The Fundamental Constructs of
Homogeneous Generative Meta-Programming
or Funcons for HGMP

L. Thomas van Binsbergen

Royal Holloway, University of London

17 January, 2018

Modelling Homogeneous Generative
Meta-Programming”

Martin Berger!, Laurence Tratt?, and Christian Urban®
1 University of Sussex, Brighton, United Kingdom

2 King’s College London, United Kingdom
3 King’s College London, United Kingdom

HGMP: programs manipulate meta-representations of program
fragments as data and choose when and where to evaluate

o Formalisation of HGMP through the A-calculus

@ A HGMPification ‘recipe’ applicable to formal specifications

Reusable Components of Semantic Specifications

Martin Churchill!, Peter D. Mosses?(®) | Neil Sculthorpe?, and Paolo Torrini?

' Qoogle, Inc., London, UK

* PLaNCOMPS Project, Swansea University, Swansea, UK
p.d.mosseslswansea.ac.uk
http://www.plancomps.org

Identifies fundamental constructs in programming
(paradigm-agnostic)

Each funcon is formally defined via MSOS (Mosses, Plotkin)
An open-ended library of (fixed) funcons makes FUNCONS

(]

(]

Object language programs are translated to FUNCONS

Research Questions

Can we apply HGMPification to FUNCONS?

Does this simplify giving a (component-based) semantics for
languages with meta-programming facilities?

meta-representations through ASTs
downML (splicing)

upML (backquotin
run-time HGMP (eval)

Section 1

HGMP

meta-representations through ASTs
HGMP downML (splicing)

upML (backquoting)
run-time HGMP (eval)

A-calculus with HGMP

e)\ programs generate (abstract syntax rep.) of A fragments

e The generated fragments may be inserted into the program

| A\

Running Example

let.; gen = An.if n < 0 then 1{0}
else t{x+ [{this (n —1)}}
in let.; product = An. T{\x. [{gen n}}
in |{product 3} 8

compiles to (Ax.x + x + x 4+ 0) 8 and evaluates to 24

HGMP meta-representations through ASTs

downML (splicing)
upML (backquoting)
run-time HGMP (eval)

M:=x|MN|XxM|c|M+N|..

Dynamic Semantics

MU Ax.M — NN M[N/x])y V
MN 1, V

M I\ h N Uy b
M+ N\ h+zh

A\

meta-representations through ASTs
downML (splicing)

upML (backquoting)
run-time HGMP (eval)

M:=x|MN|XxM|c|M+N|..

Static Semantics

M {ee M’ N et N
MN e M'N'

M Yt M’
AX.M et Ax.M’

N

meta-representations through ASTs
downML (splicing)

upML (backquoting)

run-time HGMP (eval)

Abstract syntax trees: syntax

~
|

:=var | app | lam | int | string | add | ...
M ::= ... | asty (My. .. My) where k = arity (t)

Abstract syntax trees: semantics

My I My My Iy M,
astt(Ml e Mk) Ux astt(l\/li ... M,,()

meta-representations through ASTs
downML (splicing)

upML (backquoting)

run-time HGMP (eval)

Abstract syntax trees: syntax

~
|

:=var | app | lam | int | string | add | ...
M ::= ... | asty (My. .. My) where k = arity (t)

Abstract syntax trees: semantics

Ml llct M{ Mk U'ct M//<
astt(M]_ NN Mk) ‘U’Ct aStt(M]/. NN M/,()

meta-representations through ASTs
downML (splicing)

upML (backquoting)

run-time HGMP (eval)

HGMP

Examples

ast app (astiam ("x", astyar ("x")), astint (3))
is a value

ast ,qq (astyar ("x"), (Ax.astin: (x)) 2)

evaluates to ast,qq (astyar ("x"), astint (2))

downML [{...} (splicing)

WHastapp (astiam ("x", astyar ("x")), astin: (3))}

compiles to (Ax.x) 3 and evaluates to 3

meta-representations through ASTs
downML (splicing)

HGMP

upML (backquoting)
run-time HGMP (eval)

downML syntax

M:=..| {M}

v

downML semantics

M {g M’ N g N’
astapp(l\/l, N) Yar M'N'

MUaeM MIZA AlgN
et i ii: . Yar M Uy X" N Uy N
<t astiom M, N) g Ax. N/

meta-representations through ASTs
downML (splicing)

upML (backquoting)
run-time HGMP (eval)

To write meaningful programs easily we need:
o A way to bind names to A terms at compile time
e Backquoting / quasi-quoting, for conveniently writing ASTs
@ Recursion
o Conditional choice

@ More operators

Extension syntax

M:=..|lete x=MinN| t{M}
| this | if M then Nelse N' | M < N | M — N | ...

meta-representations through ASTs
downML (splicing)

upML (backquoting)
run-time HGMP (eval)

upML semantics

M‘Uul M’
M} e M’

My M’ N o N’
MN),y astapd M’ N')

M {er M’
i{M} Uul M/

meta-representations through ASTs
HGMP downML (splicing)

upML (backquoting)
run-time HGMP (eval)

let: gen = An.if n < 0 then {0}
else t{x+ [{this (n —1)}}
in let; product = An. {\x. |[{gen n}}
in [{product 3} 8

compiles to (Ax.x + x + x + 0) 8 and evaluates to 24

HGMP meta-representations through ASTs

downML (splicing)
upML (backquoting)
run-time HGMP (eval)

let: gen = An.if n < 0 then {0}
else t{x+ [{this (n —1)}}
in let; product = An. {\x. |[{gen n}}
in [{product 3} 8

compiles to (Ax.x + x + x + 0) 8 and evaluates to 24

| A

Halfway compilation:

W{ product 3} 8
with product = \n.ast 3 (aStstring ("x"), gen n)
and gen = An.if n < 0 then ast;,; (0)
else ast,qq(astyar ("x"), this (n — 1))

y

HGMP meta-representations through ASTs

downML (splicing)
upML (backquoting)
run-time HGMP (eval)

Run-time HGMP

let gen = An.if n < 0 then {0}
else {x+ |{this (n—1)}}
in let product = An. M{\x. [{gen n}}
in (eval (product 3)) 8

.

After compilation

let gen = An.if n < 0 then ast;,; (0)
else ast,qq(astyar ("x"), this (n — 1))

in let product = An.astm (aststring ("x"), gen n)
in (eval (product 3)) 8

meta-representations through ASTs
downML (splicing)

upML (backquoting)
run-time HGMP (eval)

Eval syntax

M ::= ... | eval (M)
t ::=-eval

o’

Eval semantics

MUyA Alla N NV Allg M
eval(M) |, V asteyal (A) {a eval(M)
M et N M {y, A

eval(M) | eval(N) eval(M) |, astevalA)

A\

Outline
Funcons

A-calculus semantics

Section 2

Funcons

Outline
Funcons

A-calculus semantics

e The PLANCOMPS project has identified over a hundred funcons:
@ Procedural: procedures, references, scoping, iteration
@ Functional: functions, bindings, datatypes, patterns

@ Abnormal control: exceptions, delimited continuations

e A beta-version is to be published: plancomps.org
e A semantics is obtained by translation to FUNCONS
fctif G then M else N] = if-then-else(fct]G], fct[M], fct[N])

fct[M + N] = integer-add(fct[M], fct[N])
fct[M < N] = is-less-or-equal(fct[M], fct[N])

plancomps.org

Outline
Funcons

A-calculus semantics

e Potential benefits of FUNCONS:
@ Development and maintenance of formal specifications

o Teach and compare programming constructs across paradigms

Outline

Funcons 0
A-calculus semantics

FUNCONS

A FUNCONS program (funcon term) is either:
o A value, eg. true, 1, {1,2,3}, abs(...), {"x" — abs(...)}
@ A computation: a funcon-name applied to funcon terms, e.g.

seq (assign (bound ("x")
,integer-add (assigned (bound ("x")), 1))
, print (assigned (bound ("x"))))

Funcon terms are freely composed:
@ Many funcons are variadic

@ But composition must satisfy funcon signatures

Outline
Funcons

A-calculus semantics

e The semantics of a Funcon is defined via small-step MSOS.

e MSOS rules are modular wrt auxiliary entities, modelling context
and effects, e.g. environment, store, output, control, etc.

assigned (bound ("x")) — assigned (variable (#1)) — 7

under any environment binding "x" to variable (#1)

for any store with value 7 at location #1.

Outline
Funcons

A-calculus semantics

fct[let x = M in N]| = scope(bind(x, fct[M]), fct[N])

funcon informal semantics
bind (X, Y) | yield the environment binding identifier X to Y
evaluate Y extending the current environment
scope (X,Y) | . e . ~
with the bindings in environment X

Outline
Funcons

A-calculus semantics

fct{M N] = apply(fct[M], fct[N]) (v1)
(v2)
(v3)
funcon informal semantics
given yield the current given-value
give (X,Y) | evaluate Y with given-value X
abs (X) a value constructor wrapping a computation X

apply (X, Y)

unwrap abstraction X and give Y to it

Outline
Funcons

A-calculus semantics

fct{M N] = apply(fct[M], fct[N]) (v1)
fet[M N] = apply(fct[M], (fct[N], fct[M])) (v2)
(v3)
funcon informal semantics
given yield the current given-value
give (X,Y) | evaluate Y with given-value X
abs (X) a value constructor wrapping a computation X

apply (X, Y)

unwrap abstraction X and give Y to it

Outline
Funcons

A-calculus semantics

fctf]M N] = apply(fct[M], fct[N]) (v1)
fet[M N] = apply(fct[M], (fct[N], fct[M])) (v2)
fct]M N] = give(fct[M], apply(given, (fct[N], given))) (v3)

funcon informal semantics

given yield the current given-value

give (X, Y) | evaluate Y with given-value X

abs (X) a value constructor wrapping a computation X

apply (X, Y)

unwrap abstraction X and give Y to it

Outline
Funcons

A-calculus semantics

fetfAx.M] =
closure(abs(
fct[M])

funcon informal semantics
yields abs (close (scope (T, X)))
closure (abs (X)) | where I is the current environment

close (X) evaluate X under the empty environment

Outline
Funcons

A-calculus semantics

fetfAx.M] =
closure(abs(scope(bind(x, fst(given))

: fet[M]))

funcon informal semantics
yields abs (close (scope (T, X)))
closure (abs (X)) | where I is the current environment

close (X) evaluate X under the empty environment

Outline
Funcons

A-calculus semantics

fetfAx.M] =
closure(abs(scope(bind(x, fst(given))
,scope(bind("this", snd(given)), fct]M]))))

funcon informal semantics
yields abs (close (scope (T, X)))
closure (abs (X)) | where I is the current environment

close (X) evaluate X under the empty environment

Outline
Funcons

A-calculus semantics

fct[this] = bound("this")
fct[x] = bound(x) if x # this

funcon | informal semantics
bound (X) ‘ yields V if the current environment binds id X to V

HGMPification of FUNCONS

HGMPification of object language

Funcons for HGMP

Section 3

Funcons for HGMP

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Research Questions

Can we apply HGMPification to FUNCONS?

HGMPification of FUNCONS

HGMPification of object language

Funcons for HGMP

a) HGMPification of FUNCONS
i) Meta-reps of funcon terms (ASTs), with | and {,
i) Introduce a compilation phase for funcon terms
iii) Compile-time HGMP: meta-up, meta-down, meta-let
iv) Run-time HGMP: meta-eval
b) HGMPification of object language

i) Translation for meta-programming constructs
ii) Translation for meta-reps (ASTs)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Meta-representations (ASTs)

Let strings represent funcon names

and ty a function mapping a value V to its type 7 (types)

e New variadic funcon ast (Xp, X1, ..., Xk) with
@ Xp (evaluates to) a funcon name or a type

@ Xi,..., Xk (evaluate to) the meta-reps of arguments

e New value constructor astv (T, Vi, ..., Vi) with
o If T atype, then k =1 and V; some value with T = ty(V1)

o If T a funcon name, then V4,..., V, are asts

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Dynamic semantics of meta-representations

ty(V)=r
ast(r, V) — astv(r, V)

ty(T) = strings t}/(Vl) = asts. .. ty(Vn) = asts
ast(T, Vl, ce Vn) — astv(T, Vl, e Vn)

X,' — Xf,
aSt(Xo, ey Xiy e ,Xk) — aSt(Xo, e X!

R

'an)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Up meta-level

X1 llul X{ . Xn liul X,,7

funcont(X1,..., X,) bu ast(T,X{,..., X))

V |y astv(ty(V), V)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Down meta-level

ty(T) = strings Vi Uar X1 ..o Vie Jar Xk
astv(T,Vi,..., Vk) Yar funconT(Xl, c ,Xk)

ty() = types
aStV(T, V) Jay V

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Progress

a) HGMPification of FUNCONS

i) Funcon term meta-reps (ASTs), with {y and {
i) Introduce a compilation phase for funcon terms

iii) Compile-time HGMP: meta-up, meta-down, meta-let

iv) Run-time HGMP: meta-eval

b) HGMPification of object language

i) Translation for meta-programming constructs
ii) Translation for meta-reps (ASTs)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Progress

a) HGMPification of FUNCONS

i) Funcon term meta-reps (ASTs), with {y and {
i) Introduce a compilation phase for funcon terms
How to combine with static semantics for FUNCONS?
iii) Compile-time HGMP: meta-up, meta-down, meta-let

iv) Run-time HGMP: meta-eval

b) HGMPification of object language

i) Translation for meta-programming constructs
ii) Translation for meta-reps (ASTs)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Progress

a) HGMPification of FUNCONS

i) Funcon term meta-reps (ASTs), with {y and {
i) Introduce a compilation phase for funcon terms
How to combine with static semantics for FUNCONS?
iii) Compile-time HGMP: meta-up, meta-down, meta-let
Exactly as in Berger et al.
iv) Run-time HGMP: meta-eval

b) HGMPification of object language

i) Translation for meta-programming constructs
ii) Translation for meta-reps (ASTs)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Progress

a) HGMPification of FUNCONS

i) Funcon term meta-reps (ASTs), with {y and {
i) Introduce a compilation phase for funcon terms
How to combine with static semantics for FUNCONS?
iii) Compile-time HGMP: meta-up, meta-down, meta-let
Exactly as in Berger et al.
iv) Run-time HGMP: meta-eval
Exactly as in Berger et al.

b) HGMPification of object language

i) Translation for meta-programming constructs
ii) Translation for meta-reps (ASTs)

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Translation of HGMP constructs

fet[t{M}] = meta-up(fct[M])
fct[J{M}] = meta-down(fct[M])
fct[lete: x = M in N] = meta-let(x, fct[M], fct[N])
fcteval(M)] = meta-eval(fct[M])

fct[l x] = meta-down(fct[M])
fet]lift M] = give(fct[M], ast(type-of(given), given))

fctlastapd M, N)]| = 777

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Recall translation of application:
fct]M N] = give(fct[M], apply(given, (fct[N], given)))
How do we translate the meta-rep of A-application?
fctlast,pd M, N)]| = ast("give", fct[M], ast("apply",...))

We have duplicated the translation of application...

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

homomorphism property

A funcon-translation WV is homomorphic if for each object language
operator o we have an f, such that:

W(o(My, ..., M) = fo(W(My), ..., (M)
We can write the translations of application as follows

fet]M N = fopp(fct[M], fct[N])
where f,,,(M, N) = give(M, apply(given, (N, given)))

and the the translation of the meta-rep of application

fet[astap M, N)]| = meta-up(f;,p(meta-down(fct[M]), meta-down(fct[N])))

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

We introduce ast-app with the following dynamic semantics

Vila M Vo lay N fapp(M, N) s F
ast-app(V4, Vo) — F

F]_-)Fl/ FQ—)F2/

ast-app(F1, F2) — ast-app(Fy, F>) ast-app(Fi, F2) — ast-app(F1, F;)

and translate the meta-rep of application directly into it

fct[astapp (M, N)] = ast-app(fct[M], fct[N])

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

e To complete the HGMPification of the A-calculus:

fct[astapp (M, N)| = ast-app(fct[M], fct[N])
fct[astiam (X, M)] = ast-lam(fct[X], fct[M])

® ast,pp (M, N) is concrete syntax determined by language design

fct[App M N] = ast-app(fct[M], fct[N])
fctfLambda X M] = ast-lam(fct[X], fct[M])

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Conclusions

e Adding HGMP facilities to FUNCONS is relatively straightforward

e Adding object language ASTs risk duplication, but for
homomorphic translations the process can be automated

e Potential benefits:
@ Languages with HGMP now in the scope of FUNCONS

@ Languages with effects in the scope of HGMP formalisation

HGMPification of FUNCONS

Funcons for HGMP HGMPification of object language

Future work

@ More funcons: concurrency, unification (logic programming)
@ Static semantics of funcons
o Further case studies, including languages with HGMP

Does this work simplify giving a (component-based) semantics for
languages with meta-programming facilities?

HGMPification of F

Funcons for HGMP HGMPification of ob

The Fundamental Constructs of
Homogeneous Generative Meta-Programming
or Funcons for HGMP

L. Thomas van Binsbergen

Royal Holloway, University of London

17 January, 2018

	HGMP
	meta-representations through ASTs
	downML (splicing)
	upML (backquoting)
	run-time HGMP (eval)

	Funcons
	Outline
	-calculus semantics

	Funcons for HGMP
	HGMPification of Funcons
	HGMPification of object language

