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1. Introduction

Consider a two player coordination game with zero-payo↵s for miscoordination (contract

games, Young, 1998a) and with payo↵s on the main diagonal that correspond to points on

the e�cient frontier of a convex bargaining set. A bargaining solution is a function that

maps any given bargaining set to a payo↵ vector within the set (see Nash, 1950; Kalai and

Smorodinsky, 1975).1 In his paper, ‘Conventional Contracts’, Young (1998a) showed that

if populations of agents play such a game, usually updating their strategies according to a

best response rule, but occasionally making a deviation

2 and playing something other than

a best response, then the long run social norm that emerges approximates the Kalai and

Smorodinsky (1975) bargaining solution. Subsequently, Naidu, Hwang and Bowles (2010)

showed that if deviations are intentional so that an agent who deviates always demands

more than the best response, never less, then the Nash (1950) bargaining solution emerges

as the long run social norm. Newton (2012a) showed that the Nash bargaining solution

also emerges when the choice rule includes some degree of collective agency - joint decision

making by pairs of agents. The deviations in the cited works are uniform – all possible

deviations are equally likely. However, there is another commonly used model of perturbed

best response, the logit choice rule.3 Under logit choice, deviations which incur a higher

payo↵ loss for the agent making them are less likely to be made. The recent approximation

results of Hwang and Newton (2017) allow us to solve the problem of conventional contracts

under logit choice.

It is shown that if the logit choice rule is used with intentional deviations, then the Egal-

itarian bargaining solution (Kalai, 1977) emerges as the long run social norm. Justifications

of Egalitarianism have usually assumed some symmetry in the problem faced (Alexander

and Skyrms, 1999) or invoked ex-ante symmetry of players with respect to their position in

the game (Binmore, 1998, 2005). One contribution of the current paper is to give a model of

adaptive behavior that leads to the Egalitarian solution without any symmetry assumptions

beyond those on population size and uniformity in matching.

Furthermore, we introduce a new bargaining solution, the Logit bargaining solution, that

1In the words of Kalai and Smorodinsky (1975), ‘A solution to the bargaining problem is a function
f : U ! R2 such that f(a, S) 2 S.’ In their notation, U is the set of pairs (a, S), in which S is a bargaining
set and a is a disagreement point.

2Deviations are also referred to in the literature as ‘errors’, ‘mistakes’, ‘mutations’ and ‘idiosyncratic
shocks’.

3The logit choice rule derives from the Boltzman distribution from statistical mechanics. This was later
adapted to regression analysis by Cox (1958) and given a random utility interpretation by Block and Marschak
(1959). Blume (1993) then used it in modeling repeated interactions over the long run, as it is used in the
current paper.
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Unintentional Intentional

Uniform
Kalai-Smorodinsky

Young (1998a)

Nash bargaining
Naidu et al. (2010)

Logit
Logit bargaining

This paper

Egalitarian
This paper

Table 1: Long run bargaining norms by deviation process. Each bargaining solution emerges as the long
run norm under the corresponding behavioral rule and without reference to any appealing ex-post properties
that the solution might have.

maximizes an adjusted Nash product, but, in the spirit of the Kalai-Smorodinsky solution, is

influenced by the best possible payo↵s for the players. Unlike the other solutions, the Logit

bargaining solution is not designed to satisfy any particular set of appealing properties, but

is instead the solution that emerges when agents in populations follow a given behavioral

rule, the logit choice rule. This highlights an important di↵erence between the traditional

approach to bargaining solutions and the evolutionary approach. The traditional approach

seeks to construct bargaining solutions with appealing properties and treats these properties

as axiomatic. The evolutionary approach takes the behavioral process as axiomatic and

sees what bargaining solutions emerge as long run norms of such processes. Given this,

it is remarkable that three of the processes in Table 1 lead to solutions already known to

the literature. In this sense, perhaps the fourth sibling of this family, the Logit bargaining

solution, provides a cautionary tale, for although it emerges from one of the simplest and

most common choice rules in the social sciences, it displays a quirky nonmonotonicity in

comparison to the other solutions. This nonmonotonicity can be clearly and intuitively

explained with reference to the underlying behavioral process, a good example of how a

complex social norm can be generated by simple behavior.

Of course, the importance of the implications of any behavioral rule rests to some ex-

tent on its empirical validity. To begin to address such questions we report the results of

experiments conducted to test deviation behavior in the context of the model of the paper.

We find evidence in favour of intentional bias and payo↵ dependence in non-best response

play. While the constraints of time mean that we cannot test the long run behavior of the

empirical process, these results, together with the theoretical results summarized in Table

1, suggest the Egalitarian solution as the most likely of our four candidates for a long run

bargaining norm. Importantly, our design gives subjects no information about the payo↵s

that can be attained by their potential opponents, thereby ensuring that neither pre-existing

norms of surplus division nor other-regarding preferences can play a role in strategy choice.
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1.1. Related literature

This study is part of a literature that studies connections between evolutionary game

theory and cooperative game theory. This literature has been called the Evolutionary Nash

Program (see Newton, 2018, Section 6, for a survey), emphasizing the parallel with the

original Nash Program that studies connections between noncooperative game theory and

cooperative game theory (see, e.g. Nash, 1953). In addition to the contract games considered

in the current paper, another well-developed strand of this literature concerns long run norms

in Nash demand games (Nash, 1953), where, in contrast to the coordination games considered

here, players can obtain positive payo↵s from imperfect coordination.4

Compared to contract games, Nash demand games have a less severe penalty for miscoor-

dination that involves asking for too little. This creates a bias towards transitions in which

best responding players lower their demands, similar to the transitions under intentional

deviations in the current paper (see Table 3).5 In line with this intuition, Young (1993b)

shows that the Nash bargaining solution emerges under uniform-unintentional deviations.

Hwang and Rey-Bellet (2017) show that this is also true for uniform-intentional deviations.

To solve the problem for logit deviations, Hwang and Rey-Bellet (2017) extend the results

of Hwang and Newton (2017) on most probable transition paths under logit choice. They

use these results to show that, under logit-unintentional deviations, the Nash bargaining

solution emerges, and that, under logit-intentional deviations, a new solution emerges that

is more equal than the Nash bargaining solution. For generalized Nash demand games with

more than two players and payo↵ structures given by characteristic functions similar to

those of cooperative games, Agastya (1999) and Newton (2012b), the latter featuring collec-

tive agency, find selection for minmax and maxmin (Rawlsian) solutions respectively under

uniform-unintentional deviations.

Another strand of the literature concerns selection in matching environments with either

non-transferable utility (Newton and Sawa, 2015) or transferable utility (Nax and Pradelski,

2015; Klaus and Newton, 2016). Interestingly, although both Nax and Pradelski (2015)

and Newton (2012b) find maxmin selection, these results arise in di↵erent ways. Nax and

Pradelski (2015) use logit deviations. Selection then comes from (i) how hard it is for

a player to make deviations. Newton (2012b) uses uniform deviations and sampling of

4Interestingly, Nash, when describing the Nash demand game and relating it to the bargaining problem,
uses language that suggests a problem in which coordination (‘agreement’) on some utility pair is necessary
to avoid the disagreement payo↵s. The demands are described as restrictions on the utility pairs on which
coordination can occur, before the payo↵ specification abstracts from the coordination problem that remains
amongst utility pairs that satisfy demands.

5See Binmore, Samuelson and Young (2003) for further discussion of di↵erences and similarities between
contract games and Nash demand games under uniform-unintentional deviations.
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opponents’ behavior: selection comes from (ii) given an incumbent strategy (a ‘convention’),

the number of deviations required to induce some player to respond with a di↵erent strategy.

In the current study, we have that under logit choice, when deviations are intentional, e↵ect

(ii) is dominated by e↵ect (i). Consequently, the long run social norm is the convention

at which it is least likely that any player deviates. Under logit choice, this corresponds

to the payo↵ of the poorest player being as high as possible - the Egalitarian solution.

In contrast, when deviations are unintentional, e↵ects (i) and (ii) combine to create the

interesting nonmonotonicities of the Logit bargaining solution.

Our experiments contribute to a small literature that considers non-best response be-

havior in laboratory data as analagous to deviations in best response dynamics. For two

strategy coordination games, when interaction is determined by a network, Mäs and Nax

(2016) find deviations to be payo↵ dependent. When interaction is uniform, Lim and Neary

(2016) find likewise. Furthermore, the cited studies find that deviations are predominantly

made by agents who do relatively badly at the current convention. This points towards

deviations being intentional. The current study has more than two strategies and is there-

fore able to provide more conclusive evidence on this point, as any given agent has several

possible deviations that he could make, some of which can be interpreted as intentional and

others which cannot. We find that 83% of deviations in our experiments can be interpreted

as intentional.

The paper is organized as follows. Section 2 defines the bargaining solutions and gives the

evolutionary model. Section 3 classifies bargaining solutions by the behavioral rules which

give rise to them. Section 4 discusses our experimental evidence. Section 5 concludes.

2. Model

2.1. Bargaining solutions

Consider two positions, ↵ and �, and a closed, convex bargaining set S ⇢ R2 containing

the origin. The set S gives feasible payo↵s for players in the ↵ and � positions respectively.

Let the bargaining frontier, the e�cient points of S, be given by a strictly decreasing, di↵er-

entiable, and concave function, f : R ! R, such that (t, f(t)) is the e�cient payo↵ pair in

which ↵ and � players receive t and f(t), respectively. Normalizing the disagreement point

to (0, 0), the maximum payo↵ that players ↵ and � can obtain are

s̄

↵

:= max {t : f(t) � 0} and s̄

�

:= max {f(t) : t � 0} .

which implies f(s̄
↵

) = 0 and s̄

�

= f(0).

A bargaining solution maps bargaining sets to payo↵s. The three bargaining solutions

most commonly used in economics are the Nash bargaining solution (Nash, 1950), the Kalai-
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Bargaining solution Notation Definition

Kalai and Smorodinsky (1975) t

KS

t

KS

s̄

↵

= f(tKS)
s̄

�

.

Nash (1950) t

NB

t

NB 2 argmax0ts̄

↵

tf(t).

Egalitarian (1977) t

E

t

E = f(tE).

Logit bargaining solution t

L

t

L 2 argmax0ts̄

↵

t f(t)�(t),

�(t) = min
n

1
t+s̄

↵

,

1
f(t)+s̄

�

o

.

Table 2: Bargaining solutions for frontiers given by f(.). Our assumptions on f(.) guarantee that t f(t)�(t)
is strictly concave, so t

L is unique.

Smorodinsky bargaining solution (Kalai and Smorodinsky, 1975), and the Egalitarian bar-

gaining solution (Kalai, 1977). These solutions uniquely satisfy distinct sets of intuitively

appealing properties. The traditional approach is to treat these properties as axiomatic and

to find bargaining solutions which have these properties. This is not the approach of the

current paper. Rather, we focus on how solutions emerge as long run behavioral norms when

agents follow simple behavioral rules when faced with coordination problems. That is, the

behavior that gives rise to the solution is treated as axiomatic rather than the properties of

the solution itself. Definitions of the bargaining solutions that feature in this paper are given

in Table 2. The Logit bargaining solution, which is new, is analyzed further and compared

to existing bargaining solutions in Section 3.1, but for now we move to define the perturbed

best response rules that lead to these solutions emerging as norms.

2.2. Evolutionary contracting

Consider two populations of agents � ↵ and � populations � of size N .6 Each period,

all agents are matched uniformly at random in heterogeneous pairs of one ↵-agent and one

�-agent to play a coordination game. The set of possible outcomes on which coordination is

possible corresponds to a bargaining frontier as described in Section 2.1. Similarly to previous

literature, we discretize the bargaining frontier as follows. Let n 2 N+, � = �

n

= n

�1
s̄

↵

, and

I := {0, 1, 2, · · · , n} and suppose that ↵ and �-agents play strategies i
↵

and i

�

from set I.
We consider contract games (Young, 1998a), coordination games in which players who

demand the same outcome receive their associated payo↵s, and receive nothing otherwise.

6Exposition is simplified by the assumption that the populations are of the same size. This is always the
case when the two populations represent roles played by di↵erent agents in the same population. That is,
each agent could be considered to appear twice: he will play one strategy when he plays as an ↵-player,
and another strategy when he plays as a �-player. This di↵ers from one population models of coordination
games with two types (e.g. Neary, 2012) as there is always an ↵-player and a �-player in any matched pair.
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That is, the payo↵s for a contract game are

(⇡
↵

(i
↵

, i

�

), ⇡

�

(i
�

, i

↵

)) :=

(

(i�, f(i�)) if i
↵

= i

�

= i

(0, 0) otherwise
.

Thus, when an ↵-agent plays i 2 I this can be interpreted as him demanding i�, and when

a �-agent plays i 2 I this can be interpreted as him demanding f(i�).7

A population state is described by x := (x
↵

, x

�

), where x

↵

and x

�

are vectors giving the

number of agents using each strategy. Thus, the state space ⌅ is

⌅ :=

(

(x
↵

, x

�

) 2 Nn+1
0 ⇥ Nn+1

0 :
X

l2I

x

↵

(l) = N,

X

l2I

x

�

(l) = N

)

.

More explicitly, we have (x
↵

, x

�

) = ((x
↵

(0), x
↵

(1), · · · , x
↵

(n)), (x
�

(0), x
�

(1), · · · , x
�

(n))),

where x

�

(2), for example, denotes the number of �-agents playing strategy 2.

Agents from each population are matched uniformly at random to play the contract

game and thus, the expected payo↵ of an ↵ agent who plays strategy i

↵

is ⇡

↵

(i
↵

, x) :=
P

l2I ⇡↵

(i
↵

, l) x
�

(l)/N , given that the fraction of the � population using strategy l is x
�

(l)/N.

Similarly, the expected payo↵ of a �-agent who plays strategy i
�

is ⇡
�

(i
�

, x) :=
P

l2I ⇡�

(i
�

, l) x
↵

(l)/N .

Thus, the best response of an ↵-agent to state x is to choose i to maximize ⇡

↵

(i, i) x
�

(i),

and the best response of a �-agent is to choose i to maximize ⇡

�

(i, i) x
↵

(i).

We consider the following discrete time strategy updating process. At the beginning of

each period, any given agent is independently activated with probability ⌫ 2 (0, 1). Any

agent who is not activated will remain playing the same strategy as he did in the previous

period. When the current population state is x, an activated agent in population � 2 {↵, �}
will choose a strategy according to the distribution p

⌘

�

(l|x), l 2 I. This distribution will

be such that an activated agent will usually choose a best response to the profile of strate-

gies played by the opposing population. However, from time to time, an agent will make a

deviation and play something other than a best response. The parameter ⌘ parameterizes

the probability of such deviations, with larger values of ⌘ corresponding to higher deviation

probabilities. As ⌘ approaches zero, the probability of any deviation should approach zero at

an exponential rate. deviations can be understood as occasional idiosyncratic experimenta-

tion, mistakes in play, or as atypical choices arising from random utility shocks. This paper

considers processes with perturbations varying in two dimensions: the support of the devi-

ation distribution (unintentional vs. intentional) and the payo↵ dependence or otherwise of

7Note that the discretization is uniform for ↵, but not for �. This can be reversed without changing
results.
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deviations within this support (uniform vs. logit).

Uniform mistake rule (see e.g. Young, 1993a; Kandori et al., 1993).

When deviations are uniform, every deviation occurs with the same probability. That

is, from state x, a strategy-revising agent from population � 2 {↵, �} will choose l with

probability

p

⌘

�

(l|x) :=

8

<

:

1

|argmax
l̃

⇡

�

(l̃,x)|(1� ") + 1
n+1

" if l 2 argmax
l̃

⇡

�

(l̃, x)

1
n+1

" otherwise

where " = exp(�⌘

�1). Note, that as required above, as ⌘ ! 0, the probability of a strategy-

revising agent playing anything other than a best response approaches zero.

Logit choice rule (see e.g. Blume, 1993, 1996; Alós-Ferrer and Netzer, 2010).

Under the (generalized) logit choice rule, from state x, a strategy-revising agent from

population � 2 {↵, �} will choose strategy l with probability

p

⌘

�

(l|x) := q

l

exp(⌘�1
⇡

�

(l, x))
P

l̃

q

l̃

exp(⌘�1
⇡

�

(l̃, x))
(1)

where q

l

, l 2 I, are positive constants. Again note that as ⌘ ! 0, the probability of a

strategy-revising agent playing anything other than a best response approaches zero.

Intentional & Unintentional deviations (see e.g. Bowles, 2005, 2006; Naidu et al., 2010).

Let�
�

(x) be the set of strategies for an agent of type � 2 {↵, �} which involve demanding

at least as much as the agent demands when best responding to the strategy distribution of

the other population.

�
�

(x) := {l : ⇡

�

(l, l) � ⇡

�

(l0, l0) for some l

0 2 argmax
l̃

⇡

�

(l̃, x)}.

Unintentional deviation processes retain the probabilities p

⌘

�

(l|x) described above for logit

and uniform deviations. Intentional deviations are when agents never demand less than their

best response, but can demand more. This fits with an interpretation of the perturbations

as idiosyncratic experimentation by agents to see if they can obtain a higher payo↵. There

exists recent experimental evidence which supports such deviations (Lim and Neary, 2016;

Mäs and Nax, 2016). The choice probabilities for intentional processes are

p̂

⌘

�

(l|x) :=

8

<

:

p

⌘

�

(l|x)P
l̃2�

�

(x) p
⌘

�

(l̃|x) if l 2 �
�

(x)

0 otherwise
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where p

⌘

�

(l|x) denotes the choice probability for the corresponding unintentional process.8

2.3. Conventions and long run social norms

The process with ⌘ = 0, or " = 0, is the unperturbed process. The recurrent classes of the

unperturbed process are the absorbing states in which all ↵ and �-agents coordinate on the

same strategy, and each agent type receives nonzero payo↵ (Young, 1998a). We shall denote

by E

i

, i 2 {0, . . . , n}, the state in which all agents play strategy i, x
↵

(i) = N , x
�

(i) = N .

Hence, the absorbing states of the process are precisely those in the set {E1, . . . , En�1}.
Following Young (1993a), we refer to these states as conventions. Let L := {1, . . . , n � 1}
index this set, {E

i

}
i2L.

We consider the long run behavior of our perturbed processes when deviations are un-

likely, that is as ⌘ ! 0. For the current model, each process, uniform or logit, uninten-

tional or intentional, for given ⌘ > 0, has a unique stationary distribution, which we denote

µ

⌘

(see Lemma 1 in Appendix A). By standard arguments (see Young, 1998b), the limit

µ := lim
⌘!0 µ⌘

exists, and for any x 2 ⌅, µ(x) > 0 implies that x is in a recurrent class of

the process with ⌘ = 0. In our setting, this implies that x is a convention.

Definition 1. A state x 2 ⌅ is stochastically stable if µ(x) > 0.

For small deviation probabilities, in the long run, our processes will spend nearly all of

the time at or close to stochastically stable states, hence the interpretation of such states as

long run social norms. In the next section we link the stochastically stable states of our four

processes to our four bargaining solutions.

3. Characterization

In this section we characterize the stochastically stable conventions. For a fine discretiza-

tion (small �) and large populations (large N), the stochastically stable conventions of our

four processes correspond to our four bargaining solutions. The results for uniform devia-

tions are known from Young (1998a) and Naidu, Hwang and Bowles (2010). The results for

logit deviations are new.

8With care, the idea of intentional deviations can be extended to games beyond the coordination games of
the current and cited papers. For example, Hwang and Rey-Bellet (2017) consider intentional logit deviations
in Nash demand games. Trial and error (e.g. Pradelski and Young, 2012; Marden et al., 2014) search can
also be thought of as a perturbation process with an intentional basis, but with deviation probabilities based
on realized payo↵s rather than on conjectured states.
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Theorem 1. For any & > 0, there exists �̄ such that for all � < �̄, there exists N

�

2 N such

that for all N � N

�

, µ(E
i

) > 0 =) |�i� t

⇤| < &, where

t

⇤ =

8

>

>

<

>

>

:

t

KS

if deviations are uniform-unintentional.

t

L

if deviations are logit-unintentional.

t

NB

if deviations are uniform-intentional.

t

E

if deviations are logit-intentional.

The reasons for each process giving rise to its corresponding solution can, for the most

part, be simply and intuitively explained. For unintentional deviations, any strategy can

be played in deviation. From the perspective of a �-agent, the most attractive deviation that

can be made by ↵-agents is for them to switch to strategy 0, as this opens up the possibility

of �-agents obtaining their highest payo↵ of s̄
�

by coordinating with such an ↵-agent. From

a convention E

i

, �i = t, the number of such deviations required to make the best response for

a �-agent di↵er from i depends on the ratio of the payo↵ from successful coordination on the

current convention, f(t), to the highest payo↵ s̄

�

(see expression in Table 3). If f(t) is small

relative to s̄

�

, then few deviations by ↵-agents will be required to escape the convention.

Reprising this argument, we see that if t is small relative to s̄

↵

, then few deviations by

�-agents will be required to escape the convention. For uniform deviations, all possible

deviations are equally likely, so the di�culty of escaping a convention depends only on the

number of deviations required to change the best response. This number is maximized when

the payo↵ ratios discussed above are equal: the Kalai-Smorodinsky solution.

When deviations are intentional, agents who make deviations will always ask for more

than they receive at the current convention. From convention E

i

, �i = t, from the perspective

of a �-agent, the most attractive deviation that can be made by ↵-agents is for them to ask

for t+�, just a little bit more than they currently receive. The number of deviations required

to change the best response of �-agents then depends on the ratio f(t+ �)
/f(t) (see expression

in Table 3). This quantity (f(t+ �)
/f(t)) and the equivalent quantity for transitions driven by

deviations of �-agents ((t� �)
/t) are respectively increasing and decreasing in t. For uniform

deviations, the most robust convention is thus where these quantities are equal: the Nash

bargaining solution.

For logit deviations, to find the rareness of transitions the number of deviations must

be weighted by the payo↵ losses incurred when the deviations are made. For intentional

deviations, as the discretization becomes fine, f(t+ �)
/f(t) ! 1 for all strictly positive t, so

the number of ↵-agents who must make deviations in order to alter the best response of

�-agents will approach half. Likewise, the number of �-agents who must make deviations

in order to alter the best response of ↵-agents will also approach half. This means that the

payo↵ loss e↵ect dominates and the most robust conventions are those at which deviations

9



On the easiest escape path from
convention E

i

, �i = t, under...
Uniform

Unintentional

Logit

Unintentional

Uniform

Intentional

Logit

Intentional

Who makes deviations, relatively rich
agents or relatively poor agents?⇤

Rich Poor Poor Poor

Assuming these are ↵-agents and

receive t at the current convention...

What do they ‘demand’ when they
deviate?

Zero Zero t+ � t+ �

The probability of such deviations
decreases exponentially at rate...

N/A t N/A t

As t increases, this quantity... — % — %

The number of deviations required, as
a proportion of population size, to
induce something other than f(t) as
the best response by �-agents.

f(t)
f(t)+s̄

�

f(t)
f(t)+s̄

�

f(t)
f(t)+f(t+�)

f(t)
f(t)+f(t+�)

As t increases, this quantity... & & % %

Net e↵ect of an increase in t on the
rareness of such escape paths

& %& % %

The convention that is hardest to
leave can be approximated by...

t

KS

t

L

t

NB

t

E

Table 3: Anatomy of the easiest escape path from a given convention Ei, �i = t, by deviation process. ⇤We
write that deviations are made by relatively poor agents when there exists a threshold t̂, such that from Ei,
�i < t̂, the easiest escape path involves deviations by ↵-agents, and from Ei, �i > t̂, the easiest escape path
involves deviations by �-agents. When these inequalities are reversed, we write that deviations are made by
relatively rich agents.

by either population are as rare as possible. This occurs when the payo↵s of ↵ and � players

are equal: the Egalitarian solution.

For logit-unintentional deviations, the e↵ects linking the Kalai-Smorodinsky solution to

uniform-unintentional deviations and linking the Egalitarian solution to logit-intentional

deviations interact. They do this in a non-trivial way, giving rise to a piecewise solution,

sometimes an adjusted Nash bargaining solution, sometimes a form of loss equalization. The

logit e↵ect means that deviations are more common when made by relatively poor agents (as

defined in the caption to Table 3), but the unintentional e↵ect means that fewer deviations

by the other population are required to change the best response of relatively poor agents.

Importantly, the logit e↵ect dominates here so that the easiest escape paths are driven by the

deviations of relatively poor agents, in contrast to the uniform-unintentional case. The Logit

bargaining solution is examined in depth in Appendix B. For now, attention is restricted to

one part of the solution as we examine the links between behavioral rules and the properties

of the associated bargaining solutions.

10



3.1. The properties of the solutions as they relate to behavior

It is shown in Appendix B that the Logit bargaining solution reduces to a piecewise

function, taking di↵erent forms dependent upon whether s̄
↵

is small, medium or large relative

to s̄

�

. Here we focus on the intermediate case, for which the solution is given by

t

L + s̄

↵

= f(tL) + s̄

�

. (2)

This is an Equal-loss solution (Chun, 1988) which equalizes players’ losses with respect to

the ideal point (s̄
�

, s̄

↵

), e↵ectively an Egalitarian solution with a notional disagreement point

of (s̄
�

, s̄

↵

) (see Figure 1). The Equal-loss solution typically has an ideal point of (s̄
↵

, s̄

�

), so

that each player’s ideal is his own highest possible payo↵. In contrast, (2) gives each player’s

ideal as the highest possible payo↵ of his opponent. The intuition behind this reversal is

explained later in this section. Note that, similarly to previous work that bounds bargaining

solutions with respect to one another (see, e.g. Rachmilevitch, 2016, 2015; Cao, 1982), when

the Logit solution is given by (2), the Egalitarian solution lies between the Logit solution

and the Kalai-Smorodinsky solution.

It follows from (2) that the Logit solution, like the Egalitarian solution, does not scale

with linear transformations of payo↵s (the Invariance property - Table 4). This arises from

logit choice. deviation rates are measured in probability and thus interpersonally comparable.

The rate of deviations by any given agent under logit choice depends on his cardinal payo↵

loss from making that deviation. Therefore interpersonal comparability of payo↵s follows

from interpersonal comparability of deviation rates. However, interpersonal comparability

of payo↵s is precisely what is prohibited under the Invariance property, so the solutions

that emerge from logit choice (Logit bargaining solution, Egalitarian solution) do not satisfy

Invariance. In contrast, under uniform deviations, choice probabilities are una↵ected by a

linear transformation of an agent’s payo↵s, so the solutions that emerge (Kalai-Smorodinsky,

Nash) satisfy Invariance.

The presence of s̄
↵

and s̄

�

in expression (2) implies that the Logit bargaining solution

does not have the Independence of Irrelevant Alternatives property (IIA - Table 4). This

is noteworthy, as under the logit choice rule, the ratios of choice probabilities p

⌘

�

(l|x)
/p

⌘

�

(l0|x)

are independent of the payo↵s from any strategy l̃ 6= l, l

0. This shows that the IIA property

at a micro level (choice behavior) does not translate into an IIA property at a macro level

(long run social norm). The dependence of (2) on s̄

↵

and s̄

�

, and hence the failure of IIA,

arises from the fact that deviations in the underlying behavioral process are unintentional.

When deviation behavior is unintentional, the least cost transition paths between conventions

involve jumps to extreme states motivated by the prospect of extreme payo↵s (s̄
↵

and s̄

�

), so

11
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t
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s̄
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s̄

�

s̄

�

s̄

↵

Figure 1: The intermediate case (Case 2 in Appendix B) of the Logit bargaining solution, also illustrating
Egalitarian and Kalai-Smorodinsky solutions for comparison. The Nash bargaining solution is omitted for
clarity.

the solutions that emerge (Kalai-Smorodinsky, Logit bargaining solution) do not satisfy IIA.

In contrast, when deviations are intentional, least cost transition paths are between adjacent

conventions and the solutions that emerge (Nash, Egalitarian) satisfy IIA.

There does not seem to be a similarly simple way to relate monotonicity properties of

solutions to behavioral axioms. We can, however, fit the Logit bargaining solution into the

hierarchy of solutions sorted by their monotonicity properties. It turns out that the Logit

bargaining solution is the least monotonic of the four solutions. Specifically, we say that a

solution is Stretch Monotonic if a stretch of the bargaining frontier parallel to the horizontal

axis leads to the player in the ↵ position obtaining a higher payo↵ (Stretch Monotonicity

- Table 4). This property is implied by Invariance and Individual Monotonicity, and thus

satisfied by the Egalitarian, Kalai-Smorodinsky and Nash solutions. However, we shall see

that it is not satisfied by the Logit bargaining solution.

Consider a linear frontier given by f(t) = s̄

�

� t

s̄

�

s̄

↵

. A stretch parallel to the horizontal

axis is equivalent to an increase in the value of s̄
↵

. Substituting the expression for the frontier

into (2), we obtain the solution t

L = (2s̄
�

�s̄

↵

)s̄
↵

s̄

↵

+s̄

�

. This is decreasing in s̄

↵

whenever s̄
↵

and s̄

�

take similar values. That is, an increase in the best possible payo↵ for the ↵ player leads to

his obtaining a lower payo↵ under the Logit bargaining solution. This may seem puzzling

at first, but makes sense when we consider that, under logit deviations, the easiest escape

path from a convention involves deviations by relatively poor agents. Consider conventions

for which t > t

L. These are the conventions at which ↵-agents obtain high payo↵s and from

which the most likely escape paths involve deviations by �-agents. Under unintentional

deviations, the number of deviations by �-agents required to change the best response of

12



Property Definition Satisfied by...

IIA g � f, g(t⇤
g

) = f(t⇤
g

) =) t

⇤
g

= t

⇤
f

. t

NB, tE

Invariance g(x) = f(ax), a 2 R =) t

⇤
g

= 1
a

t

⇤
f

. t

NB, tKS

Monotonicity g � f =) t

⇤
g

� t

⇤
f

. t

E

Individual Monotonicity g � f, g(0) = f(0) =) t

⇤
g

� t

⇤
f

. t

KS, tE

Stretch Monotonicity g(x) = f(ax), a 2 R, a < 1 =) t

⇤
g

� t

⇤
f

. t

NB, tKS, tE

Table 4: Definitions of properties and the bargaining solutions that satisfy them. In each definition, g, f
are bargaining frontiers and t

⇤
g, t

⇤
f their associated solutions. Invariance implies Stretch Monotonicity, and

Monotonicity implies Individual Monotonicity which implies Stretch Monotonicity. Note that t

L satisfies
none of these properties.

↵-player

�-player
0 1 2 3 4

0 0, 100 0, 0 0, 0 0, 0 0, 0
1 0, 0 80, 80 0, 0 0, 0 0, 0
2 0, 0 0, 0 130, 65 0, 0 0, 0
3 0, 0 0, 0 0, 0 180, 50 0, 0
4 0, 0 0, 0 0, 0 0, 0 200, 0

Figure 2: Entries give payo↵s for the ↵ and � players respectively.

↵-agents is lower when the best possible payo↵ s̄

↵

for ↵-agents is higher. That is, ↵-agents

su↵er from a high best possible payo↵ as this destabilizes the conventions where ↵-agents do

well and pushes the value of tL lower. See Appendix B for a complete illustrated solution

for the linear bargaining frontier.

4. Experimental evidence for intentional and payo↵ dependent deviations

To study human agents’ non-best response behavior in a context derived from the model

of this paper, we conducted laboratory experiments on human subjects. Five sessions were

conducted in English at the experimental laboratory at the Hong Kong University of Science

and Technology. A fixed-role, between-subject design was used. In total, 100 participants,

none of whom had any prior experience with this work, were recruited from the university

graduate and undergraduate population. All sessions were conducted using z-Tree (Fis-

chbacher, 2007). Each session lasted for approximately two hours, and the average amount

earned per subject was HKD 132 (USD 17), including the HKD 30 show-up fee. The max-

imum payment was HKD 210 and the minimum payment was HKD 57. The standard

deviation was 57.

Each session involved ↵ and � populations of subjects (representing the agents in the

model of Section 2) of size N = 10 playing for 200 periods. Each period, every subject,
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�
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r

Figure 3: Payo↵s from pairwise interaction beween subjects (see Figure 2) depicted as points on the frontier
of a (weakly) convex bargaining set.

independently with probability ⌫ (= 0.9 in Sessions 1, 2, 3; = 0.5 in Sessions 4, 5), was

activated and got the opportunity to update his strategy. The information displayed to a

subject was:

(i) His own payo↵ when playing any given strategy and matched to a member of the other

population also playing that strategy.

(ii) For periods ⌧ � 2, the number of subjects in the other population who played each

strategy in the preceding period.

(iii) The strategy played and the payo↵ obtained by the subject in the preceding period.

(iv) Whether or not the subject has the opportunity to update his strategy in the current

period.

Note that subjects were given no information about the coordination payo↵s of subjects

in the other population and the laboratory was set up to ensure that no subjects would

gain any such information during the session. This absence of information about others’

coordination payo↵s is similar to Mäs and Nax (2016).9 This lack of information about the

payo↵s of subjects in the other population is motivated by our interest in the emergence of

conventions (i.e. convergence to E1, E2 or E3) as predicted by the theory. If such information

were provided, it could be used to coordinate on a pre-existing norm from outside of the

laboratory. For more on this, see the end of this section.

Subjects given the opportunity to change their strategy could choose any of strategies 1

to 5, which were labeled as A to E, the order of the labeling and the order of presentation of

9As our model is of perturbed best response dynamics, we provide aggregate information on the choices
of subjects in the other population. This can be contrasted with a ‘black box’ approach (Nax et al., 2016)
in which not even this information is provided.
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Session 1 Session 2 Session 3

Session 4 Totals Session 5

βα
α β

α β α β

α β

17

33

287

21
50

21
15

30

6

2

4

2168

164
55

169

41

8
61

2

24

844

Deviations which can be interpreted as intentional 

Deviations which cannot be interpreted as intentional 

Figure 4: Chart showing, for each session and position (↵ or �) in the game, the number of non-best responses
that can be interpreted as intentional (those in ��(x)) and that cannot be interpreted as intentional (those
not in ��(x)), as well as totals across all sessions and positions. The area of each pie chart is approximately
proportional to the square root of the number of deviations it represents.

the strategies di↵ering across sessions. If they were activated and failed to choose a strategy

within a specified period, they remained playing the same strategy as in the previous period.

Following strategy updating, ↵-subjects were paired with �-subjects and obtained payo↵s

corresponding to their chosen strategies played against one another in the game in Figure 2

(depicted as points on a bargaining frontier in Figure 3). The instructions given to subjects

and images of the decision making interface are given in Appendix C.

In every session, best responses constituted a large majority (> 90%) of choices by the

subjects and play converged to a convention. Analysis of non-best response play reveals

that subjects rarely update to strategies that correspond to payo↵s lower than the payo↵

associated with their best response strategy (see Figure 4). In every session-population

pair except one (Session 5, ↵-subjects, with only 6 data points) deviations which can be

interpreted as intentional outnumber deviations which cannot be so interpreted. In total,

844 out of 1012 deviations (> 83%) can be interpreted as intentional. Methodologically, as

the game has five strategies, rather than two as in recent similar studies (Lim and Neary,

2016; Mäs and Nax, 2016), for any given subject with a given best response there exist

multiple non-best response strategies, and so we were able to classify observed deviations
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For subjects in population... ↵ �

...with best response strategy... 2 3 4 2 3 4

Number of updating opportunities. 1720 1786 3851 1740 1773 3861

Number of non-best responses observed. 183 189 87 49 59 432

Rate of non-best response play. 0.11 0.11 0.02 0.03 0.03 0.11

Proportion of non-best responses that can be
interpreted as intentional (those in �

�

(x)).
0.94* 0.94* 0.30 0.55* 0.41 0.97*

Expected such proportion if all non-best
responses were equally likely.

0.75 0.50 0.25 0.25 0.50 0.75

Table 5: For given player position and best response strategy, aggregate rate of non-best response play and
proportion of non-best responses that can be interpreted as intentional. An asterisk (*) indicates that a value
di↵ers significantly (p < 0.001) from the expected proportion that would obtain if all non-best responses
were equally likely. Note that there were only 29 updating opportunities and 13 non-best responses when
the best response was strategy 1 or strategy 5, hence these columns are omitted from the table.

as intentional or not on an individual basis.10 Aggregating over subjects’ best response

strategies at observed states, we find that in four out of the six population-best response

pairs for which we have enough data, the proportion of deviations that can be interpreted

as intentional di↵ers significantly (statistically, with p < 0.001) from that which we would

expect to obtain if every non-best response strategy were equally likely (see Table 5). In

summary, there is clear support for some level of intentional behavior in non-best response

play.

Furthermore, we observe higher rates of non-best response play from subjects for whom

the expected payo↵ from the best response strategy is lower (Figure 5). That is, there is

support for payo↵ dependence in non-best response play. From the Figure, it can be seen

that this is true across both ↵ and � populations and holds regardless of whether deviations

can be interpreted as intentional. Note that although the charts appear similar, the vertical

axis of the unintentional chart has a scale of half that of the the other charts, reflecting

the relative number of deviations of each type as discussed in the preceding paragraph.

Further support for payo↵ dependence is found in Appendix D, where we conduct a logistic

regression on payo↵ di↵erences that accounts for the possibility of decreasing deviation rates

as a function of time.

An important aspect of our design is that ↵-subjects do not know the coordination pay-

o↵s of �-subjects and vice versa. This brings two benefits. Firstly, the potential impact

10In contrast, if there are only two strategies, then, for a given subject with a given best response, there
is only one possible deviation, so it is impossible to e↵ect any classification at the level of the individual
deviation.
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Figure 5: Rates of non-best response play grouped by expected payo↵ from the best response strategy. Data
are grouped into bins by best response payo↵ (0 to 10, 10 to 20, etc.). The area of each circle on the chart
is proportional to the square root of the number of strategy updating opportunities it represents. Versions
of this diagram that exclude early and late periods are given in Appendix D.

of other-regarding preferences is minimized, as any beliefs about the payo↵s of the oppos-

ing population would have to be inferred from behavior. Secondly, and we believe more

importantly, subjects’ strategy choice cannot be influenced by pre-existing social norms. If

subjects could observe the full payo↵ structure of the game, then a pre-existing norm such

as the Kalai-Smorodinsky, Nash, Egalitarian or Logit solutions could encourage subjects to

play i = 2, 3, 1, 2 respectively. The outcome of the sessions suggests that subjects did not

infer any correspondence between a pre-existing norm and the payo↵ structure of the game,

as of the five sessions, three converged to convention E3 (Nash), while one converged to E2

(Kalai-Smorodinsky, Logit) and one to E1 (Egalitarian).

The observed short run convergence to some convention is predicted by the theoretical

processes considered earlier in the paper. Note though that nothing can be inferred about

long run norms from observing the conventions that were reached. For such an analysis,

we would require observations over a longer timescale than is feasible within the constraints

of the laboratory.11 However, Theorem 1 can be used to comment on long run norms by

extrapolating from the characteristics of observed non-best response behavior. Our observa-

11To see this via a rough calculation, note that when deviations are intentional, the easiest path from one
convention to another will usually require 6 or more deviations in one of the populations. In a period in
which all subjects in a given population have the opportunity to update their strategies, at deviation rates of
10% (the approximate frequency observed in this study), 6 or more deviations will occur with a probability
of less than 1

/6000. Therefore to make a statement about long run norms using aggregate population data
alone would require sessions to last for considerably more than 6000 periods.
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tions suggest that non-best response play is intentional and payo↵ dependent. Therefore, the

theory suggests that, of the four solutions considered in this paper, the Egalitarian solution

is the most likely candidate for a long run social norm.

As noted earlier in this section, information about the payo↵s of subjects in the other

population could potentially facilitate the application of pre-existing norms that evolved

outside of the laboratory. This seems to be what was observed in pilot sessions that were

carried out prior to a decision on a final design. In these sessions, opponents’ payo↵s were

observable. There were three of these sessions, two which used the same payo↵s as are

used here, and a third which used di↵erent payo↵s.12 In all of these sessions, there was

convergence within a few periods to the convention corresponding to the Egalitarian solution.

This provides some slight further support for egalitarianism, but too much should not be

read into this, as each of these sessions can be understood as a single data point.

We note that implications of the experimental results of the paper apply specifically to

the class of games, the experimental environment and context that we consider. Rates of

best response behavior and the type of non-best response behavior observed may di↵er for

other classes of games or other experimental environments. This is, in itself, an important

research topic.

5. Conclusion

What has been presented here is a theory of the emergence of bargaining solutions as

social norms that rests on behavior and not on the properties of the solutions themselves.

Societal interactions take individual behavior as an input and give a social norm, or to put

it another way, a social choice, as output. Thus, if we think of a society as similar to an

organism with agency, we can regard the traditional, normative approaches to social choice

as specifying behavioral rules for society itself, rather than for the individuals within society.

As such, the results of the current paper and the rest of the Evolutionary Nash Program can

be understood as a reconciliation of micro and macro behavioral theories: the presence of

well developed norms in a group should help members of the group to face new problems,

take decisions and adjust their behavior as if they were of one mind. Conversely, in recent

years there has been considerable work on the e↵ect of collective agency at a small group

level on social norms (see Newton, 2018, Section 2, for a survey). The modeling of two way

influence between norms and agency is an interesting avenue for future research.

12These pilot sessions also di↵ered from the final design in that payo↵s were presented to subjects as points
on a bargaining frontier rather than in a game matrix. This was amended to remove any cues that might
suggest bargaining to the subjects, in line with our interest in the emergence of bargaining solutions from
coordination games, rather than from an explicit bargaining context. Instructions to the subjects in the
pilot sessions are available from the authors on request.

18



Appendix A. Proofs

Denote by P ⌘(x, y) the transition probability from state x to state y. Define the resistance

of such a transition, V (x, y), as

V (x, y) := lim
⌘!0

�⌘ lnP ⌘(x, y) (A.1)

where V is defined over the set of all x, y 2 ⌅ such that P

⌘̂(x, y) > 0 for some ⌘̂ > 0 (see

Beggs, 2005; Sandholm, 2010).

For uniform deviations, V (x, y) equals the number of agents who switch to anything

other than a best response.

V (x, y) =
X

�2{↵,�}

X

l /2argmax
l̃

⇡

�

(l̃,x)

max{y
�

(l)� x

�

(l), 0}. (A.2)

For the logit choice rule, V (x, y) equals the best response payo↵ minus the payo↵ from

the chosen strategy, summed over all updating agents.

V (x, y) =
X

�2{↵,�}

X

l2I

max{y
�

(l)� x

�

(l), 0}
✓

max
l̃

⇡

�

(l̃, x)� ⇡

�

(l, x)

◆

. (A.3)

Lemma 1. Each process, uniform or logit, unintentional or intentional, for given ⌘ > 0,
has a unique stationary distribution, which we denote µ

⌘

.

Proof. Note that for all x 2 ⌅, n 2 �
↵

(x), so for all of our processes, from any x 2 ⌅,

we have that P

⌘(x, y) > 0 for some y such that y

↵

(n) = N . From y, n is a best response

for any �-agent, so P

⌘(y, E
n

) > 0. Therefore, from any x 2 ⌅, with positive probability E

n

will be reached within two periods. As the state space is finite, standard results in Markov

chain theory13 imply that for all ⌘ > 0, P ⌘ has a unique recurrent class and µ

⌘

exists and is

unique.

In a similar way that V (·, ·) measures the rarity of single steps in the process, we will use

a concept, overall cost, that measures the rarity of a transition between any two states over

any number of periods. Let P(x, x0) be the set of finite sequences of states {x1
, x

2
, . . . , x

T}
such that x1 = x, xT = x

0 and for some ⌘̂ > 0, P ⌘̂(x⌧

, x

⌧+1) > 0, ⌧ = 1, . . . , T � 1.

13See, for example, “Probability” by Shiryaev (1995, p.586, Theorem 4).
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Definition 2. The overall cost of a transition between x, x

0 2 ⌅ is:

c(x, x0) := min
{x1

,...,x

T }2P(x,x0)

T�1
X

⌧=1

V (x⌧

, x

⌧+1). (A.4)

If there is no positive probability path between x and x

0 then let c(x, x0) = 1. We shall

be interested in the cost of transitions between conventions. In the current setting, this

quantity is always finite. Denote the overall cost functions for the uniform-unintentional,

logit-unintentional, uniform-intentional and logit-intentional processes by c

U , cL, cUI , cLI

respectively.

Lemma 2. For c 2 {cU , cL, cUI

, c

LI}, i 2 L, let

F

i

:=

⇢

x 2 ⌅ : For some � 2 {↵, �}, {i} 6= argmax
j2I

⇡

�

(j, x)

�

.

Then, to calculate min
x2F

i

c(E
i

, x) via the minimization in (A.4) it su�ces to consider

{x1
, . . . , x

T} 2 P(E
i

, x) such that, for ⌧ < T , x

⌧

and x

⌧+1
are identical except that for

some j 2 I, � 2 {↵, �}, x⌧+1
�

(i) = x

⌧

�

(i)� 1 and x

⌧+1
�

(j) = x

⌧

�

(j) + 1.

Proof. Let {x1
, . . . , x

T}, x1 = E

i

, xT 2 F

i

, be such that

min
x2F

i

c(E
i

, x) =
T�1
X

⌧=1

V (x⌧

, x

⌧+1). (A.5)

As V (., .) � 0, we can, without loss of generality, assume that x

t

/2 F

i

for t < T . For

t = 1 . . . , T � 1, for all � 2 {↵, �}, define

y

1
�

= x

1
�

,

y

t+1
�

(j) = y

t

�

(j) + max{xt+1
�

(j)� x

t

�

(j), 0} for j 6= i,

y

t+1
�

(i) = N �
X

j 6=i

y

t+1
�

(j).

That is, {y1, . . . , yT} di↵ers from {x1
, . . . , x

T} only in that all transitions to any j 2 I at

t+ 1 are now by agents who played i at t.

Let t0 be the smallest t such that yt 2 F

i

. t0  T as yT
�

(i)  x

T

�

(i), yT
�

(j) � x

T

�

(j) for j 6= i,

x

T 2 F

i

implies yT 2 F

i

. By (A.2) or (A.3), yt /2 F

i

implies V (yt, yt+1)  V (xt

, x

t+1). There-

fore, if t0 < T , then c(y1 = x

1
, y

t

0
) 

P

t

0�1
t=1 V (yt, yt+1) 

P

t

0�1
t=1 V (xt

, x

t+1) <
P

T�1
t=1 V (xt

, x

t+1),

contradicting (A.5). So t

0 = T and for all t < T , we have y

t

/2 F

i

and

V (yt, yt+1)  V (xt

, x

t+1). (A.6)
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Now, if
P

�

y

t+1
�

(i) <

P

�

y

t

�

(i) � 1, then take some j, � such that y

t+1
�

(j) > y

t

�

(j) and

define y

t+ to be identical to y

t except that yt+
�

(i) = y

t

�

(i)� 1 and y

t+
�

(j) = y

t

�

(j) + 1. Then,

by (A.2) or (A.3) we have

V (yt, yt+) + V (yt+, yt+1)  V (yt, yt+1). (A.7)

Now replace {y1, . . . , yt, yt+1
, . . . , y

T} with {y1, . . . , yt, yt+, yt+1
, . . . , y

T} and iterate this pro-

cedure until we obtain {z1, . . . , zT 0} such that z

1 = y

1, zT
0
= y

T , and either z

t+1 = z

t or
P

�

z

t+1
�

(i) =
P

�

z

t

�

(i)�1 for t = 1, . . . , T 0�1. If zt+1 = z

t, then V (zt, zt+1) = 0, so we omit

such transitions and renumber our sequence {z1, . . . , zT̃}, which now satisfies the conditions

in the statement of the lemma. Now,

min
x2F

i

c(E
i

, x) 
|{z}

by defn

T̃�1
X

⌧=1

V (z⌧ , z⌧+1) 
|{z}

by iterating (A.7)

T�1
X

⌧=1

V (y⌧ , y⌧+1)


|{z}

by (A.6)

T�1
X

⌧=1

V (x⌧

, x

⌧+1) =
|{z}

by (A.5)

min
x2F

i

c(E
i

, x).

which completes the proof.

Lemma 3. For i 2 L,

c

U(E
i

, E

j

) = min

⇢⇠

N

f(�i)

f(�i) + s̄

�

⇡

,

⇠

N

�i

�i+ s̄

↵

⇡�

for all j 6= i, (A.8)

c

L(E
i

, E

j

) ⇡ min

⇢

�i

⇠

N

f(�i)

f(�i) + s̄

�

⇡

, f(�i)

⇠

N

�i

�i+ s̄

↵

⇡�

for all j 6= i, (A.9)

min
j 6=i

c

UI(E
i

, E

j

) = min

⇢⇠

N

f(�i)

f(�(i+ 1)) + f(�i)

⇡

,

⇠

N

i

2i� 1

⇡�

, (A.10)

min
j 6=i

c

LI(E
i

, E

j

) ⇡ min

⇢

�i

⇠

N

f(�i)

f(�(i+ 1)) + f(�i)

⇡

, f(�i)

⇠

N

i

2i� 1

⇡�

. (A.11)

where a ⇡ b denotes |a� b|  max{s̄
↵

, s̄

�

}.

Proof. Let ⇠�
i

be the lowest number of deviations by a �-agent, � 2 {↵, �}, on any transition

path from E

i

, i 2 L, to some E

j

, j 2 I, j 6= i. At some point on any such path, some j 6= i

must become a best response. Therefore,

⇠

↵

i

max
j2C↵

i

⇡

�

(j, j) � (N � ⇠

↵

i

)⇡
�

(i, i) and ⇠

�

i

max
j2C�

i

⇡

↵

(j, j) � (N � ⇠

�

i

)⇡
↵

(i, i),

where C�

i

= I for unintentional processes and C

�

i

= �
�

(E
i

)\{i} for intentional processes. It
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follows that ⇠↵
i

is attained when ↵-agents make deviations and play k 2 argmax
j2C↵

i

⇡

�

(j, j),

and ⇠

�

i

is attained when �-agents make deviations and play k 2 argmax
j2C�

i

⇡

↵

(j, j).

⇠

↵

i

= min
j2C↵

i

⇠

N

⇡

�

(i, i)

⇡

�

(i, i) + ⇡

�

(j, j)

⇡

and ⇠

�

i

= min
j2C�

i

⇠

N

⇡

↵

(i, i)

⇡

↵

(i, i) + ⇡

↵

(j, j)

⇡

.

(A.12)

Now, ⇡
↵

(i, i) = �i and ⇡

�

(i, i) = f(�i). For unintentional processes

max
j2C↵

i

⇡

�

(j, j) = s̄

�

and max
j2C�

i

⇡

↵

(j, j) = s̄

↵

, (A.13)

and for intentional processes

max
j2C↵

i

⇡

�

(j, j) = f(�(i+ 1)) and max
j2C�

i

⇡

↵

(j, j) = � (i� 1). (A.14)

For uniform deviations, each deviation adds 1 to the cost of the transition, therefore the

least cost transition from E

i

, i 2 L, to some E

j

, j 2 I, j 6= i, is one involving the fewest

deviations. The cost of such a transition is then min{⇠↵
i

, ⇠

�

i

}, which by (A.12) and (A.13),

equals the RHS of (A.8) for unintentional deviations, and by (A.12) and (A.14), equals the

RHS of (A.10) for intentional deviations.

For logit deviations, as each deviation is weighted by the expected payo↵ loss, the lowest

cost from the transitions involving the fewest deviations is min{⇡
↵

(i, i) ⇠↵
i

, ⇡

�

(i, i) ⇠�
i

}. There
may exist lower cost transitions, but as Lemma 2 tells us we can restrict attention to paths

in which one agent switches at a time, we can invoke Theorem 1 of Hwang and Newton

(2017) and, for intentional processes, Theorem 1 from Hwang and Newton (2014), to give

min
j 6=i

c(E
i

, E

j

) � min{⇡
↵

(i, i)(⇠↵
i

� 1), ⇡
�

(i, i)(⇠�
i

� 1)},

so we have the RHS of (A.9) and (A.11).

Finally, note that for unintentional deviations, by (A.13), lowest cost transitions out of E
i

involve extreme deviations in which either ↵-agents switch to 0 until 0 is a best response for

�-agents, or �-agents switch to n until n is a best response for ↵-agents. Consider ↵-agents

making deviations until 0 is a best response for �-agents. It is then possible that all �-agents

update their strategy to 0, to reach a state x such that x
�

(0) = N . From such a state, any

strategy is a best response for ↵-agents, so it is possible that they all choose some arbitrary

strategy k, following which k becomes a best response for �-agents who can in turn switch

to k so that E
k

is reached. We see that any least cost exit path from E

i

can reach E

k

for
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arbitrary k without further mistakes. That is, c(E
i

, E

k

) = min
j 6=i

c(E
i

, E

j

) for all k 6= i.

The next step is to characterize the stochastically stable states of our model for given �

and large population size.

Definition 3. The following expressions are the limits of

1
/N multiplied by (A.8), (A.9),

(A.10), (A.11) as N ! 1, written as a function of t = �i.

'

U

�

(t) := min

⇢

f(t)

f(t) + s̄

�

,

t

t+ s̄

↵

�

,

'

L

�

(t) := min

⇢

t

f(t)

f(t) + s̄

�

, f(t)
t

t+ s̄

↵

�

,

'

UI

�

(t) := min

⇢

f(t)

f(t+ �) + f(t)
,

t

2t� �

�

,

'

LI

�

(t) := min

⇢

t

f(t)

f(t+ �) + f(t)
, f(t)

t

2t� �

�

.

Lemma 4. For c 2 {cUI

, c

LI} and corresponding �

�

2 {�UI

�

,�

LI

�

}, let i 2 argmax
j2L '�

(j�).
Then

�

�

(j�) = lim
N!1

1

N

c(E
j

, E

j+1) for j < i,

�

�

(j�) = lim
N!1

1

N

c(E
j

, E

j�1) for j > i.

Proof. We can write �

�

(t) = min{a(t), b(t)}. As a(t) is increasing in t, b(t) is decreasing in

t, a(i�)  b(i�) implies

a(j�) < b(j�) for j < i,

a(j�) > b(j�) for j > i. [otherwise �

�

(j�) > �

�

(i�), contradicting i 2 argmax
j2L

'

�

(j�)]

If a(i�) > b(i�), a similar argument implies the same conclusion. To conclude, note that by

the proof of Lemma 3,

a(j�) < b(j�) =) lim
N!1

1

N

c(E
j

, E

j+1) = lim
N!1

1

N

min
k 6=j

c(E
j

, E

k

) = �

�

(j�),

a(j�) > b(j�) =) lim
N!1

1

N

c(E
j

, E

j�1) = lim
N!1

1

N

min
k 6=j

c(E
j

, E

k

) = �

�

(j�).

Definition 4. An i-graph is a directed graph on L such that every vertex except for i has

exactly one exiting edge and the graph has no cycles. Let G(i) denote the set of i-graphs. For
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a graph g, let (j ! k) 2 g denote an edge from j to k in g. Define stochastic potential:

SP (i) := min
g2G(i)

X

(j!k)2g

c(E
j

, E

k

). (A.15)

We know from Freidlin and Wentzell (1984, chap.6), Young (1993a) that:

µ(E
i

) > 0 , i 2 argmin
j2L

SP (j).

Lemma 5. For c 2 {cU , cL, cUI

, c

LI} and corresponding �

�

2 {�U

�

,�

L

�

,�

UI

�

,�

LI

�

}, there exists

N

�

such that for all N � N

�

, µ(E
i

) > 0 =) i 2 argmax
j2L '�

(j�)

Proof. Let l /2 argmax
j2L '�

(j�) and let i 2 argmax
j2L '�

(j�). Consider g 2 G(i). For

c = c

U

, c

L, let g = {j ! i : j 2 L, j 6= i}. For c = c

UI

, c

LI , let g = {j ! j + 1 :

j 2 L, j < i} [ {j ! j � 1 : j 2 L, j > i}. Note that (j ! k) 2 g correspond to

c(E
j

, E

k

) that solve min
k

c(E
j

, E

k

). For c = c

UI

, c

LI , this follows from the proof of Lemma

3, i 2 argmax
j2L '�

(j�), and the fact that one term inside the minimization defining the

corresponding '

�

(t) is increasing t, the other term decreasing in t. Thus (j ! k) 2 g implies

that lim
N!1

1
N

c(E
j

, E

k

) = '

�

(j�). We have

lim
N!1

1

N

SP (l) �
|{z}

by defn

lim
N!1

1

N

X

j 6=l

j2L

min
k 6=j

k2L

c(E
j

, E

k

) =
|{z}

by Lemma 3 and
1
N

max{s̄
↵

,s̄

�

}!0
as N!1

X

j 6=l

j2L

'

�

(j�)

>

|{z}

by '

�

(l�)<'

�

(i�)

X

j 6=i

j2L

'

�

(j�) =
|{z}

by Lemmas 3,4

lim
N!1

1

N

X

(j!k)2g

c(E
j

, E

k

) �
|{z}

by defn
of SP (i)

lim
N!1

1

N

SP (i).

By (A.15), this shows that for large enough N , if l 2 L does not maximize '

�

(·�) then

µ(E
l

) = 0. So µ(E
i

) > 0 must imply that i 2 argmax
j2L '�

(j�).

This characterizes the stochastically stable states for large N . The principle theorem of

the paper approximates these states for small �, linking them to bargaining solutions. To

prove the Theorem we use the following lemma.

Lemma 6. Suppose ' is a continuous function which admits a unique maximum. Sup-

pose '

�

such that '

�

converges uniformly to ' as � ! 0. Let t

⇤ 2 argmax'(t) and

i

⇤ 2 argmax
i

'

�

(i�). Then for all & > 0, there exists �̄ > 0 such that for all � < �̄, we

have |i⇤� � t

⇤| < &.

Proof. By the definitions of t⇤ 2 argmax
t

'(t) and i

⇤ 2 argmax
i

'

�

(i�), we have '(t⇤) �
'(i⇤�) and '

�

(i⇤�) � '

�

(t). Let & > 0. By uniform convergence we can choose � < �̄, such
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that |'
�

(t⇤)� '(t⇤)| < & and |'
�

(i⇤�)� '(i⇤�)| < & . For � < �̄, we have '(i⇤�)  '(t⇤) 
'

�

(t⇤) + &  '

�

(i⇤�) + & < '(i⇤�) + 2&. Thus we have that

For all &̃ > 0, there exists �̄ such that for all � < �̄,we have |'(t⇤)�'(i⇤�)| < &̃. (A.16)

Without loss of generality we suppose that i⇤� < t

⇤ and let & > 0 be given. Then for & > 0

we can choose ⇢̄ such that for all ⇢ < ⇢̄

'(t⇤)� ⇢ < y < '(t⇤) implies |'�1(y)� t

⇤| < &, (A.17)

where '

�1 is the inverse function for ' defined in a neighborhood of t⇤ except t⇤. Now let

& > 0. Choose ⇢̄ satisfying (A.17) first. Then for &̃ = ⇢ < ⇢̄, choose �̄ satisfying (A.16).

Then for ⇢ and for � < �̄, we have |'(i⇤�)� '(t⇤)| < ⇢. Also since ⇢ < ⇢̄, by (A.17) we have

|i⇤�� t

⇤| < &. Thus we show that for all & > 0, there exists �̄ > 0 such that for all � < �̄, we

have |i⇤� � t

⇤| < &.

Proof of Theorem 1.

Taking the limit of 'U

�

(t) and '

L

�

(t) as � ! 0 gives uniform convergence to

'

U(t) := min

⇢

f(t)

f(t) + s̄

�

,

t

t+ s̄

↵

�

, (A.18)

'

L(t) := min

⇢

t

f(t)

f(t) + s̄

�

, f(t)
t

t+ s̄

↵

�

, (A.19)

respectively. These functions are maximized at tKS, tL, respectively. Lemmas 5 and 6 then

complete the proof for the cases of uniform-unintentional and logit-unintentional deviations.

For the case of logit-intentional deviations, 'LI

�

(t) takes the form min{a(t), b(t)}, with
a(t) = t

f(t)
f(t+�)+f(t)

and b(t) = f(t) t

2t��

. Continuity of f(·) implies that there exist & > 0, �̂ > 0

such that for all � < �̂, a(t) < b(t) for all �  t < &, and a(t) > b(t) for all s̄
↵

�� � t > s̄

↵

� &.

Therefore, the following function equals 'LI

�

(t) at all t = �i, i = 1, . . . , n� 1.

'̂

LI

�

(t) =

8

>

<

>

:

a(t) if t < &.

min{a(t), b(t)} if &  t  s̄

↵

� &.

b(t) if t > s̄

↵

� &.

As � ! 0, '̂LI

�

converges uniformly to

'̂

LI(t) := min

⇢

t

2
,

f(t)

2

�

.
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This expression is maximized at t

E. Lemmas 5 and 6 then complete the proof for logit-

intentional deviations.

For the case of uniform-intentional deviations, we cannot apply Lemma 6, since the

'

UI

�

(t) does not converge to a function with a unique maximum as � ! 0. However, in the

minimization that defines 'UI

�

(t), one of the terms is increasing in t, the other is decreasing

in t, and they intersect at a unique t̃. Therefore, for small �, i⇤ 2 argmax
i2L '

UI

�

(i�) is close

to t̃, which is given by

t̃

2t̃� �

=
f(t̃)

f(t̃+ �) + f(t̃)
, t̃

f(t̃+ �)� f(t̃)

�

+ f(t̃) = 0,

which approaches the first order condition for tNB as � ! 0. Hence �i⇤ ! t

NB (See detailed

argument in Naidu, Hwang and Bowles, 2010).

Appendix B. The Logit bargaining solution

The definition of tL in Table 2 can be rewritten as

t

L = arg max
0ts̄

↵

min{h1(t), h3(t)}, h1(t) :=
tf(t)

f(t) + s̄

�

, h3(t) :=
tf(t)

t+ s̄

↵

. (B.1)

We denote the maximizers of h1(t), h3(t) by t1, t3 respectively.

t

l

:= arg max
0ts̄

↵

h

l

(t), l = 1, 3.

When h1(t) and h3(t) intersect for 0  t  s̄

↵

, that is for 1
2
 s̄

↵

s̄

�

 2, we let t2 be the value

of t for which this intersection occurs. That is, t2 solves

t2 + s̄

↵

= f(t2) + s̄

�

. (B.2)

Remark 1. The Logit bargaining solution solves

t

L :=

8

<

:

t1 if h1(t1) < h3(t1), (Case 1)

t3 if h3(t3) < h1(t3) , (Case 3)

t2 otherwise. (Case 2)

The cases of the solution are numbered by the order in which they occur as the ratio s̄

↵

/̄s

�

moves from low to high values. For low values of s̄

↵

/̄s

�

, the maximum of h1(·) lies underneath
the curve of h3(·). This is when Case 1 holds. For high values of s̄

↵

/̄s

�

, the maximum of h3(·)
lies underneath the curve of h1(·) and we are in Case 3. For intermediate values of s̄

↵

/̄s

�

, the

maximizer of (B.1) is determined by the intersection of h1(·) and h3(·) and we are in Case 2.
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Case Condition Solution

1 s̄

↵

<

⇣

3
p
2

2
� 1

⌘�1

s̄

�

t

L = (2�
p
2)s̄

↵

2
⇣

3
p
2

2
� 1

⌘�1

s̄

�

 s̄

↵


⇣

3
p
2

2
� 1

⌘

s̄

�

t

L = (2s̄
�

�s̄

↵

)s̄
↵

s̄

↵

+s̄

�

3 s̄

↵

>

⇣

3
p
2

2
� 1

⌘

s̄

�

t

L = (
p
2� 1)s̄

↵

Table B.6: Explicit expressions for the Logit bargaining solution when the frontier is linear.

In Case 1 and Case 3, the Logit solution is similar to the Nash solution, but adjusted

to take into account the best possible outcome for one of the players. Comparing the first

order condition for the Nash bargaining solution:

t

NB

f

0(tNB) + f(tNB) = 0

to the first order conditions for the Logit bargaining solution in Cases 1 and 3 respectively:

t

L

f

0(tL) +
s̄

�

+ f(tL)

s̄

�

f(tL) = 0, t

L

f

0(tL) +
s̄

↵

t

L + s̄

↵

f(tL) = 0.

we see that Player ↵ obtains more in Case 1 and less in Case 3 than he does under the Nash

solution. Moreover, in Case 3, an increase in s̄

↵

results in Player ↵ achieving a higher payo↵.

This increase of Player ↵’s payo↵ in his best possible payo↵ di↵ers from the similar e↵ect in

the Kalai-Smorodinsky solution. The e↵ect in the latter depends on the ratio of s̄
↵

and s̄

�

,

whereas in Case 3 of the Logit solution, changes in s̄

�

have no direct e↵ect. Symmetrically,

in Case 1 the solution depends on f(.) and s̄

�

, but not directly on s̄

↵

.

When conditions for Case 2 are satisfied, we see from Equation (B.2) and the illustration

in Figure 1 that Player �’s payo↵ decreases with s̄

�

. In fact, the solution is an Equal-loss

solution (Chun, 1988) with an ideal point of (s̄
�

, s̄

↵

), e↵ectively an Egalitarian solution with

a notional disagreement point of (s̄
�

, s̄

↵

). The players equalize their losses from this ideal

point. This ideal point for a player is equal to the maximum attainable payo↵ of the other

player (see Figure 1).

Now consider a linear bargaining frontier given by the equation f(t) = s̄

�

� t

s̄

�

s̄

↵

. Condi-

tions under which each case of the solution pertains and explicit solutions for each case are

given in Table B.6. An increase in s̄

↵

is equivalent to a stretch of the bargaining frontier

parallel to the horizontal axis. It can be seen that when Case 2 pertains, an increase in s̄

↵

results in a reduction in t

L. Figure B.6 shows how, fixing s̄

�

, the payo↵ of Player ↵ varies

with s̄

↵

.
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Figure B.6: tL by s̄↵, keeping s̄� = 1.

Appendix C. Experiments - instructions and interface

Appendix C.1. Decision screen faced by subjects

Here we give the decision screen faced by subjects from the second round onwards. Po-

sition 1 corresponds to the population of ↵-subjects and Position 2 corresponds to the

population of �-subjects. Subjects were informed of their own payo↵s from successful coor-

dination and the proportions of subjects in the other position who played each strategy in

the preceding round.

Figure C.7: Screen faced by subjects in Position 1 (↵-subjects).
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Appendix C.2. Instructions given to participants

INSTRUCTIONS

Welcome to the study. In the following two hours, you will participate in 200 rounds of

strategic decision making. Please read these instructions carefully; the cash payment you

will receive at the end of the study depends on how well you perform so it is important that

you understand the instructions. If you have a question at any point, please raise your hand

and wait for one of us to come over. We ask that you turn o↵ your mobile phone and any

other electronic devices. Communication of any kind with other participants is not allowed.

Your Cash Payment

For each participant, the experimenter randomly and independently selects 3 rounds to

calculate the cash payment. (So it is in your best interest to take each round seriously.)

Each round has an equal chance to be selected as a payment round for you. You will not be

told which rounds are chosen to be the payment rounds for you until the end of the session.

Your total cash payment at the end of the experiment will be the average earnings in the

three selected rounds (translated into HKD as the exchange rate of 1 Token = 1 HKD) plus

a 30 HKD show-up fee.

Your total cash payment = HK (The average of earnings in the 3 selected rounds) + HK 30

Your Role and Decision Group

You are one of 20 participants in today’s session. At the beginning of the experiment,

one half of the participants will be randomly assigned to be in Position 1 and the other half

to be in Position 2. Your position will remain fixed throughout the experiment. In each

round, all individuals are randomly paired so that each pair comprises one Position 1 player

and one Position 2 player. Thus, in a round you will have an equal, 1 in 10 chance of being

paired with any given participant in the other position. You will not be told the identity

of the participant you are paired with in any round, nor will that participant be told your

identity—even after the end of the experiment. Participants will be randomly re-paired after

each round to form new pairs.

Your Decision in Each Round

In each round, you will play a 2-player game with the participant you are paired with.

For each player, there are five available actions, labeled A, B, C, D, and E. You and the

participant you are paired with simultaneously choose an action, and only if the choices
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made by you and the other participant are the same, may you be able to get a

positive earning in the round.

Figure 1: Your Earnings

In words this says,

1. When you are a Position 1 player , if you and the other participant you are paired with

have di↵erent actions, you each get 0. If you and the other player in your pair both

choose

(a) Action ‘A’, you get a1 and the other gets a2,

(b) Action ‘B’, you get b1 and the other gets b2,

(c) Action ‘C’, you get c1 and the other gets c2,

(d) Action ‘D’, you get d1 and the other gets d2, and

(e) Action ‘E’, you get e1 and the other gets e2.

2. When you are a Position 2 player, if you and the other participant you are paired with

have di↵erent actions, you each get 0. If you and the other player in your pair both

choose

(a) Action ‘A’, you get a2 and the other gets a1,

(b) Action ‘B’, you get b2 and the other gets b1,

(c) Action ‘C’, you get c2 and the other gets c1,

(d) Action ‘D’, you get d2 and the other gets d1, and

(e) Action ‘E’, you get e2 and the other gets e1.

You are prompted to choose an action by clicking one of the five buttons A, B, C, D,

and E at the bottom of your screen. Your decision in the round is completed.
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Do You Know Your Payo↵s?

At the beginning of the first round, you will be assigned to a position. Then the payo↵

values, a1, b1, c1, d1, and e1, are revealed to the position 1 players and the payo↵ values, a2,

b2, c2, d2, and e2, are revealed to the position 2 players. However, you will not be told the

payo↵ values for the players in the other position, even after the end of the experiment.

An Opportunity to Change Your Action

In the first round, every participant is given the opportunity to choose an action out

of the five available ones. In any round from the second round, the opportunity to change

an action is given to each participant independently with 90% chance only. That is, with

10% chance, any given participant is not allowed to change his/her action. In case that the

opportunity to change your action is not given, you will see the following message in your

decision screen:

“In this round, you are not given the opportunity to change your action choice.”

and will be assigned the same action as in the previous round. You will not be told whether

the opportunity to change an action is given to the participant you are paired with, nor will

the participant you are paired with be told whether such an opportunity is given to you.

Information Feedback

In each round, at the right-bottom corner of your screen, you will see the summary of the

previous round. First, you will see your action choice and your earning from the

previous round. Second, you will see the bar chart that reports how many people among the

10 participants in the other position chose each action in the previous round.

Rundown of the Study

1. At the beginning of the first round, you will be assigned to a position, and you will be

shown the payo↵ values for yourself. In the main panel of your decision screen, you

will be prompted to enter your choice of action. You must choose one of five actions

A, B, C, D, and E within 30 seconds. If you do not choose an action, one action will

be randomly assigned to you.

2. The first round is over after everybody has chosen an action. The screen will then

show you a summary: (a) your choice of action in the first round, (b) your earning in

the first round, and (c) how many players in the other position had each action in the

first round.
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3. You will be prompted to enter your choice of action for the second round, if you have

the opportunity to change your action. The game does not change, so as before you

must choose one of five actions.

All future rounds are identical to the first round except for two important di↵erence.

(a) The first di↵erence concerns how much time you have to choose an action. In

rounds 2�10, you have 20 seconds to make a decision. If you do not make a deci-

sion within the 20 second window, then you will be assigned whatever action you used in

the previous round. For rounds 11 � 200, you have only 10 seconds in which to

make a decision. Again, if you fail to choose an action in this timeframe, you will

be assigned the same action as in the previous round.

(b) The second di↵erence concerns whether the opportunity to change your action is

given with 100% chance (round 1) or with 90% chance (rounds 2� 200).

Administration

Your decisions as well as your cash payment will be kept completely confidential. Re-

member that you have to make your decisions entirely on your own; do not discuss your

decisions with any other participants.

Upon completion of the study, you will receive your cash payment. You will be asked to

sign your name to acknowledge your receipt of the payment. You are then free to leave.

If you have any questions, please raise your hand now. We will answer questions individ-

ually. If there are no questions, we will begin with the study.

Quiz

1. Suppose that you are a Position 1 player, and choose action A. It turns out that the participant you

are paired with chooses action B. What is your earning?

2. Suppose that you are a Position 1 player, and choose action B. It turns out that the participant you

are paired with chooses action B. What is your earning?

32



Appendix D. Experiments: additional material

Appendix D.1. Figures excluding early periods

Here we present versions of Figure 5 that exclude some periods. Figure D.8 excludes the

first 50 periods. By excluding the first 50 periods during which convergence to a convention

was observed in every session, much data for low best response payo↵s is omitted. A similar,

though less clear, pattern to Figure 5 is observed. As well as the initial period of convergence,

there were a considerable number of deviations observed in the final 20 periods of Session 3,

auguring a possible switch in convention. Figure D.9 gives Figure 5 with both the first 50

and the last 20 periods omitted.
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Figure D.8: Rates of non-best response play grouped by expected payo↵ from the best response strategy for
periods 51 to 200. Data are grouped into bins by best response payo↵ (0 to 10, 10 to 20, etc.). The area of
each circle on the chart is proportional to the square root of the number of strategy updating opportunities
it represents.

-0.2

0.0

0.2

0.4

0.6

0 50 100 150 200

Non-best responses by  subjectsα

Non-best responses by  subjectβ

Deviation rate Deviation rate Deviation rate

Panel A: All deviations Panel B: Intentional deviations Panel C: Unintentional deviations

Best response payoff
-0.2

0.0

0.2

0.4

0.6

0 50 100 150 200

Best response payoff
-0.1

0.1

0.3

0 50 100 150 200

Best response payoff

Figure D.9: Rates of non-best response play grouped by expected payo↵ from the best response strategy for
periods 51 to 180. Data are grouped into bins by best response payo↵ (0 to 10, 10 to 20, etc.). The area of
each circle on the chart is proportional to the square root of the number of strategy updating opportunities
it represents.
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Appendix D.2. Regression

Letting i denote an individual subject, for periods t = 2, . . . , 200, let ⇡BR

it

be the expected

payo↵ to subject i from playing a best response to the strategy profile played in period t�1.

Similarly, let ⇡

NBR

it

be the highest expected payo↵ from any strategy that is not a best

response. Using expression (1), it can be shown that, for small values of ⌘, the probability of

a deviation at period t by player i under the logit choice rule is approximately proportional

to exp(�⌘

�1(⇡BR

it

� ⇡

NBR

it

)).

Define the binary variable M
it

as follows. M
it

= 1 if subject i in period t does not play a

best response to the strategies played in period t� 1, and M

it

= 0 otherwise. A multinomial

logit regression with individual fixed e↵ects was carried out with dependent variable M

it

and independent variables ⇡BR

it

� ⇡

NBR

it

and t, the latter to account for a possible change in

deviation rates due to the passage of time. We label the coe�cients of these variables �1, �2

respectively.

Pr [M
it

= 1 ] = exp( �1 (⇡
BR � ⇡

NBR) + �2 t ) (D.1)

The sign of each coe�cient is easy to interpret. If deviations are less frequent when more

payo↵ is lost as a consequence, then �1 should be negative. If subjects deviate less as a session

progresses, then �2 should be negative. Table D.7 presents the results. From Column (1), we

see that �1 is negative and significant at the 1% level across all sessions. Column (2) shows

that across all sessions, subjects deviate less often as time proceeds. Estimated marginal

e↵ects can be determined as follows. The coe�cient �0.0040936 in Session 1 indicates that,

holding t fixed, a one unit decrease in ⇡

BR � ⇡

NBR leads to an increase in the probability of

a deviation by a factor of exp(0.0040936) = 1.004102.

(1) (2)

Revision
Session

# of U(BR) - U(NBR) Period

Opportunity Obs. Coef. p-V Coef. p-V

90%

1 3,591 �.0040936 .000 �.0135664 .000

2 3,585 �.0038834 .000 �.0231305 .000

3 3,381 �.0060386 .000 �.0050871 .000

50%
4 1,103 �.005016 .000 �.0185845 .000

5 1,616 �.0031452 .000 �.0177666 .000

Note: Observations from 9 individuals (895 observations) and 4 individuals
(402 observations) respectively in Session 4 and Session 5 are dropped because
of no variation in their choices. Abbreviations: # of Obs. = Number of
Observations; U(BR) = Payo↵ from the best response action; U(nBR) =
Payo↵ from the second best action; Coef. = Coe�cient; p-V = p-value.

Table D.7: Logit Regression with Individual Level Fixed E↵ect
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