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Expressions

An expression is evaluated to yield a value.

Many expressions are ‘pure’.

In imperative languages, expressions may have side effects.

For example:

i + +
printMe(x)
In some languages: x := 3
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Statements

A statement has the primary goal of updating variables and
printing.

Statements return no value, or the empty tuple ().

Examples:

x := 3;
print “hello”;
What do you think of? 3 + 2;
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If-Then-Else

Is if-then-else an expression or a statement?

It can be both, based on the contents of the branches.

For example:

if true { print “yea”; } else { print “nay”; }
true ? 10 : 5

Is if-then an expression or a statement?
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Declarations

A declaration has the primary goal of yielding an environment.

An environment contains bindings from identifiers to values.

A declaration may have side-effects, e.g. updating variables.

For example:

int x ;
int y = 0;
procedure void printMe(int x) { print x; return x; }
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Expressions as Statements

An expression can be considered a statement if we:

Evaluate the expression, optionally performing side-effects.
Discard the yielded value, and yield () instead.

The effect funcon has this behaviour.

effect(X : T) : ()

Descends X .
Replaced by ().
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Imperative Variables

The following slides discuss how

The inherited entity environment
The mutable entity store

are used to define imperative variables with scoping rules.
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The Store

The store binds variables to arbitrary values.

The store represent the computer’s memory.

A variable is a reference to a slot in memory.

Slots are allocated with a fresh variable refering to it.

A slot stores arbitrary values (no size restrictions).
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The Environment

The environment binds identifiers to variables.

Declarations extend the current environment with bindings.
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Allocating Variables

var x = 0;
binds x to a fresh variable, whose value in the store is 0.

scope(bind(“x”, allocate-initialised-variable(0)) ,...)
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Accessing Variables

print x ;
prints the value assigned to the variable bound to x .

print(assigned(bound(“x”)))

What is the funcon translation of the expression x?

In the lab you will implement the funcon translation of x := 3
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Scoping

Bindings are local, as environment is an inherited entity.

Therefore:

An identifier can be out of scope.
A variable can be unbound, in a certain scope.

Variables are global, as store is a mutable entity.

An assignment to a variable changes it everywhere.

Examples

seq(scope(bind(“x”, 3),...), bound(“x”))

seq(assign(bound(“x”), 5), assigned(bound(“x”)))
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Control Flow

The flow of control is the sequence of statements in a
program’s execution.

We have seen that sequential places statements in sequence.
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Normal Control Flow

Control flow can branch in two or more directions.

Which direction is taken is decided by evaluating an
expression.
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Normal Control Flow - if-then-else

For example, if-then-else has:

A then branch.
An optional else branch.
A Boolean expression known as the condition.

b

c

t

a

b

c

t e

a

Figure : Control flow of if-then and if-then-else.
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Normal Control Flow - while

For example, while has:

An body which may or may not be executed.
A Boolean expression known as the condition.
Note the similarity with if-then.

b

c body

a

Figure : Control flow of while.
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Normal Control Flow - switch

For example, switch has:

One or more cases.
An expression yielding a value that can be matched.

b

c

c1 c2 c3 def

a

Figure : Control flow of switch.
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In the lab

In the lab you will be asked to implement:

Boolean expressions
if-then-else using if-then-else
while using while
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Abnormal Control Flow

Abnormal control flow interrupts a sequence of statements.

Control flow is continued elsewhere, or the program halts.

Examples are:

GOTO
throw

continue
break
return

Funcons throw and handle-thrown are used to define most
forms of abnormal control flow.

In the lab you are asked to implement return statements.
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