
An evaluation of the security of the Bitcoin Peer-to- Peer Network

James Tapsell, Raja Naeem Akram, and Konstantinos Markantonakis
ISG-SCC, Royal Holloway, University of London, Egham, United Kingdom

Email: {James.Tapsell.2015}@live.rhul.ac.uk, {r.n.akram, k.markantonakis}@rhul.ac.uk

Abstract—Bitcoin is a decentralised digital currency that relies
on cryptography rather than trusted third parties such as central
banks for its security [1]. Underpinning the operation of the
currency is a peer-to-peer (P2P) network that facilitates the
execution of transactions by end users, as well as the transaction
confirmation process known as bitcoin mining. The security of
this P2P network is vital for the currency to function and
subversion of the underlying network can lead to attacks on
bitcoin users including theft of bitcoins, manipulation of the
mining process and denial of service (DoS). As part of this paper
the network protocol and bitcoin core software are analysed,
with three bitcoin message exchanges (the connection handshake,
GETHEADERS/HEADERS and MEMPOOL/INV) found to be
potentially vulnerable to spoofing and use in distributed denial of
service (DDoS) attacks. Possible solutions to the identified weak-
nesses and vulnerabilities are evaluated, such as the introduction
of random nonces into network messages exchanges.

I. INTRODUCTION

Bitcoin operates as a currency through a peer-to-peer (P2P)
network of nodes that execute, communicate and confirm
transactions. Trust in its security is maintained by both
the cryptographic elements of the system and the correct
functioning of the P2P network.

A. Contributions

The key contributions of this paper are:

1) Analysis of two message exchanges in the bitcoin P2P
network protocol (GETHEADERS and MEMPOOL) and
their potential for spoofing and abuse in denial of service
attacks.

2) Analysis of the security of hardcoded DNS seed addresses
that allow nodes to first connect to the network.

3) Proposal of potential improvements to the security of the
bitcoin P2P network protocol.

II. BITCOIN PEER-TO-PEER NETWORK

A. Objectives & challenges

The overall goal of bitcoin, as put forward by Nakamoto, was
to enable two entities to execute a transaction without relying
on a trusted third party [1]. The decentralised transmission of
data (i.e. blocks and transactions) in bitcoin is carried out via
a distributed peer-to-peer (P2P) network [2]

To summarise the objectives of the bitcoin network:
A key challenge with achieving these objectives is that nodes

do not trust each other. Nodes must have the capability to verify
information themselves without relying on a trusted third party.

TABLE I
THE OBJECTIVES OF THE BITCOIN NETWORK

Objective Achieved by
Data transmission must

be decentralised [2] A distributed peer-to-peer network

Data storage must
be decentralised [2]

A full copy of the blockchain
is stored and maintained by all nodes

All blocks must
be accessible to all users [1] Blocks are broadcast to all nodes

All transactions must
be accessible to all users [1] Transactions are broadcast to all nodes

B. Network architecture

The distributed P2P network is created in a dynamic way
by users of bitcoin currency [2].

Network nodes are homogeneous, with no specialised
coordinating nodes and each node keeps a complete copy
of the blockchain. This allows nodes to verify the validity of
transactions and blocks independently without trusting each
other [3].

Bitcoin nodes are identified by their IP address and operate
over TCP (Transmission Control Protocol) [4], which provides a
reliable channel for bitcoin messages to be transmitted between
nodes (i.e. guaranteed in-order delivery and recovery from
transmission errors).

However, there are no further security services beyond
those provided by TCP, so bitcoin messages do not have
cryptographic entity authentication or integrity protection.

Limitations of TCP: TCP is a well-established and widely
studied protocol and it has been known since 1989 [5] that
without any other cryptographic protection, it is trivial for an
on path attacker (i.e. one that is situated on the communication
path) to eavesdrop, modify, replay and fabricate TCP network
packets.

An off path attacker (i.e. one that is not situated on the
communication path) in a TCP/IP network can manipulate
routing information to position themselves on the communi-
cations path and become an on path attacker (for example by
manipulating the Routing Information Protocol [5] or Border
Gateway Protocol [6]).

Furthermore off path attackers are still able to fabricate
TCP packets by exploiting vulnerabilities in the use and
selection of TCP sequence numbers [7], through various side
channel attacks [8] [9] [10] and vulnerabilities in network
implementations [11] [12].

In summary this means that, without any additional security
mechanisms, an on path attacker can eavesdrop, modify,

ar
X

iv
:1

80
5.

10
25

9v
1 

 [
cs

.C
R

] 
 2

5 
M

ay
 2

01
8



replay and fabricate TCP messages. Also if the TCP sequence
number can be compromised [5] [7] [9] [12] [9] [13], an off
path attacker can fabricate messages and impersonate another
network node.

As well as broadcasting transactions and blocks within
TCP packets, bitcoin nodes also send TCP packets containing
command messages. These command messages are used to
establish and maintain connections between nodes and transfer
data.

These messages are open to manipulation by network
attackers as they are simply passed over TCP and do not
provide any additional cryptographic protection.

1) Initial connection: To join the network for the first time
a node discovers other nodes through DNS queries. The DNS
names of several seed servers are hardcoded into the bitcoin
core client software in the chainparams.cpp file [14].

This provides a mechanism for nodes to connect to at least
one peer, which will then provide them with further active peers
to connect to. In this way the hardcoded DNS seed addresses
act as the trusted, authoritative source for initial peers. After
that, as the node interacts on the network it builds up a local
database of active peers.

The hardcoded DNS seed addresses are owned and managed
by volunteers and have been chosen by the Bitcoin developers.
Each query returns multiple IP addresses which correspond
to bitcoin nodes that have high uptime. How these nodes are
chosen and who manages them is not documented and raises
a number of security concerns.

Were these DNS seeds to be compromised, an attacker could
for example supply the addresses of their own malicious nodes
to new nodes joining the network. Similar to an eclipse attack
[15], this would allow an attacker to supply the victim nodes
with other malicious nodes to connect to and monopolise their
network connections. In this way the DNS seeds would provide
an additional vector for conducting an eclipse attack.

For example, an attacker could ensure that the addresses of
malicious nodes are returned from the DNS seeds by:

• Exploiting DNS protocol weaknesses such DNS cache
poisoning [16] [17] to return the IP addresses of attacker
controlled nodes.

• Compromising a DNS hosting account (e.g. by phishing)
and changing DNS records to return the IP addresses of
attacker controlled nodes.

2) Data origin authentication of DNS seeds: The aim of a
DNS protocol level attack against a bitcoin DNS seed, such as
a DNS cache poisoning attack, is to return a DNS response to
the victim that points to nodes of the attackers choosing. The
key security services that protect against this are:

1) data integrity: to detect whether data has been modified
in transit [18].

2) data origin authentication: to confirm whether data came
from a genuine sender [18].

The principle method for applying data integrity and data
origin authentication to DNS queries is the use of DNSSEC
[19]. DNSSEC is a suite of specifications to extend the DNS

protocol to allow DNS records and responses to be digitally
signed by the owner of the domain.

At the time of writing (August 2017) there are currently six
seed addresses listed in the bitcoin software [14]:

• seed.bitcoin.sipa.be
• dnsseed.bluematt.me
• dnsseed.bitcoin.dashjr.org
• seed.bitcoinstats.com
• seed.bitcoin.jonasschnelli.ch
• seed.btc.petertodd.org

None of these addresses has DNSSEC configured and are
therefore open to DNS protocol attacks such as DNS cache
poisoning.

3) Control of DNS seed addresses: It is not immediately
obvious to users who controls the domain names associated
with the DNS seeds. Also the mechanism that chooses the
nodes that each seed will return is also not documented.

A brief analysis of public WHOIS records and bitcoin code
repositories was carried out to determine the likely owners of
the seed domains [20]

Five out of the six domains are controlled by the primary
bitcoin developers, who between them account for the vast
majority of code contributions to the core bitcoin software [20].
One is an academic author and researcher of bitcoin and has
contributed to several papers referenced by this paper [3] [21]
[22].

Control of the DNS seeds appears to rest with six individuals,
rather than a set of companies or institutions. This is perhaps
a symptom of the decentralised, anarchic ideals evident in
Nakamoto’s original paper [1], however whilst the source code
of bitcoin is freely auditable, the operation of the DNS seed
addresses and P2P network is not.

There are several security concerns, not specifically aimed
at the current owners of the DNS seeds, but the principle of
individuals controlling DNS seed domains.

Firstly, that any individual may be influenced or may exploit
their position of trust for personal gain. For example four of
the six individuals are employed by Blockstream.com [23]
[24] [25] [26], a private company developing blockchain based
software and services.

Secondly there is a limit to the level of security any one
individual can provide against a targeted attack from a highly
resourced and motivated attacker. For example an attacker
that compromised the DNS server or domain hosting account
associated with a DNS seed could redirect all new nodes joining
the network to their own malicious nodes.

Whether control of the bitcoin seed addresses places too
much power in the hands of six bitcoin developers, is a question
that poses both technical and philosophical considerations for
bitcoin users. Much more broadly, it raises the question of who
should have control of components of the bitcoin infrastructure
that cannot be decentralised (such as DNS seeds) and how
should those people or organisations be held accountable.

4) Establishing connections: Once a node (e.g. Node A) has
learnt the IP address of another node (Node B) a connection



is established by sending a VERSION message [27] to Node
B containing its software version number.

If Node B is accepting connections from this particular
software version it will reply with a VERACK message [27],
which includes its own software version number.

Node A will send its own VERACK message if it also is
accepting connections from this software version.

This exchange allows both nodes to check each other’s
software versions before deciding to establish connections.
Although it is not currently, this could provide a mechanism
for node operators to exclude outdated software versions
(with known security vulnerabilities) from participating in the
network.

5) Discovering nodes: Once a node establishes a connection
with another node (a peer), the node will query it for a list
of network nodes that it is aware of by sending a GETADDR
message [27]. The peer will reply with an ADDR message
[27] containing a list of up to 1000 peers, randomly selected
from the list of active peers that it is aware of.

Several academic studies [28] [29] [2] [3] and projects [30]
have demonstrated that by sending GETADDR messages to
each node, and subsequently sending GETADDR messages
to every new node that is reported in ADDR messages, it is
possible to discover all nodes currently active on the network.

This can be used to analyse the size and geographical
distribution of the network [2] as well as the environments that
nodes are running in, such as cloud hosting providers, private
datacentres or residential connections.

In the context of security, as a node is identified by its IP
address, this can in some circumstances be probabilistically
linked to a physical location [31], [32]. On a broader scale,
as nodes will freely report their software version in protocol
handshakes (section 3.2.4), it is possible to scan the entire
network for nodes running bitcoin software versions with
known vulnerabilities. For example using the publicly available
bitnodes.21.co project [33], at the time of writing (August
2017) there are 3 nodes running bitcoin core version 0.8.3,
which is vulnerable to remote denial of service vulnerability
CVE-2013-5700 [34].

6) Transaction and block transmission: The transmission
of transaction and block information to all nodes is achieved
with a broadcast mechanism. Once a node learns of a new
transaction or block it is forwarded on to all its neighbours (the
peers the node is actively connected to). These neighbours then
forward the new transaction or block on to their neighbours
and the process repeats until all reachable nodes in the network
have received the new transaction or block.

Node A advertises the new transaction by sending an INV
message [27], which includes a SHA256 hash of the new
transaction (TXID) to Node B (see figure 3.4).

If Node B is not aware of this new transaction ID (TXID)
it will send a GETDATA message [27], which includes the
TXID of the new transaction, to Node A.

Node A will respond by sending a TX message [27]
containing the full transaction record to Node B.

Fig. 1. Advertising and transmitting a transaction between bitcoin nodes

Once Node B has successfully received the new transaction,
it will validate it using its local copy of the blockchain and
send INV messages to its neighbours to repeat the process.

The above process is the same for the transmission of blocks,
except that the ID of the new block is sent in steps 1 and 2
(INV and GETDATA messages) and a BLOCK message [27]
is used to send the block information in step 3.

The example given assumes that only one transaction or
block is being broadcast, when in reality INV and GETDATA
messages can contain up to 50,000 transaction or block IDs.

7) Requesting the latest blocks: Whilst a node is online
and connected to the network it will receive blocks as they
are broadcast across the network and the node will keep its
local copy of the blockchain up to date as new blocks arrive.
However whilst a node is offline new blocks will have been
created which the offline node will not be aware of, so upon
reconnecting to the network the node will need to obtain the
missing blocks.

It will do this by sending a GETHEADERS message [27]
to a node that it is connected to, which includes the block ID
of the last block that the node is aware of.

For example (figure 2.3), Node A has just reconnected to
Node B after being offline for some period of time. Node A
will send a GETHEADERS message to Node B with a block
ID of #123, which represents the last block in its local copy
of the blockchain.

When Node B receives the GETHEADERS message it will
compare the block ID #123 with its local copy of the blockchain
and if necessary reply with a HEADERS message [27], which
contains the block ID’s of the remaining blocks in the chain.
In this example it will include block ids #124 and #125 in its
HEADERS message.

Node A is now aware that there are two blocks, #124 and
#125, that it is missing.

Up to 2000 block IDs may be returned in a HEADERS
message. If Node A needed to obtain more than 2000 blocks it
would need to send out additional GETHEADERS messages.

The GETHEADERS/HEADERS exchange is designed to
allow Node A to discover what blocks it is missing. The
HEADERS message returned by Node B only contains block
IDs, it does not contain the full block information. It is up



Fig. 2. Querying a peer for the latest blocks

to Node A to request each block with a series of GETDATA
messages (see 2.2.6) to Node B, which will then send the full
information for each block.

8) Collecting unconfirmed transactions: If a node is engaged
in bitcoin mining activities it will need to collect and store
unconfirmed transactions to include them in the block it is
mining.

The collective pool of unconfirmed transactions within the
network is called the ‘Mempool’ and miners will typically seek
to gather as large a proportion of unconfirmed transactions as
possible, in order to earn the most transaction fees once they
discover a block.

Nodes that have reconnected to the network after being
offline have a method of gathering unconfirmed transactions
from peers that they are connected to.

For example (figure 2.4), Node A has just reconnected to
Node B after being offline for some period of time. Node A
will send a MEMPOOL message [27] to Node B to request a
list of unconfirmed transactions that Node B is aware of. Node
B will reply with an INV message containing the transaction
IDs of all unconfirmed transactions that it is aware of.

Note that Node B does not know what unconfirmed transac-
tions Node A is already aware of, so Node B will simply send
an INV message containing all the unconfirmed transactions
that it is aware of.

Once Node A has learnt of the outstanding transactions
(#101 and #102), it will then download the full transaction
information from Node B using the GETDATA/TX message
exchange.

Fig. 3. Retrieving a list of unconfirmed transactions

III. NETWORK BASED VULNERABILITIES AND ATTACKS

A distributed denial of service attack (DDoS) seeks to
overwhelm a victim with more network traffic than the victim’s
network connection or computing resources can cope with [35].

One notable example of a DDoS attack is a DNS amplifica-
tion attack [36]. Which in 2013 was used to generate 75Gbps
of malicious traffic [37] as part of a DDoS against Spamhaus
[38], an organisation that combats email spam. At the time it
was the largest DDoS attack ever seen.

The two properties that make this attack successful are
1) Reflection: Responses are sent in reply to any incoming

request, without authentication of the source [39].
2) Amplification: The response is much larger than the initial

request, meaning that the victim receives much more data
than the attacker sends out [39].

A. Possible DDoS attacks

Recall from section 2.2 that the bitcoin network protocol
does not have any data origin authentication, but instead relies
on the TCP sequence number to ensure that messages cannot be
spoofed. However as mentioned there are numerous examples
[8] [9] [10] [12] [13] where TCP sequence numbers do not
provide adequate protection against spoofing.

Analysis was conducted on the bitcoin network protocol
specification [40] and the bitcoin core source code [41] for
message exchanges that display the potential for reflection and
amplification. Such properties would indicate the potential for
their exploitation in DDoS attacks against bitcoin nodes.

1) GETHEADERS/HEADERS: Recall from section 2.2.7
that upon re-joining the network a node will seek to update
its local copy of the blockchain by asking its peers for the
blocks that have been created whilst it was away. It will send a
GETHEADERS message with the block ID of the last block it
is aware of and receive back a HEADERS message containing
up to 2000 block IDs.

From examining the protocol specification [27] and source
code for processing an incoming GETHEADERS message [42]
the standard response is to issue a HEADERS message to the
listed source IP address. There are no data origin authentication



or freshness checks included in the protocol specification or
any method in the processing of a GETHEADERS message
to determine whether the request is genuine.

Therefore it would imply that if an attacker was able to over-
come the TCP sequence number, then a forged GETHEADERS
message would result in a HEADERS message being sent to
the victim.

Fig. 4. GETHEADERS Reflection Attack

For example (figure 3.1) M wants to induce A to send a
HEADERS message to victim V.

For A to accept the spoofed GETHEADERS packet, M must
first trick A into establishing a connection with V. M sends a
VERSION message to A with the source address spoofed as
V. A sends a VERACK message to V. M sends a VERACK
message to A with the source address spoofed as V.

M has now established a connection with A on behalf
of V and can now commence the DOS attack. M sends a
GETHEADERS message to A, with the source address spoofed
as V, asking for blocks with an ID greater than #100. A sends
a HEADERS message to V with the block IDs for blocks #101
to #150.

As well the potential for reflection, the GETHEAD-
ERS/HEADERS message exchange also has the potential for
amplification.

The attacker must send the following messages: 1 x VER-
SION message with a size of 85 bytes [27]. 1 x VERACK
message with a size of 24 bytes [27]. 1 x GETHEADERS
message with a size of 69 bytes [27].

A total of 168 bytes.
Recall from section 3.2.9 that the resulting HEADERS

message sent to the victim can contain up to 2000 block IDs,
yielding a maximum message size of approximately 162,000
bytes or 158 Kilobytes. This is an increase by a factor of
approximately 964.

2) MEMPOOL: Recall from section 2.2.8 that the any node
can query another peer on the network for a list of all the
unconfirmed transactions that it is aware of.

This is done by sending a peer a MEMPOOL message and
in reply they will receive back an INV message containing
a list of the transaction IDs (txID) of transactions that are
unconfirmed. Recall from section 2.2.6 that an INV message
can contain as many as 50,000 transaction IDs.

Again from examining the protocol specification [27] and
source code for processing an incoming MEMPOOL message
[43] the standard response is to issue an INV message to the
listed source IP address. There are no data origin authentication
or freshness checks included in the protocol specification or
any method in the processing of a MEMPOOL message to
determine whether the request is genuine.

Therefore it would imply that if an attacker was able to
overcome the TCP sequence number, then a forged MEMPOOL
message would result in an INV message being sent to the
victim.

Fig. 5. MEMPOOL Reflection attack

For example (figure 3.2) M wants to induce A to send an
INV message to victim V.

In order for A to accept the spoofed MEMPOOL packet,
M must first trick A into establishing a connection with V
(section 3.2.4).

1) M sends a VERSION message to A with the source
address spoofed as V.

2) A sends a VERACK message to V.
3) M sends a VERACK message to A with the source address

spoofed as V.
M has now established a connection with A on behalf of
V and can now commence the DOS attack.

4) M sends a MEMPOOL message to A, with the source
address spoofed as V, asking for a list of all unconfirmed
transactions that A is aware of.

5) A sends an INV message to V with the txIDs for
transactions #1 to #50,000.

As well the potential for reflection, the MEMPOOL/INV
message exchange also has the potential for amplification.

The attacker must send the following messages:
• 1 x VERSION message with a size of 85 bytes [27].
• 1 x VERACK message with a size of 24 bytes [27].
• 1 x MEMPOOL message with a size of 24 bytes [27]
A total of 133 bytes.
The size of the resulting INV message sent to the victim will

vary, as although an INV message can contain up to 50,000
txIDs [27] the actual number sent will depend on the number
of unconfirmed transactions that node A is aware of at the
time.



The number of unconfirmed transactions in the Mempool
varies quite dramatically from hour to hour, for example on
28/6/17 [44] peaking at 28,758 and dropping to 6,607 within
4 hours.

An attacker could track the size of the Mempool and time
their attack to coincide with periods of high numbers of
unconfirmed transactions, or indeed generate large amounts of
unconfirmed transactions themselves. Therefore it is possible
that an INV message may contain 50,000 transactions.

In evaluating the potential for amplification in this attack it
is reasonable to assume that the resulting INV message sent to
the victim will contain 50,000 txIDs. In which case, the size of
the INV message will be approximately 1,800,000 bytes or 1.7
Megabytes. This is an increase by a factor of approximately
13,534.

The precise amount of data that the attacker sends and the
victim receives will vary, as each message will be encapsulated
in an ethernet frame (20 bytes [45]), an IP packet (36 bytes
[46]) and a TCP segment (20 bytes [47]), so a total of 145
bytes is added to the size of each message.

However the potential for reflection and the scale of the
amplification leads to the conclusion that the GETHEADERS
and MEMPOOL message exchanges have the potential for
exploitation in a denial of service attack. This hypothesis should
be confirmed through experimentation

B. Comparison to other amplification vectors

While a factor of 13,534 is quite powerful, there are many
other methods that can be used to amplify the size of a DDOS
attack. One example is using Memcached, which has achieved
a factor of 51,200 [48] in practical attacks. This also has the
additional benefit that it can be created on demand, as an
attacker can place large objects on the server without paying
transaction fees, rather than the waiting an attacker would need
to perform the same attack using bitcoin if they didn’t want
to pay. Memcached was used in the attack against OVH [49]
which managed to hit 1.7tbps, which was helped by the number
of open servers which were used.

The fact that there are other amplification vectors available
does not mean that the Bitcoin ones should not be fixed though,
firstly because when the other vectors are fixed the bitcoin
ones will become a reasonable vector to use. There is also the
fact that memcached traffic crossing a large network should
be quite rare, as the overhead would be very high, making
detection easier, whereas the same attack with bitcoin would
raise less suspicion from the network of a single amplifier.

IV. POSSIBLE SOLUTIONS

As explained in section 2.2.4, it is trivial to discover the
versions of node software used across the network and to
identify nodes running software with known vulnerabilities.

Currently the node software will still establish connections
with nodes running outdated versions, however the connection
handshake could provide a mechanism to exclude these nodes
from the network until they are updated. A minimum version
number could be used as a criteria for accepting a connection

thereby enforcing a minimum version necessary to participate
in the network.

Recall from section 3.2 that there is the potential for
two message exchanges (GETHEADERS/HEADERS and
MEMPOOL/INV) to be used to induce a target node to send
data to a victim node, potentially leading to a DDoS attack.

This is because once the TCP sequence number is defeated,
the bitcoin connection handshake (figure 3.3) can be spoofed
which would in turn allow the GETHEADERS or MEMPOOL
messages to be spoofed. Preventing spoofing of the hand-
shake would provide protection against subsequent message
exchanges from being abused.

One method of preventing an off-path attacker from spoofing
the connection handshake would be to add a random nonce to
the VERACK message.

Fig. 6. Bitcoin connection handshake with a random nonce added to the
VERACK messages

For example (figure 4.1), Node A attempts to establish a
connection with Node B:

1) Node A sends a VERSION message to Node B.
2) Node B responds to Node A with a VERACK message,

which includes a randomly generated nonce.
3) Node A completes the handshake by sending its own

VERACK message back to Node A, including the nonce
it received from Node B.

4) Node B checks that the nonce received in step 3 is correct
and if so it will accept and process future messages from
Node A. Otherwise Node B will ignore messages from
Node A until a correct handshake is completed.

Fig. 7. An attempted spoof connection handshake with a random nonce

In figure 4.2 malicious Mode M tries to spoof a connection
attempt from Node A with Node B.

1) Node M sends a VERSION message to Node B, changing
the source address to appear that it came from Node A.

2) Node B responds to Node A with a VERACK message,
which includes a randomly generated nonce. As this
VERACK message is routed to Node A, Node M will not
learn the value of the nonce.



3) Node M attempts to complete the handshake by sending
a VERACK message to Node B, but it is forced to guess
the value of the nonce generated in Step 2. Assuming
that the nonce value is chosen in a secure way (explained
below) it is very unlikely that the correct nonce value will
be guessed.

4) Any subsequent messages received by Node B with a
source address of Node A (such as a spoofed MEMPOOL
message) will be rejected until a correct handshake is
completed.

To ensure that a nonce value cannot feasibly be guessed, it
should:

• Be randomly generated using a suitable pseudorandom
number generator.

• Be sufficiently large to make brute force guessing infea-
sible, for example at least 32-bits (the size of the TCP
sequence number [47]).

In order to detect attempted abuses of the bitcoin connection
handshake the node software should also log and report
incomplete connection handshakes. For example if incorrect
nonces are repeatedly being given by a node this might indicate
a spoof connection attempt.

V. CONCLUSION

To operate as a currency Bitcoin requires a P2P network
to function. The operation of this P2P network is not well
documented or widely studied and yet plays a crucial role in
maintaining the overall security of the currency.

Users of Bitcoin rely solely on cryptography to establish trust,
not on the authority of a trusted third party but on mechanisms
that users can use to validate transactions themselves. Therefore
this principle should also apply to communications on the P2P
network – the actions and messages of other nodes should not
be trusted and should be assumed to be malicious. Translating
this principle into the design of bitcoin’s network protocols
and software does not appear to have happened.

In conclusion, the key contribution of this project are the
following recommendations:

1) Protocol hardening: The bitcoin network protocol and
core software implementation requires a thorough secu-
rity audit, to address potential security vulnerabilities
identified in the HEADERS and MEMPOOL message
exchanges. The use of network security mechanisms such
as random nonces, cryptographic integrity protection and
entity authentication should be further considered. For
example the introduction of a random nonce during the
connection handshake could provide protection against
message spoofing.

2) Management of network infrastructure: Parts of bitcoin’s
network architecture are not decentralised (e.g. DNS seed
addresses) and remain under the control of individual
users (section 2.2.3). This holds the potential for conflicts
of interest or insider attacks and bitcoin users need to
consider how components of the bitcoin infrastructure that
cannot be decentralised are governed and managed in an
accountable and transparent way.

A. Further work

Several areas where further work could be carried out have
been identified.

Firstly the potential for bitcoin message spoofing should be
investigated through experimental analysis. In particular the
potential for the use of HEADERS and MEMPOOL messages
in DDoS attacks should be evaluated in a lab environment as
well as the live bitcoin network.

Secondly, mechanisms for providing data integrity and entity
authentication for all network nodes should be incorporated
into the network protocol. The current proposals [50] only
provide these services for a sub set of nodes that coordinate
between themselves and cannot be used at scale across the
whole network.

There is also a need to harden Bitcoin against future attacks,
such as quantum ones, which may become a problem around
2027 [51]. This is the point at which quantum computes will
be able to be fast enough to challenge the current generation
of ASIC based miners.

REFERENCES

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf, 2008.

[2] Joan Antoni Donet Donet, Cristina Pérez-Solà, and Jordi Herrera-
Joancomartı́. The bitcoin p2p network. In Rainer Böhme, Michael
Brenner, Tyler Moore, and Matthew Smith, editors, Financial Cryptogra-
phy and Data Security, pages 87–102, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[3] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10, Sept 2013.

[4] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymi-
sation of clients in bitcoin P2P network. CoRR, abs/1405.7418, 2014.

[5] S. M. Bellovin. Security problems in the tcp/ip protocol suite. SIGCOMM
Comput. Commun. Rev., 19(2):32–48, April 1989.

[6] Hitesh Ballani, Paul Francis, and Xinyang Zhang. A study of prefix
hijacking and interception in the internet. SIGCOMM Comput. Commun.
Rev., 37(4):265–276, August 2007.

[7] Robert T. Morris. A weakness in the 4.2bsd unix2 tcp/ip software. 03
2018.

[8] Yossi Gilad and Amir Herzberg. Off-path attacking the web. CoRR,
abs/1204.6623, 2012.

[9] Z. Qian and Z. M. Mao. Off-path tcp sequence number inference attack
- how firewall middleboxes reduce security. In 2012 IEEE Symposium
on Security and Privacy, pages 347–361, May 2012.

[10] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Collaborative tcp
sequence number inference attack: How to crack sequence number under
a second. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 593–604, New York, NY,
USA, 2012. ACM.

[11] Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall.
Idle port scanning and non-interference analysis of network protocol
stacks using model checking. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, pages 17–17, Berkeley,
CA, USA, 2010. USENIX Association.

[12] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishna-
murthy, and Lisa M. Marvel. Off-path TCP exploits: Global rate limit
considered dangerous. In 25th USENIX Security Symposium (USENIX
Security 16), pages 209–225, Austin, TX, 2016. USENIX Association.

[13] Yossi Gilad, Amir Herzberg, and Haya Shulman. Off-path hacking:
The illusion of challenge-response authentication. CoRR, abs/1305.0854,
2013.

[14] bitcoin/bitcoin. src/chainparams.cpp:132. https://github.com/bitcoin/
bitcoin/blob/8222e057fe60934a57b1d8226b0e1bd071f8dac2/src/
chainparams.cpp#L132.

[15] Yossi Gilad and Amir Herzberg. Off-path attacking the web. In
Proceedings of the 6th USENIX Conference on Offensive Technologies,
WOOT’12, pages 5–5, Berkeley, CA, USA, 2012. USENIX Association.

https://github.com/bitcoin/bitcoin/blob/8222e057fe60934a57b1d8226b0e1bd071f8dac2/src/chainparams.cpp#L132
https://github.com/bitcoin/bitcoin/blob/8222e057fe60934a57b1d8226b0e1bd071f8dac2/src/chainparams.cpp#L132
https://github.com/bitcoin/bitcoin/blob/8222e057fe60934a57b1d8226b0e1bd071f8dac2/src/chainparams.cpp#L132


[16] Paul Vixie. Dns and bind security issues. In Proceedings of the 5th
Conference on USENIX UNIX Security Symposium - Volume 5, SSYM’95,
pages 19–19, Berkeley, CA, USA, 1995. USENIX Association.

[17] Christoph L. Schuba. Addressing weaknesses in the domain name system
protocol, 1993.

[18] Keith M Martin. Everyday Cryptography: Fundamental Principles and
Applications. Oxford University Press, Oxford, 2012.

[19] D. Atkins and R. Austein. Threat analysis of the domain name system
(dns). RFC 3833, RFC Editor, 2004.

[20] various. bitcoin/bitcoin. https://github.com/bitcoin/bitcoin/graphs/contributors.
[21] Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability

and mtgox. CoRR, abs/1403.6676, 2014.
[22] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten. Have a

snack, pay with bitcoins. In IEEE P2P 2013 Proceedings, pages 1–5,
Sept 2013.

[23] Blockstream - open hash contractor. https://blockstream.com/team/luke-
dashjr/. (Accessed on 2017-07-14).

[24] Blockstream - infrastructure tech engineer. https://blockstream.com/team/
christian-decker/. (Accessed on 2017-07-14).

[25] Blockstream - infrastructure tech engineer. https://blockstream.com/team/
pieter-wuille/. (Accessed on 2017-07-14).

[26] Blockstream - technical advisor. https://blockstream.com/team/matt-
corallo/. (Accessed on 2017-07-14).

[27] Protocol documentation. https://en.bitcoin.it/wiki/Protocol
documentation. (Accessed on 2017-06-11).

[28] Andrew Miller, James Litton, Andrew Pachulski, Neal S. Gupta, Dave
Levin, Neil Spring, and Bobby Bhattacharjee. Discovering bitcoin’s
public topology and influential nodes. 2015.

[29] Sebastian Feld, Mirco Schönfeld, and Martin Werner. Analyzing the
deployment of bitcoin’s p2p network under an as-level perspective.
Procedia Computer Science, 32:1121 – 1126, 2014. The 5th Inter-
national Conference on Ambient Systems, Networks and Technologies
(ANT-2014), the 4th International Conference on Sustainable Energy
Information Technology (SEIT-2014).

[30] Global bitcoin nodes distribution - bitnodes. https://bitnodes.earn.com/.
(Accessed on 2017-02-25).

[31] Zi Hu, John Heidemann, and Yuri Pradkin. Towards geolocation of
millions of ip addresses. In Proceedings of the 2012 Internet Measurement
Conference, IMC ’12, pages 123–130, New York, NY, USA, 2012. ACM.

[32] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and
Bamba Gueye. Ip geolocation databases: Unreliable? SIGCOMM Comput.
Commun. Rev., 41(2):53–56, April 2011.

[33] Network snapshot - bitnodes. https://bitnodes.earn.com/nodes/?q=Satoshi:
0.8.3. (Accessed on 2017-06-24).

[34] Nvd - cve-2013-5700. https://nvd.nist.gov/vuln/detail/CVE-2013-5700.
(Accessed on 2017-06-24).

[35] Us-cert: Advisory (ca-1998-01) smurf ip denial -of-service attacks. https://
www.cert.org/historical/advisories/CA-1998-01.cfm. (Accessed on 2017-
07-15).

[36] Us-cert: Alert (ta13-088a) dns amplification attacks. https://www.us-
cert.gov/ncas/alerts/TA13-088A. (Accessed on 2017-07-15).

[37] The ddos that knocked spamhaus offline (and how we mitigated
it). https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-
and-ho. (Accessed on 2017-07-15).

[38] Spamhaus. https://www.spamhaus.org/. (Accessed on 2017-07-15).
[39] Vern Paxson. An analysis of using reflectors for distributed denial-of-

service attacks. SIGCOMM Comput. Commun. Rev., 31(3):38–47, July
2001.

[40] Bitcoin wiki: Bitcoind. https://en.bitcoin.it/wiki/Bitcoind. (Accessed on
2017-04-17).

[41] Bitcoin core code repository. https://github.com/bitcoin/bitcoin. (Accessed
on 2017-01-25).

[42] bitcoin/bitcoin. src/net processing.cpp:2085. https://github.com/bitcoin/
bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net
processing.cpp#L2085.

[43] bitcoin/bitcoin. src/net processing.cpp:2712. https://github.com/bitcoin/
bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net
processing.cpp#L2712.

[44] Blockhain.info - mempool transaction count. https://blockchain.info/
charts/mempool-count?timespan=24h. (Accessed on 2017-06-28).

[45] Ieee standard for ethernet. IEEE Std 802.3-2012 (Revision to IEEE Std
802.3-2008), pages 1–3747, Dec 2012.

[46] J. Postel. Internet protocol. RFC 791, RFC Editor, 1981.

[47] V. Cerf and R. Kahn. A protocol for packet network intercommunication.
IEEE Transactions on Communications, 22(5):637–648, May 1974.

[48] Memcrashed - major amplification attacks from udp port 11211.
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-
from-port-11211/. (Accessed on 04/11/2018).

[49] 1.7 tbps ddos attack — memcached udp reflections set new record. https:
//thehackernews.com/2018/03/ddos-attack-memcached.html. (Accessed
on 04/11/2018).

[50] bitcoin/bips. bip-0150.mediawiki:-1. https://github.com/bitcoin/bips/blob/
f1485fdb5f1875bf96d5ecdcfa27b275ac45ef6a/bip-0150.mediawiki#L-1.

[51] Divesh Aggarwal, Gavin K. Brennen, Troy Lee, Miklos Santha, and
Marco Tomamichel. Quantum attacks on bitcoin, and how to protect
against them, 2017.

https://blockstream.com/team/luke-dashjr/
https://blockstream.com/team/luke-dashjr/
https://blockstream.com/team/christian-decker/
https://blockstream.com/team/christian-decker/
https://blockstream.com/team/pieter-wuille/
https://blockstream.com/team/pieter-wuille/
https://blockstream.com/team/matt-corallo/
https://blockstream.com/team/matt-corallo/
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://bitnodes.earn.com/
https://bitnodes.earn.com/nodes/?q=Satoshi:0.8.3
https://bitnodes.earn.com/nodes/?q=Satoshi:0.8.3
https://nvd.nist.gov/vuln/detail/CVE-2013-5700
https://www.cert.org/historical/advisories/CA-1998-01.cfm
https://www.cert.org/historical/advisories/CA-1998-01.cfm
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
https://www.spamhaus.org/
https://en.bitcoin.it/wiki/Bitcoind
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net_processing.cpp#L2085
https://github.com/bitcoin/bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net_processing.cpp#L2085
https://github.com/bitcoin/bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net_processing.cpp#L2085
https://github.com/bitcoin/bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net_processing.cpp#L2712
https://github.com/bitcoin/bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net_processing.cpp#L2712
https://github.com/bitcoin/bitcoin/blob/d42a4fe5aaae60f33a89bde78f21820abefce922/src/net_processing.cpp#L2712
https://blockchain.info/charts/mempool-count?timespan=24h
https://blockchain.info/charts/mempool-count?timespan=24h
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://thehackernews.com/2018/03/ddos-attack-memcached.html
https://thehackernews.com/2018/03/ddos-attack-memcached.html
https://github.com/bitcoin/bips/blob/f1485fdb5f1875bf96d5ecdcfa27b275ac45ef6a/bip-0150.mediawiki#L-1
https://github.com/bitcoin/bips/blob/f1485fdb5f1875bf96d5ecdcfa27b275ac45ef6a/bip-0150.mediawiki#L-1

	I Introduction
	I-A Contributions

	II Bitcoin peer-to-peer network
	II-A Objectives & challenges
	II-B Network architecture
	II-B1 Initial connection
	II-B2 Data origin authentication of DNS seeds
	II-B3 Control of DNS seed addresses
	II-B4 Establishing connections
	II-B5 Discovering nodes
	II-B6 Transaction and block transmission
	II-B7 Requesting the latest blocks
	II-B8 Collecting unconfirmed transactions


	III Network based vulnerabilities and attacks
	III-A Possible DDoS attacks
	III-A1 GETHEADERS/HEADERS
	III-A2 MEMPOOL

	III-B Comparison to other amplification vectors

	IV Possible Solutions
	V Conclusion
	V-A Further work

	References

