
ON THE SECURITY AND
PERFORMANCE OF MOBILE

DEVICES IN TRANSPORT
TICKETING

Submitted by

Assad Abdullahi Umar

Royal Holloway, University of London

Thesis submitted to

The University of London

for the degree of

Doctor of Philosophy

2017.

Declaration of Authorship

I Assad Abdullahi Umar hereby declare that this thesis and the work presented

in it is entirely my own. Where I have consulted the work of others, this is

always clearly stated.

Signed: Date:

2

Statement of Sponsorship

The work presented in this thesis is the result of a PhD sponsored by Transport

for London (TfL).

3

Abstract

There have been significant developments in the field of transport ticketing.

Major transport operators are transitioning from closed-loop, proprietary sys-

tems to open systems that utilise the global payment infrastructure for tick-

eting via smart cards and, increasingly, smartphones.

Modern smartphones support Near Field Communication (NFC) which

can be used to emulate contactless smart card tickets. NFC transactions are

quick, making them a viable technology for use in transport ticketing where

speed is very critical. NFC transactions initially required a Secure Element

(SE) for security reasons. However, commercial constraints and restrictive

security practices relating to the SE have paved the way for Host Card Emu-

lation (HCE). HCE facilitates NFC transactions without requiring an SE; this

provides a simpler and more flexible ecosystem, at the expense of security.

This thesis investigates the impact of the aforementioned developments on

the security and performance of mobile devices in ticketing. A comparative

analysis of various security mechanisms that have been put forward as options

to mitigate the security risks of HCE is carried out, and their suitability for

ticketing is determined. A novel ticketing protocol based on Linkable Digital

Signatures is proposed to solve the problem of blacklisting (the barring of in-

valid tickets/smartphones) in tokenised payments. A novel tokenisation frame-

work based on Format Preserving Encryption (FPE) algorithms and Trusted

Execution Environments (TEE) for secure token generation on the user’s de-

vice has been proposed. All proposals were implemented on mobile devices to

test the performance for efficiency.

The work conducted in this thesis shows that mobile devices, and partic-

ularly HCE, offer several benefits in ticketing, however, a new approach to

4

security is required. It also shows that despite the clear advantages of adopt-

ing open payments, careful considerations must be taken for it to be successful

in ticketing.

5

Acknowledgements

Firstly, I would like to thank God, the most beneficent and the most merciful,

for giving me the strength, courage and ability to get through this journey.

I would like to thank my parents whose support, care, love and encourage-

ment gave me the foundations necessary to embark on the PhD journey, and

to successfully complete it. I love you!

I would like to thank my supervisor Professor Keith Mayes, Director of the

Smart Card Centre (SCC) and Head of the School of Mathematics and Infor-

mation Security at Royal Holloway,for his encouragement, support, patience,

understanding and expert knowledge during the course of the PhD.

I would also like to thank Mrs. Sheila Cobourne for her support, guidance

and for being a reliable source of motivation. Thanks to Professor Konstanti-

nos Markantonakis for his encouragements and insights. I would also like to

say a big thank you to Dr Raja Naeem Akram, Sarah Abu-Ghazalah and

Iakovos Gurulian for all their help and criticisms that have helped in making

this thesis a possibility. To the other members of the SCC: Mehari Msgna,

Danushka Jayasinghe, Benoit Ducray, Hafizah Mansor and Lazaros Kyrillidis,

thank you for your support, kindness and motivation. In all of you, I have

made friends that I will cherish for life.

To my uncles, aunties, cousins and the entire extended family, thank you

all for your encouragements, push and financial support. Thank you for your

understanding when times were tough. One love!

A big thank you to Mr Vassilis Korkas, who painstakingly proofread the

thesis, it would not have been possible without your help.

To the love of my life – Naima Ali, I cannot thank you enough for your

encouragement, understanding, love and affection. Your contributions to this

endeavour are dearly appreciated.

6

Last but not the least, I gratefully acknowledge the funding and support

received towards my PhD from Transport for London.

7

Contents

Declaration of Authorship 2

Statement of Sponsorship 3

Abstract 4

Acknowledgements 6

Contents 8

List of Tables 13

List of Figures 14

Contents 15

1 Introduction 16

1.1 Motivation . 16

1.2 Research Questions . 20

1.3 Contributions . 21

1.4 Organisation of the Thesis . 22

1.5 List of Publications . 24

2 Background I: Ticketing Systems 25

2.1 Evolution of Ticketing Fare Media 25

2.2 Description of Ticketing Systems 27

2.2.1 General Architecture 27

2.2.2 Participants . 28

2.2.3 Phases . 29

8

2.3 Classification of Ticketing Systems 31

2.3.1 Card-Based Ticketing Systems (CBT) 31

2.3.2 Account-Based Ticketing Systems (ABT) 32

2.3.3 Closed-Loop Ticketing 32

2.3.4 Open Ticketing Systems 33

2.4 Ticketing System Requirements 37

2.4.1 Security Requirements 37

2.4.2 Functional Requirements 40

2.4.3 Privacy Requirements 40

2.5 Notable Ticketing System Implementations in the UK 43

2.5.1 Integrated Transport Smartcard Organisation (ITSO) . 43

2.5.2 Transport for London (TfL) Oyster Card 45

2.6 Summary . 46

3 Background II: Technical Background 47

3.1 Near Field Communication . 47

3.1.1 NFC Modes of Operation 47

3.2 Card Emulation Using A Security Element 49

3.3 Host Card Emulation . 52

3.3.1 HCE Application Development: Android Example . . . 52

3.3.2 Application Selection 53

3.3.3 Data Exchange . 53

3.3.4 NFC Applications Requirements 54

3.4 EMV Payment Technology . 57

3.4.1 EMV Architecture . 58

3.4.2 EMV Primary Account Number 59

3.5 EMV Key Concepts . 60

3.5.1 Data Authentication 60

3.5.2 Card-Holder Verification 61

9

3.5.3 Transaction Authorisation 61

3.6 EMV Considerations for Ticketing 63

3.7 EMV Payment Tokenisation 64

3.8 Summary . 66

4 Comparing SE and HCE Capabilities 67

4.1 Introduction . 67

4.2 Related Work . 69

4.3 Implementational Considerations 71

4.3.1 Ecosystem Complexity 71

4.3.2 Provisioning . 71

4.3.3 Usability . 72

4.3.4 Performance . 72

4.3.5 Cryptography . 72

4.3.6 Cost . 73

4.3.7 Standardisation . 73

4.4 Security Considerations . 74

4.4.1 Cloud Storage . 74

4.4.2 Tokenisation . 74

4.4.3 Trusted Execution Environment (TEE) 75

4.4.4 White-Box Cryptography (WBC) 76

4.5 Considerations of HCE Performance 77

4.5.1 Android CPU Policy 77

4.5.2 Test Methodology . 78

4.6 Experimental Results . 81

4.6.1 SE-app Testing . 81

4.6.2 HCE-app Testing . 82

4.7 Discussion . 85

4.8 Summary . 87

10

5 Blacklisting Tokenised Payments 88

5.1 Introduction . 88

5.1.1 Problem Statement . 89

5.1.2 Proposed Solution . 89

5.2 Privacy and Accountability . 91

5.3 Related Work . 93

5.4 Cryptographic Background . 96

5.4.1 Linkable Group Signatures (LGS) 96

5.4.2 Intractability Solutions 96

5.4.3 Linkable Group Signature Processes 97

5.5 Proposed Ticketing Scheme 101

5.5.1 Functional Requirements 101

5.5.2 Security Requirements 102

5.5.3 Adversary Model . 102

5.5.4 Assumptions . 103

5.5.5 Entities . 104

5.5.6 Phases . 105

5.5.7 Proof of Concept . 107

5.5.8 Lessons Learned and Considerations 108

5.5.9 Performance Analysis 108

5.5.10 Requirements Analysis 109

5.6 Summary . 112

6 Ecosystems of Trusted Execution Environments 113

6.1 Trusted Execution Environment 115

6.1.1 TEE Security Services 115

6.1.2 ARM’s TrustZone . 117

6.1.3 Intel Software Guard Extensions (SGX) 118

6.2 Ecosystem Models for TEE 120

11

6.2.1 Centralised Model . 120

6.2.2 Security as a Service Model 120

6.2.3 Consumer-Centric Model 121

6.3 Comparison Between Models 122

6.3.1 Comparison Criteria 122

6.3.2 Comparison and Discussion 123

6.4 Making a Case for Security as a Service 125

6.5 Summary . 126

7 On-device Tokenisation 127

7.1 Introduction . 127

7.2 Shortcomings of Tokenisation 129

7.3 Related Work . 130

7.3.1 Encryption of PANs 131

7.4 Format Preserving Encryption (FPE) 132

7.4.1 Feistel Structure . 132

7.5 Proposed Tokenisation Framework 135

7.5.1 Entities . 135

7.5.2 Phases . 135

7.5.3 Proof-of-Concept and Testing 137

7.6 Summary . 138

8 Conclusion 139

8.0.1 Future Work . 141

Bibliography 143

12

List of Tables

2.1 Trends in Open Ticketing . 42

3.1 EMV Cryptograms . 58

3.2 Payments: Retail vs Ticketing 63

4.1 Comparison of Security Mechanisms 76

4.2 Devices Used in Testing . 78

4.3 SE-app Testing Results in Milliseconds 82

4.4 HCE-app Testing Results in Milliseconds (Case 1) 83

4.5 HCE-app Testing Results in Milliseconds (Case 2) 84

5.1 Notations and Meanings . 97

5.2 Devices Used in Proof of Concept 108

5.3 Protocol Transaction Times in Milliseconds 109

6.1 Comparison of Different Ecosystems for TEE Deployment . . . 124

13

List of Figures

2.1 Use of Contactless Payment Cards on Bus and Rail [1] 36

2.2 Layout of ITSO Ticketing Media 44

3.1 NFC SE Ecosystem . 49

3.2 NFC HCE Ecosystem . 51

3.3 EMV Payment Architecture 58

3.4 Anatomy of the PAN . 59

3.5 Transaction Flow of a Tokenised Payment 64

4.1 Protocol Used in Testing . 79

4.2 Graph Showing the Results of All the Tests 85

5.1 Protocol Diagram of the Proposed Solution 103

6.1 Architecture of TrustZone on a Mobile Device [2] 117

6.2 Hardware and Software Architecture of Intel SGX [3] 119

7.1 Layout of an On-Device Token 133

7.2 Encryption and Decryption Functions using a Feistel Structure.

Source: [4] . 134

14

Contents

15

Chapter 1

Introduction

1.1 Motivation

Historically, public transport has gone through significant transformation with

respect to ticketing and fare collection, from the very early days of cash and

paper tickets, to transport ticketing systems with a degree of automation that

accept smart tickets. A ticket is considered to be smart if it has some access-

controlled memory where the entitlement to travel can be stored, read and/or

modified electronically by an external terminal (smart ticketing). Tradition-

ally smart tickets took the form of a microchip embedded in a contactless

smartcard, issued by the transport operator for use in proprietary systems.

The state of the art today is the use of contactless bank cards and Near Field

Communication (NFC)-enabled mobile devices. NFC is a short-range com-

munication technology that is capable of emulating a smartcard on a mobile

device, and facilitates communication between a device and an external con-

tactless smartcard reader, which in this context is a terminal1 at a train station

or on a bus. What makes NFC even more suitable is its compatibility with

existing ticketing infrastructure that already accepts contactless smartcards

because they both conform to the ISO/IEC 14443 standards [5]. Crucially,

1For this point, the term terminal is used to collectively refer to a contactless reader, the
software that manages the contactless transaction, and the turnstile that enforces physical
access control according to the decision taken

16

transport ticketing applications are speed-critical, which makes NFC an at-

tractive and suitable technology, because NFC transactions are very fast.

The integration of NFC into mobile devices has led to a paradigm shift in

the way traditional payments and ticketing transactions are carried out. In

comparison to smart-cards, NFC-enabled mobile devices present new possi-

bilities, as well as constraints, for the transport ticketing ecosystem. Mobile

devices provide a richer User Interface and User Experience (UI & UX re-

spectively), in addition to higher processing power. They also help users by

consolidating their payment instruments into a single device, rather than hav-

ing multiple cards for similar purposes. Additionally, the transport operators

make cost savings in terms of issuing and managing cards and card systems.

However, the conventional security architecture of the mobile device presents

its own constraints, which are more business than technical ones. These con-

straints, along with the promise shown by NFC technology, have led to radical

changes in terms of the NFC security architecture, which presents new research

frontiers that are yet to be explored.

From a research perspective, much work has been done in the area of

transport ticketing security, with a major focus on user privacy. While pri-

vacy is undoubtedly an important aspect of ticketing, fundamental changes

to the ticketing architecture in practice and the evolution of mobile technolo-

gies present research gaps, which the work in this thesis sets out to bridge.

The beginning of the research presented here coincides with the onset of two

new developments in relation to transport ticketing which have subsequently

shaped its direction.

In recent developments, transport operators are moving away from closed-

loop ticketing systems that only accept tickets issued by the transport oper-

ator, and thus can only be used for ticketing and related services, to open

17

ticketing systems. Open ticketing systems use the traditional payment infras-

tructure; they accept regular contactless bank cards and other mobile tech-

nology to access the transport service. This effectively shifts the business of

payments away from the transport operator, and payments are handled by the

payment industry in the same way as other payments in retail trading.

There has also been a radical change in the way transactions using NFC

devices are carried out. NFC transactions using card emulation were expected

to make use of a hardware Secure Element (SE) in the mobile device to house

sensitive applications and related data. In a transaction using an SE card

emulation, messages are routed to the SE directly, without being visible to the

Operating System (OS). This concept achieves its purpose in terms of security

because of the hardware-backed isolation and tamper-resistance provided by

the SE. However, restrictive practices (motivated by commercial as well a

security interests) prevented developers form having access to the SE; which

frustrated service development. These factors led to a slow adoption of NFC

in many sectors, including transport. To address this problem, a new way

of performing card emulation that bypasses the SE emerged; this is referred

to as Host Card Emulation (HCE). HCE lets an application on the host OS

communicate directly with an external NFC terminal. This allows for a simpler

and more flexible ecosystem at the expense of security. HCE offers less attack-

resistance than SE card emulation since it relies on the software mechanisms

of the device for security.

One of the known security mechanisms in mobile payment systems is to

store temporary payment credentials in the smartphone, a technique known

as tokenisation. However, this can be a problem for transport ticketing se-

curity processes, which rely on fixed and permanent payment credentials for

blacklisting.

The work presented in this thesis considers different aspects of transport

ticketing, and investigates the impact of the aforementioned developments on

18

ticketing security and performance.

19

1.2 Research Questions

1. How does the shift from SE-based to HCE-based NFC transactions im-

pact the security and performance of transport ticketing systems?

2. What is the impact of tokenisation —a payment security mechanism—

on open ticketing systems?

3. Can a new privacy-preserving protocol be proposed that will allow user

blacklisting without requiring a unique identifier?

4. To what extent can advances in Trusted Execution Environments (TEE)

for mobile devices be used to enhance the security of transport ticketing

processes?

20

1.3 Contributions

The main contributions of the thesis are as follows:

1. The state of the art in ticketing and an analysis of current trends relating

to ticketing are presented.

2. An assessment of the security and performance of NFC devices in trans-

port ticketing is conducted: A variable performance behaviour of HCE

applications is revealed, and its impact on security is considered.

3. Analysis of tokenisation, and how it calls into question blacklisting,

which is an important fraud and security control process in transport

ticketing systems.

4. A proposal for a novel, privacy-preserving transport ticketing scheme

using linkable group digital signatures is given, solving the problem of

blacklisting in tokenised transactions.

5. A proposal is given for a novel tokenisation framework that relies on a

TEE and Format Preserving Encryption (FPE) algorithms, to generate

on-device tokens.

21

1.4 Organisation of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 sets the scene and tone of the thesis. The evolution of ticketing

fare media is presented. A discussion of notable ticketing schemes around the

world is then provided. Different ticketing concepts are described, providing

an essential background to the work carried out in the thesis.

Chapter 3 opens with a discussion of NFC devices and their applicability

to ticketing. We look at the security aspects of NFC on mobile devices and

their impact on ticketing. An analysis of various mechanisms proposed to

mitigate the security risks introduced by Host Card Emulation (HCE) and

the suitability of the mechanisms for ticketing is also presented. This chapter

concludes with a summary of the trends in the payment industry, and what

they mean for transport ticketing.

A comparison of the performance of similar implementations of an SE-

based application, and a HCE-based Android application is carried out in

Chapter 4. We identify a specific behaviour of applications in HCE, which

calls into question the performance of mobile devices in transport ticketing.

Regardless of the superiority of HCEs in terms of processing power as com-

pared to an SE, we show how the behaviour affects security mechanisms and

assumptions used in smartcards, and by extension SEs, which will not hold in

mobile transactions.

Chapter 5 focuses on the problem of blacklisting tokenised payments.

It shows how tokenisation—which is a security mechanism proposed for HCE

applications—contradicts blacklisting, which is an important function of trans-

port ticketing systems. A novel solution to the problem using linkable group

digital signatures is presented. Practical implementation and testing of the

solution shows mobile devices have sufficient processing power to efficiently

handle complex cryptographic operations, allowing for the realisation of a

22

privacy-preserving blacklisting solution.

In Chapter 6, the use of TEEs as a security mechanism for HCE applica-

tions is analysed. I highlight a possible problem with the closed nature of TEEs

in the ecosystem. Different ownership models are considered with respect to

their centricity, and a recommendation is made based on their suitability for

adoption in the transport ticketing domain.

Chapter 7 presents a novel tokenisation framework for the on-device gen-

eration of tokens. To achieve this, a FPE algorithm is implemented as a mobile

application.

Chapter 8 presents the major conclusions of the thesis in relation to the

research questions. The future research directions that could be explored are

also outlined,

23

1.5 List of Publications

1. Assad Umar, Keith Mayes, and Konstantinos Markantonakis. Perfor-

mance Variation in Host-based Card Emulation Compared to a Hard-

ware Security Element. In First Conference on Mobile and Secure Ser-

vices (Mobisecserv), pages 1–6. IEEE. Gainesville, Florida, USA. 2015.

(Chapter 4)

2. Assad Umar, Iakovos Gurulian, Keith Mayes, and Konstantinos Markan-

tonakis. Tokenisation Blacklisting Using Linkable Group Signatures. In

the 12th International Conference on Security and Privacy in Communi-

cation Networks pages 182–198. Guangzhou, People’s Republic of China.

Springer International Publishing, Cham, 2017. (Chapter 5)

3. Assad Umar, Raja Naeem Akram, Keith Mayes, and Konstantinos Markan-

tonakis. Ecosystems of Trusted Execution Environment on Smartphones

- a Potentially Bumpy Road. In 2017 Third International Conference on

Mobile and Secure Services (MobiSecServ), pages 1–8. Miami, Florida,

USA. Feb 2017. (Chapter 6)

4. Assad Umar and Keith Mayes. Trusted Execution Environment and

Host Card Emulation. In smartcards, Tokens, Security and Applications,

pages 497–519. Springer International Publishing, 2017. (Chapter 3 and

Chapter 6)

24

Chapter 2

Background I: Ticketing
Systems

2.1 Evolution of Ticketing Fare Media

The very early days of ticketing involved the use of cash in exchange for a

paper ticket or a physical token that acts as the right to travel. However, the

use of cash has many challenges that directly affects the efficiency of ticketing

systems. Cash is very expensive and inefficient to handle for the transport

operators. It also makes the boarding of transport vehicles time-consuming

and generally impractical with the growing number of public transport users.

The aforementioned problems with cash led to the introduction of the first

automated ticketing systems.

Automated ticketing systems have the ability to validate tickets and apply

logic as to whether the user has the right to travel. This decision is enforced

using gates or turnstiles to allow or deny users access to the transport service.

Earlier automated systems accepted cards and paper tickets with a Magnetic

stripe (Magstripe) [6] that encodes the information. This significantly solves

the problems introduced by the circulation of cash in the system and also

makes boarding transport vehicles faster and more efficient. The low cost of

production, and durability of these types of tickets makes them ideal for both

single-journey and multiple-journey tickets. Nevertheless, magstripe tickets

25

have their own downsides: they have a very limited storage capacity of about

24 bytes, which is a constraint to the complexity and number of tickets it can

hold. The level of security that can be achieved in magstripe is very low be-

cause of their inability to carry out any processing. Consequently magstripe

tickets are prone to cloning. These issues with magstripe tickets, advances

in smartcard technology, and reduced cost of silicon established contactless

smartcards based on the ISO/IEC 14443 standard as an ideal option for tick-

eting.

Contactless smartcards have the ability to carry out processing, and have

bigger storage capacities. This means they can support higher levels of secu-

rity than the magstripe tickets. They are also more durable and are therefore

suitable for long validity tickets (season tickets). From the transport operators

perspective, the use of smartcards enhances travel data collection and mining,

which can be used for a smarter resources allocation and a better service de-

livery [7]. As alluded to in Chapter 1, NFC devices are capable of emulating

smartcards and communicating with an external terminal. This offers a nat-

ural progression from smartcards, but with an added advantage of a higher

processing power, and a UI. More on NFC is covered in Chapter 3.

26

2.2 Description of Ticketing Systems

The specifics of each ticketing system will vary according to particular use-

cases, assumptions, technological choices and business agreements in place.

Nevertheless a general description of ticketing systems is given in this section.

A generic architecture, the participants, and phases that make up a ticketing

system are described. A classification of ticketing systems based on their

payments model, as well as business logic is also presented.

2.2.1 General Architecture

The generic architecture of ticketing systems consists of various components

at four levels:

Level 0 - Fare Media

The device used to deliver the ticket payload to the validation terminals. These

include contactless smartcards and NFC-enabled mobile devices.

Level 1 - Validation Terminals

The term terminal in ticketing may be used to refer to different components

depending on the implementation. For example, it can mean a mobile device

used by ticket inspectors to scan tickets during a journey. In this context,

validation terminal refers to a ticketing device capable of reading, writing or

modifying a ticket. In gated stations, the terminal also includes a physical

mechanism –typically a turnstile– to enforce access control according to the

decision-taking after interacting with the ticket. The terminals are connected

to the back-office systems for periodic reporting and status updates.

Level 2 - Back Office Systems

Back office systems are managed and maintained by the transport operator.

They are used for the general management and administration of ticketing

systems. Functions of the back office include: fare and ticket management, user

account management, report management and handling of terminals updates.

27

In closed-loop ticketing systems (see Section 2.3.1) with a single transport

operator, the back office also carries out financial clearing and settlement

functions.

Level 3 - Central Clearing and Settlement Systems

Most real-life implementations will involve different operators controlling dif-

ferent parts of a geographic location. The central clearing and settlement

offices are used to provide financial functions including: apportionment of rev-

enue among the relevant transport operators, central reporting and updating

services, and general ticket and user administration.

2.2.2 Participants

The participants in a ticketing system include:

1. Users: A user is the entity that makes use of the transport service. The

user either purchases the ticket prior to travel, and verifies its possession

at the point of travel, or the user is reliably associated with the usage of

the service, for post billing and payment.

2. Transport Operator: The transport operator provides the transport ser-

vice. It may consist of different sub-entities providing services such as

ticket issuing and accounting services. It manages the ticketing infras-

tructure such as payment terminals and turnstiles and puts in place

controls to ensure system security and functionality.

3. Payment Service Provider: With the advent of open ticketing systems,

the payment ecosystem has become directly involved in ticketing. The

term Payment Service Provider is used here to collectively refer to the

payments ecosystem including banks and the payment networks (see

Section 2.3.2).

The aforementioned participants represent the minimum participants ac-

cording to most proposals, this is however not exclusive. For example the work

28

in [8] includes a Certifying Authority (CA) which provisions credentials to the

user’s device and performs accounting services. Chaumette et al. considered a

ticketing architecture in [9] that requires a Trusted Service Manager (TSM) to

personalise, load and manage tickets in the Subscriber Identity Module (SIM)

of the user’s device.

2.2.3 Phases

Ticketing is made up of different independent but related phases as follows:

1. Set-up Phase: Prior to travel, there is usually a step where the user

registers to the system, pays for the service if the scheme is prepaid

and is issued with the tickets. The set-up phase is also when the user

downloads the ticketing application, or is been issued a smart-card in the

case of smart-card based ticketing schemes. For cryptographic ticketing

solutions, this is the stage where cryptographic handshake, such as key

exchange, and other parameter settings take place. There are also in-

stances where the transport operator may need to personalise the profile

of some users, for example, to offer special discounts to senior citizens.

2. Purchase Phase: In this phase, users select and pay for their tickets. For

prepaid travel, users top up their devices with the desired amount of

money. More on the payment models on ticketing systems is presented

in Section 2.3.

3. Provisioning Phase: This is the phase where the tickets are fulfilled1 to

the users’ device, following a successful payment authorisation of tickets

in the previous phase. The tickets are ready for use at the end of this

phase. Some proposals [10, 11] merge the purchase and provisioning

phases into a single phase.

1Ticket fulfilment refers to the delivery of tickets to the user or user’s device.

29

4. Validation Phase: This is the phase where users travel with their pur-

chased tickets or in the case of Pay-As-You-Go (PAYG), their topped-up

devices. The ticketing system validates that the ticket presented to it is

valid and has the right to perform the intended journey.

5. Inspection Phase: This phase is usually carried out at random to verify

that user’s have a valid right to travel, which could be a pre-purchased

ticket or an evidence to show they properly tapped their device prior to

travel. Inspection is carried out by a personnel either with a Revenue

Inspection Device (RID), which interrogates the fare media or visually

to check that a valid ticket is held by the user (either physically or within

a fare media). Researchers have shown visual inspection of tickets held

within mobile devices to be vulnerable [12], unless certain measures –

such as a dynamic watermarking are deployed.

6. Accounting Phase: This phase happens at the back-office after journeys

have been made. For account-based implementations such as the one

proposed in Chapter 5, this is the phase where journey construction2

is carried out to determine the fare to charge the user. For ticketing

systems that include multiple transport operators, the apportionment of

the revenue between them occurs at this stage [13].

7. Blacklisting Phase: This is a fraud and control measure, it only becomes

necessary when there is a need to deter a particular user or user’s device

from travel. Blacklisting may occur due to a number of reasons includ-

ing lost device, overspending, lack of funds, or in the case of system

compromise.

2Journey Construction is the process of aggregating the entry and exit points of a user
on a transport network, to determine the fare to be charged at the back-office.

30

2.3 Classification of Ticketing Systems

Ticketing systems can broadly be classified from two perspectives: the level at

which ‘business logic’ is applied, and according to the ‘payments model’ they

conform to. Business logic here refers to the encoding of real-world business

rules which are used to make a decision on how a user’s ticket should be treated

and on how fares should be determined. The business logic of ticketing systems

can be card-based3 or account-based.

According to their payment model, ticketing systems can also be classified

into closed-loop Systems and open-loop Systems. The payment model repre-

sents the type of infrastructure they rely on to clear and settle funds generated

through the collection of fares. These categories of ticketing systems are fur-

ther explained below:

2.3.1 Card-Based Ticketing Systems (CBT)

This category of ticketing systems apply the business logic prior to usage of

the system, i.e. the system validates that the user has the right to travel at

the front-end. Users are required to either purchase a ticket prior to travel, or

top up funds in the case of Pay-As-You-Go (PAYG) travel. The pre-purchased

ticket or top up value is stored on the device, and prior to travel, the terminal

checks that the ticket is valid or that the existing value on the device is enough

to pay for the fare.

CBT systems have drawbacks that is making them less and less favourable

for most transport operators. Any change of business logic, such as fare prices

and discounts, will have to be propagated to all the terminals. This is an

expensive and often a daunting process. In addition, the loss of a user’s fare

media usually leads to the loss of the balance stored on the card. Account-

Based ticketing, presented below, addresses some of these challenges.

3The term card-based has evolved to include mobile-based solutions, but the industry
has retained the term.

31

2.3.2 Account-Based Ticketing Systems (ABT)

In the case of ABT systems, the logic is applied at the back-office level, and the

terminal front-end only verifies the user is legitimate, and acknowledges usage

of the system in a secure and reliable way. The evidence of usage captured

is widely referred to as a tap, and typically includes information such as time

and location. These taps are used at the back-office to determine the right

fare to charge the user.

One of the main advantages of ABT is an easier and more efficient way

of changing the business logic. Changes only need to be applied at the back-

office where the accounts are held, rather than updating all the terminals in the

field. This also enables the transport operator to give more tailored services to

the users. Moving the logic to the back-office also opens up the possibility of

using different ‘tokens’ aside from the transport-specific fare media, to reliably

identify users since all that is needed is to reliably establish their use of the

transport network.

2.3.3 Closed-Loop Ticketing

Closed-loop have for a long time been the de facto systems for ticketing. The

term Closed-loop here refers to the fact that the fare media is only valid for

use within a specific ticketing scheme, which is typically the scheme managed

by the transport operator. This means that the fare media itself, tickets and

the value they hold cannot be used to pay for any other services - not even

for travel on a different transport operators scheme. While these systems offer

advantages over the paper-based ticketing, their proprietary nature introduces

some disadvantages;

2.3.3.1 Disadvantages of Closed-Loop Ticketing Systems

1. High Costs of Infrastructure: There is a significant cost incurred by the

transport operator for proprietary infrastructure both in terms of capital

32

and operational expenditure upfront, and for ongoing maintenance. The

cost of issuing and managing the fare media is also significant, especially

for smartcard based systems.

2. High Cost of Fare Collection: The cost of fare collection is can also be

significant since the transport operator is especially performing its own

financial services. It is widely believed that the cost of managing these

type of system is between 10% - 20% of fares collected on the system [14].

3. Lack of Interoperability: Due to their proprietary nature, these systems

are not compatible with each other. This also leads to vendor lock-in,

and switching to other vendors is expensive and complex because each

vendor has its own proprietary solution which must be implemented from

scratch.

4. Inconvenience for the Users: Users spend time queuing to top up their

media with value spendable on the system. The lack of interoperability

across these systems means that as they travel across different locations,

they will have to carry different ticketing media for the respective oper-

ators.

2.3.4 Open Ticketing Systems

The problems associated with closed-loop ticketing, and the high market pen-

etration of contactless bank cards makes a strong case for open ticketing sys-

tems. According to the UK Cards Association (UKCA), there are about 108

million contactless bank cards currently in issue in the UK alone [15]. Open

ticketing systems utilise the globally accepted and standardised payment in-

frastructure, and they use contactless payment devices. Contactless bank cards

and NFC-enabled mobile devices are suitable candidates because transactions

are quick and do not even require card-holder verification (see Section 3.5.2).

33

This takes away accounting services from the transport operator, and is out-

sourced to the financial institutions, thereby allowing it to concentrate on its

core business of providing transport services.

Nevertheless, due to the requirements of transport ticketing (see Sec-

tion 5.5.1), some new concepts had to be introduced in payments, to accom-

modate open ticketing systems. Of significance are the concepts of delayed

authorisation and first time travel risk. In delayed authorisation, instead of

requesting authorisation for every transaction as usual, the transport operator

only acknowledges that the user’s device has been seen at various points on

the transport network. The evidence of the device’s usage on the transport

network is referred to as a ‘tap’, these taps are sent to the back-office. At the

back-office, all taps by the same user are aggregated at the end of the day,

and only then does the transport operator request authorisation of funds. The

apparent risk here is that a dishonest user can travel with no funds in their

account since authorisation is not done at the time of travel. We refer to this

as the first time travel risk. Currently, this risk is negotiated and accepted

between the transport operator and the bank issuers [16].

The advantages of open ticketing system are given below:

2.3.4.1 Advantages of Open Ticketing Systems

1. Cost Savings for Transport Operators: The Transport operator reduces

expenses in many instances. Firstly, there is no longer cost for issuing

and managing its own fare media since payment media issued by the

banks will be used. Costs are also saved due to reduction in customer

support since the operators no longer manage the payment media, and

can then focus on providing better ticketing-related support. By lever-

aging globally standardised and accepted infrastructure, the high costs

of certifying proprietary infrastructure are eliminated.

2. Ease of Deployment: Open systems are easier and faster to deploy since

34

there will be no need to build one from scratch, leveraging on standards

makes deployment more straight forward.

3. Forms Basis for Interoperability: Open systems make interoperability

between different transport operators easier. It reduces the problem of

interoperability from the lack of technological compatibility, to a case of

business decision, which are always easier to get around.

4. More Established Security Mechanisms: Open systems explore the secu-

rity benefits provided by the well-established payment infrastructure.

The infrastructure also undergoes public scrutiny since they are not

based on proprietary solutions. Previous attacks on Mifare classic family

of smartcards [17, 18] show how the proprietary nature of systems can

affect security negatively.

5. Increased User Convenience: Users enjoy the convenience of not carrying

another payment medium just for ticketing. Also, users are not required

to queue to top up or buy tickets, this saves time and significantly im-

proves user experience. User convenience leads to increased ridership,

this is evident from TfL’s daily usage statistics since it launched open

ticketing (see Fig. 2.1).

2.3.4.2 Disadvantages of Open Ticketing Systems

1. Terminal Certifications: Terminals handling payment data are required

to undergo EMV and Payment Card Industry (PCI) certifications [19–21]

before they are deployed in the field. This is to ensure their ability to

process data correctly and feed it into the payment network without

integration problems. EMV certifications are known to be a daunting

process for any organisation to embark on, especially for the first time

[22].

35

Use of Contactless Payment Cards on Bus and Rail

Produced by Customer Experience Analytics

Contactless Payment Cards

Contactless payment cards can be used to travel on buses, Tube, tram, Docklands Light Railway (DLR), London Overground and most National Rail services in London.

The chart below shows the number of contactless payment cards used on buses since December 2012 and on rail since 16 September 2014. It shows the number of unique cards used per day

and average journeys per day by each mode.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1
3

/1
2

/2
0

1
2

1
3

/0
1

/2
0

1
3

1
3

/0
2

/2
0

1
3

1
3

/0
3

/2
0

1
3

1
3

/0
4

/2
0

1
3

1
3

/0
5

/2
0

1
3

1
3

/0
6

/2
0

1
3

1
3

/0
7

/2
0

1
3

1
3

/0
8

/2
0

1
3

1
3

/0
9

/2
0

1
3

1
3

/1
0

/2
0

1
3

1
3

/1
1

/2
0

1
3

1
3

/1
2

/2
0

1
3

1
3

/0
1

/2
0

1
4

1
3

/0
2

/2
0

1
4

1
3

/0
3

/2
0

1
4

1
3

/0
4

/2
0

1
4

1
3

/0
5

/2
0

1
4

1
3

/0
6

/2
0

1
4

1
3

/0
7

/2
0

1
4

1
3

/0
8

/2
0

1
4

1
3

/0
9

/2
0

1
4

1
3

/1
0

/2
0

1
4

1
3

/1
1

/2
0

1
4

1
3

/1
2

/2
0

1
4

1
3

/0
1

/2
0

1
5

1
3

/0
2

/2
0

1
5

1
3

/0
3

/2
0

1
5

1
3

/0
4

/2
0

1
5

1
3

/0
5

/2
0

1
5

1
3

/0
6

/2
0

1
5

1
3

/0
7

/2
0

1
5

1
3

/0
8

/2
0

1
5

1
3

/0
9

/2
0

1
5

1
3

/1
0

/2
0

1
5

1
3

/1
1

/2
0

1
5

1
3

/1
2

/2
0

1
5

1
3

/0
1

/2
0

1
6

1
3

/0
2

/2
0

1
6

1
3

/0
3

/2
0

1
6

1
3

/0
4

/2
0

1
6

1
3

/0
5

/2
0

1
6

1
3

/0
6

/2
0

1
6

1
3

/0
7

/2
0

1
6

1
3

/0
8

/2
0

1
6

1
3

/0
9

/2
0

1
6

1
3

/1
0

/2
0

1
6

1
3

/1
1

/2
0

1
6

1
3

/1
2

/2
0

1
6

1
3

/0
1

/2
0

1
7

1
3

/0
2

/2
0

1
7

1
3

/0
3

/2
0

1
7

1
3

/0
4

/2
0

1
7

1
3

/0
5

/2
0

1
7

1
3

/0
6

/2
0

1
7

N
u

m
b

e
r

Cards Used on Bus Average daily journeys (previous seven days) on bus Cards Used on Rail Average daily journeys (previous seven days) on Rail

Figure 2.1: Use of Contactless Payment Cards on Bus and Rail [1]

2. Initial Capital Expenditure: As is the case with any investment, there is

usually a high initial cost incurred. Open ticketing is not an exception

in this aspect. The cost of upgrading the terminals and certifying them

is significant. Table 2.1 shows examples of the cost of open ticketing

implementations around the world. It is worth noting, however, that

the costs vary, depending how mature the technological infrastructure

is, before implementing open ticketing. If a closed-loop system is already

in place, then savings can be made on the terminals and communication

device for example.

36

2.4 Ticketing System Requirements

Requirements differ across different ticketing system models, for example, open

ticketing systems typically have fewer requirements than close ticketing sys-

tems, and even less for ABT systems. This is because in open payments,

ticketing processes rely on some of the provisions of the payment instrument

itself, for example, the transaction between the device and the contactless

reader are governed by the same standards (EMV) as that of regular pay-

ments, say in retail for example. Nevertheless, the requirements of ticketing

systems can largely be divided into three categories; security, functional, and

privacy requirements. Functional requirements are those requirements that do

not necessarily affect the security of the system, but nonetheless affects the ef-

ficiency, performance and procedural aspects of the system. The requirements

presented in the following sections do not represent the requirements any tick-

eting solution. Rather, a generic overview of the major ticketing requirements

found in existing literature is provided.

2.4.1 Security Requirements

1. Integrity: Tickets or ticketing credentials should not be modified with-

out being detected. All participants involved in the ticketing ecosystem

should be able to verify that the tickets or related credential is accurate

and complete since it was generated by its legitimate source.

In open systems, the integrity checks provided by EMV can be relied

upon. Specifically, the data authentication phase provides assurances

that the data in the payment device hasn’t been modified. See Sec-

tion 3.5.1.

2. Authentication: No unauthorised user or unauthorised ticketing creden-

tial should have access to the transport system. Arguably this is the

most important requirement from the transport operator’s perspective

37

because it is directly linked to revenue generation and it could lead to

potential avenues for Denial-of-Service (DoS) attacks.

3. Non-repudiation: Any participant involved in any ticketing transaction,

cannot deny involvement at a later stage. This requirement applies to

different aspects. For pre-paid tickets, the issuer should not be able to

deny generating tickets, and users should not be able to maliciously deny

using a ticket. This requirement is closely linked with non-overspending

explained below.

For account-based systems, this requirement becomes even more neces-

sary since establishment of fares relies on the evidence that the payment

device interacted with the ticketing system at various points.

4. Non-overspending: A user should only be able to use tickets as stipulated

in the contract with the transport operator. Tickets should be used

within their validity as agreed on, or paid for by the user. In this context

validity may include attributes such as distance, time, and geographical

boundaries or a combination of these attributes. This requirement is

also referred to as unforgeability in some proposals [23, 24]. For PAYG

ticketing, users should not be able to access the transport service without

the minimal necessary value in the payment device. It is important to

note that for closed-loop, card-based systems, overspending is checked

for prior to travel (verification phase). And if detected, travel is denied.

In account-based ticketing, however, overspending can only be detected

at a later stage when the user’s travels are aggregated since all users with

a valid payment device are allowed at least their ‘first travel’ (first time

travel risk) (See Section 5.5). In such cases, blacklisting is relied upon

to detect further usage by the same user or payment device, depending

on if the ticket is transferable.

38

5. Blacklistability: It should be possible to detect and deny dishonest users

from further travel or interaction with the ticketing system. The black-

listing requirements is the transport operators first line of defence against

compromised user devices or dishonest users. In this context, a dishon-

est user may be a user in possession of a stolen device, a compromised

device or a case of over-spending by a user. In addition, in account-based

ticketing, the importance of blacklisting becomes even more significant

because there is a direct monetary value involved. Blacklisting is neces-

sary to deter users from taking advantage of the ‘first time travel risk’.

6. Exculpability: It should not be possible for a transport operator to

falsely accuse the user of overspending. The exculpability requirement

has its origins in group digital signatures [25] and it was informally de-

fined by Bellare et al. [26] as: Neither a group manager or any of the

group members can sign on behalf of any of the group members. Excul-

pability in the context of ticketing therefore provides assurances that the

transport operator will not falsely accuse a user of over spending [27].

Exculpability also encompasses the ability of the user to prove his tickets

have been validated prior to usage [28].

7. Anti-Pass-back: Pass-back in ticketing is a fraudulent act where a user

enters a transport system with a valid ticket, and then immediately

passes the device back to a second user who also taps and get validated

by the system. From a review of some of the existing ticketing proposals

[29–31] and discussions with major stakeholders in the industry, two

general ways for detecting pass-back have been identified. Anti pass-

back can be at the ‘ticket-level’ where the reader writes back data to the

ticket –a time-stamp for example– so that pass-back can be identified.

Anti pass-back can also be detected at the ‘station-level’, in which case

the terminals keep a record of all tickets they have validated within a

39

specific amount of time. Station-level anti pass-back is especially useful

for ticketing systems that cannot modify the ticket on the fly, such as in

barcode ticketing.

2.4.2 Functional Requirements

1. Efficiency: In the context of ticketing, efficiency is the level of user

throughput by the terminal during ticket validation. This is directly

related to the transaction time of the validation protocol, including any

processing delays and also taking into account delays on the physical

layer. The requirement is for the transaction to be completed in 300

- 500 milliseconds [32, 33]. Maintaining a high-level of user through-

put is important because it affects user satisfaction and congestion may

lead to health and safety hazards. The payment industry also requires

contactless payments to be less the 500 milliseconds [34–36].

2. Offline Verification: The transaction between a device and a terminal

should be fully offline. It should be possible to validate if the user is

allowed to travel including a blacklist check offline. This is because it

is difficult to guarantee connectivity in some cases such as underground

train stations, or mobile vehicles (Buses). Connecting to a back-end also

introduces latency to the transaction speed, which may be too costly for

the overall efficiency of the system. The offline verification requirement

is also referred to as versatility by some authors [24].

2.4.3 Privacy Requirements

It is important for any ticketing system to protect the privacy of users. Ex-

amples of threat to privacy include:

1. Unauthorised User Identification: Either through direct personal identi-

fiers, or indirect identifiers such as user journey data.

40

2. User Profiling: It should not be possible to track the journeys of users,

or to identify which user is making what journey.

The threats to privacy give rise to the following requirements, also referred

to as the privacy protection goals [37]:

1. Anonymity: Users should be able to buy and use their tickets with-

out disclosing their identity. This requires the identity of users to be

preserved throughout the ticketing phases. However, according to the

payment model used, this might be a difficult requirement to achieve

because users’ could be identified at the point of ticket purchase [38].

2. Unlinkability: It should not be possible to link multiple journeys made

by a user. The unlinkability requirement is closely related to anonymity,

but it goes a step further. There is a possibility of tracing the journeys of

users even when they are anonymous. This could allow an unauthorised

entity to build profiles of users.

41

Transport Operator Value of Contract (and dates) Comments

Chicago Transit
Authority (CTA)

Initially $454 million awarded
to Cubic (increased to $519
million due to add-ons) to
transition the Ventra system to
open ticketing (2011)

12-year contract to provide
terminals, vending machines,
and communication devices.
Also includes upgrades on
about 1800 buses, and over
770 rail gates.

Washington
Metropolitan Area
Transit Authority
(WMATA)

Accenture was awarded the
contract worth $184 million to
transition open ticketing (2014)

5-year to include 1000
terminals for rail, 450 ticket
vending machines, 1500 bus
terminals and 160 terminals
for parking.

Singapore’s Land &
Transport Authority
(LTA)

Awarded a $1.9 million contract
to Orange Business Services for
open ticketing.

To include a back-office,
management services, and
payment gateway.

South-eastern
Pennsylvania
Transportation
Authority (SEPTA)

Awarded a $129.5 million
contract to ACS Transport
Solutions for open ticketing.
(2011)

SEPTA have the option of
buying $83 million worth of
additional services like fare
collection and data
management, after system
installation.

Budapesti
Közlekedési Központ
(BKK) Centre for
Budapest Transport

Contract awarded to Scheidt &
Bachman for an open ticketing
system. Worth 91 million
pounds over 5 years. (2014)

To include: Back office, 2100
terminals on buses and 120
terminals for rail.
Also includes 700 portable
hand-held terminals

Dallas Area Rapid
Transit
(DART)

Awarded a $30 million contract
to VIX Technologies for an
account-based, open ticketing
system. (2015)

VIX to provide “Easy and
Open”, its in-house developed
open ticketing solution.

Transport
for New South Wales
(TfNSW)

Awarded a $7.6 million contract
to Cubic Corporation to trial an
open ticketing solution. (2016)

Trials scheduled to begin in
2017

Table 2.1: Trends in Open Ticketing

42

2.5 Notable Ticketing System

Implementations in the UK

There are numerous examples of ticketing system implementations around the

world. In this section, a description of the two predominant ticketing solutions

in the UK is given. A highlight of trends in ticketing from transport operators

is given in Table 2.1.

2.5.1 Integrated Transport Smartcard Organisation
(ITSO)

ITSO is a membership-based organisation made up of public authorities, trans-

port operators, and ticketing equipment suppliers in the UK. The key objec-

tives of ITSO is the development and maintenance of the ITSO specifications

which aims to deliver integrated and interoperable smart ticketing across the

UK. ITSO also conducts testing and certification of components to ensure

compliance to the ITSO specification [39].

The specification itself is in parts, covering the different components of

ITSO necessary to deliver a smart ticketing solution. The keys parts include:

Customer Media (CM)

Initially the specification focused on smartcards, but has since evolved to make

provision for other smart devices [39].

Point Of Sale Terminal (POST)

This is essentially a smartcard terminal, used to communicate with CM [40].

The POSTs are also connected to the back-offices to ensure reporting of trans-

action data.

Host Operator or Processing System (HOPS)

The HOPS carries out the back-office processes such as message handling and

accounting functions [41].

Message Data Elements and Structures

43

Customer Media
ITSO supports both cards and
smart phones

ITSO Product Entity (IPE)
Single or multiple products
(tickets) in an ITSO application

ITSO Application (Shell)
Single or multiple ITSO
applications on a CM

Figure 2.2: Layout of ITSO Ticketing Media

This is to ensure a common data structure and uniform data record definitions

are used across all ITSO complaint implementations [42]. The security-related

message flow between ITSO components is specified in [43].

ITSO Secure Access Module (ISAM)

ITSO mandates that both POSTS and HOPS have Secure Access Modules

(SAM)4 embedded, ISAM for the HOPS is referred to as a HSAM. The SAM

is used to validate CMs and the data they hold, generate cryptographic keys,

and store sensitive data to retrieve later.

The ITSO specification logically separates the fare media into three layers

as shown in Fig. 2.2.

ITSO is a closed-loop based system and individual transport operators

have to make provisions for their own payment functionality [44]. ITSO is a

card-based solution with and supports pre-purchased and season tickets. It

also supports PAYG ticketing. There are ongoing trials to enable ITSO on

mobile devices through HCE.

4The SAM is typically in the form of an ID-000 punched smartcard, with a dedicated
crypto-processor

44

2.5.2 Transport for London (TfL) Oyster Card

TfL, under the leadership of the Mayor of London, is the government body

that is responsible for transport in London. This includes journeys on buses,

trains, trams, ferries and bicycles. It also regulates taxis and other private

car hire services in London. In 2003, TfL introduced a contactless card to be

used for travel in London, known as the Oyster Card. There have been over

100 million oyster cards issued till date5 [45]. The Oyster card can be used for

rail, bus, tram and ferry travel in London. Until January 2010, Oyster cards

were initially based on NXP’s Mifare classic cards, but have since moved on to

Mifare DESFire cards, due to security vulnerabilities discovered in the Mifare

classic cards. The Oyster card supports season tickets and PAYG ticketing

with daily price capping. Capping is a feature of PAYG whereby once the

user’s daily spend reaches a certain limit, further travel is free for the rest of

the day.

The Oyster card system itself is based on a proprietary architecture and

the contactless terminals were supplied by Cubic Transport Systems. However

in 2012, TfL began transition to an ABT, open-loop ticketing and began ac-

cepting contactless bank cards on buses, followed by trains in 2014. Now over

two million journeys are made daily, using contactless bank cards on the TfL

network [1]. The system has since been extended to support mobile payments

such as Apple Pay and Android Pay, and other implementations conforming

to the EMV specification.

5This includes regular Oyster cards, Oyster photo-cards issued to those eligible for free
or discounted travel, and the Visitor Oyster, tailored specifically for visitors.

45

2.6 Summary

This chapter presents a general background for ticketing systems. The evo-

lution of the ticketing fare media, from the days of cash, to the current use

of contactless technology has been highlighted. The general architecture, as

well as the participants and phases of transport ticketing systems has been

presented. This chapter also looks at the classification of ticketing systems,

which lays a foundation on which significant parts of this thesis is built upon.

Finally, a highlight of some of the ticketing implementations as well as the

current trends from around the world is presented. The next chapter presents

a background of technologies that are relevant to the work in this thesis.

46

Chapter 3

Background II: Technical
Background

3.1 Near Field Communication

Near Field Communication (NFC) [46] is a short range contactless commu-

nication technology which enables the exchange of data between devices. It

typically works within the range of less than 10 cm and at a Radio Frequency

(RF) of 13.56 MHz. An NFC device may either be passive or active. An active

NFC device (known as the initiator) is capable of producing its own Radio Fre-

quency RF-field and directly transmitting data, while a passive NFC device

(known as a target or a tag) relies on the initiator’s RF-field for power and

clock through load modulation, for data transmission. The communication

between the two entities is half-duplex, meaning only one entity can send at a

time. NFC is standardised by the NFC Forum [47] and is based on legacy stan-

dards such as ISO/IEC 14443 [5] and the European Computer Manufacturers

Association (ECMA) [48] standards. NFC works in three different operating

modes; Reader/Writer Mode, Peer-to-Peer Mode, and Card Emulation Mode.

3.1.1 NFC Modes of Operation

1. Peer-to-Peer Mode: This mode enables a two-way communication to

be established between two NFC-enabled devices. Both devices serve

47

as an active entity and can initiate a communication and send data

alternatively as ‘peers’. The physical and data link layer of this mode

are standardised in ISO/IEC 18092 [49]. This mode is usually used for

quick exchange of small data, such as business cards and contacts.

2. Reader/Writer Mode:

This mode enables an active NFC-enabled device to either read data

from a tag or write data to it. This is typically used as information

points in public places, for example smart posters for users to scan and

access bus timetables on their devices.

3. Card Emulation Mode:

The majority of the work presented in this thesis is based on this mode

of operation. As the name suggests, an NFC-enabled device in this mode

is capable of emulating a smartcard, and exchanging data in the form of

Application Protocol Data Units (APDU)1 with an external smartcard

terminal. From the terminal’s point of view, the mobile device appears

and behaves like any other smartcard. There are two ways of performing

card emulation: Card emulation using an SE, and Host Card Emulation.

These are discussed in the coming sections.

1APDU is the unit of communication between a smartcard and a terminal.

48

3.2 Card Emulation Using A Security

Element

Mobile Device

NFC
Controller

Secure
Element

Host OS

Ticketing
App

Transport
Operator

TSM

Store App
And Tickets

Issue Ticketing App
And Tickets

NFC Transaction (Ticket Presentment)

APDUs

Ticketing
Terminal

Figure 3.1: NFC SE Ecosystem

Near Field Communication (NFC) in card emulation mode, permits a mo-

bile device to emulate a contactless smartcard and exchange APDUs with an

external contactless terminal. From the card terminal’s point of view, the

mobile device appears and behaves like any other smartcard. Traditionally,

NFC card emulation mode has relied on a tamper-resistant hardware SE to

provide security protection. This is because the host OS cannot provide the

level of application security required in certain use-cases, such as payments

and ticketing. The SE provides a secure storage and execution environment

for the applications emulating the smartcard. When an NFC emulation de-

vice is tapped on a terminal, command APDUs from the terminal are received

by the NFC controller, via the NFC channel, and are routed to the SE as

49

shown in Fig. 3.1. However, the use of an SE introduces practical constraints

for an application developer and/or a service provider. Access to the SE is

tightly controlled by the Mobile Network Operators (MNO) and/or the Origi-

nal Equipment Manufacturer (OEM), requiring complex business agreements

before an application or related data is provisioned to the SE.

While card emulation has proven to be attractive for applications such as

mobile payments and transport ticketing, the tight control on the SE means

small companies and mobile application developers have no access to the ser-

vices of the SE and indeed the ability to use the NFC card emulation func-

tionality. This has hindered the use of NFC phones and prevented usage from

reaching its full potential. There have been moves to resolve this by using

a Trusted Service Manager (TSM), although this has not been universally

adopted by businesses and standards. The TSM provides secure application

provision and personalisation services, key management services as well as

post-issuance lifecycle management.

50

Mobile Device

NFC
Controller

Host OS

Transport
Operator

Issue Ticketing App
And Fulfil Tickets

NFC Transaction (Ticket Presentment)

APDUs

Ticketing
Terminal

①Ticketing
App

Payment
App

Social
Medial

②

Figure 3.2: NFC HCE Ecosystem

51

3.3 Host Card Emulation

Host Card Emulation (HCE) [50] is a means by which an application running

on the OS of the device, can emulate a smartcard, and communicate with a

contactless terminal. This means that the NFC controller is effectively able to

route APDUs to the application directly, bypassing the SE. This is depicted in

Fig. 3.2. Therefore in HCE, security (attack resistance) is traded to facilitate

NFC service development.

Research In Motion (RIM), on the Blackberry platform [51], were the first

to incorporate this functionality in their phones. Subsequently Cyanogen-

mod integrated some patches [52] to the Android OS which permitted NFC

enabled mobile phones to perform card emulation from the host. However,

HCE attracted most attention when Google incorporated it within Android

4.4 (KitKat). The incorporation of HCE into Android has significant impact

on the NFC Ecosystem considering Android phones account for about 88% of

the global market share [53].

The key benefit of HCE is that anybody can implement an application that

emulates a smartcard, which eliminates dependence on the SE. This opens up

the NFC ecosystem to developers and businesses at no extra cost. HCE’s im-

pact on security cannot be ignored. The potential security issues are presented

in the form of a threat model below.

3.3.1 HCE Application Development: Android
Example

Android’s HCE architecture is centred around Android services known as

“HCE Services”. Services have behaviours that are suitable for HCE applica-

tions for use in areas such as ticketing and payments. A service can run in

the background and does not need user interference to operate. This means

a user can simply tap the device against a terminal for the transaction to

52

go through, without necessarily launching the application. The implementa-

tion of an Android-based HCE application involves two stages; Application

Selection and Data Exchange.

3.3.2 Application Selection

In a case where there is more than one HCE application on the device, appli-

cation selection ensures that the correct application responds when the device

is tapped against a terminal. All HCE applications running on the OS are

identified using the Application Identifier (AID). The AID is registered at

the beginning of development in the Android manifest file. The first com-

mand APDU received by the NFC controller is the SELECT command. The

SELECT command contains the AID of the application that the external ter-

minal wishes to communicate with. The NFC controller looks up the AID in

its routing table and makes a decision on which application the AID is for.

Subsequently, all further APDUs are sent to the corresponding application

until a new SELECT command is received or the NFC link is broken [54].

3.3.3 Data Exchange

Card emulation using HCE requires the application to have a service compo-

nent that handles NFC Transactions. All services extend the HostApduService.

The HostApduService declares two abstract methods that as a minimum, are

overridden and implemented. (Example code is shown in Listing Section 3.3.3.)

public class MyHostApduService extends HostApduService {

@Override

public byte[] processCommandApdu(byte[] apdu, Bundle extras) {

...

}

@Override

public void onDeactivated(int reason) {

...

}

53

}

The processCommandApdu() method is called whenever the service re-

ceives a command APDU from an NFC terminal. Response bytes should be

sent back almost immediately for a seamless user experience because the user

will most likely be holding the device against the NFC terminal [50]. Other-

wise, the response can be sent later using the sendResponseApdu() method.

The onDeactivated() method is called when the NFC link is broken for any

reason, or when a new SELECT command with a different AID is received.

The onBind() method is used to return the communication channel to the ser-

vice. The notifyUnhandled() is used to notify the OS when the service cannot

complete the transaction.

3.3.4 NFC Applications Requirements

1. Security: Although specific requirements may vary from one case to the

other, it is important to put strong security measures in place. The

security of NFC applications is no different from the fundamentals of

information security: Confidentiality, Integrity, and Availability (CIA).

To use an NFC ticketing application as an example, the ticketing, pay-

ment, and cryptographic data must be safeguarded against unauthorised

disclosure and modification both at rest and at run-time, and the transit

system should be available for use at all times.

2. Performance: The performance of NFC-based transaction must be signif-

icantly fast in order to maintain high throughput and maintain overall

user satisfaction; both the payment and the transit industries require

that a transaction is completed within the range of 300-500 millisec-

onds [32,55].

3. Flexibility: The use of NFC applications must not introduce rigidity to

the ecosystem. For example, the case of card emulation using the SE

54

is rigid because provisioning an application into the SE requires per-

missions from the ‘owner’ of the SE, which in most cases is not easy.

This means developers and researchers find it very difficult to make use

of these services without signing contracts with various stakeholders.

Therefore, an effective NFC solution must be flexible and work out-of-

the-box.

4. Complexity: The complexity of the ecosystem should be as simple as

possible. A complex ecosystem leads to increased implementation times

and added cost. For example, the Trusted Service Manager (TSM) model

used to provision applications to the SE increases complexity tremen-

dously. A TSM is a trusted third party whose responsibility it is to

facilitate provisioning, and to manage the entire life-cycle of the service.

The inclusion of these extra parties makes it more complex and also more

expensive because these services are not free.

5. Low Power Mode: In low power mode, the device’s OS is shut down

due to ‘low’ battery and therefore appears odd to the user; however,

the Power Management Integrated Circuit (PMIC) is still on and can

facilitate NFC transactions with help of power generated by the terminal

in the field.2

6. Connectivity: Some NFC applications may require connectivity for ev-

ery transaction, while some may only require connectivity from time to

time, to update credentials. For example, some applications will require

access to storage in the cloud for every transaction, while others may

use tokenisation, and only require periodic connectivity to request new

tokens.

2Low power mode should not be confused with “battery off mode” where even the PMIC
has no power

55

7. Tamper-Resistance: NFC applications require protection against modi-

fications and reverse-engineering by malicious entities. Software tamper-

resistant techniques such as obfuscation and other techniques are used by

developers to achieve this, although these techniques are usually costly

in terms of performance and code size [56]. Other ways involve installing

the NFC application and related data into a tamper-resistant physical

silicon such as the SE.

8. Interoperability: In the context of this thesis, it represents the ability to

host NFC applications on different devices from different vendors. This

ensures the NFC ecosystem operates in a cohesive and efficient manner.

9. Standardised APIs and Ease of Development: The availability of stan-

dardised APIs goes a long way to easing the development process of NFC

applications, thereby shortening the overall deployment time. Standard-

ised APIs also ensure that developers adhere to software engineering

global best practices, which is beneficial to the overall security fabric.

56

3.4 EMV Payment Technology

EMV represents Europay, MasterCard and Visa, the three companies3 that

initially constituted EMVCo, an organisation tasked with creating the tech-

nical specifications for chip-card payments (also known as Chip&PIN). Due

to advances in mobile technology, the specifications have been extended to

include other form factors, such as smartphones.

Prior to the introduction of chip-cards, magstripe cards were used for pay-

ments. Magstripe cards are vulnerable to data skimming and cloning [57],

because they use static payment data. The chip-cards however are capable

of performing cryptographic operations on dynamic data during transactions,

thereby protecting against fraud.

1. More reliable methods of card-holder verification.

2. Robust risk management parameters.

3. Transaction integrity through the use of cryptograms.

4. Card authentication to protect against counterfeiting.

The aforementioned features are further elaborated in Section 3.5. EMV relies

on application cryptograms generated using two-key triple DES algorithms to

encrypt critical data elements used in the transaction. A cryptogram is the

term used for a digital signature in EMV, and table Table 3.1 gives a summary

of the different cryptograms and their functions.

3The membership of EMV has since grown to include other companies such as Discover,
American Express and China UnionPay.

57

Issuer
(User’s Bank)

Acquirer

(Merchants bank)

Payment Network
(Visa, Mastercard etc.)

Merchant
(Retailer)

Present Payment Device
User

Goods and Services

Authorisation Request
(Transaction Data)

Authorisation Request

Authorisation Response

Authorisation
Request

Authorisation
Response

Authorisation
Response

Debits user account

Figure 3.3: EMV Payment Architecture

Table 3.1: EMV Cryptograms

Cryptogram Function Origin

ARQC Request for transaction to go online for authorisation Device
ARPC Response to online authorisation request to device Issuer
TC Generated at the end of approved transactions Device
AAC Generated when a transaction is declined Device

3.4.1 EMV Architecture

The EMV follows the “four corner model” as shown in Fig. 3.3. It includes the

merchant to whom the card is presented for a payment by the card-holder 4.

The merchant forwards the transaction data to his bank, which is referred to

as the Acquirer. The Acquirer requests authorisation of payment from the

issuing bank through a payment network. The issuing bank (or issuer) is the

bank with which the card-holder has an account, and thus the bank that issued

the card.

4The term card-holder is not exclusive to payment with cards, it also includes mobile
devices.

58

3.4.2 EMV Primary Account Number

Figure 3.4: Anatomy of the PAN

Also referred to as card number, the PAN is a 16-19 digit number that serves

as the payment device identifier of an EMV-compliant card or application and

is uniquely issued as standardised in ISO/IEC 7812 [58]. From left to right, the

first digit is the Major Industry Identifier (MII), with ‘4’, ‘5’ and ‘6’ reserved

for the payment industry. The first few digits including the MMI make up

the Bank Identification Number (BIN) which identifies the type of card. The

next digits excluding the last digit represent the account number, and the

last digit is a checksum which is calculated using the ‘Luhn check’. The luhn

check is a simple checksum to verify the validity of identifiers including PANs,

first described by Hans Peter Luhn of IBM in a patent [59] and standardised

in [58]. The structure of the PAN is depicted in Fig. 3.4

59

3.5 EMV Key Concepts

A typical EMV transaction involves three key concepts; Data Authentication,

Card-Holder Verification, and Transaction Authorisation. These are explained

in detail below.

3.5.1 Data Authentication

Data authentication is a way of verifying if the payment device presented

to the terminal is legitimate and not a counterfeit. Data authentication can

either be online or offline. In online authentication, an internet connection is

required to send transaction-specific data to the issuer for verification. There

are three types of offline data authentication as explained below.

1. Static Data Authentication (SDA): The SDA verifies that the ‘static’

data on the card has not been manipulated since provisioned by the

issuer. During a transaction, the terminal uses the issuer’s public key

to verify the cryptogram against the card data. SDA doesn’t provide

protection against card skimming because it uses static data and an

attacker can skim the cryptogram and place it in a counterfeit card.

2. Dynamic Data Authentication (DDA): In DDA, a transaction-specific

cryptogram is generated dynamically by the card using its own private

key. During a transaction, the terminal generates a random number and

sends it to the card. The card in turn generates a cryptogram which

includes the random number. Successful verification of the cryptogram

by the terminal provides assurances that the card data has not been

manipulated. But even more importantly, it proves that the card is not

counterfeit since it is infeasible to extract keys from the chip of a card.

3. Combined Data Authentication (CDA): CDA is a variation of DDA, and

it uses a special cryptogram referred to as the Application Cryptogram

60

(AC). Similar to the case of DDA, the card must be capable of public key

cryptography which is typically done using the RSA algorithm. But in

CDA, the card generates the AC dynamically later during the protocol

to prove that the card that performed the authentication initially is the

same card authorizing the transaction.

3.5.2 Card-Holder Verification

Also referred to as Card-Holder Verification Method (CVM), this method is

used to ascertain that the person presenting the payment device is indeed the

legitimate card-holder. During the transaction, the terminal checks the CVM

list which holds logic on which CVMs the payment device supports in order of

priority. The CVMs supported by EMV in order of their security are; online

PIN, offline PIN, user-biometric, signature, combination of two or no CVM at

all. There are also options for the PIN to either be in plaintext or encrypted

in both online and offline cases.

3.5.3 Transaction Authorisation

EMV Transactions can either be authorised online or offline. This is decided

as a result of processes taken at this stage, as listed below:

• Terminal Risk Management: The goal here is to prevent fraud using

mechanisms such as floor limits checking and random transaction selec-

tion [60]. Floor limits protects against overspending by making sure the

transaction is below a limit set by the acquirer. Random transaction

selection is when the terminal randomly makes an offline transaction to

go online for authorisation.

• Terminal Action Analysis: The result of all the previous steps including

risk management is analysed by the terminal, and as a result then informs

the device if it prefers to finish the transaction offline or go online.

61

• Card Action Analysis: The device analyses the result of all previous

steps, and makes a decision on whether the transaction should go on-

line, be completed offline, or declined. If the decision is to go online,

then a second card action analysis is carried out after the processing

to authenticate the data received from the issuer. In any case the de-

vice’s decision is communicated to the terminal by generating an Autho-

risation Request Cryptogram (ARQC), an Application Authentication

Cryptogram (AAC), or a Transaction Certificate (TC) cryptogram for

online, offline or decline transaction respectively (see Table 3.1). The

decision of the card may differ from the decision taken by the terminal,

but ultimately the card’s decision is final.

• Transaction Completion: At the end of the processing in the previous

stage, the device may be requested to verify an Authorisation Response

Cryptogram (ARPC) from the issuer. The terminal may also carry out

script processing on the device based on the issuer’s commands. The user

is alerted to remove the device and settlement is requested assuming the

transaction was successful.

62

3.6 EMV Considerations for Ticketing

Consideration Retail Payments

Ticketing Payments

Card-Holder
Verification (CVM)

A CVM method is
required. e.g. PIN

No CVM is required when a
user taps the payment
device

Price to pay Known at the time of
payments.

Not known at the time of
journey

Payment Terminal
Field

Activated by the store
attendant

Always active, ready to be
tapped by users

Table 3.2: Payments: Retail vs Ticketing

As mentioned in Section 2.3.4, open ticketing systems rely on the user’s

payment card or device for ticketing. However, from a functional point of view

(see Section 5.5.1), ticketing payments differ from normal retail payments.

Therefore the payment industry considered these factors, and adopted new

rules to accommodate ticketing [61], Table 3.2 shows these considerations, in

comparison to ‘regular’ retail payments.

63

3.7 EMV Payment Tokenisation

IssuerAcquirer Payment Network

Token Service Provider (TSP)

Merchant

User

2. Merchant sends
token to Acquirer

3. Acquirer routes
the token via a
Payment Network

4. Payment
Network sends the
token to the
corresponding TSP
for Detokenisation

5. TSP sends back
the corresponding
PAN for that token

6. The PAN is sent
to the Issuer for
authorisation

1. User initiates payment
– token passed form their
device

Figure 3.5: Transaction Flow of a Tokenised Payment

Tokenisation is a process of replacing sensitive data with a surrogate value

to limit exposure. This is particularly important for protecting data such

as payment data, health records or any Personally Identifiable Information

(PII)5. The surrogate value is usually short-lived and therefore is of minimal

importance to an attacker in case of a breach.

There have been various initiatives towards the standardisation of tokeni-

sation. The American National Standards Institute (ANSI), under the X9F1

group have ongoing development of a standard that covers tokenisation algo-

rithms for the financial industry [62].

The PCI Security Standards Council (SSC) also have guidelines for the

evaluation of tokenisation-related products and services including both hard-

ware and software components [63].

But the most relevant specification to the work presented in this thesis is

the EMV payment tokenisation. In this context, tokenisation replaces the PAN

with a short-lived, surrogate value referred to as a ‘token’ [64]. According to

EMVco “Tokenisation may be undertaken to enhance transaction efficiency,

5A PII is any information that could individually identify a perso.

64

improve transaction security, increase service transparency, or to provide a

method for third-party enablement”.

EMVco introduces two new entities; the token requestor and the Token

Service Provider (TSP) to the existing payment network. The TSP is au-

thorised to generate, issue, and provision payment tokens to legitimate token

requestors. The TSP is also responsible for maintaining the PAN-token map-

ping in the token vault, as well as detokenisation, i.e. the translation of tokens

back to PANs for legitimate requests. Figure 3.5 shows the transaction flow

in an EMV tokenised transaction.

The EMVco does not limit the role of the token requestor to any one party,

perhaps to accommodate for different scenarios. The specification neverthe-

less specifies potential token requestors to include card issuers, digital wallet

providers, OEMs when acting as payment enablers and payment gateways on

behalf of merchants [64]. Prior to every token request, the specification re-

quires an Identification & Verification (ID&V) step to ensure its legitimacy.

(ID&V) methods include account verification6, card-holder verification by the

issuer etc.

6Account verification includes checks such as the so-called “$0 authorisation” to validate
that the PAN is legitimate and is active at its issuer.

65

3.8 Summary

In this chapter, a general background is given for technologies that are relevant

to the work presented in this thesis. NFC and its different modes of operation,

particularly the two methods of card-emulation have been discussed. The

security mechanisms that can be used to reduce the attack resistance of HCE

applications will be discussed in Chapter 4. EMV as a payment technology

has also been described. EMV is relevant to this work because the move from

closed-loop to open systems increasingly puts the responsibility of ticketing

payments in the hands of the payment industry — which uses EMV as the

de facto standard — for these types of transactions. Finally, the concept of

tokenisation from EMV’s point of view has been discussed. Tokenisation is

important because it is the preferred security mechanism for handling the risks

of HCE in payments. More details on the impact of tokenisation in ticketing

is presented in Chapter 5.

66

Chapter 4

Comparing SE and HCE
Capabilities

4.1 Introduction

The emergence of HCE has raised a lot of interest and concerns from both re-

search and industry communities. In many ways, HCE represents a sharp de-

viation from the traditional ways of performing contactless transactions with

a smartphone, and by extension the SE. The transport ticketing industry

relies heavily on smartcards and mobile technologies to facilitate and auto-

mate operations. In ticketing, HCE is a disruptive technology that offers

many advantages for users and Transport Operators (TOs). However, HCE

introduces some issues that call for scrutiny and careful consideration to en-

sure its success in ticketing. In this chapter, these issues are examined from

three perspectives: implementational considerations, security considerations,

and performance considerations. These factors affect the success of ticketing

schemes at all levels of the transport ticketing ecosystem. Implementational

considerations are issues that must be considered before a large-scale ticket-

ing scheme based on HCE is rolled out. It is a common misconception to

assume the transition from SE-based implementations to HCE-based ones is

a simple like-for-like change in technology. From a technical point of view,

this misconception is further exacerbated by the fact that, since HCE claims

67

to emulate smartcard-based services, then everything should work out of the

box. While this is true to a large extent, there are some fundamental dif-

ferences between the two approaches, some of which are specific to transport

ticketing. In Section 4.3, these issues are looked at in more detail.

From a security point of view, there is no doubt of the magnitude of the

inherent security risks of the HCE approach. To counter the risks, numer-

ous security mechanisms have been proposed based on a generic assessment of

HCE. In Section 4.4, these security mechanisms are analysed with transport

ticketing in mind, to determine their feasibility in this area. Due to the secu-

rity and functional requirements of transport ticketing, there may be distinct

challenges that do not apply in other cases such as access control and mobile

payments. We look at these issues and determine the feasibility of the security

mechanisms in ticketing.

The performance of ticketing applications is paramount to the operation

of transport ticketing schemes. This is because they affect the throughput of

passengers at entry and exit points of the transport service, i.e. train sta-

tions or bus stops. There is a strict timing requirement with regards to ticket

and/or user verification at a terminal. While the performance of such applica-

tions on smartcards and SEs is a hot research topic, their HCE counterparts

have not undergone the same level of scrutiny. To that effect, in this chapter,

we implement two similar applications, on an SE and also in HCE. We test

these applications under laboratory conditions and present the results in Sec-

tion 4.6. We also highlight an interesting behaviour in HCE applications that

may call earlier assumptions into question and may jeopardise the security

and functionality of these applications.

68

4.2 Related Work

There are many publications comparing the two approaches to card emulation

on mobile devices. In [65], Pannifer et al. compared HCE to UICC-SE, dis-

cussing the ecosystems for both approaches and providing a comparison based

on the provisioning infrastructure, usability, security and maturity of the tech-

nologies, as well as their business models. However, the comparison falls short

of any practical analysis, so no performance results were provided. In [51], the

author discussed the advantages and the security implications of HCE in com-

parison with an SE-based approach. However, there were no implementations

and thus performance measurements were not given.

In [66], Roland and Langer gave an overview of the three NFC modes,

and a relatively new concept of NFC communication referred to as the inverse

reader-mode, which departs from the norm of using NFC devices either in card

emulation or peer-to-peer mode to communicate with a terminal. First intro-

duced by Saminger et al. [67], the inverse reader-mode switches the roles of

the device and the terminal; therefore the NFC device will be in reader/writer

mode, and the terminal in card emulation mode. The main advantage of this

approach is that developers and Service Providers (SPs) can avoid the problem

of accessing the SE for card emulation, and instead can provide their services

in reader/writer mode, leaving that to the terminal. An appropriate analogy

for this concept is switching the roles of client and server. Similarly, the work

presented in [54, 68] analyses HCE from a security point of view, and sug-

gests countermeasures to deal with the identified security risks. However,the

work presented in [51,54,66–68] all fall short of practical implementations and

performance analysis.

Although not particularly related to HCE, there has been a substantial

amount of research on the feasibility of real-time applications on mobile de-

vices [69–72]. Real-time applications are computer applications or systems

69

that require absolute response times. It is appropriate to consider transport

ticketing applications as ‘soft real-time’ applications1. The authors of [69–72]

agree that the Android OS is not appropriate for soft real-time applications

out-of-the-box. However, Alejandro et al. in [69] looked at the isolation of

CPU cores, which could be used to mitigate the magnitude of the variation

in performance of soft real-time applications. This concept is very similar to

the one used in this chapter. However, it is worth noting that the work in this

chapter was published before the solution presented in [69].

1Hard real-time applications are considered to have failed if they fail to respond within
the required response time e.g. Nuclear Systems. Soft real-time applications on the other
hand are not considered to have failed even if they don’t respond within the required time.

70

4.3 Implementational Considerations

In this section, a comparison of HCE and SE-based approaches is provided.

The metrics used in the comparison represent the different Key Performance

Indicators (KPIs) that determine the success of a mobile-based transport tick-

eting implementation.

4.3.1 Ecosystem Complexity

The ecosystems of the two approaches as shown in are different. In the SE-

based approach, there is a Trusted Service Manager (TSM), which is a secure

and trusted entity that acts as a link between the Service Provider (in this case

the transport operator) and the SE itself. The TSM provides a secure technical

infrastructure for service providers to provision and manage their applications

in the SE remotely. In the HCE approach, however, the role of the TSM is

not required. Application provisioning here is straight-forward and the life-

cycle of the application and related credentials are solely the responsibility

of the transport operator. Therefore in terms of complexity, the HCE-based

approach offers a simpler ecosystem.

4.3.2 Provisioning

Provisioning in terms of the HCE application itself is relatively straight-

forward. The most practical way is to let users download the application

from the ‘app store’, as with other applications, since an interaction with the

MNO or any other third party is not required. In addition, if tokenisation is

used (see Section 3.7), then periodic tokens will have to be pushed to the de-

vice like a secure channel, Secure Socket Layer (SSL) for example. In addition

other security measures such as device authentication and user verification

prior to the provisioning of new tokens should not be neglected. This leads us

to the next point on usability.

71

4.3.3 Usability

The usability of ticketing applications and procedures is paramount to the

success of the ticketing scheme. It is important to note that unlike an SE,

it is not possible to carry out a transaction with HCE applications when the

battery of the host device is drained and cannot power up the OS. This may

have a significant impact in ticketing, especially in rail ticketing where the

tap-in tap-out concept is used, and the fare is typically charged at the end of

the journey. The concern is the user’s device may be out of battery to tap-out.

Also, security measures taken may affect the usability of HCE applications.

As mentioned in Section 4.3.2, the validity of tokens and the user verification

method used will significantly affect usability. The ideal scenario would be for

new tokens to be provisioned to the device with minimal interactions with the

user.

4.3.4 Performance

The performance of applications in an SE-based approach is inherently slower

than similar HCE-based implementations. This is because SEs by design are

constrained devices, and have significantly lower processing power when com-

pared to the host device. However, performance testing carried out in this

chapter shows that HCE-based applications are prone to performance varia-

tion between transactions, making absolute performance benchmarking diffi-

cult. This can pose a challenge to ticketing, where timing is critical.

4.3.5 Cryptography

The cryptographic algorithms used for ticketing protocols in large-scale de-

ployments must be chosen carefully. For example the Android keystore system

only supports symmetric cryptography from API level 23 and above [73]. This

means about 66% of [74] user devices on the Android platform do not sup-

port symmetric algorithms, which is very significant. Therefore cryptographic

72

compatibility must be considered when designing protocols for HCE-based

applications.

4.3.6 Cost

There is usually an additional costs incurred from the use of an SE. SE-owners2

require service providers to pay a determined ‘rental fee’ associated with hous-

ing their application in the SE. Service providers also pay for the cost of the

TSM infrastructure. In HCE, there is no need for the Service Provider to pay

for provisioning the application to the host device; however, risk mitigation

mechanisms associated with HCE-based implementations might incur a cost.

For example, if tokenisation is used there will be a cost determined by the

Token Service Provider (TSP).

4.3.7 Standardisation

The level of standardisation usually reflects the maturity of the technology.

The SE is backed by well-established standards and specification. The pro-

visioning and management of applications on an SE is standardised by Glob-

alPlatform [75]. The framework for the Universal Integrated Circuit Card

(UICC) as an SE is standardised by the Global System for Mobile Association

(GSMA) and the European Telecommunications Standards Institute (ETSI).

There are application-specific standards and specifications that also apply to

SEs such as EMVco and MIFARE. HCE on the other hand is a less mature

technology and therefore has less standardisation. Nevertheless, there are some

application-specific specifications such as those involved with Mastercard and

Visa.

2The SE-owner refers to the entity that holds access to the SE, which could be an MNO,
OEM, or Issuers depending on the SE form factor.

73

4.4 Security Considerations

As discussed in Chapter 3, the security risks introduced by HCE are clear. To

that effect, a number of mechanisms have been proposed — both academic

and industry-led — to manage the security risks in HCE-based implementa-

tions [54,68,76–79]. In this section, an analysis of these security mechanisms is

carried out. Specifically, we look at how the adoption of these security mech-

anisms may impact ticketing, and highlight the considerations that must be

taken into account. A comparison of these mechanisms (including the Secure

Element) is given in Table 4.1.

4.4.1 Cloud Storage

By design, cloud-based transactions will require an internet connection be-

tween the users’ devices and the cloud server. In transport ticketing, an inter-

net connection is difficult to guarantee in certain scenarios such as underground

stations and moving vehicles. Therefore it is a strong requirement for trans-

port ticketing solutions to grant or deny users’ travel offline. In addition, the

strict performance requirements of transport transactions may prove difficult

to achieve due to network latency. Form a security perspective cloud storage

shifts most of the security considerations from the mobile itself to the ‘cloud’.

Consequently, security considerations must be made around issues such as:

effective access control measures, isolation of the data stored in the cloud,

security of the data both in transit and at rest.

4.4.2 Tokenisation

Tokenisation replaces a long-term, security-sensitive piece of data with an item

of data that is short-lived and referred to as a token. In EMV, the main com-

ponent that is tokenised is the Primary Account Number (PAN). Tokenisation

74

has shown a lot of promise. However, there are a few considerations neces-

sary for successful adoption in ticketing. Firstly, an internet connection is

needed to provision the device with a fresh token. Currently, the EMV spec-

ification [64] allows for both single-use and multiple-use tokens, and does not

specify the length of the validity of tokens. The validity of these tokens will

depend on the perceived risk of exposure on the device. It is unreasonable to

require an internet connection before every transaction because it is difficult to

guarantee connectivity in certain cases, such as at underground train stations.

Therefore the choice of the validity of tokens must take this into account. In

addition, the use of PANs has evolved beyond being a mere account identifier

to blacklist dishonest users. By using tokenised payments, blacklisting could

be compromised since it is expected that the token will be short-lived. More

on this is presented in Chapter 5.

In terms of security, tokenisation provides stronger security guarantees

than storing long-term credentials locally, since they have a shorter life-time,

and can even be restricted to use within specific use-cases, thereby reducing

the overall appetite for an attacker to get hold of tokens. However an ideal

situation would be to have an extra layer of security. Point-to-point encryption

and TEEs are good candidates to provide an extra layer of security.

4.4.3 Trusted Execution Environment (TEE)

A TEE provides a trusted area on the mobile device for secure data storage

and code execution. It also provides other security services such as remote

attestation, which could be useful for ticketing. With high market penetration,

TEEs provide acceptable levels of security and performance for application in

transport ticketing.

TEEs are, however, tightly controlled by the equipment manufacturers,

similarly to SEs. This tight control adds to the complexity of the ecosystem

because TEEs on devices cannot be used ‘out-of-the-box’ and will require

75

permission in the form of contracts with the respective OEMs. This also leads

to an added economic cost in TEE adoption. This issue is looked at more

closely in Chapter 6.

4.4.4 White-Box Cryptography (WBC)

With ticketing being a time-critical service, white-box implementations are

slower than their black-box counterparts [80, 81]. This could jeopardise the

ability of ticketing applications to meet the performance requirement. More

importantly, it has been shown that WBC implementations are vulnerable

to several types of attacks. For example the white-box DES and AES im-

plementations presented in [82] and [83] respectively have been proven to be

susceptible to numerous attacks as presented in [84,85]. As improved variants,

some proposals have adopted the use of external encoding to provide some sort

of shield. However, even the proposals adopting external encoding have proven

to be vulnerable to cryptanalysis as shown in [86] and in [87]. WBC shows

much promise for application in transport ticketing. However, its performance,

security issues, proprietary nature and lack of robust standardisation makes

large-scale adoption a challenge.

Table 4.1: Comparison of Security Mechanisms
SE TEE Cloud-HCE White-Box Crypto Tokenisation

Security High Medium Medium Medium Medium
Performance High High Medium Medium Medium
Flexibility Low Low Medium Proprietary High

Connectivity No No Yes No Yesa

Standardised API Yes Yes No No Yes
Interoperability Yes No No No Yes

Tamper Resistance High Medium Medium Medium Medium
Set-up Cost Yes Yes Yes Yes Minimalb

a Connectivity is required periodically, when new tokens are provisioned.
b Initial set-up cost is minimal. There is a running cost of provisioning new tokens to device.

76

4.5 Considerations of HCE Performance

This section provides a comparative analysis of the performance of HCE and

SE-based applications. This is achieved by implementing similar applications

(in terms of functionality), on an SE and in HCE. Their performance is anal-

ysed both in terms of computation and the transfer delays on the NFC com-

munication link. The results raise some issues that could have an impact on

the use of mobile devices in ticketing.

4.5.1 Android CPU Policy

Android devices typically have a multi-core processor design. This means

that a single unit can consist of two or more independent CPUs referred to as

cores. Android devices use both the ARM and x86 architectures. Android also

uses the Symmetric Multiprocessing (SMP) design for managing the different

CPUs [88]. Normally, all CPUs share the same CPU frequency policy, i.e.

all CPUs are online at the same time and any process can run on any of

them. However, Android devices switch between different frequency levels

in response to variable CPU load; this is enforced and regulated by a driver

known as the CPU governor [89]. There are several types of CPU governors

with different characteristics. For this work, the ondemand governor which

is the factory default for most Android phones, increases and decreases CPU

frequency according to demand. We also used the userspace governor: it

permits a user to choose which frequency state the CPU should run in.

77

4.5.2 Test Methodology

Table 4.2: Devices Used in Testing

Device Manufacturer Operating System RAM ROM

SE (Nokia) NXP SmartCafe expert 3.1 4kb 160kb
Phone (Nexus 5) LG Electronics Android Kit-Kat 4.4 2GB

Laptop SONY Vaio Ubuntu 14.04.1 4GB
Card Reader SCM

In this section we explain how the testing was set up and conducted. To test

performance with regard to variable delays, we developed two card-emulating

applications. The first one was a Java card applet based on the Java card

framework v2.2.1 [90]. We refer to this applet as the SE-app. We loaded the

SE-app into the SE of a Nokia 6131 (one of the first NFC phones). Nokia,

in [91] provides a tutorial on how to use the ‘Nokia NFC Unlock Service

MIDlet’ to unlock the SE of the Nokia 6131. The second application was

an Android application (HCE-app), running on Android platform version 4.4

with Android framework Application Programming Interface (API) level 19

as the target API. This application was deployed in a Nexus 5 mobile device.

Table 4.2 provides a summary of the devices used to conduct the testing.

Both applications ran the same cryptographic protocol designed for the

tests. The purpose of the protocol is simply to require the emulating processor

to carry out some non-trivial and representative cryptographic processing. The

javacardx.crypto package was used for the SE-app, and the java.crypto package

for the HCE-app.

78

Device Terminal

SELECT AID

0X9000

encrypt APDU11bytes

Ciphertext

sign APDU8bytes

signature

Figure 4.1: Protocol Used in Testing

A 1024-bit RSA algorithm keypair was used, and to simplify testing, we

departed from cryptographic best practice not only by using this key size,

but also by using the same pair for both encryption and signing. For the

encryption we used the ALG RSA PKCS1 field of the cipher class from the

javacardx.crypto package. ALG RSA PKCS1 uses the RSA cipher for encryp-

tion and the Public-Key Cryptography Standards (PKCS1) (v1.5) for data

padding. For the signature, we used ALG RSA SHA PKCS1 field of the ci-

pher class from the javacardx.crypto package. ALG RSA SHA PKCS1 firstly

computes a hash of the message resulting in a 20 byte SHA digest, which is

then padded using the PKCS1 before signing using the RSA algorithm.

We recognise that SHA-1 is no longer recommended; however the goal

was to test performance variation rather than establish a secure protocol.

For performance testing, we first used the Java timer class in the terminal

application to take measurements. To ensure accuracy of the values produced

by the timer in our program, we then used the CLT Move-Contactless Spy tool

from COMPRION [92] to double-check the measurements. This tool monitors

79

the flow of APDUs between the terminal and the phone, giving a byte-level

view of messages and their corresponding delays.

80

4.6 Experimental Results

The first phase of any communication between a smartphone and a terminal

is the initialisation and anti-collision phase; this [46] is where they establish

identities and agree on the parameters of communication for all subsequent

messages. The parameters include the number of bits they can handle at a

time and also the agreed amount of time the terminal has to wait for a response

from the phone before it times out, known as the Frame Waiting Time (FWT).

The anti-collision phase exists to resolve the situation of multiple smartcards

within range of a single terminal, which was not the case for our tests.

After a successful initialisation and anti-collision, the terminal application

selects the applet by sending a select APDU using the AID; the application

sends back the 0x9000 status word if the select APDU was successful. The

terminal then sends a command APDU (ENCRYPT) with an 11-byte data

to be encrypted by the card-emulating application. The application encrypts

the message and sends back a response APDU containing the corresponding

cipher text together with the 0x9000 status word (or error code on failure).

Subsequently another command APDU (SIGN) is sent to the phone in order

to get a signature on the 8-byte data contained in the APDU. The phone

signs the data and sends the result back to the terminal. Timing is measured

from the time the command is sent from the terminal to the time it receives

the response back. For accuracy, we carried out 400 runs of the protocol and

computed the average. All timings were recorded in milliseconds (ms).

4.6.1 SE-app Testing

Table 4.3 shows a statistical analysis of the results from the SE-app on the

Nokia hardware SE. It shows the statistics for individual commands as well as

the protocol in full over 400 runs.

81

Table 4.3: SE-app Testing Results in Milliseconds
SE-app SELECT SIGN ENCRYPT FULL PROTOCOL

AVERAGE 18 1679 285 1982
MODE 18 1691 283 2002

MEDIAN 18 1680 284 1984
MAX 116 1746 300 2105
MIN 17 1618 279 1917

From Table 4.3 we see that the SELECT command had an average execu-

tion time of 18.6ms. SELECT is a fairly light-weight command requiring no

cryptographic processing and simply returning a status response. However,

the first SELECT command of the 400 runs took 116ms. This is because of

the initialisation and anti-collision phase, which is not present in the remain-

ing runs, which had very consistent execution times with the minimum and

maximum times differing by at most 3ms. It is important to note that in a

real-life scenario, for every tap of the phone unto a terminal by the user, there

will be an initialisation and anti-collision phase. Overall our test protocol

had an average execution time of 1982ms, with about 85 percent of the time

spent on digitally signing the message. The absolute duration would be too

long for timing-critical applications (e.g. transport ticketing), although the

measurements are very consistent, with some variation due to experimental

tolerances.

4.6.2 HCE-app Testing

For the HCE-app, we did things slightly differently; we ran the test in two

different scenarios which we will henceforth refer to as Case 1 and Case 2.

As suggested in [93] “While measuring CPU power, or holding CPU power

constant in order to make other measurements, it may be best to hold the

number of CPUs brought online constant, such as to have one CPU online

and the rest offline (hotplugged out)”. In our case, the Nexus 5 has a multi-

core processor with four cores, so we hot-plugged three of them, leaving only

82

one online. This was to ensure that all processes ran on the same CPU, giving

us better control of the testing platform.

4.6.2.1 HCE-app Testing: Case 1

Here, the ondemand governor running at 960Mhz (default) was used. While

running the application, we engaged in a deliberate simulation of the day-to-

day things a mobile phone user could actually be doing, such as opening social

media applications and answering phone calls. This was to mirror the day-to-

day behaviour of a typical user’s device when it is tapped on a terminal at a

train station. From Table 4.4 below, the first SELECT command took longer

than the others (as was the case with the SE-app) i.e. 60ms as compared to

the average of 12ms. The full protocol ran in an average of 213ms; however, it

is interesting to see that the range between the MAX and MIN values of the

full protocol was 708ms, which is a significant variation. Similar variations

were measured for SIGN and ENCRYPT values individually, which ran on

average for 110ms and 91ms respectively but with a range of 475ms and 404ms

respectively.

Table 4.4 shows a statistical analysis of the results from the HCE-app (Case

1). It shows the statistics for individual commands as well the protocol in full

over 400 runs.

Table 4.4: HCE-app Testing Results in Milliseconds (Case 1)

SELECT SIGN ENCRYPT FULL PROTOCOL

AVERAGE 12 110 91 213
MODE 11 85 82 171

MEDIAN 12 95 81 188
MAX 60 544 465 853
MIN 10 69 61 145

83

4.6.2.2 HCE-app Testing: Case 2

Table 4.5 shows a statistical analysis of the results from the HCE-app (Case

2). It shows the statistics for individual commands as well the protocol in full

over 400 runs.

Table 4.5: HCE-app Testing Results in Milliseconds (Case 2)

SELECT SIGN ENCRYPT FULL PROTOCOL

AVERAGE 20 301 250 572
MODE 20 271 235 529

MEDIAN 20 294 236 550
MAX 99 883 809 1146
MIN 16 265 222 514

After noticing the high variance in the results produced in Case 1, we

decided to clock the CPU at its lowest possible frequency state of 300Mhz.

To achieve this we changed the CPU governor from the default ondemand

governor to the userspace governor; with this, we were able to set exactly the

CPU frequency. We also set the minimum and maximum frequency to both

be 300Mhz as suggested in [93], giving us assurance that the CPU was fixed at

300Mhz.The protocol was run under these conditions and Table 4.5 shows the

results. As in previous tests, the first SELECT command was slower, taking

99ms as compared to the overall average of 20ms. The full protocol took an

average of 572ms, but similar to Case 1, there was a significant range of 632ms.

The same applied to the SIGN and ENCRYPT values, with averages of 301ms

and 250ms respectively, and ranges of 618ms and 587ms respectively.

84

4.7 Discussion

In this section, we put all three tests together to conduct analysis and make

comparisons.

Figure 4.2: Graph Showing the Results of All the Tests

Figure 4.2 shows that the SE-app has a more clustered line graph (almost

a constant), while the two HCE-app cases show marked variations in values.

We can see how the CPU clock affects average execution time for the protocol;

however, wide variations exist even when the CPU core is allowed to run at

full speed. The absolute execution time of the SE is notably slower than the

HCE-apps although this is perhaps an unfair comparison as the Android phone

is still current whereas the Nokia phone (and its SE) was produced in 2006.

Furthermore, the HCE-app would likely be significantly slower in practice if

software security measures were required to reduce side-channel leakage and

improve attack resistance. What is most interesting is the variation in the

HCE-app response times, which may call into question HCE use in time-

critical applications. For example, in transport ticketing applications there is

a strict requirement that a gate transaction should be completed in less than

500ms [36,94]. We are seeing variations that are greater than this, regardless

85

of the expected execution time.

This timing variation could also prevent the use of some security mea-

sures to detect fake cards or attacks in progress. For example, there has been

prior work in detecting RFID relay attacks [95] using distance bounding pro-

tocols [96–98] as a way of detecting relay attacks. These protocols establish an

upper bound on the distance of the proving party. This is done by taking into

consideration the delay introduced into the channel from the time a challenge

is sent to the time a response is received. This is only possible when there

is a reasonable benchmark for an acceptable delay. In the case of HCE, the

tolerance around the benchmark will be extremely large, making it very diffi-

cult to distinguish between a relay attack and variation due to normal phone

operation.

86

4.8 Summary

In this chapter, HCE was analysed in the context of transport ticketing and

some of the underlying issues regarding large-scale implementation were dis-

cussed.A range of security mechanisms put forward to mitigate security risks

of HCE where analysed against factors that determine the success of mobile

devices in ticketing. In addition, a comparative analysis of similar implementa-

tions of SE and HCE applications was conducted. Results show the HCE-app

to be faster in terms of performance, however a significant variation in trans-

actions times from one transaction to another introduces a new dynamic that

requires careful consideration.

87

Chapter 5

Blacklisting Tokenised
Payments

5.1 Introduction

Transport operators are transitioning from closed-loop ticketing systems to

open ticketing systems that rely on a well-established payment infrastructure

for fare payments. This allows users to make use of payment media such as

debit/credit cards, and mobile payment applications already in their posses-

sion, to pay for transport fares.

Historically, smartcards have provided an acceptable level of security as

required by the payment industry. The embedded chips provide a secure and

tamper-resistant storage and execution environment for payment applications

and related credentials. Of most relevance to this chapter is the Primary

Account Number (PAN) [58], which provides a unique reference to the user’s

payment device - and by extension identifies the user on the payment network.

PANs have evolved from being just an account reference of the user. Mer-

chants use PANs for unique identification of users for different purposes, such

as customer loyalty and uniquely tailored services. More significantly, in open

ticketing, PANs are used as unique identifying factors for users of the trans-

port network. In the event of dishonest behaviour by a user, such as fare

evasion, the PAN is also used to blacklist the user so no further travel is

88

allowed [99,100].

5.1.1 Problem Statement

Different mechanisms have been proposed to manage the risks of HCE’s re-

liance on software and make it acceptably secure for payments. These mecha-

nisms are discussed in more detail in Section 4.4, but the focus in this chapter

is tokenisation. The goal of tokenisation is to replace the PAN in the user’s

device with a surrogate value that has a shorter life-span than the original

PAN. The rationale here is to limit the validity of the credential, so that it is

of limited use in the case of a compromise by an attacker. In transport tick-

eting, however, tokenised payments call into question the ability to blacklist

dishonest users on the transport network. This is because the PAN is replaced

with short-lived tokens that are variable. This variability makes it difficult for

transport operators to pin down a user through blacklisting since the token is

periodically renewed, in contrast to a long-term PAN. This variability in ‘iden-

tity’ exposes transport operators to attacks similar to the Sybil attack [101].

In the United Kingdom alone, over 200 million was lost in revenue due to

fare evasion and other ticketing-related fraud [102] in 2016. Therefore the to-

kenisation of PANs poses a significant threat to both academic proposals and

real-life implementations that rely on the PAN to identify or blacklist users.

5.1.2 Proposed Solution

As a solution to the problem of blacklisting, a transport ticketing scheme based

on Linkable Group Signatures (LGS) is proposed [103, 104]. In simple terms,

an LGS lets a verifier link the signatures of a user on different messages, while

keeping the identity of the signer anonymous. This ‘linkability’ property is

relied upon by the transport operator to blacklist dishonest users, regardless

of their short-lived tokens. We also exploit the anonymity inherently provided

by the LGS, which is an important user privacy requirement in transport

89

ticketing systems. The details on how the LGS works is given in Section 5.4

90

5.2 Privacy and Accountability

The quest for authentication and accountability in a privacy-preserving way

is not a new phenomenon, and has applicability in different use-cases. Many

cryptographic schemes facilitate the authentication of users anonymously. This

offers users a high level of privacy; however, some use-cases such as ticketing

also require accountability (i.e. the service provider is able to punish dishonest

users).

There are different approaches to balancing authentication, privacy, and

accountability [105]. The use of so-called anonymous credentials [106, 107]

has been proposed by many authors to authenticate users anonymously, and

if required, a dishonest user can be de-anonymised, thus revoking the user’s

privacy. There are also proposals based on group digital signatures, such as

in [108–111] that facilitate anonymous authentication. One unifying factor

with the aforementioned proposals is that they all require a Trusted Third

Party (TTP) to de-anonymise or open the real identity of a dishonest user.

This TTP is typically referred to as the Opening Authority (OA), or the

Revocation Authority (RA).

However, in some scenarios, exposing the real identity of the user may be

too harsh, or insignificant. For example, a Transport Operator may want to

blacklist an offending user so further travel is not allowed until the money due

is settled, but may not necessarily want to identify the user. In scenarios like

this, linking of the users’ transactions is enough to deter further usage of the

transport system while still maintaining the anonymity of the user.

In addition, there are strict functional requirements in ticketing, in which

the transaction is expected to be completed offline and within a limited time-

frame. It is very challenging to meet these requirements using any solutions

that rely on a TTP for accountability since there must be a connection to the

TTP before a decision can be taken. Therefore, transport operators need a

91

way to blacklist users locally, i.e. offline and without the need for a TTP. We

term this type of blacklisting ‘Local Blacklisting’.

92

5.3 Related Work

There are numerous transport ticketing schemes proposed that include a black-

listing functionality, and have approached blacklisting from different perspec-

tives. Blacklisting in these proposals can generally be divided into two cat-

egories; privacy preserving and non-privacy preserving blacklisting schemes.

The non-privacy preserving schemes are straight-forward, and typically in-

clude a blacklist database made up of fixed User IDs or user-device specific

IDs (UIDs). For example, the work presented in [8] blacklists users based

on their transport ID, which is a device-specific ID. As pointed out by the

authors, their solution does not provide user privacy since it is possible to

track the movement of users based on their fixed UIDs from back-end sys-

tems. Fixed UID blacklisting not only goes against the privacy requirements

of the user, but the existence of cloning mechanisms has proven this method

to be rudimentary and ineffective [112–114]. The focus in this chapter is on

privacy-preserving blacklisting schemes.

Transport ticketing schemes rely on cryptographic methods to achieve the

blacklisting of users in a privacy-preserving manner. For example the work

in [115] presents a privacy-preserving e-ticketing system that relies on the ho-

momorphic properties of the underlying encryption algorithm used. However

the performance testing presented by the author shows that the blacklisting

solution only meets the functional requirement (see Section 5.5.1) with less

than 1000 entries in the blacklist. This shows that the solution is not scalable,

and is inefficient for real-life implementations since a blacklist will be expected

to contain well above 1000 entries. Moreover, the authors did not take the

delay caused by the physical NFC channel into consideration.

Arfaoui etal. in [116] proposed a privacy-preserving NFC pass for transport

systems with a user blacklisting mechanism [116]. In their scheme, a user’s

actions on the transport network cannot be linked to his/her identity. The

93

authors’ solution relied on the group signature proposed by Brickell et al. as

Direct Anonymous Attestation (DAA) [117] to keep a user anonymous in a

group of registered users. User blacklisting relies on an opening authority,

who is tasked with revealing the identity of a dishonest user. However, their

solution is based on pre-purchased tickets by pre-registered users and therefore

is a closed-loop ticketing system.

Similarly, D. Quercia and S. Hailes in [118] proposed a ticketing scheme

which is based on the e-cash blind signature proposed by Chaum in [119]. The

pre-issued e-tickets are globally spendable, and in the case of overspending,

users’ anonymity can be revoked. The authors however did not provide any

practical implementation, and therefore the efficiency of their solution remains

questionable.

To the best of our knowledge, the only academic proposal that conforms

to EMV and thus can be considered as an open ticketing scheme was proposed

by Ekberg et al. in [120]. The authors proposed a mass ticketing scheme using

NFC mobile devices. They also relied on the EMV infrastructure specifically.

The PAN was used as the user identity on the transport network. The PAN is

securely tied to a location at a particular time to create a ‘tap’, which is further

used to determine the fare to be paid. However, the most relevant part of their

proposal is their approach to blacklisting. The authors rely on a Certificate

Revocation List (CRL) to blacklist dishonest users. In simple terms, a CRL is

a list containing digital certificates that have been revoked before their actual

expiry date. It is assumed that the terminals at transport stations will be

updated with an up-to-date version of a CRL periodically. However, the use

of CRLs for large-scale implementations has its challenges as the distribution

of CRLs to all terminals is relatively expensive [121]. Also, there are concerns

about the unmanageable size of a CRL, especially in mass ticketing where

huge numbers of transactions are carried out. It will be challenging to update

CRLs in an efficient way [122]. In addition, the strict timing requirements of

94

ticketing systems may be difficult to adhere to due to the long look-up times

of CRLs.

It is also important to highlight an industry solution to the problem of

blacklisting discussed in this chapter. The release of a tokenisation specifi-

cation for mobile payments by EMVco in 2014 [64] was the motivation for

research into the problem. In 2016, EMVco subsequently released an update of

the specification with the addition of the Payment Account Reference (PAR).

According to EMVco, the objective of the PAR is to:

“re-introduce a relationship that already exists in the payment ecosystem

today for Primary Account Number (PAN) post EMVCo Payment Tokenisa-

tion. PAR may be used to link transactions initiated on Payment Tokens with

transactions initiated on the underlying PAN to support the needs of a variety

of payment processing and value added services that rely on PAN prior to the

introduction of Payment Tokenisation.”

Furthermore, among the permissible uses of the PAR given by EMVco is

using the PAR for performing risk analysis. This affirms the importance of the

problem of blacklisting, which this chapter attempts to solve. It is also worth

noting that the solution in this chapter was proposed and published prior to

the release of the PAR specification. In addition, it could be argued that using

a PAR for blacklisting in ticketing goes against the privacy requirement of the

user since each PAR is unique to a user, and is fixed for the lifetime of the

account. Therefore the solution presented in this chapter is still superior to

the PAR in terms of privacy preservation.

95

5.4 Cryptographic Background

This section provides a background to the cryptographic building blocks used

in the proposed scheme. The main cryptographic building block used is a

special type of group digital signature with a ‘linkability’ property. We also

provide a detailed explanation of the different phases involved, as well as the

intractability assumptions the signature is based upon.

5.4.1 Linkable Group Signatures (LGS)

Group signatures as first proposed by Chaum et al. in [108] allow any member

of a particular group to generate signatures anonymously. The verifier gets

cryptographic assurances that a legitimate member of the group signed the

message without revealing the signer’s identity.

Group signatures with different properties have been proposed in the lit-

erature. In this study, the LGS first proposed in [104] (referred to as a list

signature) and standardised by ISO/IEC in [103] is used. In its original con-

struction, it supports the linking of signatures provided they were signed using

the same linking tag. In [104] a time frame was used as the linking tag, allow-

ing the linking of all signatures generated by a user within a given time frame.

However, [103] shows the linking tag can also be any random value, as long as

it is constant. This signature also supports both private key revocation and

verifier blacklist revocation. In the next section, we give an overview of the

processes involved in this signature. For a detailed outline of the process and

mathematical proofs, please refer to [103,104].

5.4.2 Intractability Solutions

5.4.2.1 Strong RSA Assumption

First introduced in [123]; Let p′ and q′ be two distinct primes of equal length

such that: p = 2p′ + 1 and q = 2q′ + 1 are also primes. The multiplicative

96

Notation Meaning

Tk Token generated from the PAN
tnt Timestamp at the point of entry
txt Timestamp at the point of exit
Rn Random nonce
stnid Unique train station identity
Sigx linkable signature with key x
bsn linking base
T4 linking tag
A, e, x signature key
Gpk group public key = (n, a, a0, g, h, b)
Gmk group membership issuing key = (p’, q’)
CHALL {tnt/txt||Rn||stnid}
Tap {tnt/txt||Rn||stnid||Tk||T4}

Table 5.1: Notations and Meanings

group of quadratic residues modulo n denoted by QR(n), is a cyclic group of

order p′q′, where n = pq, and is referred to as the safe RSA modulus.

5.4.2.2 Decision Diffie-Hellman Assumption(DDH)

Let g be the generator of a finite cyclic group G. The DDH assumption [124]

for group G states that it is hard to distinguish the DDH tuple: (gx, gy, gxy)

from random triples (gx, gy, gz), for a random (x, y, z) modulo the order of

group G.

In general, the DDH problem can also be constructed for arbitrary finite

abelian groups. Therefore, if G = QR(n), then G has composite order. If the

group composition of G is known, then the DDH problem in G is reduced to

the DDH problem in the components of G.

5.4.3 Linkable Group Signature Processes

The phases involved in the usage of an LGS are described below, the notations

used in [103] are maintained, and their meanings are given in Section 5.4.2.2.

1. Key Generation Process The key generation is made up of two parts:

97

set-up phase and the group membership issuing phase. In the set-up phase,

the group manager creates the group public parameter, Gpk, and Gmk. The

group membership issuing process is a protocol run between the group man-

ager and a group member to create a unique signature key (A, e, x), where

(x) is the private key and (A, e) are the group membership certificate for

each group member. We assume the presence of a secure channel between

the group manager and the group member.

(a) Set-up Process: We assume the existence of two hash functions H:

{0, 1}∗ → {0, 1}k and HΓ : {0, 1} → {0, 1}2lp. The group manager

chooses the group public parameters: (lp, k, lx, le, lE, lX , ε). The group

manager also chooses random generators: (a, a0, g, h, b) of QR(n). Gpk

= (n, a, a0, g, h, b) and Gmk = (p’, q’)

(b) Group Membership Issuing Process: At the end of this phase, the

member knows a random x ∈ [0, 2lx−1] and the group manager knows

ax mod n and nothing more. Then the group manager chooses a

random prime e ∈ [2lE − 2le + 1] and computes A = (a0C2)d1 mod n

where C2 = ax mod n and d1 = 1/e mod n. The group manager sends

A and e to the member. The member checks that Ae = a0a
x mod n.

The group member signature key is (A, e, x) and x is the private key.

2. Signing Process: The signature process takes as input: the (Gpk), the

group member’s signature key (A, e, x), a linking base (bsn) and the message

to be signed and outputs a linkable signature Sigx.

98

Algorithm 1 Signing

1: Compute f = (HΓ(bsn))2 (mod n)
2: Chooses random integers: w1, w2, w3 ∈ [0, 22lp − 1]
3: Compute: T1 = Abw1 (mod n),

T2 = gw1hw2 (mod n),
T3 = gehw3 (mod n),
T4 = fx (mod n).

4: Choose random integers:
r1 ∈ [0, 2ε(le+k) − 1],
r2 ∈ [0, 2ε(lx+k) − 1],
r3, r4, r5 ∈ [0, 2ε(lp+k) − 1]

5: Choose random integers: r9, r10 ∈ [0, 2ε(2lp+le+k) − 1]
6: Compute: d1 = T r11 /(ar2br9) (mod n)

d2 = T r12 /(gr9hr10) (mod n)
d3 = gr3hr4 (mod n)
d4 = gr1hr5 (mod n)
d5 = f r2 (mod n)

7: Compute:
c = H(a||a0||g||h||T1||T2||T3||T4||d1||...d5||m)
s1 = r1 − c(e− 2lE), s2 = r2 − c(x− 2lX),
s3 = r3 − cw1, s4 = r4 − cw2,
s5 = r5 − cw3, s9 = r9 − cew1,
s10 = r10 − cew2

8: Set the signature as:
Sigx = (c, s1, s2, s3, s4, s5, s9, s10, T1, T2, T3, T4)

3. Verification Process: The verification process takes as input a message,

bsn, a linkable signature Sigx, and Gpk corresponding to the group of the

signer. It returns 1 if the signature is VALID, otherwise it returns 0.

99

Algorithm 2 Verification
1: Compute:

f = HΓ(bsn))2 (mod n)
t1 = ac0T

s1−cl′
1 /(as2−cLbs9) (mod n) where l′ = 2lEandL = 2lX

t2 = T s1−cl
′

2 /(gs9hs10) (mod n) where l′ = 2lE

t3 = T c2g
s3hs4 (mod n)

t4 = T c3g
s1−cl′hs5 (mod n) where l′ = 2lE

t5 = T c4f
s2−cL (mod n) where L = 2lX

2: Compute:
c’ = H(a||a0||g||h||T1||T2||T3||T4||d1||d2||d3||d4||d5||m)

3: If
c’= c, s1 ∈ [−2le+k, 2ε(le+k) − 1],
s2 ∈ [−2lx+k, 2ε(lx+k) − 1],
s3 ∈ [−22lp+k, 2ε(2lp+k) − 1],
s4 ∈ [−22lp+k, 2ε(2lp+k) − 1],
s5 ∈ [−22lp+k, 2ε(2lp+k) − 1],
s9 ∈ [−22lp+le+k, 2ε(2lp+le+k) − 1],
s10 ∈ [−2lp+le+k, 2ε(2lp+le+k)− 1] return 1 (valid signature) else return 0 (invalid
signature)

4. Linking Process: The linking process takes two valid linkable signatures

and determines if they are linked, i.e. if they were signed by the same user.

Algorithm 3 Linking

Takes two valid linkable signatures:
(c, s1, s2, s3, s4, s5, s9, s10, T1, T2, T3, T4) and
(c′, s′1, s

′
2, s
′
3, s
′
4, s
′
5, s
′
9, s10′ , T

′
1, T

′
2, T

′
3, T

′
4)) If T4 = T ′4 output 1 i.e they are

linked, otherwise 0

5. Revocation Process: The original construction of the signature supports

two types of revocation: Private Key Revocation andVerifier Blacklist Re-

vocation. In this proposal, we focus on the verifier blacklist revocation. To

blacklist a user, the verifier generates a blacklist using the corresponding

T4 of the user. Therefore the verifier can check if the user is on the blacklist

by first verifying the signature as valid, and then carrying out the blacklist

check as follows: for each T4’, check T4’ 6= T4. If any of the checks fail,

output 0 (revoked), otherwise, output 1 (valid).

100

5.5 Proposed Ticketing Scheme

In this section, we outline the general architecture of our proposed model. We

define the entities involved, as well as the roles they play in Section 5.5.5.

We also highlight the general assumptions made which are necessary for our

proposed model in Section 5.5.4. The proposed ticketing scheme is an account

based, open-ticketing scheme, that is based on the ‘Aggregated Pay As You

Go’ model [16] proposed by the UK Cards Association (UKCA) which intended

for EMV cards and NFC-enabled mobile devices1. As mentioned in Chapter 2,

ticketing requirements always depend on the specifics of its implementation,

and also open ticketing systems have fewer requirements than closed ticket-

ing systems. Therefore the requirements presented in Sections 5.5.1 and 5.5.2

respectively, represent a subset of the ticketing requirements presented in Sec-

tion 2.4. The scheme is divided into different but interconnected phases as

presented in Section 5.5.6.

Figure 5.1 shows the sequence of messages exchanged in the proposed pro-

tocol.

5.5.1 Functional Requirements

1. Offline Transaction: transport ticketing systems are required to com-

plete transactions offline, i.e. without requiring internet connection to

instantly to carry out back-office validations.

2. Efficiency: Transport ticketing systems should be very efficient in terms

of passenger throughput. Therefore they are required to produce trans-

action speeds of 300 – 500 milliseconds [32, 33] from the time the user

taps the device to the time the terminal grants or rejects access.

1Prior to using the scheme, it is assumed that a user already has a payment application
that conforms to the EMV specification already provisioned to the device.

101

5.5.2 Security Requirements

The security requirements of open tickets are less that the requirement of

closed-loop tickets because the logic is in the back-office. Nevertheless, the

security requirements of the protocol proposed in this chapter are presented

below:

1. Integrity: It should be possible to verify whether a wrong ticketing cre-

dential is used. There should also be cryptographic evidence binding the

user’s transaction to a location at a particular time.

2. Anonymity: Although more of a privacy concern, the identity of the user

of a transport system must not be revealed.

3. Exculpability: It should be impossible for any entities, including the

group manager, to falsely accuse a user of making a transaction at an

entry or exit point on the transport network.

4. Blacklisting: It should be possible to build a blacklist of dishonest users

(or compromised devices), and be able to deny them further use of the

transport network.

5.5.3 Adversary Model

The motivation for an adversary here is to abuse the ‘first time travel risk’

(see Section 2.3.4), by maliciously evading detection on the blacklist. The

adversary could either be an attacker in possession of a stolen device, or a

legitimate user trying to cheat the system. A determined attacker will try to

avoid the blacklisting mechanism by producing a signature with a fake linking

tag. According to the described Adversary model, we list the presumptive

capabilities of the attacker below:

1. The attacker cannot break the linkable signature algorithm used in this

chapter.

102

User’s Device Terminal Back-Office TSP

{tnt/txt||Rn||stnid}
1

Sigx{{tnt/txt||Rn||stnid} ||Tk}||Tk
2

verifySig
checkBlacklist

SUCCESS
3

tap {tnt/txt||Rn||stnid||Tk||T4}
4

taps Aggregation,
Fare Calculation

payReq
5

payResp
6

UpdateBlacklist
7

Figure 5.1: Protocol Diagram of the Proposed Solution

2. The attacker is active, and can generate fake tokens and linking tags.

3. The attacker has access to the payment device, as well as a legitimate

signing key.

5.5.4 Assumptions

1. The transport application, and credentials including cryptographic ma-

terial, shall be provisioned to the user’s device using secure best practices

such as GlobalPlatform.

2. The payment networks act as a TSP, and shall subject users to necessary

identification and verification (ID&V) prior to issuing new tokens.

3. Each user is part of a group of users depending on their payment network.

For example, all MasterCard users are part of the same group.

4. The validity of the tokens used is at least 24 hours. This is a configurable

value, in reality, the validity of the token will be based on the perceived

residual risk of exposure on the users’ devices.

5. We assume the security features available via the platform/OS out of

103

the box, will be in place to store tokens, keys, and other cryptographic

material.

6. The user is in possession of an NFC device with a payment application

used for regular tokenised payments such as retail.

7. There is mutual trust between the TrO and the rest of the EMV ecosys-

tem, and the terminals will be provided with the group public keys of

the payment network.

8. Each train station has terminals at entry and exit points. Terminals are

NFC readers equipped with turnstiles to grant or deny entry to users.

5.5.5 Entities

In the following subsections, the functions of the entities that make up the

architecture of the proposed model are described.

5.5.5.1 User

A user in this context will already have a bank account and possibly a bank

card. The user also has a NFC-enabled mobile device as well as a payment

application provisioned to the device.

5.5.5.2 Terminal

The terminal owned and managed by a TrO, and is used to validate that

users have valid tickets on their devices before travelling. The taps made on

terminals at each station are collected and are periodically sent to the back-

office for processing. The TrO also maintains a blacklist of dishonest users

in cases where the user has insufficient funds or in the case of a compromise.

The terminals are periodically updated with the most up-to-date blacklist, to

ensure they don’t allow blacklisted users travel.

104

5.5.5.3 Back-Office

The back-office provides fare management and accounting services on behalf

of the TrOs. The back-office collates and aggregated all the taps from the

terminals, to establish the right fare to charge users. The back-office also the

initiates the process of authorisation via the TSP to recover funds from users’

account. The back-office also manages user-blacklisting, and periodically up-

dates the terminals.

5.5.5.4 Token Service Provider (TSP)

The TSP provides card management services including:

1. Digitising Physical card PANS into tokens.

2. Perform the necessary identification and verification (ID&V) of users

prior to issuing new tokens.

3. Initial and subsequent provisioning of tokens to users’ devices.

4. Translation of tokens back to PANs, to facilitate authorisation of funds

from the users’ accounts.

For the ticketing solution presented in this chapter, we assume the payment

networks will act as the TSP. The rationale behind the decision to use the

payment network as the TSP is that globally there are fewer payment networks

than banks2. Therefore this means that the TO’s terminal will have to keep a

few group public keys for signature verification.

5.5.6 Phases

Our solution is divided into 4 phases: set-up, validation, accounting, and

the blacklisting phase. The specifics of the accounting phase are beyond the

2The EMVco specification on tokenisation indicates that the payment networks can ad-
ditionally act as the TSP, while still maintaining their primary roles in the EMV ecosystem.

105

scope of this chapter. It is however important to mention as it precedes the

blacklisting phase.

5.5.6.1 Setup Phase:

This phase is executed between a user and the payment network. A user

initiates this phase by opting to use the payment application on his device

for transport payments. They both engage in an ID&V process to verify the

user’s identity and bank account, and check if the user’s has any outstanding

transport fares. The process is terminated if any of the checks fail. Otherwise

they go through the key generation process as explained in section 5.5.6. In

the end, the user will have a unique signature key; (A, e, x), a token (Tk), and

a TrO-specific (bsn) securely stored on their device. We assume the TSPs

group public keys to be well known and are provided to the TrOs well before

hand.

5.5.6.2 Validation Phase:

This phase is illustrated in Figure 5.1. We see that a user taps their device on

a terminal at a train station, the terminal sends a challenge to the device as

shown in Message 1. The challenge includes; timestamp (tX), random nonce

(Rn) and the station ID (stnid). The device concatenates the token (Tk) to the

challenge, and signs as explained in the signing phase in section 5.5.6, using

the (bsn) of the TrO. The (tx) could either be (tnt) or (txt) for entry and exit

gates respectively. The device the concatenates (Tk) to the signed message

and sends to the terminal in Message 2. The terminal verifies the signature

using (Gpk) as outlined in verification phase in section 5.5.6. If the signature is

valid, the terminal checks to see if the user’s (T4) is included in the blacklist.

If it doesn’t correspond with any (T4) on the blacklist, the user is allowed

to travel otherwise the user is denied travel (Message 3). Afterwards, the

terminal records a TAP . A TAP includes the challenge signed by the user’s

106

device, the (Tk), and the amount to be charged which is determined in the

accounting phase below. The blacklist check is only needed at the entry gates.

5.5.6.3 Accounting Phase

This is a back-office process where taps of all users for the day are aggregated

to determine the fares to be paid by the users. The office received all the

taps made by users from the terminals as shown in Message 4. The back-

office also initiates the process of payment authorisation by sending a payment

request (payReq) in Message 5, which includes the (Tk) and the amount to

be charged, to the TSP for authorisation. The payment network, acting as the

TSP, translates the token back to a real PAN and authorisation is processed via

the users’ issuing bank as per normal EMV flow. The details of the payment

authorisation is beyond the our scope.

5.5.6.4 Blacklisting Phase

This phase only becomes necessary in cases where an authorisation fails due to

insufficient funds in the user’s account. The TSP sends a transaction decline

message to the TO. The TrO then puts the user’s T4 in its blacklist database

and updates the terminals at the stations with the latest blacklist entries. A

user’s device can also be put in the blacklist in the case of compromise or a

lost device.

5.5.7 Proof of Concept

A Proof of Concept (PoC) was developed to test the feasibility of our proposal

and also analyse it against the requirements mentioned in section Section 5.5.2.

A HCE-based Android application was installed on an NFC device for digital

signature implementation. We adapted an implementation of the digital sig-

nature in [125] which was part of an analysis of group signatures on mobile

devices [126]. For the terminal, we had a Java application using the smartcard

107

I/O API running on a PC; this acted as the terminal at a train station.

Device Manufacturer Operating System RAM

Phone (Nexus 5) LG Electronics Android 5.1.1 (Lollipop) 2GB
Laptop Dell Windows 10 8GB
Reader ACS(ACR1281U) N/A N/A

Table 5.2: Devices Used in Proof of Concept

5.5.8 Lessons Learned and Considerations

Support for extended Application Protocol Data Units (APDUs)3 on NFC

devices is still not as extensive as that for smartcards. Therefore most NFC

devices can only send normal APDUs with a maximum length of 256 bytes. We

realised this was a software-based restriction rather than the NFC controller’s

inability to handle bigger messages. Due to the size of the signature in our

protocol, we modified the Android source to allow the device to send back the

signature in one APDU, rather than in chunks.

Sending a substantial amount of data over the NFC channel may not always

be efficient. Due to the size of the signature we used, we realised the time cost

of compressing the message and decompressing at the terminal’s side is trivial.

We found the BZip2 compression algorithm to be the most efficient.

Most of the parts of the signature can be precomputed; that is those parts

that do not depend on a challenge from the terminal.

5.5.9 Performance Analysis

The total size of Sigx{{tnt/txt||Rn||stnid} ||Tk}||Tk is 3552 bytes, with a 512-

bit key, including 16 bytes for concatenating the token to the signature in

plain text. This is compressed to 1617 bytes, providing 45.7% compression.

We took average timings of individual processes, as well as the total time

3Application Protocol Data Unit is the unit of communication between a device and a
terminal. APDUs are specified in ISO/IEC 7816.

108

CHALL Sign Verify Full Protocol

Average 420.75 9.92 20.5 451.17
Min 405.55 7.65 17.32 430.45
Max 445.63 10.65 23.75 480.03

Table 5.3: Protocol Transaction Times in Milliseconds

it took the full protocol to run over 100 iterations. The mobile device takes

an average of 9.92ms to sign the challenge received from the terminal and

also compress the signature. The Round Trip Time (RTT), i.e. the time

from when the terminal sends the challenge to when it receives the response,

takes on average 420.75ms. We refer to this as CHALL. It is important to

note that about 90% of the RTT is spent on the NFC communication link.

The signature verification on the terminal side, including decompression of the

received data, takes 20.5ms on average. The whole protocol takes on average

451.17ms.

For performance measurements when checking the blacklist, we relied on a

comparative study of Database Management Systems (DBMS) in [127]. Each

DBMS was populated with 1,000,000 records, and the timings for a ‘select’

query for each was taken. The select query emulates the look-up of a user’s

(T4) from a blacklist database. The SQL Server was the fastest and took

18ms, while the slowest was Oracle which took 23ms. These projections show

that the delay introduced by searching a blacklist is trivial and therefore, our

protocol still runs within the accepted transaction time range for transport

usage.

5.5.10 Requirements Analysis

We analysed our proposal against both the security and functional require-

ments mentioned in section Section 5.5.2. Our model meets the offline verifi-

cation requirement because the terminal is able to verify a signature, as well

as run the blacklisting function offline, i.e. without connecting to a back-office

109

or relying on a third party. The protocol, as shown in Section 5.5.9, is within

the acceptable transaction speed range, as stipulated by the efficiency require-

ment. It is worth noting that, currently, NFC devices in HCE only operate at

the lowest NFC data rate of 106kbps4. We found out this limitation is also a

software limitation and not the NFC controller’s inability to operate at higher

data rates. Therefore at higher rates, our solution is expected to be much

faster.

In terms of security, for a signature verified to be valid, it is computation-

ally hard for anyone other than the group manager to reveal the identity of

the actual signer. In the random oracle model, the proof of knowledge that

is part of the signature can be proven in statistically zero knowledge. Also

trying to identify a particular signer with certificate (A, e) requires the adver-

sary to know if logbT1/A, loggT2, and loggT3/g
e are equal. This is assumed to

be infeasible under the decisional Diffie-Hellman assumption. Therefore our

protocol meets the anonymity requirement.

As shown in the key generation phase in Section 5.5.6, the group manager

does not learn any new information about the user’s private key (x), and at

the end of the phase, the group manager only learns ax. Also, because (T1,

T2 and T3) represent an unconditional binding commitments to (A and e).

This implies that if the factorisation of n is feasible, the group signature is a

proof of knowledge of the discrete logarithm of A/a0 [109]. Therefore no entity,

including the transport operator and the TSP – acting as the group manager,

can sign a message on behalf of a user as computing a discrete logarithm

is assumed to be infeasible. Therefore our protocol meets the exculpability

requirement because a user cannot be framed for a false transaction.

In addition, integrity is achieved because it is not possible for anyone with-

out access to the private key (x) to generate a valid signature. Secondly, the

TrO is able to verify that the signed message includes the correct challenge

4NFC supports data rate of 106, 212, 424, and 848kbps

110

it had sent, thereby cryptographically linking the user to that point on the

transport network at that particular time, creating the tap.

User blacklisting is achieved because a legitimate user cannot avoid detec-

tion on the blacklist by forging a false linking base. The (T4) is linked with

(T1) through the proof of knowledge and also the private key x. In addition,

a legitimate user cannot repeatedly cheat the system by signing on a rogue

token with a legitimate credential, because after the first payment request is

declined, the TrO can blacklist the user with the corresponding (T4).

111

5.6 Summary

The work presented in this chapter looks at how tokenisation affects the unique

identification of users in certain scenarios. In particular, how tokenisation calls

into question user blacklisting in transport ticketing has been highlighted. It

has been shown how LGS can be used to link two transactions regardless of

the changing token. This concept is used to create a blacklist of dishonest

users.

The feasibility of the solution has been tested by building a PoC which is

analysed against the outlined functional requirements. The solution can also

be used in use-cases outside of ticketing that rely on the static nature of PANs.

For example, it can be used in retail to link different transactions of a user

(with different tokens) for loyalty and promotional purposes.

112

Chapter 6

Ecosystems of Trusted
Execution Environments

A TEE is a secure and trusted area of the main processor that provides memory

protection, and secure execution for applications (or part of an application) on

a mobile device. The TEE ensures isolation and integrity protection from any

applications running in non-TEE environments of the same device. These se-

curity services make TEEs suitable candidates to increase the attack-resistance

of HCE applications. HCE applications can rely on the TEE to isolate their

cryptographic operations and keys from the rest of the ‘untrusted’ applica-

tions. This idea has been widely suggested in many publications [68,128,129].

However, access to the TEE is not open to users, service providers, or third-

party application developers, due to both commercial and security reasons.

The OEMs restrict the TEE and its functionality for their own internal use,

or for the selected applications they approve [130,131]. The TEE suffers from

the same conundrum as the SE, and current implementational models cannot

be fully utilised by HCE applications, as it is widely hypothesised.

In this chapter, an outline of TEE as a technology and the security services

they provide is given. A brief description of two of the most prevalent TEE

implementations on the market is given. As a solution to the issue of lack

accessibility to TEEs, two possible ecosystem models for TEEs —Security

as a Service and Consumer-Centric models— are proposed. These models,

113

alongside the existent model of TEEs (centralised model) are then compared

according to a set criteria to identify the advantages as well as the shortcomings

of each model.

114

6.1 Trusted Execution Environment

A Trusted Execution Environment (TEE) represents a set of software and

hardware components relied upon to provide a secure storage and execution

environment on devices. The TEE where applicable, forms the backbone of

the device’s Trusted Computing Base (TCB). The TCB of a device is a collec-

tion of all software, firmware, hardware components that are explicitly trusted

to enforce security on a device. Typically, TEEs are logically separated from

the Operating System(OS), applications, and other peripherals running in the

normal execution environment of the device, thereby taking them out of the

TCB . This provides the notion of “Trusted Execution Environment” and

“Rich Execution Environment”(REE) for the trusted/secure and untrusted

sides of the device respectively. There have been efforts to standardise TEEs

by GlobalPlatform [132] through its “Device Committee”, and have published

a set of specifications. The specifications do not insist on any specific archi-

tecture, but specify the software [133] and hardware configurations [134] that

make up a TEE. It also highlights various components that could be used to

host a TEE, as well as resource sharing and memory management between

the Rich OS and the Trusted OS. In the coming section, a description of the

generic services provided by a TEE is given.

6.1.1 TEE Security Services

1. Isolated Execution: A TEE should have the ability to execute a piece

of code in complete isolation from the other applications running on the

device (including the main OS. This offers confidentiality and integrity

of the code and related data at “run time”. For example, a payment

application on a mobile device should be able to generate digital signa-

tures, without other applications observing the process or having access

to the signing keys.

115

2. Secure Storage: A TEE should also provide assurances with regards

to the integrity, confidentiality and in most cases the freshness of data

at rest for the applications. For example, applications such as transit

and payment make use of sensitive data such as cryptographic keys,

passwords and primary account numbers (PANs) that must be protected

against unauthorised access at all times.

3. Remote Attestation: Attestation, means “to vouch for something”. Re-

mote attestation is the ability to vouch for an entity or its characteristics

to a third party. In the context of TEEs, it is used to give assurances

to a service that a piece of software or OS is trustworthy. For exam-

ple, in mobile payments, the issuer can get assurances through remote

attestation on the integrity of the banking application running on the

device. A remote attestation protocol normally begins with an integrity

measurement of the TCB as a whole. This is done by taking a digest

of the code, for example by using a hash function, and signing it with a

key, stored preferably in a hardware RTS. A third party can verify the

signature and compare it against a list of trusted OS hashes.

4. Secure Provisioning: Secure provisioning is the ability to send data to

a device or a particular software component running on the device in a

secure fashion. This gives service providers a way to provision applica-

tions and make relevant updates. For example, in payment applications,

banks require a secure mechanism to deliver the application to the device

of its user. There must be assurances on the integrity of the application

as well as the confidentiality of other cryptographic data.

5. Trusted Path: A TEE should also provide a secure input/output mecha-

nism with which users can interact with applications on the device. For

example, payment applications often require user verification through

PINs or biometrics. The TEE should provide a trusted path between the

116

Monitor

mode

Privileged

mode

User mode

Secure world

0

NS-bit

User mode

Normal

mode

Normal world

1

NS-bit

Figure 6.1: Architecture of TrustZone on a Mobile Device [2]

application and the keypad. This provides protection against malware on

the device, which normally might be able to access sensitive data entered

by user by logging keystrokes, or by more sophisticated methods such

as sniffing data on the physical communication layer. Globalplatform

has published specifications [135] for providing a trusted path through a

TEE on mobile devices.

6.1.2 ARM’s TrustZone

TrustZone is ARM’s security technology solution provided by the more recent

ARM processors. TrustZone achieves security by logically separating hardware

and software resources into two distinct modes, referred to by ARM as the

“secure mode” and “normal mode”(non secure). The resources in the secure

mode cannot be accessed by the resources in the normal mode.

TrustZone Hardware Architecture

The secure/normal world separation is extended to the hardware components,

and this is enforced by a hardware logic in the TrustZone-enabled AMBA3

117

AXI bus fabric [2]. The AMBA3 AXI bus provides an extra control signal,

known as the NS bit, to read and write channels which are on the main system

bus. If NS-bit = 0, then the processor is in the secure mode; otherwise, if

NS-bit = 1 it indicates the processor is operating in the normal mode. This

transition between the two modes is controlled by a mechanism referred to as

the monitor mode as shown in Fig 6.1.

TrustZone also secures peripherals such as interrupt controllers, timers,

and I/O components through the AMBA3 APB peripheral bus. This ensures

that the system is monitored by a task that cannot be interrupted by malware.

The AMBA3 APB peripheral bus is a low gate-count and low-bandwidth pe-

ripheral bus that is connected to the system bus using an AXI-to-APB bridge.

This bridge controls access to the peripherals, ensuring only requests with the

necessary security status reach the peripherals.

The processor switches between the two modes (context switching) in a

time-sliced fashion and is controlled by the “monitor mode”. For an appli-

cation running in normal mode to make use of services offered by another

application in the secure mode, for example to encrypt a document, a special

instruction known as the “Secure Monitor Call (SMC)” is used. SMC imme-

diately sets the NS-bit to ‘0’ and then fully transfers control to the secure

mode. On the other hand, switching back from secure mode to normal mode

is less controlled, and the secure side can directly alter the “Current Processor

Status Register”. So, essentially, the monitor mode can be seen as providing

gate-keeping services between the two modes.

6.1.3 Intel Software Guard Extensions (SGX)

Intel’s SGX are a set of instructions that provide extensions to the Intel ar-

chitecture processors. These extensions provide a TEE within the computer’s

untrusted environment. Intel SGX thus aims to provide confidentiality, in-

tegrity, and replay protection using enclaves [3].

118

Enclave Enclave

Page
Tables

SGX
Module

SGX User
Runtime

SGX User
Runtime

EPC EPCM

Application
Environment

Privileged
Environment

Exposed
Hardware

Instructions
EEXIT
EGETKEY
EREPORT
EENTER
ERESUME

Instructions
ECREATE
EADD
EEXTEND
EINIT
EREMOVE

Figure 6.2: Hardware and Software Architecture of Intel SGX [3]

An enclave is part of the applications memory space which is hardware

protected. An enclave has a reserved area of memory from which it runs,

known as the enclave page cache (EPC). Access to the EPC is protected from

processes outside of the enclave. The OS can manage the enclaves, but cannot

tamper with the code and data within the enclave itself.

The management of an enclave is carried out through a set of instructions.

The ECREATE instruction creates an enclave and also sets the base linear

address as well as the physical address. After the creation of an enclave,

the EADD instruction is used to add relevant code and data to the enclave.

This adds 4KB of protected data. For integrity protection, the EEXTEND

instruction is used to measure the contents of the enclave. This measures 256

bytes at a time; therefore, to measure the whole contents of the enclave, the

instruction is called 16 times [3]. The enclave is then initialised using the

EINIT instruction. This sets the INIT attribute to true, which means the

code in the enclave is ready for execution.

119

6.2 Ecosystem Models for TEE

In this section, the different ecosystem models for TEEs are highlighted.

6.2.1 Centralised Model

This model represents the current state of TEE owenership models. In this

model, the OEM has full control of the TEE service provisioning. At the core,

this is the same ecosystem as the Issuer-Centric Ownership Model in smart-

cards [136]. In the centralised model, only “trusted applications” are allowed

to be hosted on the TEE. These trusted applications in reality represent a

monopoly by the OEM. For example Samsung’s mobile payment solution —

SamsungPay— makes use of the TEE on Samsung devices, when it is not

possible for any other service provider to do the same. From a security point

of view, this model is ideal, however these restrictions limit the potential of

mobile services.

6.2.2 Security as a Service Model

The concept of Anything As a Service (*aaS) is arbitrarily used typically in

cloud computing to refer to something that is provided to end users as a service

through the cloud [137]. For example Back-end as a Service (BaaS) and Data

as a service (DaaS). Using the same concept in TEEs, SaaS is a model were the

OEM still maintains ownership and manages the TEE, but provides security

services to the applications of service providers on a contract basis. As an

example, instead of hosting a ticketing application on the TEE, it’s hosted in

the normal environment of the device, while the TEE does its cryptographic

operations such as digital signatures, and secure key storage.

120

6.2.3 Consumer-Centric Model

This model gives full control of the TEE services, and application provisioning

to the user, therefore, it’s the most flexible of the three models. This model

is similar to the User-Centric Ownership Model (UCOM) for smartcards and

a potential consumer-centric model proposed by GlobalPlatform [138]. This

model is also similar to the current application provisioning mechanism de-

ployed in the smartphone industry, where a user can install or delete any

application as they desire. The user in this model has the privilege of en-

rolling, evoking or blocking access to any application that requests the TEE

services. From the liability point of view, the applications should manage their

own risk mitigation processes and users (or the OEM) might not be liable.

121

6.3 Comparison Between Models

In this section, we set comparison criteria on which we will later compare and

contrast different ecosystem proposals for TEE.

6.3.1 Comparison Criteria

The rationale for constructing these criteria is to illustrate the positives as

well as the shortcomings of individual ecosystem models discussed in previ-

ous sections. Economic considerations may decide the choice of model among

the competing models, however, this does not mean that it is the best pos-

sible model. Nevertheless, the following criteria are based on the potential

elements that might play a critical role in successfully bridging the transition

of smartcard services from specialised hardware (smartcard) to smartphones.

1. Market Segmentation: Is the proposed model restrictive to a level that it

might create pockets of market access? In market segmentation, certain

applications might only be available on particular devices due to the

business relationship between service providers and OEMs.

2. Scalability: The model enables a wide scale deployment of a number

of applications, from heterogeneous service providers, therefore serving

applications with varied and potentially changing requirements.

3. Flexibility: The model is flexible in a sense that a small service provider

can also gain access to TEE services like a big corporation can.

4. Impartiality: The model does not discriminate any particular or set of

service provider(s). Any service provider that abides by the security and

privacy policies set by the model is allowed to access TEE services.

5. Consumer-Involvement: Does the consumer (users) have any involve-

ment in either provisioning or evoking the TEE services to individual

122

service providers?

6. Open Provisioning: Any service provider can create an application re-

quiring access to the TEE services and potentially use these services

without requiring expansive and potentially long approval processes set

by OEMs.

7. Closed Provisioning: The provisioning of applications is solely decide by

a central authority, the OEM for example.

8. User Privacy: A set of applications on a smartphone might also signify

potential privacy information about a user. Therefore, does the model

reveal the set of applications using the TEE services to an external entity

including OEMs, and/or other service providers?

9. Application Intellectual Property (IP) Protection: The model does not

require the service provider to reveal the source code of their application

to the entity that provisions the access to the TEE services.

6.3.2 Comparison and Discussion

Based on the defined criteria in the previous section, the comparison is shown

in Table 6.1.

For the SaaS model, most of the partially met criteria is due to the nature

of the model. It does provide flexibility to small service providers to gain

access to secure services from TEE, without going through the OEMs’ approval

model. For the criteria impartiality we have marked all models except the

consumer-centric one as partially meeting the criteria, for the reason that

there is a centralised entity and guaranteeing its impartiality would be difficult.

However, for the consumer-centric model, it was marked as meeting the criteria

in full because users can give any application access to the security services

provided by the TEE.

123

Table 6.1: Comparison of Different Ecosystems for TEE Deployment
Criteria Centralised Security as Consumer

Model Service Centric
1) Market Segmentation H# H#
2) Scalability H# H#
3) Flexibility #
4) Impartiality H# H#
5) Consumer-Involvement # H#
6) Open Provisioning # H#
7) Closed Provisioning H# #
8) User Privacy # #
9) Application IP Protection # H#

Note: if criteria is fully satisfied, H# if criteria is partially met and # if
criteria is not satisfied.

Centralised models do not fare well on the criteria including open provi-

sioning, consumer-involvement, user privacy and applications IP protection.

The reason behind this is the process which an application has to go through

before getting access to the TEE. It can be argued that App Stores man-

aged by Apple and Google already do so. However, most of these applications

might not have proprietary code like banking, transport-ticketing and mobile

network operators (soft-SIMs) might have. Such application, along with other

high security sensitive applications, might not accept it.

The consumer-centric model meets the highest number of criterion in com-

parison to all other models discussed in this chapter. It might be argued

that such a model might introduce security issues, like a malicious application

can also run in the TEE. This is possible, but TEE by no means provide an

assurance that only non-malicious application code will execute in it. Such as-

sumptions are based on prior vetting of an application by OEMs and/or TAP,

by analysing the application source code. This, as discussed before, might not

be preferable to a large set of application providers.

124

6.4 Making a Case for Security as a Service

Applications such as transit and payments that require higher levels of security

that initially relied on hardware modules (such as smartcards and SEs), are

increasingly transitioning to the mobile environment. To provide comparative

levels of security, the TEE is a well-established technology to provide security.

However, as discussed in this chapter, the centralised model does not currently

provide the flexibility, for service providers to fully utilize the TEEs on their

customers devices. This is partly due to commercial reasons, as well as the

design architecture of TEEs. The current design architecture of TEEs cannot

support multi-party party access to its services. This makes the idea of having

a user-centric model of TEEs not feasible.

However, the SaaS model provides a bridge between the two extremes. The

applications of service providers can utilise the security services of the TEE,

without having complete control over the provisioning of applications or the

general management of the TEE. From a commercial perspective, this also

provides a middle ground for all the entities involved. The service providers

and users have higher levels of security, while the OEMs still control their

TEEs, and also enjoy the dividends of the security services they provide.

125

6.5 Summary

In this chapter, the issue of lack of accessibility to the security services provided

by the TEE was discussed. To address the issue, two ecosystem models where

considered. The user-centric model proved to be the most desirable, but the

assumptions that would need to be in place for it to be successful are not

realistic. The SaaS model, though not the most desirable, it seems to be the

most feasible model to address the issue. In the next chapter, a novel on-device

tokenisation framework using the TEE is proposed. This is an example of how

the OEM can provide generic security services to service providers (such as

transport operators), without giving unfettered access to the TEE.

126

Chapter 7

On-device Tokenisation

7.1 Introduction

The state-of-the-art in tokenisation is the periodic provisioning of tokens and

related cryptographic data to the device. The EMVCo specification [64] does

not dictate the validity of tokens, it allows both single and multiple use tokens.

The validity of the tokens is typically determined by factors such as; the

perceived level of risk on the payment device, the value of the transactions,

payment use-case e.t.c. Consequently, the shorter the validity of tokens, the

more frequent the process of token provisioning occurs.

In this chapter, the potential shortcomings of implementing tokenisation in

its classic form are discussed. These issues show the need for innovative think-

ing in implementing tokenisation in certain scenarios. To make improvements

on these shortcomings, and to build up on the work presented in Chapter 5, a

novel tokenisation framework — On-device Tokenisation — is proposed. On-

device tokenisation using Format Preserving Encryption (FPE), and relies on

the TEE on the mobile devices to securely generate and store tokens. This re-

moves the need to periodically provision new tokens to the mobile device. The

tokenisation framework proposed also uses a cryptographically secure pseudo-

random number generator to enable the Token Service Provider (TSP) and

the mobile device to generate synchronised tokens on each side, instead of

127

de-tokenisation, as it is in the classic tokenisation model.

The framework envisages the OEMs playing the role of TSPs (see Sec-

tion 3.7), and generating tokens through trusted applications on the TEE.

This is a fair assumption since the OEMs have unfettered access to the TEEs

on the devices they manufacture. It also makes sense to envision OEMS as

TSPs considering the fact that Apple and Google jointly control %99.6 of the

global smartphone market [139].

A PoC was implemented to have an idea of the performance of the FPE

algorithms on mobile devices which to the best of our knowledge has not been

published before. It is worth mentioning however that the PoC fell short of

implementing the FPE algorithm in a TEE itself, and was implemented in the

normal world of the mobile device. This will form part of the future research

direction of the thesis.

128

7.2 Shortcomings of Tokenisation

This section discusses the shortcomings of tokenisation which the work in this

chapter aims to solve:

Additional Cost: Although the cost of tokenisation is low compared to

other security mechanisms (see Table 4.1), there is the cost generating and

provisioning new token to the device [140]. In high-risk scenarios such as

HCE, tokens are expected to have a shorter validity, hence a higher frequency

of token generation and provisioning. This translates to additional costs in

processing, which likely to be incurred by the merchants and indirectly trans-

ferred to the users [141].

Connectivity: Token provisioning requires the mobile device to have con-

nectivity, therefore single use tokens cannot be used in scenarios that connec-

tivity cannot be guaranteed. This requirement contradicts one of the fun-

damental functional requirements of mobile devices in ticketing, (see Sec-

tion 5.5.1), because connectivity cannot be guaranteed in certain scenarios

such as; underground train stations and moving vehicles.

Potential Privacy Compromise: The use of ‘limited time’ time tokens

has the potential to compromise user-privacy in ticketing systems. For example

if the validity of the token is one week, the transport operator can potentially

track the journeys of a user until a new token is issued at the end of the week.

While this is better than having a PAN which is static, there is still room for

improvement with regards to privacy protection.

129

7.3 Related Work

Tokenised payments in offline environments were considered by Jayasinghe et

al. in [142]. The author’s considered payment scenarios where connectivity

cannot be guaranteed. They proposed a tokenisation mobile payments pro-

tocol based. Their solution uses risk analysis techniques similar to velocity

checking and floor-limit checks as specified by EMVCo (see page. 111–113

in [143]). The main drawback on this proposal is the efficiency of the imple-

mented protocol. According to the authors, a transaction using their protocol

is expected to take about 3.9 seconds on average. This makes it unsuitable for

use in transport ticketing payments or even retail payments (see Section 5.5.1).

A framework for enhancing tokenisation using ‘dynamic transaction tokens’

was proposed by Jayasinghe et al. in [144]. The authors proposed the use of

a fresh token per transaction (dynamic), which are generated in the SE of a

smartphone. The fundamental issue with this proposal is that if the payment

application has access to the SE, then tokenisation will not be required since

the SE is secure enough to hold the PAN itself.

The concept of ‘Updatable Tokenization’ was introduced by Cachin et al.

in [145]. They considered the problem of re-keying tokenisation algorithms

while maintaining the referential integrity1 of already tokenised data. The

authors argue that current tokenisation systems require the whole data set to

be re-tokenised with a new key any time a key update is carried out, otherwise

referential integrity is lost. As a solution, the authors proposed a scheme where

a new key and a tweak is used to generate a set of tokens for a particular

host, by the tokenising entity. The host can use the same tweak to generate

a similar set of tokens, which are used to roll forward previously generated

tokens. Their solution is designed for the storage management of token in the

back-office systems of TSPs. The solution presented in this chapter defers to

1Referential integrity here means it should be possible to previously generated tokens to
the original PAN, regardless of the Key used.

130

this because the front-end generation and use of tokens is the focus, rather

than how they are stored.

7.3.1 Encryption of PANs

The encryption of PANs to create tokens presents two issues that the frame-

work presented considers; tweaking of the underlying algorithm, and handling

Luhn checks.

Tweaking in cryptography is a process of including an additional input

(tweak) to a block-cipher, alongside the usual key and plaintext. The use

of tweaks in cryptography was formalised in 2002 by Liskov et al. in [146].

Tweaks are used to increase the otherwise limited number of possible values

of a short plaintext. Recall that only the account identifier (Digits 7 to final

number minus 1) part of the 16-19 digit PAN are encrypted (see Fig. 3.4).

Note that in a database 100-million PANs, at least 100 PANs will be expected

to have the same ciphertext digits (but the unencrypted part will be different)

[147].

The tweak used for the tokenisation framework is a random number gen-

erated from a shared seed value S. For the random number generation, any

deterministic random number generator can be used. For the purpose of the

framework presented here, we assume the existence of a secure random num-

ber generator such as the ones recommended by the National Institute of

Standards and Technology (NIST) in [148]. The deterministic random num-

ber generation is required to allow both the TSP and the mobile device to

generate synchronised seedsS.

131

7.4 Format Preserving Encryption (FPE)

Some applications such as in payments processing, work based on industry

defined data formats and will therefore require any use of cryptography to

preserve the required format. For example encryption of the PAN ‘1314 5678

9743 1265’ should result in a ciphertext of ‘2314 5463 8965 5482’. However,

that is not the way traditional cryptographic algorithms work. For exam-

ple, block-ciphers will pad the plaintext to the size of the underlying block

if necessary and output the ciphertext in Hex or Base64 formatting. Take

the DES-encryption of the PAN; ‘1314 5678 9743 1265’ for example. The re-

sulting ciphertext is; ‘8f8cbc3c86908031a1c229cbfb889c4d571a57b4372c8641’.

This remained an open problems in cryptography until the initial solutions

were proposed in 1997 by Smith and Brightwell in [149], and referred to it as

“datatype-preserving encryption”.

Nevertheless, the definitions of a cryptographically secure2 FPE were first

given by Black and Rogaway in [150]. They proposed three ways to achieve a

solution: the prefix method, the cycle-walking method, and the feistel struc-

ture method. The FPE used for the work in this chapter is the FF1 algorithm,

the“FF” indicates that is format-preserving and based on a feistel structure.

FF1 was submitted by Spies. et al. in [147] as a draft NIST submission and

was later accepted and published as part of a NIST specification in [4]. A

description of how feistel structures work is given below.

7.4.1 Feistel Structure

The feistel structure (also known as a Feistel network) is symmetric mechanism

used in the construction of block-ciphers. It is made-up of several iterations

of a reversible transformation, these iterations are referred to as rounds. The

reversible transformation consists of the following steps:

2with security provably related to the security of the underlying block cipher in use

132

Major Industry
Identifier (MII)

Issuer Identification Number (IIN) or
Bank Identification Number (BIN)

Luhn Check digit

Account Identifier

4677 8504 0124 6816

Figure 7.1: Layout of an On-Device Token

• Split the data into two parts A and B

• Apply keyed function, FK to one part of the data, which is used to

modify the other part

• In the next round i, the two parts of the data are swapped and the

second step is repeated.

The encryption and decryption functions using the feistel structure are

shown in Fig. 7.2. For simplicity, the diagram only shows the four rounds,

but the FF1 requires ten rounds according to the specification.

7.4.1.1 Encryption and Decryption

The length of the two plaintext strings A & B is denoted by u & v such that

u+ v = n. For encryption, the FF1 takes as input the plaintext X as numeral

strings, an optional tweak t and an encryption K and outputs ciphertext Y .

For each Round, the function FK is applied to one of the strings Bi, alongside

133

Figure 7.2: Encryption and Decryption Functions using a Feistel Structure.
Source: [4]

additional variable; the length n, the round number i and the tweak t. The

output of this operation is used to modify the other half of the string Ai

through modular addition +. The resulting string is stored as a temporary

variable Ci, which is used as the Bi+1 in the next round, and Bi becomes Ai+1.

The decryption process is similar to that of encryption, with the following

differences; the order of the round indices is reversed, modular subtraction is

used instead of addition. Also, the input to the round function Fk is changed

to Ai+1, and the output is used to modify Bi+ 1 to produce Ai.

134

7.5 Proposed Tokenisation Framework

7.5.1 Entities

1. Mobile Device (device): The mobile device, held by a user, is an

NFC phone with a Trusted Execution Environment (TEE) where trusted

applications and cryptographic operations are carried out.

2. TSP-app: The TSP-app is a trusted application issued and installed

into the TEE within a user’s device. The procedure for installing the

TSP-app typically will involve an Identity and Verification (ID&V) step

to assert the identity of the user, this is beyond our scope.

3. Token Service Provider (TSP): The TSP is the entity that manages

the tokenisation. It is in charge of issuing the TSP-app to the users’

devices, issuing of the initial token into the TSP-app, and also the deto-

kenisation and verification of tokens during transaction processing to

determine their validity. The TSP and its systems serves as the ‘source

of truth’ for all tokens of users at any time.

4. Merchant: The merchant is a provider of goods and/or services with a

point-of-sale to receive payments made via the users’ devices. As part of

the transaction, the merchant receives a token, which must be verified

with the TSP before the transaction can be authorised. The details of

the relevant transaction data that will usually be passed here is beyond

out scope.

7.5.2 Phases

The On-device tokenisation framework is divided into five (5) distinct phases

as presented below.

135

7.5.2.1 Set-up Phase

This is a one-time process carried out to configure the user’s device to use the

on-device tokenisation framework. It is assumed that the TSP has installed

the TSP-app within the TEE of users’ devices, and a shared key Ks has been

established between them.

7.5.2.2 Tokenisation Request Phase

Following a successful ID&V step, the user is prompted to enter the original

PAN for the payment card to be tokenised into the TSP-app, alongside the

result of the ID&V step is sent to the TSP-app through a trusted path. See

for a description of trusted path. Note that at no point is the PAN stored on

the device, not even in the TEE.

The TSP-app encrypts the information received with the shared key Ks,

and sends it to the TSP. We assume the TSP and the TSP-app within the TEE

of the users’ devices have a secure interface between them such as one specified

by GlobalPlatform in the Device TEE Sockets API Specification [151].

7.5.2.3 Master Token Issuance

The TSP chooses a Master Token Mt (which has the respective OEMs IIN as

leading digits) for a each PAN at random and stores the relationship. Mt is

sent to the device, alongside the chosen shared seed S. Both Mt and S are

sent to the device ready to be used for the subsequent generation of tokens

on-device.

7.5.2.4 Token Generation

The token is generated by the TSP-app prior to a transaction with a merchant.

The IIN and the luhn check digit are stripped from the Mt, to be left with

11-digit ti; which is the part that would have been the account identifier if it

was a real PAN (see Fig. 7.1). The FPE encryption algorithm takes as input;

136

the 11-digit ti, the tweak t generated from the shared seed S, the shared key

Ks and outputs an 11-bit string tx. The IIN is appended to tx, the luhn

check digit of the whole string is then calculated and appended to produce the

on-device per transaction token Tk.

7.5.2.5 Detokenisation

Detokenisation is simply the reverse of the token generation process. When

a merchant receives a token from the user’s device during a transaction, it

uses the IIN to determine which TSP to route the transaction to. The TSP

receives the token and then strips the IIN and the luhn check digit from Tk to

recover tx. The TSP then inputs tx the pre-shared key Ks, the tweak t which

it can generate using the seed S into the FPE algorithm to get ti, which acts

the account identifier of the user. Using ti, the TSP can effectively route the

transaction through the payment network for authorisation as usual.

7.5.3 Proof-of-Concept and Testing

The tokenisation framework was implemented as an Android application (TSP-

app) on Samsung S5 smartphone, to test for performance. The Android im-

plementation itself is based on an earlier Java implementation for the FPE

algorithm published in [152]. The goal of the implementation was not to

asses the security of FPE algorithms, but rather, to test their performance on

a mobile device. The process of token generation happens in the background

(within the TEE) and completely invisible to the user. The Luhn check func-

tionality was also implemented as part of the TSP-app to ensure that the

tokens generated conform to the EMV specifications. The token generation

process on the device takes an average 19.6 milliseconds over 100 runs. The

performance of the detokenisation is not important since that happens later

at the TSPs back-office.

137

7.6 Summary

In this chapter, a novel on-device framework has been presented. The goal was

to provide the preliminaries for a different approach to tokenised payments

especially in ticketing. The idea of using one-time on-device tokens is suitable

for ticketing because connectivity is not required for token provisioning. The

performance testing shows that the processing-times for FPE algorithms is

trivial, and therefore their efficiency is suitable for ticketing. In addition, the

framework presented in this chapter can be used in other usecases apart from

ticketing. For example, the Second Payments Directive (PSD2) regulation

mandates banks to provide 3rd Party access to users’ account if the users give

their consent. The on-device tokenisation framework can potentially be used

as a mechanism to prove the to prove user’s consent to the their respective

bank.

138

Chapter 8

Conclusion

This thesis set out to investigate the potential impact HCE may have on the

overall security of mobile devices in ticketing. As transport operators transi-

tion from closed-loop to open systems, this thesis also explores this relatively

new phenomenon, and determines potential problems that require different

approach. The conclusions to the main contributions of the thesis, and the

research questions were summarised.

A comparative testing of hardware SE-based card emulation and HCE-

based card emulation was conducted. HCE-based applications proved to be

the faster, what is interesting however is the significant variation in the HCE

execution times. This behaviour could call into question its use in transport

ticketing, where the performance is paramount. It also shows that security

controls such as distance-bounding protocols used for combating relay attacks

will not be feasible for HCE applications because they rely on knowledge of

expected execution times. From investigations conducted during the course

of this thesis, it is evident that the shift from SE-based to HCE-based NFC

transactions has significant impacts on transport ticketing. HCE in compar-

ison to the SE, provides a richer user interface, superior processing power,

and a more flexible ecosystem for the transport operators. However, in terms

of security, HCE undeniably introduces security risks to transport ticketing

139

data and processes. The security mechanisms to mitigate these risks and in-

crease the attack resistance of HCE applications exists. Nevertheless, analysis

conducted in this thesis show that not all of mechanisms are feasible for tick-

eting. The choice of which security mechanism will largely depend on specific

use-cases, level of perceived risk, and cost.

In addition to the security mechanisms mentioned in Chapter 4, it is impor-

tant to take other supplementary security measures. Periodic user-verification

and context-aware security checks before important ticketing functions to mit-

igate the risk of exposure. For example, prior to the ticketing application or

ticket provisioning, the device can be verified to ensure it is not rooted.

The current state and maturity of these security mechanisms make tokeni-

sation the most feasible mechanism. This is partly because it can be used

with devices out-of-the-box and does not require special agreements or set-up,

as is the case with using WBC or TEEs. Tokenisation is also the preferred

security mechanism for the payments industry. Therefore as ticketing systems

increasingly transition to open ticketing systems, transport operators will have

to design ticketing systems that conform to the process in the payment ecosys-

tem.

Utilizing the well-established payment infrastructure has a lot of advan-

tages for transport ticketing. However, the problem of user blacklisting in the

case of tokenised payments shows an example of why payment mechanisms

should not be implemented out-of-the-box for ticketing without rigorous con-

siderations. The protocol presented in Chapter 5 provides a solution to the

blacklistability problem of tokenised payments that is suitable for ticketing.

And its implementation also shows that mobile devices are capable of effi-

ciently handling complex cryptographic operations to provide stronger levels

of security for ticketing. Despite the fact that the LGS used resulted in a pay-

load of considerable size (2552 bytes, compressed to 1617 bytes), modifications

to the Android OS prove that the NFC controller of the device is capable of

140

sending messages that are bigger than what the OS limits it to. This further

proves the capabilities of mobile devices today in handling such algorithms.

The problem of lack of accessibility to TEEs on mobile devices was high-

lighted in Chapter 6. Potential ecosystem models that will provide more ac-

cess to TEEs were also discussed. A comparison of these models show that the

user-centric model to be the most favourable based on the set criteria. Nev-

ertheless, by virtue of the security design of current TEE implementations, it

is not realistic to envision TEEs in a user-centric ecosystem. In this light, the

SaaS model provides a middle ground to maximise the full potential of the

TEE, without the OEMs necessarily giving full access to it.

The novel tokenisation framework presented in Chapter 7 builds up on the

SaaS model discussed in Chapter 6. A method of generating tokens in the

TEE of the user’s device using FPE algorithms was proposed. This eliminates

the need to periodically provision new tokens to the device. And for open tick-

eting systems, it enhances user privacy because it is possible to use one-time

tokens, thereby protecting the user’s journey from tracking. Implementation

on a mobile device shows that the framework is efficient for ticketing, and fur-

ther asserts the fact that mobile devices are capable of providing better and

innovative security solutions.

8.0.1 Future Work

During the course of the work presented in this thesis, they’ve been areas that

required further investigations to be carried out. But due to limited resources,

in terms of time and access, it was not possible. These areas will be further

investigated in the future. These are summarised below:

1. Conducting a more comprehensive testing: In this thesis, all proposals

presented in this thesis where tested on single devices, to build upon the

initial findings, further work is planned to consider testing on additional

platforms to have a more representative view. In addition, the work in

141

Chapter 5 and Chapter 6 were implemented in the ‘normal world’ of the

mobile devices due to limitations on accessing the TEE. As future work,

the plan is to provide similar implementations on the TEE, to test its

efficiency.

2. More Efficient forms of blacklisting: The future plan is to investigate

more efficient methods of achieving linkability while protecting the pri-

vacy of users. The blacklisting solution presented in Chapter 5 resulted

in a payload that is rather big, and requires compression to fit into an

APDU. While this works, a solution like this may not be suitable for a

large-scale implementation. We also aim to consider this idea of link-

ability in other use-cases such as retail, where merchants can use the

similar protocols to offer users bespoke services while still respecting

their privacy.

142

Bibliography

[1] Transport for London. Top-line Contactless Figures. Statistics, TfL,

London, UK, July 2017.

[2] ARM Limited. ARM Security Technology Building a Secure System

using TrustZone Technology, April 2009.

[3] Intel Corporation. Intel Software Guard Extensions Programming Ref-

erence, October 2014.

[4] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:

Methods for Format-Preserving Encryption. NIST Special Publication,

SP-800-38G, 2016.

[5] ISO/IEC. Identification cards – Contactless integrated circuit cards –

Proximity cards . Technical Report 14443, International Organization

for Standardization (ISO), 2008.

[6] ISO/IEC. Information Technology Identification Cards Financial

Transaction Cards 7813. Standard, International Organization for Stan-

dardization, Geneva, CH, 2006.

[7] Marie-Pier Pelletier, Martin Trpanier, and Catherine Morency. Smart

Card Data Use in Public Transit: A literature Review. Transportation

Research Part C: Emerging Technologies, 19(4):557 – 568, 2011.

[8] Sandeep Tamrakar, Jan-Erik Ekberg, and N. Asokan. Identity Veri-

fication Schemes for Public Transport Ticketing with NFC Phones. In

Proceedings of the Sixth ACM Workshop on Scalable Trusted Computing,

STC ’11, pages 37–48, New York, NY, USA, 2011. ACM.

143

[9] Serge Chaumette, Damien Dubernet, Jonathan Ouoba, Erkki Siira,

and Tuomo Tuikka. Architecture and Comparison of Two Different

User-Centric NFC-Enabled Event Ticketing Approaches, pages 165–177.

Springer, Berlin, Heidelberg, 2011.

[10] Jinguang Han, Liqun Chen, Steve A. Schneider, and Helen Tre-

harne. PPETS-FGP: Privacy-Preserving Electronic Ticket Scheme

with Fine-Grained Pricing. Computing Research Repository (CoRR),

abs/1706.03016, 2017.

[11] U. B. Ceipidor, C. M. Medaglia, A. Marino, M. Morena, S. Sposato,

A. Moroni, P. Di Rollo, and M. L. Morgia. Mobile ticketing with nfc

management for transport companies; problems and solutions. In 2013

5th International Workshop on Near Field Communication (NFC), pages

1–6, Feb 2013.

[12] Rosario Giustolisi. Free rides in denmark: Lessons from improp-

erly generated mobile transport tickets. In Helger Lipmaa, Aikaterini

Mitrokotsa, and Raimundas Matulevičius, editors, Secure IT Systems,

pages 159–174, Cham, 2017. Springer International Publishing.

[13] Dimitrios Tsamboulas and Constantinos Antoniou. Allocating Rev-

enues To Public Transit Operators Under an Integrated Fare System.

Transportation Research Record: Journal of the Transportation Research

Board, (1986):29–37, 2006.

[14] Transport Committee. The Future of Ticketing. Technical report, Lon-

don Assembly, 2011. Greater London Authority.

[15] The UK CARDS Association (UKCA). Contactless Statis-

tics. http://www.theukcardsassociation.org.uk/contactless_

contactless_statistics/index.asp, April 2017.

144

[16] Briony Krikorian-Slade, Adrian Burholt, and Nicola Moir. Contactless

Transit Framework. Standard Version 2.0, UK Cards Association, Lon-

don, UK, 2016.

[17] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van

Rossum, Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs. Dis-

mantling MIFARE Classic, pages 97–114. Springer, Berlin, Heidelberg,

2008.

[18] David Oswald and Christof Paar. Breaking Mifare DESFire MF3ICD40:

Power Analysis and Templates in the Real World, pages 207–222.

Springer, Berlin, Heidelberg, 2011.

[19] EMVCo. Mobile Product Level 1 Type Approval – Administrative Pro-

cess. Specification Version 2.2, EMVCo, LLC, June 2017.

[20] EMVCo. Terminal Type Approval PCD Level 1 Administrative Process.

Specification Version 2.6b, EMVCo, LLC, December 2016.

[21] Branden R. Williams and Anton Chuvakin. PCI Compliance: Under-

stand and Implement Effective PCI Data Security Standard Compliance.

Syngress Publishing, 4th edition, 2014.

[22] DNA. U.S. EMV Debit Implementation Guidelines for POS Acquirers.

Report Version 1.0, Debit Network Alliance, August 2014.

[23] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. User

Privacy in Transport Systems Based on RFID E-Tickets. In Proceed-

ings of the 1st International Workshop on Privacy in Location-Based

Applications, Malaga, Spain, October 9, 2008.

145

[24] Ghada Arfaoui, Jean-François Lalande, Jacques Traoré, Nicolas

Desmoulins, Pascal Berthomé, and Säıd Gharout. A Practical Set-

Membership Proof for Privacy-Preserving NFC Mobile Ticketing. CoRR,

abs/1505.03048, 2015.

[25] Giuseppe Ateniese and Gene Tsudik. Some Open Issues and New Direc-

tions in Group Signatures, volume 1648 of Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics. 1999.

[26] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations

of Group Signatures: Formal Definitions, Simplified Requirements, and

a Construction Based on General Assumptions, pages 614–629. Springer,

Berlin, Heidelberg, 2003.

[27] Arnau Vives-Guasch, Magdalena Payeras-Capella, Macià Mut-

Puigserver, and Jordi Castellà-Roca. E-Ticketing Scheme for Mobile

Devices with Exculpability, pages 79–92. Springer, Berlin, Heidelberg,

2011.

[28] Arnau Vives-Guasch, Magdalena Payeras-Capell, Maci Mut Puigserver,

Jordi Castell-Roca, and Josep Llus Ferrer-Gomila. A secure e-ticketing

scheme for mobile devices with near field communication (nfc) that in-

cludes exculpability and reusability. IEICE Transactions, 95-D(1):78–93,

2012.

[29] Thyla Joy van der Merwe. Investigating the use of Elliptic Curve Cryp-

tography in Transport Ticketing. Technical report, Royal Holloway, Uni-

versity of London, 2015.

[30] Makoto Eguchi, Susan Fredholm, Shan Liu, Paulina Ponce de

Leon Barido, and Jacqueline Ye. Policy Issues in Implementing Smart

Cards in Urban Public Transit Systems. 2007.

146

[31] Ghada Arfaoui. Design of Privacy Preserving Cryptographic Protocols

For Mobile Contactless Services. PhD thesis, Université d’Orléans, 2015.

[32] Transit and Contactless Open Payments: An Emerging Approach for

Fare Collection. White paper, Smart Card Alliance Transportation

Council, November 2011.

[33] Visa. The Future of Ticketing: Paying for Public Transport Journeys

Using Visa Cards in the 21st Century. Whitepaper, Visa Europe, Jan-

uary 2013.

[34] MasterCard. Contactless Performance Requirement. Online, Master-

Card Incorporated, March 2014.

[35] EMV Contactless Specifications for Payment Systems: Book D - EMV

Contactless Communication Protocol Specification. Specification Ver-

sion 2.6, EMVCo, LLC, March 2016.

[36] Visa. Transactions Acceptance Device Guide (TADG). Specification

Version 3.0, Visa Europe, May 2015.

[37] Gilles de Chantérac and Jean-Louis Graindorge. Focus Paper on Pri-

vacy in Transport IFM Applications. IFM Project, March 2009. Draft

Deliverable 2.2.

[38] Arnau Vives-Guasch. Contributions To The Security and Privacy of

Electronic Ticketing Systems. PhD thesis, Universitat Rovira i Virgili,

2013.

[39] ITSO Ltd. Interoperable Public Transport Ticketing using Contactless

Smart Customer Media Part 2: Customer Media Data and Customer

Media Architecture. Standard: ITSO TS 1000-2 Version 2.1.4, ITSO

LTD, Milton Keynes, UK, February 2010.

147

[40] ITSO Ltd. Technical Specification Interoperable Public Transport Tick-

eting using contactless smart customer media Part 3: Terminals. Stan-

dard: ITSO TS 1000-3 Version 2.1.4, ITSO LTD, Milton Keynes, UK,

February 2010.

[41] ITSO Ltd. Technical Specification Interoperable Public Transport Tick-

eting using Contactless Smart Customer Media Part 4: HOPS. Stan-

dard: ITSO TS 1000-4 Version 2.1.4, ITSO LTD, Milton Keynes, UK,

February 2010.

[42] ITSO Ltd. Technical Specification Interoperable Public Transport Tick-

eting using contactless smart Customer Media Part 6: Message data.

Standard: ITSO TS 1000-6 Version 2.1.4, ITSO LTD, Milton Keynes,

UK, February 2010.

[43] ITSO Ltd. Technical Specification Interoperable Public Transport Tick-

eting using Contactless Smart Customer Media Part 7: ITSO Security

Subsystem. Standard: ITSO TS 1000-7 Version 2.1.4, ITSO LTD, Mil-

ton Keynes, UK, February 2010.

[44] Mark Turner and Ruth Wilson. Smart and Integrated Ticketing in The

UK: Piecing Together the Jigsaw. Computer Law & Security Review,

26(2):170–177, 2010.

[45] Sarah Thomas. Oyster Card Circulation, December 2016. FOI: Trans-

port for London.

[46] W. Rankl and W. Effing. Smart Card Handbook. Wiley, 2010.

[47] NFC-Forum. NFC Forum Specification Architecture. Technical report,

NFC-Forum, 2006.

148

[48] ECMA-340. Near Field Communication - Protocol and Interface

(NFCIP-1). Technical report, European Computer Manufacturers Asso-

ciation, 2004.

[49] ISO/IEC. Information technology – Telecommunications and informa-

tion exchange between systems – Near Field Communication – Interface

and Protocol (NFCIP-1). Standard, International Organization for Stan-

dardization, Geneva, CH, 2013.

[50] Android. Android Developer Guide – Host-based Card Emulation, 2013.

[51] Micheal Roland. Software Card Emulation in NFC-enabled Mobile

Phones: Great Advantage or Security Nightmare. In Fourth Interna-

tional Workshop on Security and Privacy in spontaneous Interaction

and Mobile Phone Use, Newcastle UK, June 2012.

[52] Doug Yeager. Added NFC Reader Support for Two new Tag Types:

ISO PCD type A and ISO PCD type B, 2012. GitHub Repository.

[53] Linda Sui. Android Captures Record 88 Percent Share of Global Smart-

phone Shipments. Statistics, Strategy Analytics, Boston, USA, Novem-

ber 2016.

[54] Smart Card Alliance. Host Card Emulation (HCE) 101. Technical Re-

port MNFCC-14002, SmartCardAlliance, August 2014.

[55] Martin Emms, Budi Arief, Leo Freitas, Joseph Hannon, and Aad van

Moorsel. Harvesting High Value Foreign Currency Transactions from

EMV Contactless Credit Cards without the PIN. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Se-

curity, pages 716–726. ACM, 2014.

149

[56] Mariusz H. Jakubowski, Chit Wei (Nick) Saw, and Ramarathnam

Venkatesan. Tamper-Tolerant Software: Modeling and Implementation,

pages 125–139. Springer, 2009.

[57] H. Guo and B. Jin. Forensic Analysis of Skimming Devices for Credit

Fraud Detection. In 2010 2nd IEEE International Conference on Infor-

mation and Financial Engineering, pages 542–546, Sept 2010.

[58] ISO/IEC. Identification cards – Identification of issuers – Part 1: Num-

bering system. ISO/IEC 7812-1. Standard, International Organization

for Standardization, Geneva, CH, 2015.

[59] Hans Peter Luhn. Computer for Verifying Numbers, August 23 1960.

US Patent 2,950,048.

[60] Christian Radu. Implementing Electronic Card Payment Systems.

Artech House computer security series. Artech House, 2003.

[61] Mike Burden. EMV Considerations for Transit. Technical report, Smart

Card Alliance, 2013.

[62] Sandra Lambert and Jeff Stapleton. Cybersecurity vs. tokenization.

Technical report, RSA Conference Presentation, February 2017.

[63] PCI Security Standards Council. Tokenization Product Security Guide-

lines. Technical Report Version 1.0, PCI Security Standards Council,

April 2015.

[64] EMVCo. EMV Payment Tokenisation Specification Technical Frame-

work. Standard Version 1.0, March 2014.

[65] Steve Pannifer, Dick Clark, and Dave Birch. HCE and SIM Secure

Element: Its Not Black and White. Technical report, Consult Hyperion,

Guildford, Surrey, June 2014.

150

[66] Michael Roland and Josef Langer. Comparison of the Usability and

Security of NFC’s Different Operating Modes in Mobile Devices. E&I

Elektrotechnik und Informationstechnik, 130(7):201–206, 2013.

[67] C. Saminger, S. Grnberger, and J. Langer. An nfc ticketing system with

a new approach of an inverse reader mode. In 2013 5th International

Workshop on Near Field Communication (NFC), pages 1–5, Feb 2013.

[68] Thom Janssen and Mark Zandstra. Whitepaper HCE security implica-

tions, analysing the security aspects of HCE. Technical report, Under-

writers Laboratories, UL, January 2014.

[69] Ruiz, Alejandro Pérez and Rivas, Mario Aldea and Harbour, Michael

González. CPU Isolation on the Android OS for Running Real-Time

Applications. In Proceedings of the 13th International Workshop on

Java Technologies for Real-time and Embedded Systems, JTRES ’15,

pages 6:1–6:7, New York, NY, USA, 2015. ACM.

[70] Cláudio Maia, Luis M. Nogueira, and Luis M. Pinho. Evaluating Android

OS for Embedded Real-Time Systems. In 6th International Workshop

on Operating Systems Platforms for Embedded Real-Time Applications

(OSPERT 2010), pages 62+. Politécnico do Porto, July 2010.

[71] Igor Kalkov, Dominik Franke, John F. Schommer, and Stefan

Kowalewski. A real-time extension to the android platform. In Pro-

ceedings of the 10th International Workshop on Java Technologies for

Real-time and Embedded Systems, JTRES ’12, pages 105–114, New York,

NY, USA, 2012. ACM.

[72] L. Perneel, H. Fayyad-Kazan, and M. Timmerman. Can android be used

for real-time purposes? In 2012 International Conference on Computer

Systems and Industrial Informatics, pages 1–6, Dec 2012.

151

[73] Android Website. Android Developer Guide – Android Keystore

System. https://developer.android.com/training/articles/

keystore.html.

[74] Android. Dashboards Platform Versions, July 2017. https://

developer.android.com/about/dashboards/index.html.

[75] GlobalPlatform. Secure Element Remote Application Management.

Standard 1.0.1, GlobalPlatform, Novemebr 2015.

[76] GSMA and Underwriters Laboratory. Mobile Payment Security. White

paper, Groupe Speciale Mobile Association, October 2014.

[77] Mouhannad Alattar and Mohammed Achemlal. Host-Based Card Em-

ulation: Development, Security, and Ecosystem Impact Analysis. 2014

IEEE Intl Conf on High Performance Computing and Communications,

2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE

11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS),

pages 506–509, 2014.

[78] A. Armando, A. Merlo, and L. Verderame. Trusted Host-based Card Em-

ulation. In 2015 International Conference on High Performance Com-

puting Simulation (HPCS), pages 221–228, July 2015.

[79] M. Alattar and M. Achemlal. Host-Based Card Emulation: Develop-

ment, Security, and Ecosystem Impact Analysis. In High Performance

Computing and Communications, 2014 IEEE 6th Intl Symposium on

Cyberspace Safety and Security, 2014 IEEE 11th Intl Conference on Em-

bedded Software and System (HPCC,CSS,ICESS), pages 506–509, Aug

2014.

[80] Jong-Yeon Park, Jung-Nyeo Kim, Jae-Dock Lim, and Dong-Guk Han. A

Whitebox Cryptography Application for Mobile Device Security against

152

Whitebox Attacks-How to Apply WBC on Mobile Device. In IT Conver-

gence and Security (ICITCS), 2014 International Conference on, pages

1–5. IEEE, 2014.

[81] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.

Differential Computation Analysis: Hiding Your White-Box Designs is

Not Enough, pages 215–236. Springer, Berlin, Heidelberg, 2016.

[82] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot.

A White-Box DES Implementation for DRM Applications. In Digital

Rights Management: ACM CCS-9 Workshop, DRM 2002, Washington,

DC, USA, November 18, 2002. Revised Papers, pages 1–15, Berlin, Hei-

delberg, 2003. Springer.

[83] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van

Oorschot. White-Box Cryptography and an AES Implementation. In Re-

vised Papers from the 9th Annual International Workshop on Selected

Areas in Cryptography, SAC ’02, pages 250–270, London, UK, 2003.

Springer-Verlag.

[84] Matthias Jacob, Dan Boneh, and Edward Felten. Attacking an Obfus-

cated Cipher by Injecting Faults, pages 16–31. Springer, Berlin, Heidel-

berg, 2003.

[85] H. E. Link and W. D. Neumann. Clarifying Obfuscation: Improving the

Security of White-Box DES. In International Conference on Information

Technology: Coding and Computing (ITCC’05) - Volume II, volume 1,

pages 679–684 Vol. 1, April 2005.

[86] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of

a White Box AES Implementation, pages 227–240. Springer, Berlin,

Heidelberg, 2005.

153

[87] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Crypt-

analysis of White-Box DES Implementations with Arbitrary External

Encodings, pages 264–277. Springer, Berlin, Heidelberg, 2007.

[88] Android Developer Guide. SMP Primer for Android. https://

developer.android.com/training/articles/smp.html.

[89] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao. Smartphone

Energy Consumption: Modeling and Optimization. Smartphone Energy

Consumption: Modeling and Optimization. Cambridge University Press,

2014.

[90] Sun Microsystems. Java Card Platform Specification Version 2.2.1 .

http://java.sun.com/products/javacard/specs.html.

[91] Nokia. Nokia NFC Unlock Service MIDlet. Technical report, Nokia,

2007.

[92] COMPRION. CLT Move - Contactless Spy Tool. http://www.

comprion.com/en/products/monitoring/clt_move/overview.

[93] Android. Android Developer Guide – Power Profiles for Android.

[94] Mastercard. MasterCard Contactless Performance Requirement Appli-

cation Note Number 7. Technical report, MasterCard International In-

corporated, March 2014.

[95] G. Hancke, K. Mayes, and K. Markantonakis. Confidence in Smart Token

Proximity: Relay Attacks Revisited. Elsevier Computers and Security,

28(7):615–627, October 2009.

[96] S. Brands and D.Chaum. Distance-bounding Protocols. In Advances in

Cryptology EUROCRYPT ’93, Norway, September 1993.

154

[97] Gerhard P. Hancke and Markus G. Kuhn. An rfid distance bounding

protocol. In Proceedings of the First International Conference on Se-

curity and Privacy for Emerging Areas in Communications Networks,

SECURECOMM ’05, pages 67–73, Washington, DC, USA, 2005. IEEE

Computer Society.

[98] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M. Estévez-

Tapiador, and Jan C. A. van der Lubbe. Shedding Some Light on RFID

Distance Bounding Protocols and Terrorist Attacks. Computing Re-

search Repository (CoRR), abs/0906.4618, 2009.

[99] Christian Radu. Implementing Electronic Card Payment Systems.

Artech House computer security series. Artech House, 2003.

[100] Samsung Pay Will Transform the Mobile Wallet Experience. Standard,

Samsung Electronics Co, Ltd, 2016.

[101] John R. Douceur. Peer-to-Peer Systems: First InternationalWorkshop,

IPTPS 2002 Cambridge, MA, USA, chapter The Sybil Attack, pages

251–260. Springer, Berlin, Heidelberg, March 2002.

[102] Annual Fraud Indicator. Report, University of Portsmouth, Centre for

Counter Fraud Studies, Portsmouth, England, 2016.

[103] Information technology – Security Techniques – Anonymous Digital Sig-

natures. Standard ISO/IEC 20008-2, International Organization for

Standardization, Geneva, CH, 2013.

[104] Sébastien Canard, Berry Schoenmakers, Martijn Stam, and Jacques

Traoré. List Signature Schemes. volume 154, pages 189–201, Amster-

dam, The Netherlands, feb 2006. Elsevier Science Publishers B. V.

[105] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balanc-

ing Accountability and Privacy Using e-Cash (Extended Abstract). In

155

Proceedings of the 5th International Conference on Security and Cryp-

tography for Networks, SCN’06, pages 141–155, Berlin, Heidelberg, 2006.

Springer-Verlag.

[106] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revo-

cation. In Proceedings of the International Conference on the Theory

and Application of Cryptographic Techniques: Advances in Cryptology,

EUROCRYPT ’01, pages 93–118, London, UK, 2001. Springer-Verlag.

[107] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anony-

mous Credentials from Bilinear Maps, pages 56–72. Springer, Berlin,

Heidelberg, 2004.

[108] David Chaum and Eugène Van Heyst. Group Signatures. In Proceedings

of the 10th Annual International Conference on Theory and Application

of Cryptographic Techniques, EUROCRYPT’91, pages 257–265, Berlin,

Heidelberg, 1991. Springer-Verlag.

[109] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A

Practical and Provably Secure Coalition-Resistant Group Signature

Scheme. In Proceedings of the 20th Annual International Cryptology

Conference on Advances in Cryptology, CRYPTO ’00, pages 255–270,

London, UK, 2000. Springer-Verlag.

[110] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures,

pages 41–55. Springer, Berlin, Heidelberg, 2004.

[111] Aggelos Kiayias and Moti Yung. Group Signatures with Efficient Con-

current Join. In Advances in Cryptology - EUROCRYPT 2005, 24th An-

nual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Aarhus, Denmark, May 22-26, Proceedings, volume

156

3494 of Lecture Notes in Computer Science, pages 198–214. Springer,

2005.

[112] Roel Verdult, Flavio D. Garcia, Peter van Rossum, Ravindra Kali, and

Vinesh Kali. Security Analysis of RFID Tags, 2008. https://www.

semanticscholar.org/paper/Security-analysis-of-RFID-tags-

Verdult-Garcia/1d135642dd3454318203793c4b1a60e21afe5091.

[113] Nicolas Courtois. The Dark Side of Security by Obscurity and Cloning

MiFare Classic Rail and Building Passes Anywhere, Anytime. IACR

Cryptology ePrint Archive, page 137, 2009.

[114] Roel Verdult. Proof of Concept, Cloning the OV-chip Card. Technical

report, Technical report, Radboud University Nijmegen, 2008. http:

//www.cs.ru.nl/~flaviog/OV-Chip.pdf.

[115] Ivan Gudymenko. A Privacy-Preserving E-Ticketing System for Public

Transportation Supporting Fine-Granular Billing and Local Validation.

In Proceedings of the 7th International Conference on Security of Infor-

mation and Networks, SIN ’14, pages 101:101–101:108, New York, NY,

USA, 2014. ACM.

[116] GhadaArfaoui, Guillaume Dabosville, Sébastien Gambs, Patrick

Lacharme, and Jean-François Lalande. A Privacy-Preserving NFC Mo-

bile Pass for Transport Systems. volume 2, page e4, 2014.

[117] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous

attestation. In Proceedings of the 11th ACM Conference on Computer

and Communications Security, CCS ’04, pages 132–145, New York, NY,

USA, 2004. ACM.

[118] Quercia Daniele and Stephen Hailes. MOTET: Mobile Transactions

using Electronic Tickets. In Proceedings of the 1st IEEE Conference on

157

Security and Privacy for Emerging Areas in Communication Networks,

pages 374–383, Athens, Greece, September 2005.

[119] David Chaum, Amos Fiat, and Moni Naor. Untraceable Electronic Cash,

pages 319–327. Springer New York, New York, NY, 1990.

[120] Jan-Erik Ekberg and Sandeep Tamrakar. Mass Transit Ticketing with

NFC Mobile Phones. In Trusted Systems - Third International Confer-

ence, INTRUST 2011, Beijing, China, November 27-29, 2011, Revised

Selected Papers, pages 48–65, 2011.

[121] Craig Gentry. Advances in Cryptology — EUROCRYPT 2003: Inter-

national Conference on the Theory and Applications of Cryptographic

Techniques, Warsaw, Poland, May 4–8, 2003 Proceedings, chapter

Certificate-Based Encryption and the Certificate Revocation Problem,

pages 272–293. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[122] Silvio Micali. Scalable certificate validation and simplified pki manage-

ment. In 1st Annual PKI research workshop, volume 15, 2002.

[123] Niko Bari and Birgit Pfitzmann. Collision-Free Accumulators and Fail-

Stop Signature Schemes Without Trees. In EUROCRYPT, volume 1233

of Lecture Notes in Computer Science, pages 480–494. Springer, 1997.

[124] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptogra-

phy. IEEE Transactions on Information Theory, 22(6):644–654, Novem-

ber 1976.

[125] Klaus Potzmader. ISO20008-2.2 Group Signature Scheme Evaluation on

Mobile Devices, 2013. GitHub Repository.

[126] Klaus Potzmader, Johannes Winter, Daniel Hein, Christian Hanser, Pe-

ter Teufl, and Liqun Chen. Group Signatures on Mobile Devices: Prac-

tical Experiences. pages 47 – 64, 2013.

158

[127] Youssef Bassil. A Comparative Study on the Performance of the Top

DBMS Systems. volume abs/1205.2889. CoRR - Computing Research

Repository, 2012.

[128] Susan Pandy and Marianne Crowe. Payment Strategies: Understanding

the Role of Host Card Emulation in Mobile Wallets. Technical report,

Federal Reserve Bank of Boston, May 2016.

[129] Borko Lepojevic, Aleksandar Radulovic, and Bojan Pavlovic. Imple-

menting NFC Service Security – SE VS TEE VS HCE. SymOrg - In-

ternational Scientific Symposium - Faculty of Organizational Sciences,

University of Belgrade, June 2014.

[130] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. The Untapped Po-

tential of Trusted Execution Environments on Mobile Devices. IEEE

Security & Privacy, 12(4):29–37, 2014.

[131] Thomas Nyman, Brian McGillion, and N. Asokan. On Making Emerging

Trusted Execution Environments Accessible to Developers, pages 58–67.

Springer, Cham, 2015.

[132] GlobalPlatform. GlobalPlatform Device Technology, TEE System Ar-

chitecture v1.0, December 2011.

[133] GlobalPlatform. GlobalPlatform Device Technology, TEE Internal API

Specification, December 2011.

[134] GlobalPlatform. GlobalPlatform Device Technology, TEE Client API

Specification v1.0, July 2010.

[135] GlobalPlatform. GlobalPlatform Device Technology, Trusted User In-

terface API Specification v1.0, June 2013.

159

[136] Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes. A

Paradigm Shift in Smart Card Ownership Model. In ICCSA Workshops,

pages 191–200. IEEE CS, 2010.

[137] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu. Every-

thing as a service (xaas) on the cloud: Origins, current and future trends.

In 2015 IEEE 8th International Conference on Cloud Computing, pages

621–628, June 2015.

[138] A New Model: The Consumer-Centric Model and How it Applies to the

Mobile Ecosystem. Whitepaper, GlobalPlatform, March 2012.

[139] James Vincent. 99.6 Percent of New Smartphones Run Android or iOS,

February 2017. The Verge.

[140] Flora Liu. Analysis of Tokenization in Digital Payment, 2016. Cyber

Security Fall Final Paper.

[141] Pat Carroll. Tokenization: 6 Reasons The Card Industry Should Be

Wary. https://www.darkreading.com/perimeter/tokenization-

6-reasons-the-card-industry-should-be-wary-/a/d-id/1316376,

July 2014.

[142] D. Jayasinghe, K. Markantonakis, I. Gurulian, R. N. Akram,

and K. Mayes. Extending EMV Tokenised Payments to Offline-

Environments. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages 443–

450, Aug 2016.

[143] EMVCo. EMV Integrated Circuit Card Specifications for Payment Sys-

tems – Book 3 Application Specification . Standard Version 4.3, Novem-

ber 2011.

[144] Danushka Jayasinghe, Konstantinos Markantonakis, Raja Naeem

Akram, and Keith Mayes. Enhancing EMV Tokenisation with Dynamic

160

Transaction Tokens, pages 107–122. Springer International Publishing,

Cham, 2017.

[145] Christian Cachin, Jan Camenisch, Eduarda Freire-Stögbuchner, and

Anja Lehmann. Updatable Tokenization: Formal Definitions and Prov-

ably Secure Constructions. In Aggelos Kiayias, editor, Financial Cryp-

tography and Data Security, pages 59–75, Cham, 2017. Springer Inter-

national Publishing.

[146] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block

Ciphers, pages 31–46. Springer, Berlin, Heidelberg, 2002.

[147] Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX Mode

of Operation for Format-preserving Encryption. NIST Submission, 20,

2010.

[148] Elaine B. Barker and John M. Kelsey. SP 800-90A. Recommendation

for Random Number Generation Using Deterministic Random Bit Gen-

erators. Revision 1. Technical report, Gaithersburg, MD, United States,

2015.

[149] Michael Brightwell and H Smith. Using Datatype-preserving Encryption

to Enhance Data Warehouse Security. In 20th National Information

Systems Security Conference Proceedings (NISSC), pages 141–149, 1997.

[150] John Black and Phillip Rogaway. Ciphers with Arbitrary Finite Do-

mains. In Cryptographers Track at the RSA Conference, pages 114–130.

Springer, 2002.

[151] GlobalPlatform. GlobalPlatform Device Technology, TEE Sockets API

Specification v1.0.1, January 2017.

[152] Minolan. Format Preserving Encryption: JavaFPE. https://github.

com/Minolan/JavaFPE, 2016. GitHub Repository.

161

