Funcons

Basics of Imperative Programming

L. Thomas van Binsbergen

Royal Holloway, University of London

7 March, 2015

HOLLOWAY

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Section 1

Programming Constructs

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Subsection 1

Expressions

L. Thomas van Binsbergen Func



Expressions
Statements
Declarations

Programming Constructs

Expressions

@ An expression is evaluated to yield a value.
o Many expressions are ‘pure’.

o In imperative languages, expressions may have side effects.
@ For example:

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Expressions

@ An expression is evaluated to yield a value.
o Many expressions are ‘pure’.

o In imperative languages, expressions may have side effects.
@ For example:
° i+ +

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Expressions

@ An expression is evaluated to yield a value.
o Many expressions are ‘pure’.

o In imperative languages, expressions may have side effects.
@ For example:

° i+ +

o printMe(x)

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Expressions

@ An expression is evaluated to yield a value.
o Many expressions are ‘pure’.
o In imperative languages, expressions may have side effects.
@ For example:
° i+ +
o printMe(x)
o In some languages: x ;=3

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Subsection 2

Statements

L. Thomas van Binsbergen Func



Expressions
Statements
Declarations

Programming Constructs

Statements

o A statement has the primary goal of updating variables and
printing.
o Statements return no value, or the empty tuple ().
o Examples:
o x:=23;
o print “hello”;
o What do you think of? 3+2;

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

If-Then-Else

o Is if-then-else an expression or a statement?

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

If-Then-Else

o Is if-then-else an expression or a statement?

@ It can be both, based on the contents of the branches.

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

If-Then-Else

o Is if-then-else an expression or a statement?
@ It can be both, based on the contents of the branches.
o For example:

o if true { print "yea”; } else { print “nay”; }
o true? 10: 5

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

If-Then-Else

(*]

Is if-then-else an expression or a statement?

(]

It can be both, based on the contents of the branches.

For example:
o if true { print "yea”; } else { print “nay”; }
o true? 10:5

o Is if-then an expression or a statement?

L. Thomas van Binsbergen Funcons



Expressions
Statements
Declarations

Programming Constructs

Subsection 3

Declarations

L. Thomas van Binsbergen Func



Expressions
Statements
Declarations

Programming Constructs

Declarations

@ A declaration has the primary goal of yielding an environment.
@ An environment contains bindings from identifiers to values.
@ A declaration may have side-effects, e.g. updating variables.
o For example:
e int x;

o int y =0;
o procedure void printMe(int x) { print x; return x; }

L. Thomas van Binsbergen Funcons



Effects
Variable Declarations

Lab Preparation Normal Control Flow
Abnormal Control Flow

Section 2

Lab Preparation

L. Thomas van Binsbergen Funcons



Effects
Variable Declarations

Lab Preparation Normal Control Flow
Abnormal Control Flow

Subsection 1

Effects

L. Thomas van Binsbergen Func



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Expressions as Statements

@ An expression can be considered a statement if we:
o Evaluate the expression, optionally performing side-effects.
o Discard the yielded value, and yield () instead.
o The effect funcon has this behaviour.
o effect(X : T): ()
o Descends X.
o Replaced by ().

L. Thomas van Binsbergen Funcons



Effects
Variable Declarations

Lab Preparation Normal Control Flow
Abnormal Control Flow

Subsection 2

Variable Declarations

L. Thomas van Binsbergen Funco



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Imperative Variables

@ The following slides discuss how

o The inherited entity environment
o The mutable entity store

@ are used to define imperative variables with scoping rules.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

The Store
(]
o
o
o
o

L. Thomas van Binsbergen Funcons

The store binds variables to arbitrary values.

The store represent the computer's memory.

A variable is a reference to a slot in memory.

Slots are allocated with a fresh variable refering to it.

A slot stores arbitrary values (no size restrictions).



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

The Environment

@ The environment binds identifiers to variables.

o Declarations extend the current environment with bindings.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Allocating Variables

e var x = 0;
binds x to a fresh variable, whose value in the store is 0.

o scope(bind(“x", allocate-initialised-variable(0)) ,...)

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Accessing Variables

@ print x;

prints the value assigned to the variable bound to x.
e print(assigned(bound(“x")))
@ What is the funcon translation of the expression x?

@ In the lab you will implement the funcon translation of x := 3

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Scoping

(]

Bindings are local, as environment is an inherited entity.

Therefore:

o An identifier can be out of scope.
o A variable can be unbound, in a certain scope.

Variables are global, as store is a mutable entity.

(]

(]

An assignment to a variable changes it everywhere.

seq(scope(bind(“x", 3),...), bound(“x"))

seq(assign(bound(“x"), 5), assigned(bound(“x")))

L. Thomas van Binsbergen Funcons



Effects
Variable Declarations

Lab Preparation Normal Control Flow
Abnormal Control Flow

Subsection 3

Normal Control Flow

L. Thomas van Binsbergen Funco



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Control Flow

@ The flow of control is the sequence of statements in a
program’s execution.
@ We have seen that sequential places statements in sequence.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Normal Control Flow

@ Control flow can branch in two or more directions.
@ Which direction is taken is decided by evaluating an
expression.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Normal Control Flow - if-then-else

o For example, if-then-else has:
e A then branch.
o An optional else branch.
o A Boolean expression known as the condition.

Figure : Control flow of if-then and if-then-else.

L. Thomas van Binsbergen Funcons




Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Normal Control Flow - while

@ For example, while has:

e An body which may or may not be executed.
o A Boolean expression known as the condition.
o Note the similarity with if-then.

[¢ body

Figure : Control flow of while.

L. Thomas van Binsbergen Funcons




Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Normal Control Flow - switch

@ For example, switch has:

o One or more cases.
o An expression yielding a value that can be matched.

c1 &) c3 def

Figure : Control flow of switch.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

In the lab

@ In the lab you will be asked to implement:

o Boolean expressions
o if-then-else using if-then-else
o while using while

L. Thomas van Binsbergen Funcons



Effects
Variable Declarations

Lab Preparation Normal Control Flow
Abnormal Control Flow

Subsection 4

Abnormal Control Flow

L. Thomas van Binsbergen Funco



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Abnormal Control Flow

@ Abnormal control flow interrupts a sequence of statements.
@ Control flow is continued elsewhere, or the program halts.
o Examples are:

o GOTO

o throw

@ Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

(]

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Abnormal Control Flow

(4]

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

(]

Examples are:

o GOTO
o throw
o continue

@ Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

(]

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Abnormal Control Flow

(4]

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

(]

Examples are:

o GOTO
o throw

o continue
o break

@ Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

In the lab you are asked to implement return statements.

(]

L. Thomas van Binsbergen Funcons



Effects

Variable Declarations
Lab Preparation Normal Control Flow

Abnormal Control Flow

Abnormal Control Flow

(4]

Abnormal control flow interrupts a sequence of statements.

(]

Control flow is continued elsewhere, or the program halts.

Examples are:
e GOTO
o throw
o continue
o break
o return

@ Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

(]

In the lab you are asked to implement return statements.

L. Thomas van Binsbergen Funcons



	Programming Constructs
	Expressions
	Statements
	Declarations

	Lab Preparation
	Effects
	Variable Declarations
	Normal Control Flow
	Abnormal Control Flow


