongly damped low energy excitations, which broaden
as the measurements move away from the QSDW position. The legend states whether
the data has been fitted with a damped harmonic oscillator model (dho), over-damped
harmonic oscillator (odho) or the Γ << E limit of the odho model (crit).

83



line width with increasing d`.

Figure 4.28: Fit parameters characterising the h dependence of the low-energy spectra
in Nb0.981Fe2.019 at 38 K, near the QSDW position. Parameters are obtained via fits
using the damped harmonic oscillator model (equation 4.7), over-damped harmonic
oscillator model (equation 4.6) or the Γ << E limit of the over-damped harmonic
oscillator model (equation 4.7). Here, static susceptibility χ0 is depicted via black
circles, and the quasielastic line width, Γ, by purple squares.

4.4.3.4 Temperature dependence of low energy excitations

Figure 4.29 shows the temperature dependence of the low energy excitations

found at the ferromagnetic position, QFM = (0 0 2). Starting in the low tem-

perature ferromagnetic region, distinct, sharp, low energy excitations are clearly

observed below 1 meV. As the temperature is increased, these excitations shift

to lower energies and broaden. With increasing temperatures, up to TC = 32

K, the previously observed well defined excitations decrease in energy, eventually

merging with the quasielastic scattering of the elastic line. Beyond the ordering

temperature, TN =37 K, the static susceptibility, χ0, of the excitations drops off

rapidly, presenting a weakening of the quasielastic scattering. The data obtained

here were fit using the model of a damped harmonic oscillator below TC and an

over-damped harmonic oscillator above TN . For measurements within the SDW

region, the limit of Γ→0 is assumed. The resulting parameters, associated with
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Figure 4.29: Temperature dependence of low energy excitations in Nb0.981Fe2.019 at
the QFM position of (0 0 2). The low energy spectra are characterised by well-defined
excitations at low temperatures. As T increases, the excitations broaden and become
weaker. Data has been fitted with damped harmonic oscillator (dho) or over-damped
harmonic oscillator (odho) models, the latter at times in the Γ→0 limit (crit.)

Figure 4.30: Fit parameters characterising the T dependence of the low energy excita-
tion spectra at (0 0 2) in Nb0.981Fe2.019. Parameters obtained via fits using the damped
harmonic oscillator (equation 4.5) and the over-damped harmonic oscillator (equation
4.6) models. (a) shows excitation energy E0 (blue circles) and damping factor D (red
triangles). (b) shows static susceptibility χ0 (black circles) and quasi elastic line width
Γ (purple circles). Dashed lines serve as guides to the eye.
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these fits are presented in figure 4.30. Below TC it is possible to clearly track the

energies E0, and damping, D, of the excitations, with E0 clearly increasing with

decreasing temperature whileD decreases. Meanwhile, Γ is seen to decrease as the

temperatures approach the SDW region, with the static susceptibility increasing

rapidly, this clearly marking the formation of the SDW order.

Figure 4.31: Temperature dependence of low energy excitations in Nb0.981Fe2.019 at
the QSDW position of (0 0 2.093). The low energy spectra are characterised by well-
defined excitations at low temperatures. As T increases, the excitations broaden and
become weaker. Data has been fitted with damped harmonic oscillator (dho) or over-
damped harmonic oscillator (odho) models, the latter at times in the Γ→0 limit (crit.)

Figures 4.31 and 4.32 contain the equivalent temperature dependence of the

low-energy spectra, however now at the QSDW position. The behaviour at this

position is qualitatively similar to the spectre at QFM . In the low temperature

FM phase, damping is larger and Γ therefore smaller at the QSDW position. Look-

ing at the high temperature paramagnetic regime, we find the reverse situation,

with Γ being smaller at the QFM position.
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Figure 4.32: Fit parameters characterising the T dependence of the low energy ex-
citation spectra at (0 0 2.093) in Nb0.981Fe2.019. Parameter obtained via fits using the
damped harmonic oscillator (equation 4.5) and the over-damped harmonic oscillator
(equation 4.6) models. (a) shows excitation energy E0 (blue circles) and damping D
(red triangles). (b) shows static susceptibility χ0 (black circles) and quasielastic line
width Γ (purple circles). Dashed lines serve as guides to the eye.

4.4.4 Discussion

Presented in the section above is significant low-energy scattering, across a wide

range of temperatures, in the Nb0.981Fe2.019 system. These excitations are gener-

ally well described by the damped harmonic oscillator models, discussed in section

4.3.2.

Within the ferromagnetic regime, spectra are dominated by weakly damped

excitations with an excitation energy of 0.5 meV. The minimum in excitation

energy would be expected at the ferromagnetic ordering wave vector QFM . How-

ever, surprisingly, these excitations present a minimum near the spin density wave

ordering wave vector QSDW rather than at the QFM position, see Figure 4.18.

As the system enters the spin density wave region, the energy gap closes and

excitations turn into quasielastic scattering. The results show that the quasielas-

tic line width Gamma is zero within the resolution of the experiment over a

considerable q range, from ` =2 to ` = 2.2 r.l.u. at TN . The spin fluctuations

found within this range may therefore be considered critical in nature. The in-

clusion of the QFM and QSDW positions in this range may be a reflection of the
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simultaneous proximity of tuned Nb0.981Fe2.019 to FM and SDW order. For values

of ` > 2.3, or h > 0.1, Γ increases beyond 1 meV.

Entering the paramagnetic phase, the low energy excitation spectra continue

to be dominated by quasi elastic scattering. As temperature increases, Gamma

gradually broadens and reaches values of the order of 0.5 meV at 100 K, even

in the region of QFM and QSDW . Simultaneously, the static susceptibility χ0

collapses towards higher temperatures.

Figure 4.33: The q dependence of Γ over a range of temperatures.

Figure 4.33 shows an overview of the q dependence of Γ at a number of

temperatures. Although Γ may only be interpreted as the quasielastic line width

in the PM and SDW temperature range, it is always taken as a measure of the

damping character of the magnetic excitations. Hence, a reduction in Γ describes

a transition to a more over-damped regime. Similarly to E0, the minimum of Γ

is found away from QFM in the FM state.

The evolution of Γ at TN can be determined by the basic model of ferromag-

netic spin fluctuations, as outlined in section 2.3. In order to test this, the q

dependence of Γ is fitted using the formula:

Γq = γ(χ−1q + cq3) (4.8)
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in the ferromagnetic case, and:

Γq =
γc1c2q3(Q− q2)

c1q2 + c2(Q− q)2
(4.9)

in the case of ferromagnetism superimposed with a spin density wave (FM+SDW)

order case. Here Q represents a second minimum in the energy dependence of

the system. These have been plotted for the h and ` directions at 37 K, on the

border of the PM-SDW transition, see figure 4.34. In both cases the model fits

the data with a high degree of accuracy. From the fit of the FM-SDW transition,

a q value of 0.0926 ±1.7×10−3 r.l.u may be extracted, which agrees very well

with the values published in [39]. Quasielastic scattering above TN can be seen

to follow the standard model of FM spin fluctuations well, however signs of the

imminent appearance of a SDW order are difficult to detect due to the resolution

of the experiment.

Figure 4.34: The Γ(q) dependence at TN = 37 K, in the (left) h and (right) ` direc-

tions. Data fit using the FM and FM+SDW models, eq.4.8 and eq.4.9 respectively.

4.5 Conclusion

Neutron scattering has been used to further investigate the border of ferromag-

netism in Nb0.981Fe2.019, with the aim to develop a better understanding of the

interplay between the ferromagnetic order and the spin density wave that emerges
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to mask the quantum critical point. The extension of the SDW phase masking

the FM QCP at zero field into finite field has been explored. Most importantly,

the first low excitation spectra associated with a FM QCP masked by a SDW

phase have been obtained.

Magnetic neutron diffraction has been used to map out the location of the

spin density wave region, recently identified to mask the ferromagnetic quantum

critical point at zero field, in the field-temperature phase diagram. The Fe rich

stoichiometry of Nb0.981Fe2.019 possesses a TN ≈ 37 K and TC ≈ 32 K, as has

been measured in previous works, [39, 99, 12]. This SDW order was found to

reduce significantly with the application of small external fields fields along the

easy c axis, suppressing completely at a critical field of HC ≈0.2 T at T = 33

K. As Fe content is increased, it is likely the critical field reduced further as the

SDW region is weakened by ferromagnetism of Fe and the system moves closer

to a simple FM-PM phase transition beyond the Lifshitz point. A completely

different field-temperature phase diagram of Nb0.981Fe2.019 is expected for field

perpendicular to the easy c axis. In addition to the suppression of the SDW phase

the FM phase is also suppressed, albeit on a larger field scale of 2.5 T, allowing

for the study of a field-driven unmasked FM-PM quantum phase transition.

Using inelastic neutron scattering, the low energy excitation spectra of the

same Fe rich sample, Nb0.981Fe2.019, were measured in zero field. The paramag-

netic phase is characterised by quasielastic scattering with a minimum at QFM

even in the vicinity of TN , where one would usually expect to observe the influence

of the proximity to SDW order on the spectra.

In the spin density wave phase quasielastic scattering, where Γ is less than the

energy resolution of 0.1 meV, is seen across a considerable q range. This covers

both QFM and QSDW , strongly suggesting that those spin fluctuation are critical

in nature. Despite this, comparison with the spin fluctuation theory for standard

FM fluctuations model, as well as that of the combined FM+SDW fluctuations,

shows good agreement within the resolution of the experiment. Because of this

agreement, one can say that the spectra above TC do not so far indicate the
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presence of SDW order.

The strongest sign of a deviation from the physics of ferromagnetic order is

seen in the damped spin-wave excitations within the ferromagnetic state, where

the minimum excitation energy of E0 ≈ 0.6 meV is observed. Surprisingly, the

minimum in the dispersion is located away from the QFM position suggesting that

the proximity of the SDW order has an influence on the spin waves. It will be

interesting to test whether theories of FM QCPs masked by modulated magnetic

order, such as those discussed in section 4.1, can account for the unconventional

spin wave dispersion observed in the FM phase of Nb0.981Fe2.019.

A next important step in the investigation of the low energy excitation spec-

trum of the Nb1−xFe2+x system will be to perform high energy resolutions INS

measurements to probe the q dependence of the soft excitations near TC and

TN using e.g., the spin-echo technique within polarised neutron scattering, to see

whether deviations from standard FM spin fluctuation theory can be observed in

the µeV range. Apart from that it will be exciting to obtain excitation spectra in

samples with reduced iron content in order to examine the region of the FM-SDW

and SDW-PM QPTs. The analysis of such data should provide unique insight

into the physics of ferromagnetic quantum criticality.
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Chapter 5

Exploration of Cu2OSeO3

The Cu2OSeO3 system has gained notoriety in recent years for displaying the first

skyrmion lattice phase in a large band-gap Mott insulator. As described in Section

5.1 The system crystallises in the same chiral-cubic P213 space group as the

metallic binary helimagnets FeGe and MnSi. In section 5.2 previous knowledge

of the system is reviewed. An overview of the various experimental set-ups is

given in section 5.3. Section 5.4 then presents results from Raman and Infrared

spectroscopy, before section 5.5 explores the crystallographic structure through

single crystal and powder X-ray diffraction. The conclusions reached through

these investigations are then discussed in section 5.6, along with thoughts on how

to progress.

5.1 Formation of the Skyrmion lattice phase

Multiferroic and magnetoelectric (ME) materials, in which magnetic and electric

properties are directly coupled, have recently gained significant interest in the sci-

entific community due to their potential use in high density storage and energy

efficient devises. This interest has inspired numerous theoretical and experimen-

tal studies, generating a number of possible mechanisms responsible for governing

these effects [100, 101, 102]. More recently, helical spin textures have been found

to directly affect the symmetry of charge distribution and magnetically induce
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electric polarisation [103], and as such the skyrmion, a novel topological spin tex-

ture, is now believed to play a vital role in quantum magneto-transport processes.

The formation of a skrymion phase has been found in binary metallic alloys

with B20 structure, namely MnSi [15] and FeGe [18], as well as various pseudo-

binary compounds in which the FM metal was substituted such as Fe1−xCoxSi

[17]. Each of these is found to crystallise in the cubic lattice with chiral space

group P213. In these non-centrosymmetric systems, the spin-exchange interac-

tions are composed of two terms: symmetric ~Si · ~Sj (e.g., ferromagnetic) and

antisymmetric ~Si × ~Sj, where ~Si and ~Sj represent spins on neighbouring sites.

The antisymmetric exchange term, called Dzyaloshinskii-Moriya (DM) interac-

tion, leads to the formation of a helical spin texture with fixed handedness (spin

chirality). The application of an external magnetic field is then found to form

a skrymion lattice phase, located between the helical and field-induced spin-

collinear (ferromagnetic) states, just below the onset of magnetic order. Given

the close relation between the structural and magnetic properties of these binary

compounds, a number of pressure studies have been performed, to investigate the

structural stability. It was found that the suppression of the magnetic order is

not accompanied by a structural transition up to 30 GPa [20, 19].

The discovery of multiferroic properties in the insulator Cu2OSeO3 along with

the existence of a skyrmion lattice phase, presents an ideal target for extending

the investigation into the link between structural symmetry and magnetoelectric

materials. Cu2OSeO3 crystallises in the same non-centrosymmetric space group,

P213. It attains, however, a far more complex crystal structure as each unit cell

contains 8 formula units. Thus far, pressure studies, performed up to 6 GPa, have

found no structural instabilities [21, 22]. Therefore, studies have been performed

to much higher pressure to determine the structural stability of Cu2OSeO3 in

this extended range.
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Figure 5.1: (a) Crystal structure of Cu2OSeO3 , characterised by three building blocks,

square pyramidal CuO5 (Cu(12b)), trigonal bipyramidal CuO5 (Cu(4a)), and a lone pair

containing tetrahedral SeO3 unit. (b) Ferrimagnetic spin alignment of Cu+2 sites [103].

5.2 Introduction to Cu2OSeO3

Cu2OSeO3 crystallises in the non-centrosymmetric, cubic space group of P213,

first established in ref. [104]. Each unit cell consists of 8 f.u.: 32 O, 16 Cu and 8

Se atoms. The crystal structure comprises a three-dimensional array of distorted

corner-sharing copper tetrahedra, in which Cu2+ ions occupy two inequivalent

sites, those being 4a and 12b. Oxygen atoms then form distorted polyhedra

about these sites, CuO5 trigonal bipyramidal polyhedra about Cu(4a) and CuO5

square pyramidal polyhedra about the Cu(12b) site. These exist in a ratio of 1:3.

The Se atoms then form lone pair tetrahedral SeO3 units [105, 106, 107, 108].

This structure is depicted in figure 5.1.a, with the Cu2+ ion network shown in

figure 5.1.b. This P213 structure is observed to remain stable down to 10 K with

no apparent structural transition [106]. Evolution of lattice parameters are seen

to follow the approximation for bare thermal expansion due to thermal vibrations

of a solid as derived in [109] and are dictated by a(T ) = a0 + A coth(θ/T ).

Initially, at ambient pressure, Cu2OSeO3 was found to undergo a ferrimag-

netic phase transition at Tc = 58.8 K, whereupon three ferromagnetically aligned

Cu(12b) moments pair anti-ferromagnetically with a fourth Cu(4a) moment [105,
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106]. Bond valence sum (BVS) calculations have been used to confirm the +2

oxidation state of the Cu ions, BVS(Cu(4a)) = 2.06(2) and BVS(Cu(12b)) =

2.02(2) [110].

Below TC , the ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) in-

teractions balance to produce a long-period helical magnetic order, with a pitch

of ∼70 nm, and a weak anisotropy fixing it along the 〈100〉 crystallographic plane

[100, 103]. Application of a weak external magnetic field may be used to over-

come the inherent anisotropy, unpinning the helices from the lattice and inducing

a conical phase above BC . Increasing this field is found to further stabilise a

pocket A-phase, known as the skyrmion phase, close to TC . Still higher fields

then overcome the DM interactions and helical correlations with the system en-

tering a field polarised phase [106]. These features are illustrated schematically

in figure 5.2.

Magnetization measurements were used in the construction of the magnetic

phase diagram [100]. Here it was found that above a critical temperature of TC

of 58.8 K, Cu2OSeO3 displays a strong Curie-Weiss dependence, with µCW ≈

1.5µB/Cu. As field is increased, a faint maximum develops in the vicinity of TC ,

analogous to the MnSi system in which these maxima arise due to the formation of

a skyrmion lattice phase [21], labelled A-phase in figure 5.2. As temperature is de-

creased, M(B) increases, saturating at ms = 0.48µB/Cu in large fields. Neutron

diffraction measurements were then used to identify the emergent helimagnetic,

conical and skyrmion lattice phase.

Raman spectroscopy studies performed on the Cu2OSeO3 system find no

structural lattice distortions at temperatures below TC , while at ambient pressure

[111]. At 290 K, a total of 84 Γ-point Raman active modes are expected, with 53

of these identified between 0 and 850 cm−1 and 21 observed between 850 cm−1

and 2000 cm−1. Each of these modes display anomalies in their eigenfrequencies

below TC , as well as an increase in their integrated intensities. This is attributed

to an increase in dynamic polarisability due to contributions from the magneto-

electric effect [111]. Below TC , three new modes appear, at ∼261, 270 and 420
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Figure 5.2: Schematic representation of the field-temperature phase diagram of

Cu2OSeO3 , illustrating the spin alignments of various phases. The inset shows the

crystal structure with the two different Cu2+ ion sites [16].

cm−1 the explanation being that these modes coincide with a metamagnetic phase

transition between two different ferrimagnetic structures which are very close in

energy.

The Infrared (IR) reflection and transmission spectra of single crystal Cu2OSeO3

have been measured between 5 and 300 K, again at ambient pressures, using light

spanning from the Far-IR to visible light spectrum [112]. Although no drastic

anomalies are found in the phonon spectrum around TC , an anomalous jump in

the dielectric constant is observed in its vicinity. Two of the modes exhibiting

such behaviour across TC have been assigned to the motions of oxygen around a

central copper, the ion responsible for the systems magnetic order.
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5.3 Experimental Details

5.3.1 Cu2OSeO3 - Growth and Characterisation

The single crystal Cu2OSeO3 sample measured in this thesis was grown via chem-

ical vapour transport reaction [113]. A microcrystalline powder was synthesised

by reaction of CuO (Alfa Aesar 99.995%) and SeO2 (Alfa Aesar 99.999%), heated

to 300◦ C for 2 days then 600◦ C for 7 days. This was then recrystallised using

a chemical transport reaction in a temperature gradient from 575◦ C (source) to

460◦ C (sink) with HCl used as the transport agent. Selected crystals were then

characterised using Energy-dispersive X-ray spectroscopy (EDXS), x-ray powder

and x-ray single-crystal diffraction, revealing very high quality of crystal [113].

Due to the use of diamond anvil cells, the samples investigated in this thesis are

all less than 300 µm × 300 µm × 100 µm in length. The implication of this being

that all the samples presented here were taken from an extremely small fragment

of a single bulk sample.

5.3.2 Raman set-up - I15 Supplementary Lab at Diamond

Light Source

Raman measurements were performed using the LabRam HR800 system, see

section 3.4.1. Those presented below were taken using the 532 nm laser source at

25% intensity, hole size 100 µm (laser light aperture) and using the grating with

2400 grooves per mm. Each measurement exposed the sample for 15 minutes

with no observable adverse effects. Between each measurement, the cell was left

to stabilise at the new pressure for ≈30 minutes.

5.3.3 IR - set-up - B22 at Diamond Light Source

For near infrared (NIR) measurements, the internal NIR source of the Bruker

FTIR system was used with the lowpass Ge filter removed. The same apertures

are used in both the IR and NIR microscope at 15× in transmission mode, along
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with the UV-VIS-NIR beam splitter.

Operating in transmission mode provided good quality signal, despite losing

the spectral region above 1250 cm−1 due to nitrogen impurities in the lower

diamond. Background spectra were obtained through a clear region of the DAC

sample chamber. The sample and reference spectra ratio well, allowing for the

effective removal of all atmospheric peaks and resulting in a clear spectrum. No

significant interference fringes were observed in the transmission spectra, (T =

Isample/Ibackground). Spectra were attained using both a single rectangular aperture

above the sample, ∼15∼20 µm, and a “loose confocal” aperture, for which an

additional metal plate was placed below the sample plane. This second aperture

was set to ≈2× the size of the upper aperture in order to better define the beam

at the sample and reduce stray light. Both set-ups were found to produce similar

spectra however the “lose confocal" spectra presented higher absorbance values

and a generally noisier spectra. This is consistent with the reduction of stray light

around the sample and gives a more accurate measure of the true absorbance.

5.3.4 Xcalibur

A single crystal Cu2OSeO3 sample, measuring approximately 0.5×0.5×0.7 mm in

size, was mounted to the end of a 0.3 mm diameter glass capillary using a small

amount of vacuum grease. The capillary was fixed into a brass holder using wax

before being mounted in the goniometer.

5.3.5 DAC loadings

The high pressure measurements presented in this section were performed using a

verity of DACs and PTMs. In each instance a ruby sphere was used as a pressure

marker. The details of each loading are provided in table 5.1. P = plate DAC,

M = membrane DAC, LA = leaver-arm DAC. Unless otherwise stated, cells were

loaded with Type Ia diamonds.
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5.4 Spectroscopy Results

5.4.1 Raman spectroscopy

All Raman spectra, collected for Cu2OSeO3 , can be seen in figures 5.3, 5.4

and 5.5. Figures 5.3 and 5.4 show spectra taken with increasing pressure, while

figure 5.5 shows the spectra taken upon pressure release. Ruby fluorescence peaks

remained well defined across all measurement, indicating high quality hydrostatic

pressure. Pressure was steadily increased to 15.8 GPa, at which point instabilities

were observed in the sample chamber. Pressure was then released to avoid damage

to the diamonds. A total of 26 Raman active modes are expected below 900 cm−1

, in accordance with observations made in [112]. Of these 26, 17 may be seen in

the zero pressure spectra presented in this work.

Figure 5.3 presents Raman spectra between 0 GPa and 9.7 GPa. Closing the

cell, there are a number of initial changes to the spectra seen between 0 GPa

and 1.7 GPa. All modes are seen to harden, as is expected as bond lengths are

reduced. The peak initially observed at ∼580 cm−1 appears to sharpen, likely

due to the initial pressure increase slightly altering the orientation of the crystal

and reducing/removing scattering surfaces between the CCD and crystal.

A splitting of the mode located around ∼500 cm−1 is observed in the 2.3 GPa

spectrum (indicated by the arrow in fig.5.3). It is likely that the initial width

of the peak, seen at ambient pressure, is due to the presence of several peaks in

close proximity. With increasing pressure, these peaks harden at different rates,

allowing them to be resolved separately and meaning that by 3.4 GPa there are

two distinct peaks. The higher frequency peak continues to harden as pressure is

increased while the lower frequency peak broadens (possibly splitting again) and

is gradually suppressed.

A second split occurs in the ∼600 cm−1 mode between 5.0 and 5.4 GPa (arrow

in fig.5.3). At 5 GPa a slight shoulder can be seen on the left of the peak. This

then shifts to become a distinct peak by 5.4 GPa. At 7.7 GPa the higher fre-

quency mode seems to have been further suppressed in intensity. The broadening
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Figure 5.3: Raman spectra of Cu2OSeO3 upon pressure increase, below 9.7 GPa. All
spectra are normalised, with respect to the strongest peak for ease of comparison, and
shifted vertically with respect to the zero pressure pattern. Dashed lines indicate the
baseline for each spectra. Red arrows indicate a pressure-induced splitting of modes.

suggesting the formation of a number of modes that are indistinguishable in this

set. Between 5.4 GPa and 7.7 GPa the mode seen at ∼580 cm−1 (to the left of

the arrow) is seen to suppress suddenly.

Alongside the pressure induced hardening of modes, the sample seems to un-

dergo some form of electronic transition as its bulk color changes from a dark
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Figure 5.4: Raman spectra of Cu2OSeO3 above 10.7 GPa. All spectra are normalised,
with respect to the strongest peak, and shifted with respect to the zero pressure pattern.
Dashed lines indicate the baseline for each spectrum.

102



green to dark red and then to black. This transition begins around 6 GPa, con-

tinuing to 9.7 GPa, by which point the sample has become opaque. About this

point, the Raman signal decreases considerably, as can be seen in figure 5.4. This

is accompanied by a massive drop in intensity in the majority of those modes

present in the initial spectra, many being completely suppressed. Under closer

inspection however, a number of modes remain detectable, seen below ∼ 250 cm−1

and above 800 cm−1 , although it is not clear these bare any relation to modes

previously present.

These newly emerged modes then remain relatively static as pressure is in-

creased with little to no increase in intensity. Between the pressures of 12.4 GPa

and 12.8 GPa, yet more modes appear, seen around ∼ 280 cm−1 and ∼ 630 cm−1

. These modes however are seen to harden with increasing pressure. The mode

visible at 840 cm−1 also appears to begin to harden at a more appreciable rate

after 12.8 GPa, with the emergence of yet another mode on the lower energy side,

indicated by the red arrow in figure 5.4. This mode shows an increase in intensity

up to 15.8 GPa, the highest pressure reached in this experiment.

As pressure was released, Raman spectra were taken in order to establish

whether the changes observed were reversible, these are shown in figure 5.5. Ini-

tially there is very little difference between 15.8 GPa and 9.3 GPa, the new modes

soften gradually while maintaining their intensity. Then at 8.0 GPa there is yet

another significant transition. Between 9.3 GPa and 8 GPa, the high pressure

modes are suppressed completely, along with the higher frequency background

reducing in intensity. This is accompanied by the emergence of a new range of

strong, well defined, Raman modes. The fact that these modes again do not seem

to align with any from the initial zero pressure spectra or any of the high pressure

modes is indicative of the formation of a new structure. Reducing the pressure

further, there is a general softening of the new modes, as well as a significant

increase in intensity of the modes below 200 cm−1, apart from mode located at

∼ 185 cm−1, that is almost completely suppressed by 0 GPa. The new spectra

remaining down to zero pressure suggests the structure to be metastable. The
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Figure 5.5: Raman spectra of Cu2OSeO3, upon pressure release. Between 9.3 GPa
and 8.0 GPa a distinct new phase emerges, indicating a structural to a new low-pressure
phase. Dashed lines indicate the baseline for each spectrum.

cell was then left over night and the sample remeasured to check the stability of

this new phase; this measurement relieved the same new spectra.

A direct comparison between the initial and final zero pressure spectrum, see

figure 5.6, shows a clear difference and strongly suggests a previously unknown

structural phase. The crystal remains darker than its initial green colour, however
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Figure 5.6: Raman spectra of Cu2OSeO3 at ambient temperature. The bottom graph
depicts the initial spectra while the top shows the spectra after pressure release.

is no longer completely opaque. There are 15 modes visible, although the majority

of these are broad with distinct shoulder features, suggesting a far greater number

of unresolved modes. At lower frequencies we see 6 sharper peaks, none of which

correspond to those observed in the initial spectra.

To clearly map the evolution of each Raman mode, estimate frequencies are

plotted as a function of pressure in figure 5.7. The rate at which each mode shifts

has been calculated along with their corresponding Grüneisen parameters. These

have then been colour coded in order to more clearly see the rate at which modes

shift with γ < 0.4 in black, 0.4 < γ < 0.6 in blue and those with γ > 0.6 in red.

The dashed vertical lines indicate significant pressures at which changes in the

spectra are observed.

The 17 modes found at P = 0 are initially seen to harden as pressure increases,

with the exception of those found at around 400 cm−1 which actually soften very

slightly. A distinct kink is then observed between 5.0 and 5.4 GPa, with 16

of the now 23 modes decreasing in frequency very slightly. This kink occurs

simultaneously to the splitting of the peak at ∼ 580 cm−1 . Together, these

observations would hint at some form of structural change within the unit cell

although likely only a very slight one. After 5.4 GPa the modes continue to

harden, still at varying rates.
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Figure 5.7: Raman mode frequencies plotted as a function of decreasing (top) and
increasing (bottom) pressure. Line colour indicates modes with similar Grüneisen values,
black being γ < 0.4, blue γ between 0.4 and 0.6 and red γ > 0.6. Dashed vertical lines
indicate pressures of significant change in the spectra.

The transition to a new high pressure phase is clearly visible at ∼ 10 GPa,

with the newly emerging modes not corresponding to any of those previously

observed. This is can only be interpreted as some form of structural transition,
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although it at this time it is not possible to say whether this is to a new structural

phase, or simply a destruction of the current one. A third change in the spectra is

then observed at ∼ 12.4 GPa, with the emergence of yet more new modes, which

persist up to the maximum pressure of 15.8 GPa. These modes remained upon

pressure release, all of them gradually softening with decreasing pressure. This

unknown high-pressure phase then transforms into yet another phase between 9

GPa and 8 GPa, that is stable down to ambient pressure.

The clear changes in Raman spectra, when paired with the colour change of

the sample, suggest, at a minimum, that the electronic structure is highly pres-

sure sensitive, while, at the most, that a number of previously unknown structural

transitions exist at high pressure in the Cu2OSeO3 system. The apparent colour

transition to opaque black may suggest a closing of a band gap, while the emer-

gence of new structural frequencies hint towards the formation of new inter-atomic

bonds and hence a new structure. To further investigate this hypothesis requires

two approaches; IR spectroscopy in order to investigate the electronic structure

of the system, and X-ray diffraction to probe the structure.

5.4.2 IR spectroscopy

The Raman spectroscopy results, presented in the previous section, point towards

changes taking place in the electronic structure of the Cu2OSeO3 system. These

pressure induced changes manifest as a change in the appearance of the crystal.

Initially Cu2OSeO3 is a known insulator with a band gap of 2.1 eV [114], hence its

green colour. With the crystal shifting to red then black, as pressure is increased,

it is possible that this band gap is closing with system making a insulator to

metallic transition. This hypothesis requires inspection of the band gap energy,

which is performed using IR absorption spectroscopy, under pressure, on B22 at

the Diamond Light Source.
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5.4.2.1 Data analysis

Far-infrared (FIR) and near-infrared (NIR) absorption spectrum were both anal-

ysed using an inverse tangent function:

f(ω) = |m| · arctan

(
ω − ω0

σ

)
+ C (5.1)

Here |m| refers to the height of the edge, ω0 describes the location of the inflection

point in the in the absorbance, σ the width of the edge and C is an offset. See

figure 5.8.

For many of the NIR spectra the detector became over saturated beyond

∼10000 cm−1 , due to reaching the upper limit of the detector. Therefore, before

fitting, over saturated points were removed and the remaining data smoothed

with a Savitzky-Golay low pass filter. Rather than simply a moving window of

averaging points, the Savitzky-Golay method fits a polynomial to the data in the

window and extracts a value from that fit. This method is used to extract under-

lying trends from high frequency data, removing noise, while preserving features.

Once smoothed (blue line in figure 5.8) the spectra is fitted using equation 5.1.
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Figure 5.8: (top) Near-infrared absorption spectrum of Cu2OSeO3 at 6.21 GPa. Due

to detector limits, beyond ∼10000 cm−1 , spectra become noisy and over saturated.

The data is therefore smoothed using a Savitzky-Golay low pass filter, blue line, before

being fitted with eq.(5.1), red dashed line. (bottom) Far-infrared absorption spectrum

of Cu2OSeO3 , taken at 10.47 GPa. The spectrum can be described by eq.(5.1). The

insert shows the sample in transmitted light at 10.47 GPa. The initially green sample

is now black and opaque.
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5.4.2.2 Results

Figure 5.9 shows the absorption spectra between 600 and 1200 cm−1 , well within

the far infrared (FIR) region. Spectra were taken over a range of pressures,

between 1.4 GPa and 29.84 GPa, with strong absorbance seen above ∼ 950 cm−1

in all cases. As pressure increases, there is first an increase in the frequency of

the absorbance inflection point, ω(1)
0 . Then, between 8.43 and 10.47 GPa, the

position of ω(1)
0 jumps to a lower frequency. Further increasing the pressure, to

29.84 GPa, the absorbance edge continues to shift towards higher wavenumber.

The discontinuity of the absorption edge coincides with the sample transitioning

from a dark green colour to opaque black, as well as with the loss of Raman

modes reported in section 5.4.1. From 15.77 GPa the absorption edge is also seen

to begin to broaden, transitioning from a well defined sharp feature, to a far more

spread out region covering ∼120 cm−1.

Figure 5.10 depicts absorption spectra for the near-infrared (NIR) region of

7000 to 11000 cm−1 . This lies at the upper end of the B22 Bruker Vertex 80

V detector limit, resulting in a high level of noise above ∼10000 cm−1 . As a

result, spectra presented here have been smoothed before the fit is attempted.

As pressure is increased there is again a gradual shift in the absorption inflection

point towards higher frequencies, which coincides with a smearing of the edge to

cover a far larger range of frequencies, ∼1500 cm−1 . As occurred in the FIR

spectra, between 8.43 and 10.47 GPa there is a small drop in the frequency of the

inflection point, ω(2)
0 . In this instance however, rather than continuing to increase,

ω
(2)
0 remains almost constant up to 15.77 GPa before beginning to decrease.

These observations are summarised in figure 5.11, where the resulting fitting

parameters are plotted as a function of pressure. The pressure dependence of

the ω(1)
0 and ω

(2)
0 values, figure 5.11.a & b, clearly shows the aforementioned

discontinuity at ∼ 10 GPa, which corresponds to the disappearance of the all

Raman modes (fig.5.7). Whereas ω(1)
0 resumes its increase with pressure, ω(2)

0

remains pressure independent up to ∼ 15 GPa. Here ω(2)
0 reverses its pressure

dependence and decreases with increasing pressure.
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Figure 5.9: FIR absorption spectra of Cu2OSeO3 , upon pressure increase. Horizontal
black lines depict data set base lines while vertical blue dashed lines indicate the point of
inflection, ω(1)

0 . The red arrow highlights the discontinuous decrease in ω(1)
0 frequency.

The absorbency edge “spread”, figure 5.11.c), again reveals a number of inter-

esting transitions. The IR values σ(1) appear to jump at ∼5 GPa, around the

same pressure we observe peak splitting in the Raman data. Then, in the NIR

values of σ(2), there is a very clear jump at ∼ 10 GPa, with values remaining

near constant either side of this point. Each of these clear changes in the IR

absorption spectra occur at pressures previously highlighted in the Raman data,
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Figure 5.10: NIR absorption spectra for Cu2OSeO3 over a range of pressures. Data
has been smoothed, before being fitted with an inverse tan function, equation 5.1. Edge
position is indicated by blue dashed lines, ω(2)

0 .

suggesting a clear link.

Although the same colour change is observed in the crystal, even at 29.84

GPa the IR spectra shows no significant shift in the absorbance edge towards the

mid-IR range. This lack of reduction in the band gap removes any possibility

that there is an insulator-metal transition, however, it is evident in the spectra

at significant changes are taking place in the electronic structure of Cu2OSeO3
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Figure 5.11: Pressure dependence of the fitting parameters ω(i)
0 and σ(i), i=1,2

(eq.5.1), used in the analysis of the absorption measurements. Discontinuities are in-
dicated via dashed vertical lines, while pressure dependencies are indicated with non-
vertical dashed lines.

with increasing pressure. From here, X-ray diffraction measurement are required

in order to resolve any structural changes that may be effecting the electronic or

magnetic phase of the Cu2OSeO3 system.

113



5.5 X-ray Diffraction Results

5.5.1 Single Crystal results

Interpretation of the Raman and IR results suggest a number of transitions be-

tween 0 and 30 GPa. While these may be the result of changes in the electronic

or magnetic structures, resulting in the restriction of specific lattice vibrations,

it is possible these transitions speak to changes in the crystallographic structure

of the Cu2OSeO3 system. In order to explore this possibility, single crystal X-ray

diffraction was performed on the sample, revealing precise atomic positions along

with their shift with increasing pressure.

An initial zero pressure measurement was performed using the Xcalibur sys-

tem at Royal Holloway. The diffraction produced highly symmetric patterns,

with strong diffraction Bragg peaks, demonstrating the very high quality of the

crystal. There was also no twinning found to be present in the sample, likely due

to the very small size of the samples used. The peaks were indexed using the

peak hunter process in the CrysAlisPro software, before being fed into Jana2006

for the final structural determination. The refinements of this diffraction data

are presented in table 5.2, with each data set agreeing strongly with positions

presented in the literature [107].

A total of 8 pressures were measured using the I19 beamline at Diamond Light

Source. These are 0.2, 4.14, 7.95, 8.9, 10.01, 11, 14.8 and 4.58 (pressure release)

GPa. Of these pressures, only the first 4 refine to the P213 structure, with the rest

no longer satisfying the required symmetry. This transition coincides very well

with the apparent discontinuities observed in both Raman and IR measurements.

It should be noted that the observation of diffraction patterns beyond 8.9 GPa

suggest a new structural phase rather than simply the destruction of the crystal,

with the symmetry of the system reducing significantly.

Those patterns that were able to be refined to the P213 space group, produce

the atomic positions presented in table 5.2. Each of these pressures was able to

be refined to a very high level of accuracy, indicated by the very low Rint and R1
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Figure 5.12: Atomic bond lengths as calculated from single crystal x-ray diffraction
measurements.

values.

These refinements allow for the inspection of a number of key inter-atomic

bond lengths, highlighted in [107] as Cu(1)-O(2), Cu(2)-O(1), Cu(2)-O(12), Se(1)-

O(11) and Se(2)-O(12), their relative distances plotted in 5.12. Here it is immedi-

ately visible that there is a significant reduction in the Cu(2)-O(12) bond length,

with a reduction of ∼ 0.319 Å between 0.2 GPa and 4.14 GPa, compared to an

average reduction of ∼0.02 Å as seen in the other bonds. This fairly drastic

change suggests an initial significant shift in the internal geometry over the first

few GPa as some bonds compress faster than others, this possibly explains the

appearance or splitting of peaks in the Raman data. Beyond 4.14 GPa we then

observe a slight increase in this same bond length, before again continuing to

decrease beyond 7.95 GPa. Another point of note is the slight increase in bond

length seen in the Se(1)-O(11) bond between 7.95 GPa and 8.9 GPa. This is

possibly indicative of the up coming structural transition.
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With this data, it is now clear that there are several previously unknown

structural transitions occurring within Cu2OSeO3 under high pressure. There

are clearly a number of more minor shifts below ∼9 GPa shown by the differing

rates of bond length reduction, as well as a major structural transition above ∼9

GPa, indicated by the data no longer refining to the P213 space group. Moving

next to X-ray powder diffraction will provide a clearer look at the evolution of

the P213 structure with increasing pressure, as well as enable the identification

of any symmetry breaking shifts in the atomic arrangement. Powder diffraction

measurements will also facilitate a closer inspection of the newly emergent high

pressure phases and provide vital information required to solve these structures.

5.5.2 X-ray Powder Diffraction

From the results of the single crystal diffraction, as well as the Raman and IR

data, there is clear evidence that Cu2OSeO3 undergoes a number of structural

transitions as pressure is increased. This section presents a series of high pres-

sure X-ray powder diffraction (XRPD) measurements, performed with the aim of

determining any significant structural changes.

Figure 5.13 shows a complete Le Bail refinement of two Cu2OSeO3 diffraction

patterns, taken at 0.22 GPa and 9.47 GPa, see section 3.3.4. Here the qual-

ity of the refinements are clearly visible, the black line indicating the measured

diffraction pattern and the red the calculated refinement. The Topas suite is able

to identify the appropriate Miller indices, relating each peak to the appropri-

ate diffraction plane, as well as distinguish those peaks that belong to material

surrounding the sample, such as the Re gasket.

A total of 23 pressures were measured, 21 being taken below the suspected

structural transition at ∼ 9.5 GPa and refining to the P213 structure with a high

level of agreement, RBragg < 4. These are found in figures 5.14 and 5.15. Each

data set has had the background removed and been normalised with respect to

the (311) peak. In some cases, the use of a polynomial fit in the removal of the

background has left some small amount of “waviness” in the data. This was not
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present during the refinement of the data and is simply an artefact present in this

method of presentation.

Figure 5.13: Le Bail refinements of x-ray powder diffraction patterns at (top) 5.905
GPa and (bottom) 9.469 GPa. Beam energy is 29.17 keV (λ = 0.424 Å). This demon-
strates the stability of the P213 structure up to the point of structural transition. In
the low pressure refinement (top) peaks have been labelled with their appropriate Miller
indices.

Figure 5.14 displays powder diffraction patterns of Cu2OSeO3 below 5 GPa.

As is expected, the peaks are seen to shift to higher q values with increasing

pressure, indicating a shortening of bond lengths and an overall reduction in

lattice parameters. Below q ≈ 3.3 Å−1 the majority of the pattern remains the

same, however, in the higher q region (q > 3.3 Å−1) a number of small changes

can be seen. The peak at ∼ 3.5 Å−1 appears to split in to 3 separate peaks at

1.4 GPa, this is accompanied by the emergence of a peak at ∼ 3.6 Å−1 between

0.79 GPa and 1.03 GPa. These new peaks all remain present up to 4.21 GPa,

each shifting slightly with increasing pressure.

The emergence of these new peaks in indicative of a reduction in the symmetry
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Figure 5.14: X-ray powder diffraction of Cu2OSeO3 with increasing pressure. Beam
energy of 29.17 keV (λ = 0.424 Å). Patterns are normalised to the (311) peak, see figure
5.13, and shifted with respect to the bottom pattern. Dashed lines indicate intensity
baselines.

of the system and shows that the P213 structure does not fully describe the

crystallographic structure at higher pressures. This theme is continued in figure

5.15 where again these higher q peaks continue to evolve with pressure. At 5.1

GPa there is a sharp spike in intensity of the q = 3.5 Å−1 peak. It then remains

at a higher intensity up to 7.15 GPa, at which point it splits once again into two
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distinct peaks, again lowering the symmetry of the system.

The evolution of these higher q diffraction peaks is shown in detail in figure

5.16. Here, it is clear that the P213 refinement (denoted by the red line) does not

account for the newly emerging peaks and various splitting. The low intensity

of these peaks, relative to the background, accompanied by the well fitting lower

angle diffraction peaks, means Topas is still able to fit the system with the initial

structure, with the algorithm giving more weight to the higher symmetry, higher

intensity diffractions.

Between 9.47 GPa and 9.91 GPa the system is observed to undergo a signif-

icant structural transition, with the resulting diffraction patterns no longer able

to refine to the original structure. This transition is again accompanied by the

shift in appearance of the sample itself, from a green powder to opaque black.

The emergence of this new structural phase between 9.47 GPa and 9.91 GPa fits

perfectly with the previously observed transitions in Raman, IR and single crys-

tal diffraction results, confirming the idea of major changes taking place in the

internal workings of the Cu2OSeO3 system. Unfortunately, before pressures could

be increased beyond 10.45 GPa, an instability developed in the sample chamber

wall, resulting in the loss of the sample as the chamber closed with an increase in

pressure. It is clear from these initial findings however that further investigation

of the high pressure structural phase of Cu2OSeO3 is required. Hence the exper-

iment was repeated with this goal in mind. A new powder sample was prepared

and loaded as described in section 5.3.5.

Figure 5.17 shows a full pattern Le Bail refinement of the diffraction data to

the P213 space group at 2.1 GPa. The RBragg value of 2.6 again demonstrates

the high quality of the sample and the strong agreement with the P213 space

group that the system possesses. The large, broad peaks observed about q ≈ 2.6,

q ≈ 2.8 and q ≈ 2.9 are diffraction from the Re gasket, as indicated. Where

appropriate, Bragg peaks are labelled with their appropriate Millar indices. A

number of peaks are not visible in the pattern, these are likely lying below the

background intensity. This refinement process has been carried out for all pres-
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Figure 5.15: X-ray powder diffraction of Cu2OSeO3 with increasing pressure. Beam
energy of 29.17 keV (λ = 0.424 Å). Pressures between 4.585 GPa and 10.454 GPa.
Structure is found to remain stable up to 9.469 GPa. At this point, the system undergoes
a structural transition to a new high pressure phase.

sures below 9.65 GPa, all yielding acceptable RBragg values below 5, indicating

the system remains in relative agreement with the P213 structure. Figures 5.18

and 5.19 display all diffraction data collected, with backgrounds removed. Where

possible, the pattern has been normalised to the (311) peak, above 9.04 GPa the

data is normalised to the strongest peak present in the data. When appropriate,
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Figure 5.16: Inspection of the high q diffraction pattern of Cu2OSeO3 , with increasing
pressure. Red line represents Le Bail refinements. Around 1.4 GPa we see the emergence
of a number of new peaks.

Re peaks are marked.

Inspecting closely the patterns displayed in figure 5.18 there are already some

interesting points of note. There is a clear split in a number of peaks at 5.19

GPa, located ∼2.25 Å−1 as well as around the q = 3.5 Å−1 position. The split at

the q = 2.25 Å−1 position does not appear in any of the higher pressure patterns,

likely concealed by the background. The splitting at q = 3.5 Å−1 becomes two

single low intensity peaks, before returning back to a single peak at 6.13 GPa.

At 6.69 GPa we see the emergence of another new peak at q ≈ 3.6, this then

remains up to 9.04 GPa (see fig.5.19). The addition of these new higher q peaks

again indicate a lowering of the systems symmetry and confirms that the the P213
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Figure 5.17: Le Bail refinement of the low pressure powder diffraction pattern of
Cu2OSeO3 with a beam energy of 29.197 keV (λ = 0.429 Å). Refinement confirms the
P213 structure.

structure does not fully describe the crystal at higher pressures. The observation

of peak splitting at 5.19 GPa coincides with findings in both section 5.4.1 and

5.4.2, in which clear changes in the relative spectra are observed.

Figure 5.19 presents diffraction patterns taken above ∼ 9 GPa, along with

measurements taken as pressure is released. Looking at these patterns, it is

immediately clear that Cu2OSeO3 undergoes a massive structural transition be-

tween 9.04 GPa and 9.65 GPa, with distinct differences visible in the Bragg peaks

present in the data. The splitting of the low q, < 1.75 Å−1, peaks, coupled with

the appearance of a number of higher q peaks, >3.5 Å−1, indicates a severe re-

duction in the symmetry of the structure and means the patterns are no longer

described by the symmetries of the P213 space group. This transition, again, per-

fectly corresponds with the pressures highlighted by the Raman, IR and single

crystal data.

This new high pressure structure remains stable between ∼ 9.5 GPa and ∼

123



Figure 5.18: X-ray powder diffraction of Cu2OSeO3 with increasing pressure. Pres-
sures 2.1 GPa to 3.9 GPa were measured using the P.E. detector with a beam energy
of 29.197 keV (λ = 0.429 Å). Pressures 4.59 GPa to 8.54 GPa were measured using the
Mar345 detector with a beam energy of 29.2 keV (λ = 0.4248 Å). Re gasket peaks are
marked with a blue asterisk’. Patterns are normalised to the (311) peak and shifted
with respect the the lowest pattern. Dashed lines indicate intensity baselines for each
pressure, while red arrows indicate points highlighted in the text.

11 GPa, with diffraction peaks hardening slightly as is expected. Then, at 11.29

GPa, there is a significant reduction in their intensities, suggesting a breakdown

in the long range order and hence the start of the destruction of the crystals. This
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Figure 5.19: X-ray powder diffraction of Cu2OSeO3 . Pressures 9.04 GPa to 10.06
GPa were measured using the Mar345 detector with a beam energy of 29.2 keV (λ =
0.4248 Å). Beyond this, patters were taken using the P.E. detector with a beam energy
of 40.996 keV (λ = 0.30358 Å). Patterns are normalised and shifted with respect the the
lowest pattern. Blue asterisk’ mark Re peaks, in some instances Re peaks are removed
to improve normalisation. Dashed lines indicate intensity baselines for each pressure.

reduction was tracked up to 14.9 GPa, however at this point a crack developed

in the culet of one of the diamonds, prohibiting the pressure from increasing any

further.
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As pressure was released, measurements were performed to see if the system

would revert to its original structure. Shown in figure 5.19, the new high pressure

phase appears stable between 14.9 GPa and ∼ 11.9 GPa. Then, between 11.9

GPa and 7.2 GPa the system undergoes yet another structural transition, with

an entirely new regime of Bragg peaks forming. This diffraction pattern show

approximately 8 peaks below q = 2.5 Å−1, as well as a number above 3 Å−1

although there are lower in intensity. There seems to be no correlation between

these peaks and those of the original diffraction pattern, confirmed by the fact

these new patterns do not refine to the initial P213 space group. By 0 GPa there is

still a clear structure visible in the diffraction pattern which remains distinct from

those of the initial structure. This leads to the conclusion that the Cu2OSeO3

system is now in a third, hitherto unknown, metastable structural phase.

5.6 Conclusions

This chapter presents a series of pressure dependent measurement, performed on

the Cu2OSeO3 system and motivated by the existence of novel topological spin

textures similar to those found in metallic binary helimagnets (MnSi and FeGe).

Pressure studies performed on these binary compounds find the suppression of the

magnetic order is not accompanied by a structural transition up to 30 GPa [20].

Previous pressure studies performed on Cu2OSeO3 find no structural instabilities,

however only reach 6 GPa [21, 22]. The use of diamond anvil cells grants this

investigation the ability to achieve far higher pressures, the aim being to track

the evolution of structure and eventually the magnetic phase of the system.

An initial investigation was performed using Raman spectroscopy, the results

hinting towards a number of electronic or structural transition taking place at

low pressures, with a significant event around 10 GPa and then possibly around 8

GPa as pressure is decreased. These observations were accompanied by the crystal

changing colour, from dark green to red then to black, raising the possibility of

an insulator to metallic transition. These results prompted the use of Infrared
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Figure 5.20: A tentative sequence of the pressure-induced structural phase transitions
in Cu2OSeO3 Ṫhe system refines to the initial P213 phase up to 9.7 GPa, at which
point a clear structural transition to an as yet unresolved high-pressure phase (HPP I)
is found. Increasing pressure further, a possible second transition is observed around
11.3 GPa, to another high pressure phase (HPP II). With pressure release, the system
enters a new meta stable low pressure phase (LPP) at 8.7 GPa, which then remains
stable down to ambient pressure. Dashed lines represent possible phase boundaries,
while solid lines represent clear structural transitions. The colour gradient in the P213
phase indicates points of interest present in various results.

spectroscopy to probe the electronic structure of the system, and single crystal

X-ray diffraction to ascertain the movement of constituent atoms and check for

any changes in the structure. While no band gap closure was observed in the

IR data, the single crystal diffraction data reviled a number of surprising shifts

in atomic positions, along with a significant departure from the P213 structure

around 9 GPa. In order to further explore the evolution of the structure with

pressure, powder X-Ray diffraction measurement were performed. The resulting

diffraction patterns presenting a number of minor departures from the original

structure at lower pressures, before relieving two significant structural transitions,

one at ∼ 9.3 GPa as pressure is increased and then one at ∼ 8.7 GPa as pressure

is released.

Drawing together the results presented in this chapter, it is possible to build a

coherent picture describing the affect of pressure on the crystallographic structure
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and optical properties of Cu2OSeO3 . Each set of measurement yields a number

of anomalies and discontinuities in their pressure response which correlate with

changes observed at the same pressure in other measurements.

As is previously reported in literature, at ambient pressure Cu2OSeO3 crys-

tallises in the P213 structure. Single crystal X-ray diffraction measurements were

first used in order to confirm this, as well as demonstrate the high quality of the

sample and the lack of any twinning.

The introduction of pressure quickly induces a response from the system.

Apparent from around 1.29 GPa new high q peaks in the powder diffraction

patterns, around 3.5 Å−1, are seen to emerge, see fig 5.16. Immediately indicating

a departure from the P213 space group and a reduction in the symmetry of the

system. Despite the emergence of these new peaks, the diffraction patterns still be

refine to the P213 structure with a very high level of acceptance. Comparing this

to Raman spectra taken at similar pressures, the splitting of a single broad mode

is observed at 2.3 GPa. This splitting is likely the result of several composite

smaller modes shifting at different rates. These different rates of hardening then

become apparent in the single crystal diffraction data, in which the Cu(2)-O(12)

bond is found to reduced in length far quicker than other bonds.

Further increasing the pressure to ∼5 GPa, a discontinuity is found in Raman,

IR and single crystal results. In the Raman, a distinct kink is observed in mode

positions, figure 5.7, where nearly all modes are seen to soften very slightly at

∼5 GPa. This is coupled with further splitting of modes at 5.4 GPa and mode

suppression between 5.4 GPa and 7.7 GPa. The IR data presents a slight step

increase in the slop of the absorption edge of the NIR spectrum. While the single

crystal diffraction data sees the Cu(2)-O(12) bond length to stop decreasing and

instead slowly increase. Throughout this pressure increase the high q powder

diffraction peaks continue to evolve, moving slowly towards lower q values. The

combination of these results suggest that around 5 GPa there is a slight release in

tension, within the P213 structure, as atoms begin to dislocate from their original

positions, in turn allowing for the emergence of new lattice vibrations.
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A key result of this thesis is then the major structural transition found at ∼9.7

GPa. At or about this pressure each data set displays significant discontinuities

in their results; Raman spectroscopy sees the near complete suppression of all

previously visible modes, followed by the emergence several new ones. Infrared

data shows a pronounced softening in the absorption edge position, as well as a

significant decrease in the edge gradient of the NIR spectra. Single crystal data

finds diffraction patterns no longer refine to the P213 space group above 8.9 GPa.

And finally, powder diffractions clearly reviles the emergence of an entirely new

set of diffraction peaks, corresponding to an as yet unknown higher symmetry

crystallographic structure, here called high pressure phase one (HPP I). This

transition is also accompanied by a change in appearance of the sample, from a

transparent green to black.

The existence of this structural transition in Cu2OSeO3 contrasts the struc-

tural stability found in the B20 metallic binary systems. In order to develop

the understanding of the roll the P213 space group plays in the formation of the

skyrmion phase, this new high pressure structure must be solved and the high

pressure magnetic phase diagram mapped out. From this, a deeper understand-

ing of the forces governing the formation of exotic topological spin textures can

hope to be established. Unfortunately, this investigation has been unsuccessful

in find the identity of this new high pressure phase, and as such this should be

made a priority for future work.

As pressure is increased still further the system continues to evolve. In the

Raman data, the emergence of several new modes beyond ∼12 GPa is observed,

coinciding with the appearance of yet more peaks in powder diffraction data.

This may be the the formation of a second high pressure crystal phase (HPP II),

or simply the new HPP I phase increasing in quality, revealing more diffraction

peaks as long range is order increased. Looking at the IR data, between 10

and 15 GPa the NIR absorption edge remains stationary, after softening slightly

following the transition at ∼9.7 GPa. This new HPP II remains up to 15 GPa,

the highest pressure achieved in the structural investigation.
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Upon pressure release, both powder diffraction and Raman spectroscopy data

show the new high pressure phase to remain stable down to ∼8.7 GPa. At this

point there is yet another massive structural transition, indicated by the emer-

gence of new Raman modes, as well as a completely new set of powder diffraction

peaks. Neither the modes nor diffraction peaks appear to correspond to those

present in the initial P213 phase, indicating yet another previously unknown struc-

tural phase, labelled the low pressure phase (LPP). This new structure remains

stable down to ambient pressure, indicating a meta stable phase. The crystal

remains a far darker, almost opaque appearance. Again, this body of work has

been unable to determine the nature of this structure, making classification a

priority for any future investigations into the system.

Below ∼9.7 GPa, the Cu2OSeO3 system could still be refined, with a high level

of accuracy, to the P213 structure. Using these refinements, lattice parameters

were established, allowing a pV equation of state to be drawn, figure 5.21. When

fit using the Murnaghan EoS (eqn.2.47), combined lattice parameters show a bulk

modulus B0 = 73.9± 2.5 GPa. This value is considerably lower than the value

of B0 = 197 ± 2 GPa, published in [21]. The discrepancy in results is likely due

to the methods used to calculate lattice volumes, with the previously published

value relying on macroscopic changes in sample size, rather than structural data

determined through numerous diffraction measurements. Because of this, our

value of B0 = 73.9± 2.5 GPa is far more reliable.
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Figure 5.21: Volume vs. pressure dependence of Cu2OSeO3 obtained from powder
(PXRD) and single-crystal (SXRD) X-ray diffraction. A fit of a Murnaghan equation
of state to the data reveals B0 = 73.9 GPa and B0’ = 4.2 for the bulk modulus and its
pressure derivative, respectively.
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Chapter 6

Summary

Magnetic order exists in a vast number of configurations, ranging from simple

ferromagnetism to more complex formations such as helimagnetism and topologi-

cal structures such as the Skyrmion lattice. Magnetic quantum phase transitions

play a prominent role in the formation of unconventional and high temperature

superconductivity as well as non Fermi liquid behaviour, with compounds display-

ing these novel states drawing particular attention in recent years. This thesis

investigates two such systems, currently of interest for their unconventional mag-

netic behaviour; the itinerant ferromagnet Nb1−xFe2+x, found to contain a spin

density wave domain covering a ferromagnetic QCP, and the insulating helimag-

net Cu2OSeO3, in which a Skyrmion lattice domain forms with the application

of small external magnetic fields. These systems have been tuned using temper-

ature, field and pressure, with the aim to develop a better understanding of the

conditions that bring about this behaviour.

Neutron scattering was used to investigate the borders of ferromagnetism in

the Fe-rich Nb0.981Fe2.019 system, confirming transition temperatures of TN = 36

K and TC = 30 K. Magnetic neutron diffraction the established a critical field for

suppression of the spin density wave order at HC ≈ 0.2 T at T = 33 K.

Inelastic neutron scattering was then used to probe the low energy excita-

tion spectra of Nb0.981Fe2.019. An overview of Γ(q, T ) is shown in Figure 6.1. It

was found that the PM phase is characterised by quasielastic scattering, with a
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minimum at QFM even in the vicinity of TN . In the SDW region quasielastic

scattering was observed with a relaxation rate, Γ, less than the energy resolution

of 0.1 meV, suggesting a region of critical spin fluctuations. Finally, in the FM

phase, Nb0.981Fe2.019 presents damped excitations with a minimal excitation en-

ergy of E0 ≈ 0.6 meV. As the minimum is located away from QFM this suggests

that the proximity to the SDW phase influences the excitations in the FM phase.

At TN , the relaxation of the systems, Γ, fits neatly with the basic model of ferro-

Figure 6.1: (left) Field-temperature phase diagram of the SDW order found in
Nb0.981Fe2.019. The position of the diffraction measurements shown in figures 4.7, 4.8
and 4.9 are marked by the red dashed lines. A rough phase boundary, serving purely
as a guide to the eye, is shown by the solid black line. (right) The q dependence of Γ

over a range of temperatures.

magnetic spin fluctuations, as outlined in section 2.3, agreeing with the predicted

Landau damping, damped harmonic oscillator model.

Furthering this investigation requires the use of high resolution neutron spec-

troscopy measurements, e.g. spin-echo experiments, in order to study the detailed

q dependence of soft quasielastic scattering at TN . This ought be accompanied

by a detailed characterisation of the spin structures, present in the SDW and

FM phases, through polarised neutron scattering. Combined with existing data,

this would present an even more complete picture, against which new theories of

emerging modulated order at the border of ferromagnetism could then be tested.

In order to understand the rise in magnetic transition temperature, found

with increasing pressure in the Cu2OSeO3 system, the effects of pressure on the
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Figure 6.2: A tentative sequence of the pressure-induced structural phase transitions
in Cu2OSeO3 . The system refines to the ambient pressure P213 phase up to 9.7 GPa,
at which point we observe a clear structural transition to a still unresolved high-pressure
phase (HPP I). increasing pressure further, we observe a possible second transition at
11.3 GPa to another high pressure phase (HPP II). Upon pressure release the system
enters a new meta stable low pressure phase (LPP) at 8.7 GPa. This phase then remains
stable down to ambient pressure. Dashed lines represent possible phase boundaries,
while solid lines represent clear structural transitions. The colour gradient in the P213
phase indicates points of interest present in various results.

its structural properties have been characterised. This has been achieved through

a series of X-ray diffraction, Raman and Infrared spectroscopy measurements.

Data produced by Raman, IR and X-ray studies all yielded various anomalies

and discontinuities in their pressure response, indicating several structural phase

transitions, figure 6.2. The initial, p = 0, structure (P213) is seen to undergo

subtle changes around 5 GPa, before the system enters a new, high-pressure,

structural phase around 10 GPa (see figure 5.20). It quickly become clear that

the P213 space group dose not fully describe the structure beyond 1.2 GPa, fol-

lowing the emergence of several new high q peaks in the PXRD diffraction data

and discontinuities in both Raman and IR spectroscopy results. Single crystal

diffraction suggests this may be due to irregular shifting of the Cu2, O2 and O4

atoms (fig 5.12). Despite this, the system remains similar enough to the initial

structure that reliable atomic positions may still be extracted.

Both powder and single crystal X-ray diffraction results clearly show Cu2OSeO3

undergoes a significant structural transition at ∼9.7 GPa. This transition is again
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accompanied by discontinuities in both Raman and IR spectroscopy results, as

well as a change in the crystals appearance, from dark translucent green to a

deep red then to opaque black. Beyond 11.3 GPa this new high pressure struc-

ture appears to break down, the diffraction peaks losing intensity. With the

release of pressure, this new high-pressure phase transitions to yet another a new

structure between 11.9 and 7.2 GPa. This is most clear in the powder diffraction

data, however indications of this transition are also seen in the Raman spectra,

characterised by the emergence of new phonon modes.

To continue this work, it is now vital that the new structural phases are iden-

tified and assigned to symmetry groups. Once this task is complete, magnetic

and electronic measurements are needed in order to characterise the electromag-

netic state of the system. This will establish the relation between structural and

magnetic composition of the system, hopefully shedding light on the mechanisms

that allow for the existence of a Skyrmion lattice domain within this insulating

helimagnet in the first place.
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