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Abstract 

The offshore region of northwestern Iberia offers an opportunity to study the impacts of 
along-slope processes on the morphology of a glacially influenced continental margin, which 
has traditionally been conceptually characterised by predominant down-slope sedimentary 
processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-
resolution seismic reflection profile data are integrated and analysed to describe the present-
day and recent geomorphological features and to interpret their associated sedimentary 
processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, 
interpreted as structural features (escarpments, marginal platforms and related fluid escape 
structures) and depositional and erosional bedforms developed either by the influence of 
bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by 
gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), 
are identified for the first time in the study area (spanning ~90,000 km2 and water depths of 
300 mto 5 km). Different types of slope failures and turbidity currents are mainly observed on 
the upper and lower slopes and along submarine canyons and deep-sea channels. The middle 
slope morphologies are mostly determined by the actions of bottom currents (North Atlantic 
Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep 
Water), which thereby define the margin morphologies and favour the reworking and 
deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic 
deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite 
features are also observed at the foot of the slope due to the influence of the deepest water 
masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the 
study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms and 
structural highs). Therefore, tectonism constitutes a long-term controlling factor, whereas the 
climate, sediment supply and bottom currents play key roles in the recent short-term 
architecture and dynamics. Moreover, the recent predominant along-slope sedimentary 
processes observed in the studied northwestern Iberian Margin represent snapshots of the 
progressive stages and mixed deep-water system developments of the marginal platforms on 
passive margins and may provide information for a predictive model of the evolution of other 
similar margins. 
 

Keywords: morphological features; along-slope and down-slope processes; neotectonic; 

northwestern Iberia  
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1. INTRODUCTION 

Continental margins are built up by several sedimentary processes driven by plate tectonic 

evolution and environmental changes (Einsele, 2000; Pickering and Hiscott, 2016). The 

dominant sedimentary processes mainly originate from the combined action of down-slope 

movements that are mainly driven by gravity, and along-slope sedimentary processes that are 

forced by bottom currents (e.g., Faugères et al., 1999; Weaver et al., 2000; Stow et al., 2002; 

Rebesco and Camerlenghi, 2008). Understanding how these processes build continental 

margins provides new insights into the origins of different morphologies and their relative 

importance in the evolution of passive margins. 

In locations where down-slope processes are dominant, continental slope successions 

comprise turbidites, debrites, and submarine landslides (Weaver et al., 2000; Pickering and 

Hiscott, 2016). Where along-slope processes are dominant, a contourite depositional system 

(CDS) or contourite sedimentary system, comprising both depositional (mainly “drifts”) and 

erosional features (e.g., moats, channels, and furrows), is generated (Stow et al., 2002; 

Hernández-Molina et al., 2003, 2011; Rebesco, 2005). Although the dominant process regime 

on the continental slope can have temporal and spatial variations, there are many examples of 

continental margins, especially those described between 26 °N and 56 °N in the northeastern 

Atlantic, that have been considered to be predominantly built up by down-slope sedimentary 

processes and were then defined as “glacially influenced margins” (e.g., Weaver et al., 2000; 

Wynn et al., 2000; Benetti, 2006, among many others). This type of margin comprises mainly 

linear pathways of canyons and channels (e.g., Kenyon et al., 1978; Crémer, 1983; Faugères et 

al., 1998; Zaragosi et al., 2000; Mulder et al., 2001; Bourillet et al., 2006; Gonthier et al., 2006; 

Gaudin et al., 2007). On these margins, along-slope processes have been considered to play a 

minor role, except in the Gulf of Cádiz and at the southern Portuguese margins (Stow et al., 

2002; Alves et al., 2003; Hernández-Molina et al., 2006a, 2016a, b; García et al., 2009; Roque 

et al., 2012, among others).  

The northwestern Iberian continental margin is located within the eastern sector of the 

central North Atlantic (Fig. 1A), an area included within the classification of a “glacially 

influenced margin” (Weaver et al., 2000; Zaragosi et al., 2001a; Mojtahid et al., 2005). 

Geomorphological studies have characterised the area by both their down-slope and 

morphostructural features, such as the numerous submarine canyons, large marginal 

platforms (Ortegal, Pardo Bazán and Castro) and several structural highs (Maestro et al., 2015). 

In proximal areas, such as the Galicia Bank to the south (Ercilla et al., 2008a; Llave et al., 2008) 
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and the Cantabrian Margin to the east (Ercilla et al., 2008b; Iglesias, 2009), previous 

geomorphological studies have also considered the predominance of those morphologies 

related to tectonics and down-slope sedimentary processes. The major goal of this study is to 

reveal the impacts of both along-slope and down-slope oriented sediment transport on the 

northwestern Iberian Margin, establishing the importance of the dynamic oceanographic 

settings and assessing the impacts of their interactions on reshaping the inherited structures 

such as marginal platforms and structural highs. A novel and detailed description of the 

submarine morphological features is presented for a better understanding of the associated 

sedimentary processes along the continental margin and the abyssal plains off northwestern 

Iberia. 

 

2. GEOLOGICAL AND OCEANOGRAPHIC SETTINGS 

2.1. Geological setting 

The northwestern Iberian continental margin comprises the Galicia continental margin and 

the westernmost sector of the Cantabrian Margin (Fig. 1A). The rift structures, characterised 

by horsts and grabens bounded by N-S, NE-SW, E-W and NW-SE faults, control the present-day 

morphology (Montadert et al., 1979; Groupe Galice, 1979; Boillot et al., 1979; Maestro et al., 

2017) (Fig. 2). These faults have developed during the geodynamic evolution of the margin 

from the late-Variscan period until the present day. From the Upper Miocene until the present 

day, those faults with NE-SW direction have been reverse faults, the NW-SE have been normal 

faults and the N-S and E-W have been left-lateral and right-lateral strike-slip faults, 

respectively (González-Casado and Giner, 2000; De Vicente et al., 2004; Martín-González et al., 

2010). The Galicia Bank is one of the most important structural highs in the Galicia margin and 

creates the intraslope basin called the Galicia inner basin (Boillot et al., 1975; Vanney et al., 

1979). Other distinct morphostructural features in the northwestern Iberia margin are the 

Ortegal, Pardo Bazán and Castro Marginal Platforms and the Charcot, Coruña and Finisterre 

Highs (Maestro et al., 2015) (Fig. 2). 

This area is considered to be a starved non-volcanic passive margin with only a thin 

sedimentary cover. The Mesozoic to Neogene sedimentary cover of the northwestern Iberian 

Margin is approximately 1,300 m thick (Groupe Cybere, 1984; Vigneaux, 1974; Derégnaucourt 

and Boillot, 1982; Thinon et al., 2001; Gallastegui et al., 2002). The recent sedimentary units 

(Plio-Quaternary) show a very irregular distribution overlying the Mesozoic-Neogene 

sedimentary succession. This unit consists of alternating deposits of silt and clay laminas with 

interbedded coarse sediments. These sediments mainly include turbidites, debrites, 
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contourites, and pelagites/hemipelagites (Vanney et al., 1979; Boillot et al., 1987; Comas and 

Maldonado 1988; Alonso et al., 2008; Ercilla et al., 2006, 2008a). The low sediment thickness is 

mainly due to two reasons: a) the redistribution of sediments by longshore bottom currents 

and b) the shortness of the rivers of the study area as well as their steep water courses, 

reflecting their low sediment supply (Jané et al., 2010). Only 4.2% of the overall catchment 

area of the Iberian Peninsula drains to the north coast, between the Galicia-Asturias border 

and the French border (Uriarte et al., 2004).  

2.2. Oceanographic setting 

In the study area, most of the water masses are of North Atlantic origin (Pollard et al., 1996; 

González-Pola, 2006) and are described below from shallowest to deepest (Fig. 1B).  

a) The Eastern North Atlantic Central Water (ENACW) extends down to depths of 400-600 

m and flows towards the southwest (Ambar and Fiúza, 1994; Fiúza et al., 1998; Pérez et 

al., 2001; González-Pola, 2006). This water mass generally flows at a velocity of 1 cm/s, 

although it can occasionally reach velocities of 10 cm/s (Pingree and Le Cann, 1990).  

b) The Mediterranean Outflow Water (MOW) flows along the middle slope of the 

Portuguese margin towards the Galicia Margin and the Bay of Biscay and extends to 

depths of approximately 1,500 m. This water mass has two distinct cores, centred at 

depths of 800 and nearly 1,200 m (Ambar and Howe, 1979; Mazé et al., 1997; Iorga and 

Lozier, 1999; Ambar et al., 2002; Slater, 2003; González-Pola, 2006), one of which flows 

to the west of the Galicia Bank plateau and then continues northward, while the other 

flows eastwards along the Cantabrian Margin slope. On its southwestern slope, the 

MOW exhibits high speeds and variabilities at 1100 m depth (with a mean of 18 cm/s 

and peaks of more than 40 cm/s, Ruiz Villarreal et al., 2006). Moreover, several 

observations of the meddies (eddies from MOW) along the Galician margin have been 

published (Fiúza et al., 1998; Paillet et al., 1999, 2002; Zhang et al., 2016). 

c) The deep-water masses, i.e., those below a 1,500 m water depth (wd), consist of the 

southward-flowing North Atlantic Deep Water (NADW), flowing between 1,500 and 

3,000 m wd, below the northward-flowing Lower Deep Water (LDW) (Van Aken, 2000). 

The NADW flows below the LSW from the Labrador Sea eastwards towards the Bay of 

Biscay (Pingree and Le Cann, 1990) and reaches the Galicia margin. This water mass may 

exhibit a north-westward return flow over the Celtic continental slope (Paillet et al., 

1998), and its core, initially defined by Saunders (1986), is located in this margin, 

between approximately 2,500-3,000 m wd. On the Galicia margin, the LDW is 

characterised by a near-bottom northward-directed flow at approximately 4,000 m wd 
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(Paillet and Mercier, 1997; Van Aken, 2000). A cyclonic recirculation cell over the Biscay 

Abyssal Plain has been identified as having a characteristic poleward velocity near the 

continental margin of 1.2 (± 1.0) cm/s (Dickson et al., 1985; Paillet and Mercier, 1997). 

Internal tides and waves have been locally reported along the slopes of the Bay of Biscay as 

being due to a combination of favourable water mass stratification, steep topography and 

strong barotropic tidal currents (Pingree and Le Cann, 1989, 1990; Fiúza et al., 1998; Apel, 

2002; Jackson, 2004; Varela et al., 2005; García-Lafuente et al., 2006; Krahmann et al., 2008; 

Prieto et al., 2013; Zhang et al., 2016).  

 

3. DATA AND METHODOLOGY 

The study area is located between the latitudes of 44°57' N - 43°10' N and the longitudes of 

13°50' W - 05°29' W, extending across an area of approx. 90,000 km2 at water depths of 300-

5,000 m (Fig. 1A). This work has been conducted in the framework of the ‘Scientific Research 

Programme of the Economic Exclusive Zone of Spain’, which is coordinated and directed by the 

Defence Ministry of Spain. During the oceanographic cruises conducted aboard the R/V 

Hespérides in 2003 and from 2006 to 2009, bathymetry and reflectivity data as well as 

ultrahigh-resolution seismic profiles were acquired. 

A high-resolution bathymetric map was obtained using the Simrad EM-12 S120 multibeam 

echosounder, which allows for the simultaneous collection of high-resolution seafloor 

bathymetry and backscatter strength measurements. This system covers a sector of the 

seafloor that is approximately three times the water depth in which it operates. The seismic 

records comprise ultrahigh-resolution single-channel profiles that were obtained with a TOPAS 

(TOpographic PArametric Sonar) PS 018 system. This system is a hull-mounted seabed and sub-

bottom echosounder that is based on a parametric acoustic array and that operates using the 

nonlinear acoustic properties of the water (Dybedal and Boe, 1994). The penetration of the 

acoustic signal achieved with the TOPAS system varies from between 0 and 200 ms (twtt) at 

full oceanic depths.  

The data analysis includes: (1) the classification and cartography of the main morphologies, 

(2) echo-character/backscatter analyses and mapping, and (3) a correlation between the 

bathymetry, superficial acoustic facies and acoustic backscatter to interpret and discuss the 

possible sedimentary processes and their shaping of the seafloor. The nomenclature for the 

echo-character analysis was based on the classic guidelines established by Damuth (1980) and 

Pratson and Line (1989) but was adapted for the acoustic response of the study area. High-
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resolution bathymetry and backscatter data analyses have been very useful for the marine 

research community as they reflect the many studies undertaken for the characterisation of 

surficial morphologies, sedimentary composition and regional deep-sea environments 

(Damuth, 1978; Damuth et al., 1988; Pratson and Laine, 1989; Jackson and Briggs, 1992; 

Hernández-Molina, 1993; Hughes Clarke et al., 1996; Pudsey and Howe, 1998; Wynn et al., 

2000; Lee et al., 2002, among others). However, to avoid interpretation errors based on these 

indirect methods, the information should be complemented with sedimentological data from 

surface samples (ground truths), near-surface stratigraphy and, if possible, information of 

near-bottom currents, benthic organism reworking, temperature and salinity (Damuth, 1980; 

Mc Clennen, 1989; Pratson and Laine, 1989). The scarcity of these types of data in our study 

area has been compensated for via the correlation of our results with the published results 

from other works on the sedimentological and sedimentary processes in other nearby areas 

(e.g., the Armorican system, Zaragosi et al., 2000, 2001a, b, 2006; the southwestern Galicia 

Bank, Ercilla et al., 2008a, 2011; Hernández-Molina et al., 2008; the Cantabrian continental 

margin, Crémer, 1983; Ercilla et al., 2008b; Iglesias, 2009; along the southern Iberian Peninsula 

margin, Gràcia et al., 2003; Terrinha et al., 2003) and in similar systems, such as those located 

in northwestern Africa (Wynn et al., 2002; Talling et al., 2007).  

The nomenclature for the general morphological features and classification criteria is based 

on Emery (1980), Weaver et al. (2000) and Posamentier et al. (2000). For more specific 

morphologies, such as those related to the along-slope sedimentary processes, the 

classifications for the contourite depositional features (drifts) proposed by Faugères et al. 

(1999), Rebesco and Camerlengui (2008) and García et al. (2009) for contourite erosive 

features have been used. The mounded, elongated and separated drifts have been referred as 

separated drifts. Those deposits that show the intercalations of along- and down-slope and/or 

hemipelagic/pelagic sedimentary processes have been called mixed systems. In addition, those 

bathymetric elevations atop the marginal platforms between submarine canyons, within which 

sedimentary waves do not show the same wavy expressions as on the seafloor, have been 

called relict sediment waves. The morphological nomenclature related to the down-slope 

sedimentary processes is based on the works of Mutti and Normark (1987), Carter (1988), 

Alonso and Ercilla (2000), Einsele (2000), Mayall and Steward (2000), and Posamentier and 

Kolla (2003), among others. The nomenclature for the echo-character analysis was based on 

the classic guidelines established by Damuth (1975, 1978, 1980), Damuth and Hayes (1977), 

Mullins et al. (1979), Mc Clennen (1989), and Pratson and Laine (1989). 
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4. MAIN MORPHOSEDIMENTARY FEATURES  

On the continental slopes and abyssal plains of the study area, numerous morphological 

features have been identified based on their seafloor expressions, echo and backscatter 

characteristics (Figs. 3, 4), as summarised in Tables 1 and 2. 

4.1. Physiographic provinces 

The northwestern Iberian margins are generally characterised by narrow shelves (approx. 

30 km wide) with slopes that extend down to 5,000 m wd and widths that range from between 

22-45 km and increase eastwards. Their gradients are highly variable and range from 1° to 12° 

(Figs. 3A, B).  

Westwards of 9 °W, the average width of the continental slope is 35 km and extends down 

to 5,000 m wd. This zone shows an average gradient of 6° and is crossed by three main 

submarine canyons that are, from west to east, the Lage, A Coruña and El Ferrol canyons. 

Additionally, three marginal platforms, namely, the Ortegal, Pardo Bazán and Castro platforms, 

are located between 200-2,400 m wd (Fig. 3A, B). 

Eastwards of 9 °W, the continental slope extends down to 4,800 m wd and is narrower and 

steeper (being 22 km wide with a gradient of 12°). This zone is characterised by numerous 

submarine canyons, the most significant of which are the San Jorge, La Frouseira and Avilés 

canyons (Figs. 3A, B).  

The Galicia and Cantabrian continental slopes abruptly pass into the Biscay and Iberian 

abyssal plains (Figs. 3A, B), which extend down to 5,000 and 5,300 m wd, respectively, and are 

characterised by the E-W Charcot High to the north and the A Coruña and Finisterre highs to 

the west, which show a NE-SW trend. A deep passage, the Theta Gap, connects these two 

abyssal plains (Figs. 3A, B). The Biscay Abyssal Plain, which is characterised by a gentle relief 

with a 0.03° gradient towards the SW, extends down to 5,100 m wd near the Theta Gap but is 

found to reach approximately 4,900 m wd near the Cantabrian Margin. The Iberian Abyssal 

Plain shows a gradient of 0.05° towards the southwest (Figs. 3A, B). 

4.2. Morphologies related to tectonics 

Four main morphologies related to tectonic have been described: (1) marginal platforms, (2) 

structural highs, (3) scarps, and (4) fluid escape-related features (Fig. 3C). The main 

morphological features, such as the lengths, widths, directions, gradients and depths are 

summarised in Table 1. The echo types are shown in Fig. 4, and the acoustic and reflectivity 

characteristics are summarised in Table 2.  
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- Marginal platforms have considerable spatial extents (approximately 1600 km2), relatively 

gentle slopes (0.2° to 2.5°) and are characterised as having Echo-Type 3A in its distal parts. 

These include the Ortegal, Pardo Bazán and Castro platforms (Fig. 5A).  

- Structural highs. The main structural highs are a) the Ordoño and Fernando Highs of the 

northern Galicia Bank zone, with up to 650 m of vertical relief, which are delimited by several 

NNW-SSE and NE-SW scarps (Figs. 5A-C); and b) those located on the abyssal plain comprising 

the E-W trending Charcot High, which is located at 3,200 m wd, and the predominantly NNW-

SSE trending A Coruña and Finisterre highs, which are found at approximately 4,200-4,300 m 

wd. These three highs are characterized by reliefs varying from 650 to 1,800 m and by Echo-

Type 3A. 

- Scarps. On the Ortegal and Pardo Bazán Marginal platforms, there are several scarps with 

slopes of 14-27° and 150-700 m reliefs (Fig. 5C). These scarps are acoustically characterised by 

Echo-Type 3A. 

- Fluid escape-related features are located mainly in the Ortegal Marginal Platform and are 

characterised by Echo-Type 1G. These features have been observed as having dome-shaped 

cross-sections with heights of 1 m and diameters of 150 m (Fig. 5D). Other positive relief 

features with circular and/or elliptical shapes that correspond to coralline mounds with heights 

of 3 m and diameters of 150 m are shown (Fig. 5E). In addition, almost 340 pockmarks 

(collapse craters) up to 16 m deep with 30-450 m diameters have been identified (Figs. 5D, E).  

4.3. Morphologies related to bottom currents  

Five main depositional contourite features have been observed in the study area (Figs. 3, 

6A): (a) plastered drifts, (b) mounded elongated and separated drifts, (c) mixed systems, (d) 

relict sediment waves and (e) sediment waves. Two erosive contourite features comprising (f) 

moats and (g) abraded surfaces have also been identified. The main morphological features, 

such as length, width, direction, gradient and depth are summarised in Table 1. The echo types 

are shown in Fig. 4 and the acoustical and reflectivity characteristics are summarised in Table 

2. 

- Plastered drifts. From south to north, several upslope-prograding plastered drifts (Echo-

Type 1C), with thicknesses ranging from between 20 to 80 ms (twtt), have been mapped as 

follows, (a) along the flanks of structural highs (northern zone of the Galicia Bank) at 2,600 m 

wd (Fig. 6B), (b) on the Pardo Bazán Marginal Platform at 1,200-1,700 m wd, (c) at the head of 

the A Coruña Canyon at 400-500 m wd, and (d) in nearby canyons, such as to the north of the 

El Ferrol Canyon (1,000-1,200 m wd), south of the A Coruña Canyon (1,200 m wd), and around 

the Lage Canyon (down to 2,500 m wd). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

9 
 

- Mounded, elongated and separated drifts. From south to north, several separated drifts 

have been described as being characterised by Echo-Type 1C and showing average thicknesses 

of 40 ms (twtt). They have been identified at the following locations: (a) to the southwest of 

the Fernando High at 2,700 m wd, (b) to the west of the Pardo Bazán Marginal Platform at 

1,600 m wd, (c) to the northeast of the Pardo Bazán Marginal Platform at 1,200-1,400 m wd, 

(d) to the northwest of the Ortegal Marginal Platform at 600-800 m wd, (Fig. 6C) and (e) to the 

north of the Galicia Bank and Castro Marginal Platform at 5,000 m wd in the Biscay Abyssal 

Plain (Fig. 6D). 

- Mixed systems. The whole Castro Marginal Platform is a zone comprising mixed systems 

that are approximately 50 ms (twtt) thick and are found over several parts of the structural 

highs. Acoustically, these deposits are characterised by well-stratified facies interbedded with 

transparent and chaotic layers (Fig. 6E), corresponding to Echo-Type 1B. 

- Relict sediment waves. The western distal parts of the Pardo Bazán and Castro marginal 

platforms are characterised by sediment waves 2 km long and 15-25 m high that do not show 

the same morphological expression. These deposits have been classified as Echo-Type 1H (Fig. 

6F).  

- Sediment waves. These are observed only at the head of the El Ferrol Canyon and are 

characterised by N-S alignments, heights of 5 m, lengths of 200 m, wavelengths of 400-600 m 

and Echo-Type 4C. These waves are asymmetric with a steeper (3°) eastern side (Figs. 6G, H). 

- Moats. Several moats have been described as associated with the previously reported 

separated drifts. They are characterised by seismic reflections truncated by the depression 

walls with generally symmetric V-shaped cross-sections (Fig. 6C). They are identified as follows: 

(a) south of the Fernando High, at 2,700 m wd with a thickness of 50 m; (b) in the 

southwestern and northeastern zones of the Pardo Bazán Marginal Platform, at 1,800 and 

1,500 m wd, respectively, with incisions that range from between 4 and 15 m deep; (c) in the 

Ortegal Marginal Platform, at the heads of the A Coruña and El Ferrol canyons, located at 450-

800 m and showing incisions that are 5-20 m deep (Fig. 6C); and (d) in the Biscay Abyssal Plain, 

where they are characterised by 10 m deep incisions (Fig. 6D). 

- Abraded surfaces. An extensive area characterised by an erosional surface is located to the 

southwest of the Ortegal Marginal Platform with a NE-SW trend. The surface defines a very 

high reflectivity subhorizontal plain, described as characterized by Echo-Type 1A or Echo-Type 

1F (Figs. 6C, I). Also, small sectors in the shallowest part of the Ortegal Marginal Platform are 

described by Echo-Type 1F as abraded surfaces. 

4.4. Morphologies related to gravitational processes  
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- Four main depositional gravitational features have been observed in the study area, 

including (a) submarine slides and (b) debris-flow deposits, both of which are included as mass-

transport deposits in Table 1, as well as (c) submarine fans and (d) levees. In addition, three 

erosive gravitational features have been identified, including (e) canyons, (f) submarine 

channels and (g) gullies (Fig. 7A). The main morphological features are summarised in Table 1. 

The echo types are shown in Fig. 4, and the acoustic and reflectivity characteristics are 

summarised in Table 2. 

- Slides are common at the borders of the canyons walls, and several isolated slides have 

been identified along the steepest zones of the continental slope, such as the northern zone of 

the Galicia Bank (17°) and within the transition of the Ortegal to Pardo Bazán marginal 

platforms (5°). These slides are characterised by slightly to highly deformed, back-rotated, 

stratified and chaotic masses resting at the base of a steep scarp (Fig. 7B) as well as by Echo-

Type 3B. The heads of the larger slides display scars on the seafloor or show a rugged seafloor 

when many slides coalesce.  

- Debris-flow deposits. Extensions of debris-flow deposits of up to 200 km2 have developed 

along the lower continental slopes in the distal parts of the El Ferrol and A Coruña canyons at 

4,800-4,900 m wd (Fig. 7C). Moreover, on the flanks of the Charcot High, these morphologies 

are generally 5-16 km long, 3-12 km wide and associated with steep slopes (Fig. 7D). These 

deposits are characterised by Echo-Type 1D. Also, another mass-transport deposit has been 

identified in the shallowest sector of the Ortegal Marginal Platform and is characterised by 

Echo-Type 2A. 

- Submarine fans. Several submarine fans have been described at the termination of the 

main submarine canyons located on the Cantabrian Margin and to the north of the Inner Basin 

(Fig. 7A). These fans are described from east to west as follows: a) the first group comprises 

the three fans (i, ii and iii in Fig. 7A) that cover the most extensive span of the study area 

(approx. 300 km long and 70 km wide) and show a dominantly E-W orientation as well as a SE-

NW trend with fingers-like shapes in their distal regions; b) the second group comprises three 

fans located perpendicular to the Cantabrian and Galicia margins that are approximately 5-45 

km wide and 29 to 80 km long (iv to vi in Fig. 7A). Acoustically, these fans are mainly 

characterised by Echo-Type 1B, but fan iii in Fig. 7A is also characterized by Echo-Type 3B. 

- Channel-levees. A group of channel-levees is described in the Biscay Abyssal Plain between 

the Ortegal Spur and the Charcot High and is called the Charcot Mid-Oceanic Channel System 

(Fig. 7E). Two more levees are observed along the right margin of the Ortegal Channel. These 

levees form part of a second mid-oceanic channel system called the Cantabrian Mid-Oceanic 
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Channel System (Fig. 7F). These levees are approximately 5-18 m thick and are characterised 

by Echo-Type 1B. 

- Submarine canyons. Numerous submarine canyons cross the continental slope of the study 

area, displaying very steep walls and U- or V-shaped cross-sections with high degrees of 

incision. The main canyons, described from west to east, are as follows (Fig. 8A): (a) Lage 

Canyon, which begins in the Castro Marginal Platform (2,200 m wd) (Fig. 8B); (b) A Coruña 

Canyon, which begins in the Ortegal Marginal Platform (500 m wd) (Fig. 8B); (c) El Ferrol 

Canyon, which begins in the Ortegal Marginal Platform (500 m wd) (Fig. 8B); (d) San Jorge 

Canyon, which is located to the west of the Ortegal Spur (500 m wd) (Fig. 8C); and (e) La 

Frouseira Canyon, which begins at a 900 m wd (Fig. 8C).  

Numerous minor canyons to the east at 1,200-1,500 m wd have been described as being 

primarily characterised by perpendicular and rectilinear trajectories and are U- and V-shaped 

with 200 m deep incisions. Note that there are several of these minor canyons located in the 

northern sector of the Ortegal Marginal Platform and to the east of the La Frouseira Canyon 

that change their orientations from S-N to SW-NE in the distal areas (Fig. 8A). These erosive 

features are characterised by Echo-Type 3A. 

- Submarine channels. The channels comprising the Charcot Mid-Oceanic Channel System are 

characterised by three main channels that are approximately 2-10 m deep: the Biscay, 

Hespérides and Charcot channels, with several distributaries that are approximately 3-14 km 

wide, 100 km long, 3-10 m deep and have a NE-SW trend (Figs. 8A, F, E, G). However, the mid-

oceanic channels of the Cantabrian System comprise two main channels (the Southern and 

Ortegal channels) that are 20 to 15 m deep (Fig. 8A). These channels are mainly characterised 

by Echo-Type 1L but are also characterised by Echo-Type 4B in the proximal zones of the Biscay 

Channel and by Echo-Type 1E in some parts of the Charcot System and extensive zones of the 

Ortegal and Interplains Channels. All of these submarine channels converge and are 

constrained through the Theta Gap, where the interplain channel is formed (Figs. 8A, H, I). This 

channel adapts its flow to the A Coruña and Finisterre highs and is characterised by a V-shaped 

cross-sectional profile that is 200 m deep.  

- Gullies. Several V-shaped gullies that are approximately 30-70 m deep have been observed 

in the distal parts of the Pardo Bazán and Castro marginal platforms at 2,200-2,700 m wd and 

in the northern part of the Galicia Bank at 3500 m wd, although these are 25 m deep (Figs. 8A, 

D). 
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5. INTERPRETATION OF THE RESULTS AND INSIGHTS INTO CONTINENTAL MARGIN 

SEDIMENTARY PROCESSES 

5.1. Geomorphology and links with morphostructures and sedimentary processes 

The integration and comparison of the results provides some practical applications for 

indirect near-surface and seafloor interpretations. Even though occasionally smooth or 

subdued bathymetric reliefs characterise the study area, especially in the abyssal plains (Figs. 

3A, B), backscatter maps help to better differentiate the heterogeneities and diversities of the 

seafloor deposits (Fig. 4B). The characteristics and regional distributions of the morphological 

features (Fig. 3C and Table 1) and echo types (Figs. 4A, 9 and Table 2) show that the seafloor in 

the study area is highly variable and complex.  

The continental slope is predominantly characterised by highly reflective erosional features 

that result in Echo-Types 1A, 1F, 1H and 3A. The areas characterised by Echo-Types 1A and 1F 

are located along an extended SW-NE surface of the Ortegal Marginal Platform and of the 

Pardo Bazán Marginal Platform. The near-surface sediments obtained in this area have been 

studied and found to consist of clean, coarse sands and silty sands comprising surrounded and 

well-sorted quartz and glauconite grains as well as abundant bioclastic fragments (Alejo et al., 

2012). This is evidence of high-energy environments and evolving erosion. The area 

characterised by Echo-Type 3A is located along submarine canyons, on the steep marginal 

platform edges and on structural highs and could be associated with the outcropping of 

sedimentary rocks or consolidated sediments derived from both erosion and/or tectonics. The 

area characterised by Echo-Type 1H is observed on the lower continental slope and shows 

similar characteristics to that of Echo-Type 1C but is superficially eroded. This pattern can be 

interpreted as contourite drifts comprising sediment waves that have recently been partially 

reshaped or eroded. On the other hand, the depositional features mainly located at the heads 

of A Coruña and El Ferrol canyons (Echo-Type 4C), between the Ortegal and Pardo Bazán 

marginal platforms and on the flanks of the structural highs (Echo-Type 1C), represent 

sediment waves and widespread contourite drifts.  

Likewise, the area characterised by Echo-Type 3B in submarine canyons could be associated 

with slides and those characterised by Echo-Type 2A in the shallowest zones of the Ortegal 

Platform are possibly associated with mass-transport deposits from depositional gravitational 

processes. The areas characterised by Echo-Type 3C, recorded on the floors of several channels 

of Echo-Type 1B, are observed on the Castro Marginal Platform. Echo-Type 4A is observed in 

the proximal zones of structural highs and could be associated with the interplay of turbidites 

or contourite sedimentary processes. Finally, a sector characterised by Echo-Type 1G is locally 
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observed in a distal sector of the Ortegal Marginal Platform and is related to fluid escape 

processes, making this process very characteristic of zones where a continuous supply of fluid 

flows toward the surface from below (Hovland and Judd, 1988).  

These results indicate that gravitational processes are predominant on the abyssal plains. 

The depositional gravitational features are mainly described as the levees (Echo-Type 1B) along 

several deep-sea channels and as the debrites at the base of several structural highs (Echo-

Type 1D). Deposits from recent hemipelagic/pelagic sedimentation (Echo-Type 1E) infilling 

several areas of the deep-sea channels suggest the inactivity of those channels. In addition, 

despite sediment waves being a common feature of many turbidite systems found in areas 

crossed by unconfined turbidity currents, the observed sediment waves on several levees and 

submarine lobes (Echo-Type 4B) as well as the undulating deposits on proximal zones of the 

structural highs (Echo-Type 4A) cannot be definitively attributed to either turbidity or contour 

current influence. There is no clear evidence to identify a specific sedimentary process, so we 

considered that the origins of these deposits and sediment waves can be influenced by both 

down- and along-slope. 

The erosive gravitational processes are represented by several deep-sea channels (Echo-

Type 1I), especially those located along the westernmost part of the study area (i.e., 

Hespérides, Charcot and Biscay channels). Another erosive feature of the gravitational 

processes or the tectonic-related basement outcrops is described the steep structural highs 

(Echo-Type 3A). 

5.2. Consideration of tectonic processes  

The main morphostructural features of the northwestern Iberian Margin (marginal 

platforms, scarps and structural highs, Fig. 5 and Table 2) are controlled by several basement 

structural highs and depressions as well as asymmetric ridges produced by extensional rotated 

blocks, which are the result of the complex geodynamic evolution of this area that spans the 

Mesozoic to the present. Currently, it is possible to observe the recent rejuvenation of the 

escarpments via the reactivation of the NW-SE to N-S and NW-SE normal faults, the tilting of 

the recent sedimentary sequences above the structural highs, the development of gentle folds 

related to basement horst and grabens, the sudden changes in the lateral thicknesses of the 

sedimentary units, the development of growth faults affecting the sedimentary deposits, and 

the development of sedimentary wedges at the feet of escarpments related to the erosional 

processes of the fault scarps or sedimentary instabilities (Vázquez et al., 2008). The fault 

reactivation is evidenced by low to moderate seismic activity that is mainly distributed along 

the NE-SW and NW-SE fractures (Giner et al., 1999; López-Fernández et al., 2002).  
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Morphological features generated by fluid escape processes in the Ortegal Marginal are 

observed to be aligned in two directions, NE-SW and NW-SE (Jané et al., 2010). These 

directions are parallel to the orientations of the local fractures and are coincident with the 

locations of the master basement faults. In the same way, the strikes of the maximum axes of 

the elongated pockmarks are NW-SE to N-S, NE-SW and ESE-WNW, which are also parallel to 

the main tectonic structures. Moreover, the presence of mound-type deposits with conical or 

elongated morphologies on the surrounding seabed close to the pockmarks suggest violent 

eruptions that were sufficiently intense to instantaneously lift huge sedimentary ejecta 

volumes and were probably related to earthquakes (Clifton et al., 1971; Hasiotis et al., 1996; 

Tsunogai et al., 1998; Nikonov, 2002; Hieke, 2004; Kusçu et al., 2008; Lomtev and Gurinov, 

2009; Vologina et al., 2012; Fischer et al., 2013). It has been demonstrated that earthquakes 

may suddenly increase fluid emission rates when the magnitude of the seismic event is greater 

than or equal to a 5 on the Richter scale. This is consistent with the calculations of the 

maximum magnitudes carried out by Martín-González et al. (2010) from a fault analysis of the 

northwestern sector of the Iberian Peninsula, which reported earthquake magnitudes between 

6.1 to 6.8 Mw. 

On the Biscay Abyssal Plain, the two large morphostructural features described, namely, 

the Charcot and A Coruña Highs, are related to the uplift of the oceanic crust spanning the 

Alpine Orogeny to the present day (Medialdea et al., 2009) and follow an orientation 

established by a cortical anisotropy. The oceanic crust typically displays a tectonic spreading 

fabric parallel to the spreading ridge at which the crust was generated (Lonsdale, 1977; 

Laughton and Searle, 1979). The extension in this sector led to the formation of the Bay of 

Biscay with an E-W direction and the North Atlantic Ocean with a NE-SW direction. Thus, the 

Charcot High, which exhibits an E-W orientation, and the A Coruña High, which shows a NE-SW 

trend, are the result of the reactivation and uplift of the oceanic crust under the Cenozoic 

stress field favouring tectonic spreading. The deformation and progressive uplift of the Galicia 

continental margin produces the tilting of the Biscay Abyssal Plain, increasing the seafloor 

slope towards the north and northwest by approximately 2.5° on average. 

Moreover, the orientations of the submarine canyons coincide with the main structural 

trends defined in the northwestern sector of the Iberian Peninsula (Arthaud and Matte, 1975; 

De Vicente and Vegas, 2009; Maestro et al., 2017). The Lage, A Coruña and El Ferrol canyons in 

the Galician margin have NE-SW, NW-SE and EW orientations (Fig. 8B), and the San Jorge and 

Frouseria canyons in the Cantabrian Margin have predominantly N-S to NNE-SSW and NE-SW 

orientations (Fig. 8C). The easternmost part of the study area includes the Avilés Canyon, 
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which is related to the offshore continuation of the Ventaniella Fault, has a N137°E orientation 

and was identified from early bathymetric studies of the Biscay Margin (Boillot et al., 1979; 

Derégnaucourt and Boillot, 1982). 

The presence of steep slopes that commonly exceed 30° in the study of the continental 

slope of the northern part of the Galicia Margin is caused by tectonic processes that occurred 

during the Alpine Orogeny, leading to the uplift of the Galicia and Cantabria margins due to the 

subduction of the Biscay oceanic crust under the Iberian continental crust (Gallastegui, 2000; 

Gallastegui et al., 2002). Some studies have shown that these uplift processes are still active, 

as seen via those emerged areas with episodic elevations of coastal terraces (Flor, 1983; Mary, 

1983; Alvarez-Marrón et al., 2008) and by the presence of reverse faults in the Quaternary 

materials located on the coastal terraces (Gutierrez-Claverol et al., 2006). 

5.3 Down-slope sedimentary processes  

Several submarine canyons, turbidites, slides and debrites are locally distributed on the 

upper and lower slopes (Fig. 7A and Table 1). They represent the products of both erosional 

and depositional gravitational sedimentary processes, but most of these features are also 

caused by tectonics (see section 5.2). This is the case for the main submarine canyons in this 

study, which are often deeply incised. Many of these canyons are obliquely aligned with the 

slope and are isolated from areas with fluvial input. Thus, their morphologies are related to 

their underlying basement topography and faulting. Likewise, the occurrence of slope failures 

seems to be largely associated with the steep slope gradients of the canyon walls and the 

tectonic activity that can trigger seismic events. There are numerous studies that relate the 

mass-transport processes with well-known earthquakes (Sultan et al., 2004; Biscontin and 

Pestana, 2006; Shanmugam, 2006; Mulder, 2011; Argnani et al., 2012; Dugan, 2012; Lindhorst 

et al., 2012; Vargas et al., 2012).  

The abyssal plains are characterised by the presence of two deep-sea channels systems that 

are the products of gravitational sedimentary processes. For the first time, this study reveals 

the courses and morphologies of two independent mid-oceanic channel systems in the Biscay 

Abyssal Plain: the Cantabrian and Charcot turbidite systems (Fig. 10A). The origins of these 

systems seem to be associated with the distal parts of the Cap Ferret (Figs. 10B, C) and the 

Armorican deep-sea fans (Fig. 11A), respectively. These systems can extend over long 

distances, which may be due to an increase in the slope gradient along the abyssal plain that 

sustains the energies of turbidity currents, as was observed by other authors in different 

regions (Laughton, 1960; Carter, 1988). Moreover, another factor in their development could 

be the same as that observed in other similar systems, which is associated with landslide-
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generated sediment gravity flows that are capable of spreading over extensive abyssal plains 

and submarine fans (Piper and Normark, 1982; Weaver et al., 1992; Wynn et al., 2002, 2010; 

Skene and Piper, 2003, 2006; Talling et al., 2007; Hunt et al., 2011), which are often low-

energy and non-erosive environments (Weaver and Thomson, 1993; Weaver, 1994). 

- The Cantabrian Turbidite System, comprising several channels and lobate bodies beyond 

the ends of these channels (Lobes-i to iii in Fig. 10B), shows similar planform sizes and features 

to those described by Prélat et al. (2010). The similarities of the study Cantabrian System to 

other systems described in the literature (Deptuck et al., 2008; Prélat et al., 2009) suggest that 

this system constitutes a nice example of compensational stacking. The depositional 

architecture of a basin floor fan is determined in large part by flow discharge, sand-to-mud 

ratio, slope length, slope gradient, and seafloor rugosity (Posamentier and Kola, 2003; Deptuck 

et al., 2008; Prélat et al., 2009, 2010). Thus, depositional elements can change based on 

location and through time as environmental parameters change (Prélat et al., 2010). For lobes 

where backscatter data have been collected along with cores, a relationship was proposed 

between the low (light) backscatter intensity and the presence of coarse-grained deposits 

(Unterseh et al., 1998; Zaragosi et al., 2000; Kenyon et al., 2002). Therefore, taking this 

premise into consideration and given the observed backscatter and geometry in the studied 

lobes (Figs. 3, 4, 9), we suggest that Lobe-i is the most reflective and homogeneous and may 

have originated in a channel that propagates into the basin from the complex system of the 

Avilés Canyon (Fig. 10B). As this lobe is very similar to frontal lobes described in other areas 

(e.g., Posamentier and Kolla, 2003; Morris et al., 2014; Ortiz-Karpf et al., 2015) and seems to 

be dominated by deposits from high density turbidity currents and other high concentration 

flows. Its connection with the channel is covered by the development of two more lobes: Lobe-

ii, the southernmost lobe in the system, is superimposed on some parts of the higher-

backscatter Lobe-i and exhibits adaptations of its morphology to the previous Lobe-i (Fig. 10B); 

and Lobe-iii, which developed in the northern sector of Lobe-i, also adjusted its distribution 

depending on the previous lobes. These two lobes comprise many elongated finger-like or 

finger bodies spanning across the lobes (Fig. 10B). These features are commonly attributed to 

flow transformations from turbidity currents to strongly density stratified flows (e.g., Klaucke 

et al., 2004; Talling et al., 2010; Groenenberg et al., 2010; Kane et al., 2017; Spychala et al., 

2017). Lobe-iii also has sediment waves on its surface that can be migrated upslope and are 

roughly parallel to the regional slope (Fig. 10B). These waves seem to represent primary 

depositional features rather than being the product of slope failures or other types of post-

sedimentary deformation. Similar bedforms located in the proximal areas of the submarine fan 
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systems and channel-lobe transitions have been described and interpreted as sediment wave 

fields formed by unconfined turbidity currents (Wynn et al., 2002). These features have been 

observed in the overall Cantabrian drainage system, comprising lobes and channels 

corresponding to a channel-lobe transition zone from the Cap Ferret system, which could be 

considered as a bypass-dominated area following the classification by Stevenson et al. (2015). 

The study system could is mainly connected to the Cap Ferret system (Crémer, 1983; Ercilla et 

al., 2008b; Iglesias, 2009) and the Avilés Canyon area (Gómez-Ballesteros et al., 2013).  

- In the Charcot Turbidite System, prominent deep-sea channels parallel to the bathymetry that 

comprises numerous distributaries and several levees have been described (Figs. 7A, 8A and 

Table 1). Primarily based on backscatter and seismic profile data, this system is characterised 

by a low sinuosity (Fig. 9) and seems to be the oceanic continuation of the large Armorican Fan 

system (Fig. 11A) that is the result of sediment-laden turbidity currents that have eroded and 

deposited sediment several hundreds of kilometres basinward. The large extension of the 

Charcot System can be explained following the results of studies of other high-latitude regions 

where the Coriolis forces has been observed to influence the gravity currents within these 

submarine channels due to the very large channel-length scales (Wells and Cossu, 2013). There 

are numerous factors that can control the developments and sinuosities of submarine 

channels, such as the slope gradients, flow interactions with the seafloor topography, the 

calibre of sediment the channel is transporting and eroding into, and the channel maturity 

(e.g., Clark and Pickering, 1996; Kane et al., 2008; Peakall et al., 2012, among others). 

However, channel sinuosity is also affected by other factors, such as tectonic controls and 

sediment supply (e.g., Cronin, 1995; Clark and Cartwright, 2011; Babonneau et al., 2002), and 

several authors have also suggested that channel sinuosity increases with time, with meander 

cut-offs forming during this process (e.g., Deptuck et al., 2003; Gee et al., 2007; Wynn et al., 

2007; Babonneau et al., 2010; Maier et al., 2013) or being linked to the Coriolis Force (e.g., 

Peakall et al., 2012; Wells and Cossu, 2013). The Charcot System shares several affinities with 

the Equatorial Atlantic Mid-marine channel (Baraza et al., 1997), and the Northwest Atlantic 

Mid-Ocean Channel (Klaucke et al., 1997) as well as with the more recently identified and 

cored Agadir system (Wynn et al., 2002; Talling et al., 2007; Masson et al., 2011; Stevenson et 

al., 2014) and Tanzania channel system (Bourget et al., 2008). The examples recently described 

in the literature have had origins of disintegrative submarine landslides, which can generate 

long run-out sediment gravity flows, or have been linked to the strong structural control of a 

sediment pathway associated with a massive sediment transfer towards the ocean related to 

tectonic activity. The presence or absence of levees in the Charcot System could be related to 
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changes in the density stratification of its associated flows, as is discussed in other places, such 

that if there is a very narrow grain-size range, the construction of levees is unlikely (Kane and 

Hodgson, 2011). The observed levees can be classified as external levees (outer levees sensu 

Deptuck et al., 2003, 2007; Kane and Hodgson, 2011). Moreover, several levees show sediment 

waves that are commonly identified in other regions of the modern seabed (e.g., Wynn et al., 

2002, 2007; Posamentier and Kolla, 2003), marking constructional crests and/or silt-prone 

deposits on the outside outer bends of the external levees (e.g., Normark et al., 1993; Migeon 

et al., 2001; Wynn and Stow, 2002). Pelagic/hemipelagic sedimentation could produce these 

semi-transparent facie units with uniform thicknesses that mimic the previous morphologies 

(including the valley axes), indicating that the channels were inactive (e.g., Damuth et al., 

1988; Flood et al., 1995; Baraza et al., 1997; Wynn et al., 2007).  

5.4 Along-slope sedimentary processes  

Several erosional (abraded surfaces and moats) and depositional (mounded and plastered 

drifts and sediment waves) features have been described as occurring mainly along the 

continental margin, e.g., the Ortegal, Pardo Bazán and Castro marginal platforms (at 0.4-0.8, 

0.9-2.0 and 2.2-2.7 km wd, respectively) (Fig. 12) and to a lesser extent along the Biscay 

Abyssal Plain at a 5 km wd at the base of the slope (Fig. 6 and Table 1). Their distribution 

demonstrates the dominant control of the bottom currents on the sedimentary processes 

since the distribution coincides with the depths presently under the influence of several 

bottom currents (ENACW-MOW-NADW along the continental slope and LDW along the abyssal 

plain) and bounded by density contrasts (pycnoclines) (Figs. 1, 12).  

The preliminary results confirm the interaction of the impinging MOW from west with the 

Ortegal Marginal Platform and the generation of a CDS via the sediment samples collected 

from near the surface of the drifts containing fine sands to muddy sandy (Hernández-Molina et 

al., 2009a). The Ortegal Spur forms an obstacle to the MOW as the MOW flows around Cabo 

Ortegal and into the Bay of Biscay (Fig. 1), causing isopycnal doming and locally enhancing the 

flow velocity (Hernández-Molina et al., 2011). The influence of the contemporary MOW 

reaches up to 600 m and down to 1500 m wd (Fig. 12) and can be locally forced higher up the 

slope such that the topography forms an obstacle to the flow. Thus, this MOW-topography 

interaction can explain many of the identified erosional and depositional features on the Pardo 

Bazán Marginal Platform as being influenced by the lower part of the MOW (Fig. 12). In 

general, the interaction of the contour current with the steep erosional surfaces likely causes 

highly focused flows within the moats running along their bases, inducing high bottom-current 

velocities (McCave, 1982) and erosion along the upslope walls. On the other flank of the 
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moats, the flow velocity is reduced, inducing deposition on the separated mounded drifts and 

on the mounded side of the confined drifts. However, the plastered drifts located on the Pardo 

Bazán Marginal Platform (Fig. 12) follow the typical contourite accumulation scenario 

proposed by Faugères et al. (1999) and Rebesco (2005) for their development, consisting of a 

broad, non-focused current on a gentle slope at low current velocities. The drifts located at the 

base of the Fernando and Ordoño highs, which are influenced by the NADW, are evidence of 

the effects of obstacles on an impinging flow (Fig. 13). As has been described by other authors 

for different water masses, the water flow in the northern hemisphere seems to accelerate to 

the left of a seamount (looking downstream) and decelerate to the right (Roberts et al., 1974; 

Gould et al., 1981; Hernández-Molina et al., 2006b). This standard behaviour in bottom 

currents supports the development of moats/mounded drifts on the left flanks of the 

Fernando and Ordoño highs and plastered drifts located on the right flank and/or around 

structural highs (Fig. 13). Moreover, the broad erosional and abraded surfaces have lower 

average slope angles and likely indicate the presence of less confined tabular bottom currents 

(Rebesco et al., 2014).  

While this conceptual model of the water mass interactions can explain many of the along-

slope oriented features, it does not explain the presence of the sediment waves in Ferrol and A 

Coruña submarine canyons. A potential mechanism for these features is the spatial and 

temporal displacement of the pycnocline at the ENACW-MOW interface (Fig. 12) due to 

motions like meddies, internal waves and internal baroclinic tides (Cacchione et al., 2002; 

Lamb, 2014). The interactions of these processes with the margin topography can induce 

strong bottom currents capable of eroding and redistributing sediments (e.g., Hernández-

Molina et al., 2011; Pomar et al., 2012; Preu et al., 2013; Shanmugam, 2013; Hanebuth et al., 

2015). The oceanographic measurements acquired on the Galician upper slope indicate large 

cross-slope-oriented baroclinic bottom currents of up to 19.4 cm/s (García-Lafuente et al., 

2006) and efficient internal tide generation on the Galician middle slope (Balmforth and 

Young, 2001; Zhang et al., 2008; Quaresma and Pichon, 2013; Lamb, 2014). This type of 

interaction of the seafloor with the filaments of water masses forced to flow upslope could 

develop these kinds of sedimentary waves, as has been reported for other slopes (e.g., Van 

Rooij et al., 2003, 2010; Iglesias, 2009).  

On the other hand, those relict drifts and sediment waves described at 2,400-2,700 m wd 

(Table 1) are formed by water masses strong enough to develop contourites and sediment 

waves. Although the present depth of the AABW flow is below 3,500 m (Fig. 1), it is believed 

that this current was enhanced (Sarnthein et al., 1982; Duplessy et al., 1988; Maslin et al., 
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1995; Zahn et al., 1997; Elliot et al., 2002) and shoaled at ∼2,500 m (Keigwin, 2004) during the 

past, especially during the glacial periods. Several studies carried out along the Atlantic margin 

have discussed the variations in depth of the AABW in the deep Atlantic basin at subtropical 

Iberian latitudes during the glacial/stadial periods (Sarnthein et al., 2001; Curry and Oppo, 

2005; Voelker et al., 2010; Friedrich et al., 2014; Rodriguez-Tovar et al., 2015; Howe et al., 

2016) was well as the importance of its influence on developing contourite features (Roque et 

al., 2015). 

Finally, the distal parts of several submarine canyons, e.g., the very noteworthy features to 

the east of La Frouseira Canyon (Fig. 4A) and the turbidite fans situated at the base of the 

slope (i.e., turbidite fan iv in Fig. 7A), show a change in their direction from S-N to SW-NE, 

which is interpreted as a consequence of the interplay of the S-N trending gravitational 

influence through the canyon with the W-S LDW circulation (Fig. 1).  

 

6. DISCUSSION: ARCHITECTURAL SEDIMENTARY CHANGES AND EVOLUTION  

6.1 Significance of the along-slope sedimentary processes in changing the conceptual 

glacially influenced margin model and its comparison with other glacially influenced margins 

When considering all described bottom-current products, especially those described for the 

Ortegal, Pardo Bazán, and Castro marginal platforms (Figs. 5A, B and Table 1), the first 

noticeable aspect is the relationship between the positions of the water masses (Fig. 1B) and 

the developments of both depositional and erosive contourite features (Fig. 3C). These 

features are characteristics of contourite terraces, which are formed by the interplay between 

margin physiography and local current regimes. Marginal platforms or marginal plateaus are 

defined in the submarine morphology as “flat (subhorizontal) but deep (deeper than the shelf 

break) domains within the continental slope” (Mercier de Lépinay et al., 2016). These features 

occur on all passive margins, occupying areas of more than 18,000,000 km2 and comprising 

5.11 % of the oceans (Harris et al., 2014). The polyphase tectonic evolution, subsidence 

evolution and the sedimentary settings controlled by deep currents make the marginal 

plateaus a target for furthering our understanding of the continental margin and hydrocarbon 

exploration. Our study reflects that the bottom currents have overemphasized the tectonic 

processes responsible for the initial development of the marginal platforms and structural 

highs (Figs. 5, 12). In this new scenario, the Ortegal, Pardo Bazán and Castro marginal 

platforms, where both erosional and depositional contourite features are described (Fig. 12B) 

and where the water masses show remarkable density contrasts (Fig. 12C), can be considered 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

21 
 

to constitute large contourite terraces (hereafter named the Ortegal, Pardo Bazán and Castro 

terraces) (Fig. 14). Therefore, the study area constitutes an excellent example for the study of 

the control of inherited structures and the influence of the topography of marginal plateaus on 

the local and global circulations of intermediate and deep oceanic waters. Based on the 

correlations of these morphologies and the ocean regimes, we propose that terrace genesis is 

strongly connected to the turbulent current patterns typical of water mass interfaces. 

Furthermore, this energetic pattern might be enforced by internal tides and internal waves, 

which are known to be generated along strong density gradients typical of water mass 

interfaces and which have tremendous effects on sediment dynamics, resulting in erosion and 

resuspension (Dickson and McCave, 1986; van Raaphorst et al., 2001; McCave, 2001; 

Cacchione et al., 2002; Hosegood and van Haren, 2003). Several contourite terraces have been 

defined at other continental margins at different latitudes, with the difference with respect to 

our study area being related to the absence of a structural control on the terrace formation 

(e.g., Gulf of Cádiz, Hernández-Molina et al., 2016a; Argentine margin, Hernández-Molina et 

al., 2009b; Gruetzner et al., 2012; Preu et al., 2013; the Uruguayan margin, Hernández-Molina 

et al., 2016c; Alboran Sea, Ercilla et al., 2016). 

This contribution proposes that although there are similarities with respect to the previous 

conceptual “glacially influenced margin” related to the development of numerous submarine 

canyons and turbidity currents that deliver sediment to abyssal plains (e.g., Kenyon et al., 

1978; Lebreiro et al., 1997; Wynn et al., 2000), there is a remarkable difference in the interplay 

of the down- and along-slope processes, including the presence of 1) three marginal platforms 

on the continental slope dominated by along-slope processes evolving into contourite terraces 

and 2) down-slope processes that are only minimally active on the upper slope but are 

dominant in the lower slope and abyssal plain regions (Fig. 14). These are two major and 

peculiar characteristics that suggest another perspective of the study area wherein the 

contour currents rework and/or redistribute the gravity deposits. 

6.2. Recent changes in the architectural sedimentary evolution  

Down-slope and along-slope sediment transports are the dominant processes during the 

evolution of continental margins and have major impacts on the shapes of these margins 

(Stow and Faugères, 1998; Faugères et al., 1999; Stow et al., 2002). Previous studies of glacially 

influenced margins have suggested that during full-glacial periods, sediment delivery onto the 

slope was mainly achieved by down-slope mass-wasting processes, while along-slope 

processes that deposited contourites dominated during interglacial times when the bottom 
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currents were generally stronger and on the abyssal plains (Weaver et al., 2000). In the study 

area, we propose that the contourite processes were dominant over the middle slope, mainly 

caused by the MOW circulation and associated with the enhancement of this current during 

the glacial cycles (Cacho et al., 2000; Schönfeld and Zahn, 2000; Llave et al., 2006, 2010, 2011; 

Voelker et al., 2006; Hernández-Molina et al., 2011, 2016a; Toucanne et al., 2007, 2012; 

Rogerson et al., 2012). However, the down-slope processes, which are mainly focused on the 

upper and lower slopes, are also considered to be more active in the study area during 

regressive and lowstand stages (Zaragosi et al., 2001a and b; Toucanne et al., 2012) but are 

dissipated by along-slope processes on the middle slope where the along-slope processes are 

dominant. This scenario could explain the absence of extensive turbidity systems off the 

contourite terraces (Fig. 14), and nevertheless they only develop to the east and west of the 

terraces and associated to the Cap Ferret and Armorican turbidity systems, respectively. 

Therefore, watermasses circulating in the study area show another example within modern 

oceans of their importance in re-suspending and advecting seafloor sediments or pirate 

sediments from other sedimentary processes (e.g., gravity flows),  

The contourite terraces may have being controlled by the following key factors, starting 

with a) the local morphology of the margin: inherited geological features conditioned the study 

area as having pelagic platforms located on its middle/upper slopes. These structures 

produced changes in the regional slope trends, providing the best areas for local water mass 

interactions with the seabed. The next factor is b) sediment supply: superficial samples of the 

drifts are mainly characterised as biogenic sandy contourites (Hernández-Molina et al., 2009a; 

Alejo et al., 2012). However, a wide variety of sediment inputs in CDS generation could also be 

considered. Contour currents can redistribute gravity supplied sediments or simply rework 

gravity deposits and transport any sedimentary drift bodies downward. Additionally, a greater 

direct sediment supply from the shelf and hinterland sources should be expected during the 

regressive and lowstand periods. The third factor is c) oceanographic changes: a vertical 

variability of the contourite features is observed, including erosive features close to the 

interface depths, plastered drifts between the interface depths and the upslope progradation 

of the mounded drifts and sediment waves, suggesting a vertical upward/downward migration 

or expansion, which observed most clearly at the depths of the MOW. Glacioeustatic changes 

could have facilitated the absence of the sedimentary imprints of the studied contourite 

terraces. Palaeoceanographic models of the MOW and its interfaces in the Western 

Mediterranean Sea and the Gulf of Cádiz assume that intermediate and deep Mediterranean 

water masses strengthened and sank to approximately 600-700 m deeper than its modern 
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counterpart during the glacial periods of the Quaternary (Cacho et al., 2000; Schönfeld and 

Zahn, 2000; Llave et al., 2006, 2010, 2011; Voelker et al., 2006; Hernández-Molina et al., 2011, 

2016a; Toucanne et al., 2007, 2012; Rogerson et al., 2012). In the study area, this deepening 

reflects a shift of the upper interface to below 1,100 m wd and of the lower interface down to 

2,200 m wd (Sánchez-González, 2013). Our sedimentary model suggests that during colder 

periods, the deeper ENACW/MOW and MOW/LSW pycnoclines influenced the distal sector of 

the Ortegal terrace, the upper part and distal sector of the Pardo Bazán terrace and the upper 

part of the Castro terrace, mainly by developing erosive features (Fig. 12B) that could have 

masked the development of depositional features, including those that originated from gravity 

sedimentary processes. Those sectors located between the pycnoclines were more favourable 

for depositional features, which could be relict or even have been eroded by successive 

variations of the interface depths. It is possible that the interplay between the along- and 

downs-slope processes is less evident along the Castro Marginal Platform as a result of the 

smaller sensitivities to local changes in the LSW compared to those in the MOW, which would 

lead to alternating periods of dominant along- and down-slope sedimentary processes as well 

as the generation of the described mixed systems. 

On the other hand, the Iberian Abyssal Plain is mainly characterised by two turbidite 

systems shaping the seafloor, which are the main contributors to both the outbuilding of the 

distal continental margin and basin infilling (Fig. 10). The Charcot System records multiple 

phases of incision and several pelagic/hemipelagic sediment infills that are evidence of 

intervals of active and inactive channel-levee systems (Figs. 7E, F, 8E-I). This fact has 

sometimes been related to local or regional changes in sediment supply rates or has been 

considered as being relative to variations of the sea-level. The systems that are connected to 

the Armorican and Celtic systems in the north (Fig. 11A) are assumed to have increased activity 

when increased sediment delivery is produced during lowstand sea levels (Zaragosi et al., 

2001a, b; Toucanne et al., 2012). In contrast, one can expect that the complete burial and 

abandonment of a large and long-persistent deep-sea channel could be a consequence of first-

order tectonic processes. Our study proposed that there is an evolution in this 

development/abandonment of several channels and distributaries that is mainly associated 

with the continental margin deformation and consequent tilting with a progressively westward 

increased gradient of the abyssal plain during the Pleistocene. The confinement by the 

structural highs of the flow along with the glacioeustatic changes and influences on the 

sediment supply are especially important in the submarine landside and the turbidity current 

activity during the Quaternary (Auffret et al., 2002). The progressive changes in the recent 
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evolution of the system can be synthetized as follows: (a) the first stage consists of an erosive 

phase when the Charcot, Biscay and Hespérides channels were incised into the seafloor 

following the topography of the Charcot High and were intensified by the constricted 

conditions between the Charcot High and the Ortegal Spur (Fig. 11B); (b) the second stage, 

marking an intensification of the turbidity currents, is observed along the Hespérides channel, 

which progrades towards the Charcot High, and the development of additional tributaries and 

levees is observed (Fig. 11C); (c) The third and final stage, consisting of the inactivity of the 

tributaries and the predominant intensification of the Hespérides channel, is then observed. In 

this final stage, an extensive levee also develops along the Hespérides channel to the south of 

the Charcot High (Fig. 11D).  

The Biscay Abyssal Plain regionally slopes in a southward direction and (in the area close to 

the A Coruña High) its deepest section favours the convection of all of these channel/levee 

systems through the Theta Gap (Fig. 8A). This connection narrows to approximately 5 km wide 

between the Biscay Abyssal Plain (average water depth of 5,100 m) and the Iberian Abyssal 

Plain (approximately 5,300 m deep) and could have acted as a deep-ocean overflow between 

oceanic basins of different depths (Legg et al., 2009). Active erosion occurs approximately 15 

km upslope of the narrowing between the structural highs and creates initial incisions of up to 

200 m and later incisions of approximately 30 m at points further along the current's course 

(Figs. 8H, I and Table 1). The straightening of the LDW water mass (Fig. 1) due to this 

constriction and a topographic barrier could be responsible for an overflow of the water mass 

generation that favours the excavation of the interplain channel. A change in sedimentation in 

the more distal part of the interplain channel system would then occur, and turbidites would 

progressively be replaced by the pelagic/hemipelagic deposits caused by the switch-off of 

turbidity flow activity (Fig. 8I). 

These sedimentary modes and their recent evolution comprising the interplays of the 

structural and along- and down-slope sedimentary processes require further investigation (i.e., 

regarding their stratigraphy and sedimentary characterisation) since they have important 

implications for regional and global climate dynamics, morphostructural evolution and 

hydrocarbon reservoirs. Thus, the interplay of down-slope and along-slope processes 

represents a critical and little known topic in the study of deep-marine sedimentation (e.g., 

Hernández-Molina et al., 2006, 2009b; Rebesco et al., 2008; Mulder et al., 2008; Mutti et al., 

2009; Marches et al., 2010; Talling et al., 2012; Brackenridge et al., 2013; Stow et al., 2013).  

 

7. CONCLUSIONS  
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A comprehensive sedimentary evolution of the recent depositional processes operating 

along the northwestern Iberian Margin and its adjacent abyssal plains is proposed herein. Our 

evolutionary and conceptual model provides new perspectives of the interplays between 

down- and along-slope sedimentary processes in shaping this glacially influenced margin and 

the important role of bottom currents in obscuring the tectonic process signatures in this area. 

Down-slope processes are dominant on the upper and lower slope and within the abyssal 

plain regions but have minimal impact on the middle slope, which is strongly influenced by 

along-slope processes. These processes show minimal concurrent interactions. 

Therefore, this study provides a new perspective of the early continental margin model 

based on two main and peculiar characteristics. A) The northwestern Iberian continental slope 

is affected by down-slope gravitational processes (mass-transport and turbidity) that mainly 

occur within canyons. However, the dominance of contourite features (contourite drifts, 

sediment waves, moats and abraded surfaces), described mainly along the inherited marginal 

platforms, is evidence of the influence of the intermediate bottom currents and their 

importance in shaping the seafloor and the evolution of contourite terraces. B) The abyssal 

plains are dominated by pelagic/hemipelagic deposits as well as by debris flows and turbidity 

currents where two complex channel-lobe systems develop (i.e., the Cap Ferret and Armorican 

turbidite systems). Nevertheless, in this abyssal plain down-slope scenario, several contourite 

features are also observed at the foot of the continental slope as a result of the influence of 

the deepest water masses.  

This recent and/or present-day sedimentary stacking pattern and the sediment dynamics in 

the study area are the result of both the structural framework and the variability of 

sedimentary systems and processes influenced by glacioeustatic changes. Tectonic processes 

are considered to be the controlling factors over the long -term, while sediment supply and 

climatic conditions have critical influences on the present-day configuration of the area at the 

basin scale, having played major roles over the short -term by influencing the variabilities of 

different sedimentary processes. Note that the tectonic processes have mainly conditioned the 

inherited marginal platforms as well as the structural highs, which have then influenced the 

interactions with the bottom currents, even modifying the signatures of down-slope activity. In 

the abyssal plains, tectonics processes have also controlled the westward migration of the 

channels/levee systems by tilting the continental margin. In addition, the lateral and vertical 

shifts of the water masses influence the depth, and their interfaces have left imprints on the 

reshaping and evolution of the recent sedimentary architecture of the continental slope, which 

was conditioned by the climatic variations during the Pleistocene.  
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Future work in this area should aim to provide a better understanding of the formation, 

timing and evolution of the morphostructural and morphosedimentary features of this region 

and to better constrain the interactions between tectonic, gravitational and bottom-current 

processes as well as sediment supply and climate variations. 
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Figure Captions: 
 

Figure 1. A) Digital bathymetric model of the study area. B) Regional circulation of the main 
water masses (updated and modified from Hernández-Molina et al., 2011). 

Figure 2. Geological and tectonic setting of the northwestern Iberian continental margin and 
the adjacent abyssal domains, modified from Rodriguez-Fernández et al. (2014). The 
bathymetric map was derived from satellite and ship track data (Smith and Sandwell, 1997). 

Figure 3. A) Digital bathymetric model of the study area and the locations of some main 
physiographic and morphosedimentary elements: (1) Ortegal Marginal Platform, (2) Pardo 
Bazán Marginal Platform, (3) Castro Marginal Platform, (4) Avilés Canyon, (5) La Frouseira 
Canyon, (6) San Jorge Canyon, (7) El Ferrol Canyon, (8) A Coruña Canyon, (9) Lage Canyon, (10) 
Inner Basin, (11) Fernando High, (12) Ordoño High, (13) Finisterre High, (14) A Coruña High, 
(15) Charcot High, (16) Theta Gap, (17) Biscay Abyssal Plain, (18) Iberian Abyssal Plain. B) 
Gradient map. C) Morphological map. 
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Figure 4. A) Echo-character map and locations of some main physiographic elements (see the 
legend of the main physiographic and morphosedimentary elements in Fig. 3A). Legend of the 
different echo-type descriptions in Table II. B) Backscatter map. 

Figure 5. A) Digital bathymetric model of the study area and locations of some main 
physiographic and morphosedimentary elements (see the legend of the main physiographic 
elements in Fig. 3A). B) and C) Bathymetric profiles. TOPAS (D-I) and digital bathymetric 
examples (D’-I’) of fluid escape-related features. See text for detailed descriptions. 

Figure 6. A) Digital bathymetric model of the study area and the locations of some main 
physiographic and morphosedimentary elements (see the legend of the main physiographic 
elements in Fig. 3A). B-I) TOPAS examples of the main contourite features. Depositional 
contourite features comprising plastered drifts (B), separated drifts (C and D) and sediment 
waves (G and H). Erosive contourite features are represented by moats (C and D), abraded 
surfaces (I) and the erosion of relict sediment waves (F). Mixed drifts occur where alternations 
of contourite and turbidite features are shown (E). 

Figure 7. A) Digital bathymetric model of the study area and the locations of some main 
physiographic and morphosedimentary elements (see the legend of the main physiographic 
elements in Fig. 3A). B-F) TOPAS examples of the main depositional gravitational features. 
Depositional gravitational features comprise slides (B), debrites (C and D) and levees (E and F). 
Also, note that several erosive features are represented by the turbidite channels (E and F). 

Figure 8. A) Digital bathymetric model of the study area and the locations of some main 
physiographic and morphosedimentary elements (see the legend of the main physiographic 
elements in Fig. 3A). B) and C) Digital bathymetric model of the main studied submarine 
canyons. D-I) TOPAS examples of the main erosional gravitational features, such as submarine 
canyons (B and C), gullies (D) and mid-oceanic channels (E to I).  

Figure 9. Main morphologies interpreted via backscatter analyses. 

Figure 10. A) Digital bathymetric model of the study area and the locations of some of the 
main physiographic and morphosedimentary elements (see the legend of the main 
physiographic elements in Fig. 3A). B) Down-slope sedimentary processes described in this 
study. C) Correlation of this study within the Cantabrian Margin and Abyssal Plain 
interpretation by Iglesias (2009). 

Figure 11. A) Locations of the Celtic and Armorican turbidity systems related to the 
development of the Charcot Mid-Oceanic Channel. B-D) Evolution of the Charcot Mid-Oceanic 
Channel in the western part of the Biscay Abyssal Plain. 

Figure 12. Vertical distribution of the water masses flowing in the eastern part of the study 
area in the digital terrain model (DTM). B) Seismic profile crossing the terraces (line position in 
panel A), where the different water masses and their interfaces are indicated for the present 
day, and the theoretical position of the MOW is indicated during glacial stages (in black) 
(Sánchez-González, 2013). C) Water mass percentages in the area adjacent to the contourite 
terraces (from Sánchez González, 2013). 

Figure 13. A) Digital terrain model (DTM) of the northern part of the Galicia Bank showing the 
NADW bottom interaction that triggers the development of contourite deposits related to 
structural highs. Examples of high-resolution seismic profiles showing mounded, elongated 
and separated drifts in the western flank of the Ordoño (B) and Fernando (C) highs and D) a 
plastered drift on the western flank of the Ordoño High. 
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Figure 14. Sketch of the conceptual sedimentary model proposed in this study. The main 
tectonic, along- and down-slope sedimentary processes and the principal 
depositional/erosional products generated by these processes are shown. 

Table 2. Main morphological features identified in the study area based on their geneses. 

Table 2. Characteristics of the main differentiated echo-character types and subtypes. * Length 
and width measured only within the study area. ** Gradient of the surface where a feature is 
developed. *** Gradient of the steepest flank. 
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Highlights 

 Down-slope sedimentary processes dominate the northwestern Iberia abyssal plains 

 The continental slope shows interplay between along-slope and down-slope 

sedimentary processes 

 Tectonic processes conditioned inherited marginal platforms 

 Bottom currents re-shaped marginal platforms forming contourite terraces  
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