
Programming Constructs
Lab Preparation

Funcons
Basics of Imperative Programming

L. Thomas van Binsbergen

Royal Holloway, University of London

7 March, 2015

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Section 1

Programming Constructs

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Subsection 1

Expressions

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Expressions

An expression is evaluated to yield a value.

Many expressions are ‘pure’.

In imperative languages, expressions may have side effects.

For example:

i + +
printMe(x)
In some languages: x := 3

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Expressions

An expression is evaluated to yield a value.

Many expressions are ‘pure’.

In imperative languages, expressions may have side effects.

For example:

i + +

printMe(x)
In some languages: x := 3

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Expressions

An expression is evaluated to yield a value.

Many expressions are ‘pure’.

In imperative languages, expressions may have side effects.

For example:

i + +
printMe(x)

In some languages: x := 3

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Expressions

An expression is evaluated to yield a value.

Many expressions are ‘pure’.

In imperative languages, expressions may have side effects.

For example:

i + +
printMe(x)
In some languages: x := 3

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Subsection 2

Statements

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Statements

A statement has the primary goal of updating variables and
printing.

Statements return no value, or the empty tuple ().

Examples:

x := 3;
print “hello”;
What do you think of? 3 + 2;

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

If-Then-Else

Is if-then-else an expression or a statement?

It can be both, based on the contents of the branches.

For example:

if true { print “yea”; } else { print “nay”; }
true ? 10 : 5

Is if-then an expression or a statement?

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

If-Then-Else

Is if-then-else an expression or a statement?

It can be both, based on the contents of the branches.

For example:

if true { print “yea”; } else { print “nay”; }
true ? 10 : 5

Is if-then an expression or a statement?

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

If-Then-Else

Is if-then-else an expression or a statement?

It can be both, based on the contents of the branches.

For example:

if true { print “yea”; } else { print “nay”; }
true ? 10 : 5

Is if-then an expression or a statement?

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

If-Then-Else

Is if-then-else an expression or a statement?

It can be both, based on the contents of the branches.

For example:

if true { print “yea”; } else { print “nay”; }
true ? 10 : 5

Is if-then an expression or a statement?

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Subsection 3

Declarations

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Expressions
Statements
Declarations

Declarations

A declaration has the primary goal of yielding an environment.

An environment contains bindings from identifiers to values.

A declaration may have side-effects, e.g. updating variables.

For example:

int x ;
int y = 0;
procedure void printMe(int x) { print x; return x; }

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Section 2

Lab Preparation

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Subsection 1

Effects

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Expressions as Statements

An expression can be considered a statement if we:

Evaluate the expression, optionally performing side-effects.
Discard the yielded value, and yield () instead.

The effect funcon has this behaviour.

effect(X : T) : ()

Descends X .
Replaced by ().

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Subsection 2

Variable Declarations

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Imperative Variables

The following slides discuss how

The inherited entity environment
The mutable entity store

are used to define imperative variables with scoping rules.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

The Store

The store binds variables to arbitrary values.

The store represent the computer’s memory.

A variable is a reference to a slot in memory.

Slots are allocated with a fresh variable refering to it.

A slot stores arbitrary values (no size restrictions).

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

The Environment

The environment binds identifiers to variables.

Declarations extend the current environment with bindings.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Allocating Variables

var x = 0;
binds x to a fresh variable, whose value in the store is 0.

scope(bind(“x”, allocate-initialised-variable(0)) ,...)

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Accessing Variables

print x ;
prints the value assigned to the variable bound to x .

print(assigned(bound(“x”)))

What is the funcon translation of the expression x?

In the lab you will implement the funcon translation of x := 3

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Scoping

Bindings are local, as environment is an inherited entity.

Therefore:

An identifier can be out of scope.
A variable can be unbound, in a certain scope.

Variables are global, as store is a mutable entity.

An assignment to a variable changes it everywhere.

Examples

seq(scope(bind(“x”, 3),...), bound(“x”))

seq(assign(bound(“x”), 5), assigned(bound(“x”)))

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Subsection 3

Normal Control Flow

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Control Flow

The flow of control is the sequence of statements in a
program’s execution.

We have seen that sequential places statements in sequence.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Normal Control Flow

Control flow can branch in two or more directions.

Which direction is taken is decided by evaluating an
expression.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Normal Control Flow - if-then-else

For example, if-then-else has:

A then branch.
An optional else branch.
A Boolean expression known as the condition.

b

c

t

a

b

c

t e

a

Figure : Control flow of if-then and if-then-else.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Normal Control Flow - while

For example, while has:

An body which may or may not be executed.
A Boolean expression known as the condition.
Note the similarity with if-then.

b

c body

a

Figure : Control flow of while.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Normal Control Flow - switch

For example, switch has:

One or more cases.
An expression yielding a value that can be matched.

b

c

c1 c2 c3 def

a

Figure : Control flow of switch.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

In the lab

In the lab you will be asked to implement:

Boolean expressions
if-then-else using if-then-else
while using while

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Subsection 4

Abnormal Control Flow

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Abnormal Control Flow

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

Examples are:

GOTO
throw

continue
break
return

Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Abnormal Control Flow

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

Examples are:

GOTO
throw
continue

break
return

Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Abnormal Control Flow

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

Examples are:

GOTO
throw
continue
break

return

Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons



Programming Constructs
Lab Preparation

Effects
Variable Declarations
Normal Control Flow
Abnormal Control Flow

Abnormal Control Flow

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

Examples are:

GOTO
throw
continue
break
return

Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons


	Programming Constructs
	Expressions
	Statements
	Declarations

	Lab Preparation
	Effects
	Variable Declarations
	Normal Control Flow
	Abnormal Control Flow


