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Abstract 

Composite materials comprising fiber reinforced polymers (FRPs) possess advantageous 

properties that surpass that of traditional materials.  The use of composite materials may give 

the opportunity to improve the technical specifications of a manufactured module and also 

impact the configuration of the supply chain.  However, this represents a challenging decision-

making process as various technologies are available for the manufacturing of composite 

materials.  This paper proposes a design process based on the identification of the bill of 

materials of a component where the substitution of certain sub-assemblies using composite 

materials may result in the reduction of parts, operations and suppliers.  The design process is 

supported by a customized software tool that generates a graphic representation of the bill of 

materials of the selected module, allowing users to choose a specific sub-assembly, select 

composite materials process types and identify potential suppliers from a database.  An industry 

case involving the production of a module used in urban buses/long distance coach 

manufacturing is employed to illustrate the proposed design process.  The software tool 

developed satisfactorily integrates the bill-of-materials and current product and process 

specifications with an existing costing engine and a populated database of potential composite 

materials suppliers.  The approach presented in the paper can be used to address the lack of 

evaluation tools for using composite materials/carbon fiber.   
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1. Introduction 

Recent developments in materials and technological innovations have enabled manufacturing 

organizations to attain technical achievements that were unthinkable few decades ago. The 

composite materials industry supports the development of innovative manufacturing products 

in several industries comprising aerospace, automotive, construction, marine, renewable energy, 

railway and sports among others.  The composite materials industry is growing steadily in many 

locations around the world.  According to JEC Group (Wilson, 2017) the global composites 

market amounted to some 10.8 million tons in 2016, representing a value of $82 billion with 

growth expected to be around 4% by volume and 5% by value by 2021 and creating a market 

of 12.0 million tons worth $103 billion.  The expected global demand for carbon fiber will grow 

from 46,000 tons in 2011 to 140,000 tons by 2020 (Roberts, 2011). 

 

Polymer matrix composites (PMCs), also known as fibre reinforced polymers (FRPs), consist 

of a matrix material, which is a polymer based resin, surrounding and supporting a 

reinforcement of some kind (typically fibers, particles or flakes).  The resultant PMC has 

properties that are advantageous compared to those of either the matrix or the reinforcement 

when used on their own (Shakspeare and Smith, 2013). 

 

These days the use of PMCs can be found in several state-of-the-art products, from aircraft, to 

motor vehicles, construction, windmill propellers, etc.  For example, the latest generation of the 

BMW 7 series sedan introduced in 2016 carbon fiber reinforced plastic (CFRP) is found in the 

B- and C-pillars, in the roof bows, along the center tunnel, on the package tray, in the sills, and 

in a 9-foot arc that runs from the base of the A-pillar to the rear of the car along the roofline 

(Autoweek, April 21, 2015).  The description from the manufacturer states body structure of the 

new car is 90 pounds lighter compared with the previous generation model. 

 

The adoption of composites materials and in particular CFRP represents a major challenge to 

manufacturing organisations due to various technologies that can be adopted to manufacture 

composite materials, not to mention the implications it may have on the number of operations, 

lead times and eventually the configuration of the supply chain.  To mitigate the challenges 

associated to the adoption of CFRP/composite materials, information and communication 

technology (ICT) can play a key role as it has already been the case in other industries.  For 

example, in the textile industry Zülch et al., (2011) discussed that customers’ needs should be 

realized through extensive automation concepts and integration of new resources and 

information technologies into the existing production systems.  Furthermore, a similar situation 

might be taking place in the composite materials industry.  ICT may play a major role in helping 

to configure the supply chains of end products that make use of composite materials.  Prajogo 

and Olhager (2012) argue ICT plays a central role in supply chain management in three key 

aspects that cover the following: 



- It allows firms to increase the volume and complexity of information which needs to be 

communicated with trading partners. 

- It allows firms to provide real-time supply chain information, including inventory level, 

delivery status, and production planning and scheduling which enables firms to manage 

and control its supply chain activities.  

- It facilitates the alignment of forecasting and scheduling of operations between firms and 

suppliers resulting in better inter-firms coordination. 

 

Additionally we believe ICT can provide support to managers and decision makers on how to 

proceed with the rationalization of the supplier base based on the inherent advantages associated 

to composites materials.  Indeed, the adoption of composite materials may bring opportunities 

to rationalize the supplier base and thus reconfiguring the supply network.  In the view of Talluri 

et al. (2013) supply base rationalization can be seen as the process of determining what firms 

should be removed from a particular supply base and what firms should remain, which will 

eventually help to reduce the net number of suppliers a company needs to manage.  The use of 

ICT to support the decision-making process about the adoption of composite materials fits well 

the future agenda towards the digitization of the manufacturing environment.  Indeed, in the 

view of Oesterreich and Teuteberg (2016) Smart Production or Industrial Internet have been 

promoted by different actors to describe the trend towards digitization, automation and the 

increasing use of ICT in the manufacturing environment. 

 

The aim of this work is twofold.  First we want to identify the implications that the adoption of 

CFRP/composite materials may have in the number of operations and the configuration of the 

associated supply chain.  Second, we want to develop an ICT-based design process for the 

adoption of composite materials that can be used as a reference leading to supply chain 

rationalization.  The work undertaken was supported by the use of a customized software tool 

which was designed as part of an academic research project that focused on strengthening the 

composites supply chain.  The tool has access to a UK-based composites capabilities database 

which works as a composites industry directory facilitating regular company updates.  The next 

section discusses the nature of composite materials, the impact on manufacturing supply chains 

and the use of ICT as part of a design process that can be applied to composite materials. 

 

2. The manufacturing of composite materials  

It is well recognized choosing new materials and manufacturing technologies are part of the 

manufacturing strategy that permeates manufacturing organizations (Farooq and O’Brien, 

2012).  For manufacturing organisations the adoption of composite materials has strategic 

implications that impact their operations and supply chain.  It is worth emphasizing that the 

composite materials industry is characterized for having flexible and innovative approaches to 

forming shapes, adapting processes and modifying materials.  This can be seen as an 

opportunity but also as a key challenge.  If we take the case of the metallurgy industry 

tolerances are well defined, but in composites that is not the case.  In composite materials there 

are no standard manufacturing processes, nor are there standardized materials with defined or 

prescribed properties to select.  As a result for any particular challenge there are frequently 

multiple solutions proposed that are technically viable, as typical processes used in the 



manufacture of composite materials include: layup, filament winding, pultrusion and composite 

spray to name just a few.  Furthermore, these processes can be broken down into sub-processes 

comprising: hand layup, automated tape layup, resin transfer moulding, liquid resin infusion, 

resin film infusion and hot ply forming.  Once a part has been manufactured it may go through 

different processes such as curing, autoclave/oven, finishing and trimming.  A company has to 

choose the materials and consumables needed to manufacture the part required.  Because 

different options are available, hence manufacturing organizations looking to adopt 

CFRP/composite materials need to make informed decisions about which specific solution they 

have to adopt in order to strengthen their own position within the supply chain. 

 

2.1 The structure of the composites supply chain 

Companies in the manufacturing industry are collaborating with suppliers and customers to 

achieve seamless integration of manufacturing and supply chains (Farooq and O’Brien, 2012).  

This applies to manufacturing organizations and their supply chains which integrate ‘‘key 

business processes from end user through original suppliers that provides products, services, 

and information that add value for customers and other stakeholders’’ (Lambert and Cooper, 

2000).  In order to understand the implications of adopting composite materials in 

manufacturing, we believe it is important to illustrate the structure characterizing the composite 

materials supply chain.  Composite materials is a technology-driven industry with a supply 

chain comprising various echelon/stages.  Figure 1 depicts a typical five-tier structure of the 

composites supply chain comprising raw materials, semi-finished materials, components, 

structures and Original Equipment Manufacturer (OEM). 

 

 
 

Figure 1. Depiction of the multi-tier composite materials supply chain 

 

In figure 1, the tier associated with raw materials covers the supply of resins, fibers and core 

materials.  Among the most important raw materials found include polyesters, epoxy resins, 

vinyl ester resins, phenolic resins, polyurethane and high value thermoplastics.  Fibers 

comprise glass, carbon, aramid fiber and natural fiber.  The tier associated to semi-finished 

materials includes the materials that go through processes such as ‘prepreg’, pre-impregnated 

composite fibers which often take the form of a weave with a matrix material, usually epoxy.  

In ‘prepregs’ the matrix is used to bond the fibers with other materials during production (the 

matrix requires cold storage because is only partially cured).  Examples of semi-finished 



materials cover thermoset ‘prepreg’, thermoplastic ‘prepreg’ and consolidated sheet/panels.  

In composite materials ply is a layer of a laminated material.  Figure 2 depicts individual plies 

with fibre reinforcement.  Here, composite laminates are made of stacking of plies with 

different angles of fibre reinforcement in directions of 0, 45, 90, -45 degrees. 

 

 
 

Figure 2. Stacking of individual plies into a composite laminate 

 

The tier associated to components encompasses the development and manufacture of 

composite material parts.  An example of components can be represented by the transmission 

tunnel of a motor vehicle made of carbon fiber.  The tier associated to structures includes the 

manufacture of composite systems by joining several components such as the wing or fuselage 

of an aircraft.  Enablers would be those companies that provide engineering services, tooling, 

training and business support to all suppliers in the composite materials supply chain.  Going 

into more detail, enablers also comprise software, equipment, education and training, research 

and development, product design, testing, company groups, societies and associations.  At the 

end of the chain there are OEMs who are responsible for manufacturing end products that will 

be delivered to the final customer.  End products can include from planes, to cars, buses and 

long distance coaches, furniture used in railway stations, interiors in trains, renewable energy 

generation, sports gear and rescue and medical equipment among others.  The adoption of 

CFRP/composite materials promises a major overhaul of manufacturing operations and the 

supply chain, hence there is a growing interest in using ICT tools to analyze to what extent 

adopting composite materials may affect the total number of operations and configuration of 

the supply network. 

 

It is expected the composites supply chain will face significant challenges when it comes to 

making decisions about technology selection to produce components and structures required in 

the assembly and manufacturing of state-of-the-art end products.  The case of the automotive 

sector is particularly important as in the foreseeable future the use of composite materials and 

in particular carbon fibre technology will become crucial for reducing vehicle weight and meet 

future Corporate Average Fuel Economy (CAFE) standards.  Benefits of composite materials 

to automotive applications include reduced number of parts, reduction in tooling costs, good 

corrosion resistance and excellent crashworthiness properties among others (Shakspeare and 

Smith, 2013). 

 

2.2 Use of ICT in supplier base reconfiguration/rationalization 

The use of new technologies and processes may contribute to the growth and overextension of 

the supply network, hence the need to find ways to become leaner and reduce the size of the 



supplier base.  ICT can play a role in assisting managers when it comes to making decisions 

pertaining the supplier base.  Olhager and Prajogo (2012) based on the works by Li et al. (2005) 

provided a compelling case on it.  They acknowledged that supply chain 

reconfiguration/rationalization is seen as an important component in the strategic partnership 

with suppliers as it refers to the practice of limiting the supplier base to a few strategic suppliers 

that can provide high quality and dependability.  In fact benefits associated to supplier base 

reduction cover better market penetration (Chen and Paulraj, 2004), business growth 

(Narasimhan et al., 2001) and the formation of effective partnerships (Berger et al., 2004). 

 

It is widely accepted the important role ICT plays in supply chain management.  Prajogo and 

Olhager (2012) highlighted that the use of ICT in supply chain has received considerable 

attention with various technologies being introduced for Business-To-Business (B2B) 

communication, including web internet, B2B private (Ethernet), and EPOS (Electronic Point 

of Sale).  Overall, ICT supports key processes in supply chains, including sourcing, 

procurement, and order fulfilment (Kehoe and Boughton, 2001).  ICT can be useful when 

dealing with multi-criteria and the prioritization of the relative importance of certain 

characteristics.  Talluri et al. (2013) identified several methods including analytical hierarchy 

process (AHP); analytical network process (ANP) and principal component analysis (PCA).  

For conceptual models the list identified by the researchers included interpretive structural 

modelling (ISM) and statistical models include conjoint analysis, fuzzy set theory and cluster 

analysis.  Kemoe et al., (2014) developed a model that can be used in a wide ‘what-if’ design 

process.  The model developed by the authors considered the evaluation of various flexibility 

configurations in multiple demand scenarios in order to choose the best option. 

 

Given the importance of composite materials in modern manufacturing operations, in this work 

we want to explore the use of ICT to support a design process that can assist organisations in 

the adoption of composite materials.  The next section presents the methodology considered 

for this research where an industry case is used to demonstrate whether the substitution of 

parts/components made of traditional materials with composites may lead to the 

reconfiguration and rationalization of the supply chain and the resulting reduction of activities. 

 

2.3 Developments in design tools and supply chain involving the use of composites 

materials 

In recent years, research in the area of composite materials has dedicated resources to 

investigate computer-assisted design, simulation and evaluation tools.  Das et al. (2016) 

reviewed the work of various people in the area of tools for composite materials design.  For 

example, the work by Ma (2011) investigated the cost modelling of aerospace composites 

manufacturing and the cost ramifications associated to design choices. 

 

The review also highlighted the work by Van Gent and Kassapoglou (2013) about the adoption 

of cost models to guide design decisions involving the use of modular and custom parts.  Das 

et al. (2016) indicated that in recent years OEMs have shifted design and manufacturing work 

toward their suppliers.  Moreover, based on a limited survey focused on the supply and 

opportunities for application of carbon fibre composites in the USA, the authors highlighted 



that the lack of computer-assisted simulation and evaluation tools for carbon fiber advanced 

design affects growth and competitiveness of the industry. 

 

3. Methodology 

The methodology considered for this work takes into account elements of cradle-to-gate 

analysis used by Chua et al. (2015) in which they studied the manufacture of an upper wing 

skin of an idealized single aisle aircraft.  This structure was manufactured from carbon fiber 

epoxy resin prepreg, using traditional hand layup and autoclave cure.  In their work they 

followed guidelines of the Life Cycle Assessment (LCA) defined by the ISO14040 standard 

(2006).  Key elements emphasized include of goal and scope definition; inventory analysis; 

impact assessment; and interpretation (Chua et al., 2015). 

 

The approach used in this work follows a raw material-to-gate approach, where the 

identification of the bill materials of a component manufactured is used to build up the required 

new bill of materials using composite materials.  In order to implement this approach, the 

researchers secured the participation of one European-based manufacturer of urban buses and 

long distance coaches with products exported to several markets around the world.  The 

company director, the manufacturing and engineering managers and one key supplier 

participated in the study.  The procedure employed for this research follows guidelines 

highlighted in the work by Seaman (1999), where visits to the participating sites were planned 

to obtain first-hand information from tours of specific facilities and services, interviews with 

individuals or groups, or observations of specific activities at the sites.  Following the 

guidelines provided by Seaman (1999), site-visits and email exchanges were used to obtain 

reports, brochures, and examples of the products made available at the sites, also enabling the 

opportunity to obtain first-hand information about users or activities in a particular setting. 

 

The justification for using an ICT tool for assisting supply chain management in the adoption 

of composite materials is based on the principles reviewed by Olhager and Prajogo (2012) and 

Prajogo and Olhager (2012) where the use of ICT supports key processes in supply chains, 

including: supplier evaluation, sourcing, procurement, and order fulfilment among others.  In 

this research ICT is used as a support tool to assist in the adoption of composite materials in 

manufactured goods which may result in supplier-base reconfiguration/rationalization with the 

aim to limit the manufacturing supply base to a few strategic suppliers that can provide high 

quality and dependability. 

 

This research comprised the development of an ICT tool, labelled ‘Comp-Fore’ (Cross sector 

modelling tool for strengthening supply chains by technology insertion), to assist in the design 

process for the adoption of composite materials in modules that go into end products.  The tool 

may yield benefits such as visualization of the changes introduced, the generation of metrics 

followed by the possibility to choose suitable suppliers from a composites capabilities database. 

 

We developed a design process which comprises the identification of the bill of materials 

(BOM) of a module used in a manufactured end product.  Here it is necessary to breakdown the 

BOM in order to get all the details of sub-assemblies, parts and operations involved.  This 



operation is supported by the Comp-Fore tool which is a web-based tool that allows users enter 

the BOM for a finished product and substitute sub-assemblies that use traditional materials with 

composite materials.  The logic behind the design and operation of the Comp-Fore tool is 

presented in figure 3. 

 

 
 

Figure 3.  Flow diagram for the Comp-Fore tool 

 

Following the logic presented in the diagram the user needs to enter the BOM for a selected 

module and this requires dissecting the structure of the BOM.  Then the tool will generate a 

graphic representation of the supply network associated to that BOM.  As a consequence this 

may facilitate the identification of a sub-assembly or sub-assemblies suitable for replacement 

using composite materials.  Once a sub-assembly has been identified the next step is to define 

the parameters related to product and engineering description.  There are eight major areas to 



consider when populating the parameters for composites calculations.  These include: product 

description; engineering description; process type; material; process description; cure and 

manufacturing description.  The parameters are sent to the costing calculation engine which 

will generate results including total cost/unit, material cost/unit, direct minutes/unit among 

others.  The results from the costing tool can be matched to specialized suppliers who are 

registered in a composites capabilities database known as the Hub.  These suppliers might be 

able of manufacturing the desired sub-assembly using composite materials. 

 

4. Industry case presentation 

The research undertaken comprised the participation of a European-based manufacturing 

company which produces urban buses and long distance coaches.  The manufacturing of a 

bus/coach involves getting a chassis from manufacturers like MAN, Volvo, Scania among 

others and then a body is built onto the chassis.  Among various models manufactured by the 

company, a distinctive urban bus model was selected for this study.  The company produces 120 

units of this model every year and the interior preparation is the last stage of the manufacturing 

process.  The lead time from receiving a chassis to producing a finished bus ready to be delivered 

to the customer is 38 days.  The body uses materials such as stainless steel, aluminum, polyester, 

adhesives, rivets, etc., however, the use of composite materials, in particular carbon fiber, is not 

present at the moment.  The module chosen for this analysis is a panel comprising the interior 

engine hatch that facilitates the access to the engine.  Key particularities of this module includes 

having good sound absorption and being able to withstand the temperatures of the engine bay.  

Figure 4 depicts the lead time associated to the manufacturing of the bus and the module being 

studied. 

 

 
 

Figure 4. Diagram of the manufacturing stages of the component being investigated 

 

4.1 Characteristics of the module investigated 

An important part of the analysis of the feasibility of adopting composites materials requires 

breaking down the bill of materials (BOM) of the module studied to identify the potential 

substitution of materials like wood and metals with composites materials/carbon fibre.  Table 

1 shows the BOM for the module studied as specified by the manufacturer including the cost 

associated to each part. 

 

The cost of the materials comprising the selected module excluding labor is €89 plus locally 

sourced screws, glue and aluminum frame.  The suppliers of flooring materials, insulators 2, 3 

and 4 are located more than 1000 km away.  Suppliers of wood plate and insulator are located 



between 100 and 600 km.  All the other suppliers are local.  The cost of labor can be rated at 

€50 per hour.  The operations associated to the assembly of the selected module are presented 

in table 2. 

 

Bill of materials cost 

Flooring material (2/3 mm width) €9 

Wood plate (12 mm width) €4 

Insulator 1 €11 

Insulator 2 €25 

Insulator 4 €10 

Insulator 3 €30 

Self-tapping screws (16 units) - 

Polyester-based solvent glue (250 ml) - 

Aluminum frame - 

 

Table 1. Bill of materials for engine panel as specified by the manufacturer 

 
Operations associated to this BOM (from bottom to top) – Estimated number of operations: 9 

Bore holes for self-tapping screws in insulators 1, 2 and 4 

Attach insulator 1 to wood plate 

Attach (glue) insulator 2 to insulator 1 already attached to wood plate. 

Attach (glue and screw) insulator 4 to insulator 2 already attached to insulator 1. 

Attach (glue) insulator 3 to insulator 4. 

*Wait until glue has dried. 

Cut flooring material to specified dimensions 

Glue flooring material to wood plate. 

*Wait until glue has dried. 

Cut 4 parts making aluminium frame 

Screw the aluminium frame to hatch 

Insulator 1 (total parts: 2) – Estimated number of operations: 2 

Cut auto-adhesive aluminium film to measure. 

Apply sealant.  

Insulator 2 (total parts: 5) – Estimated number of operations: 9 

Cut glass fibre cover (twice). 

Cut acoustic and thermal insulation layer (Fonoplast) (twice). 

Cut to measure metallic sheet. 

Attach glass fibre cover (1) to acoustic and thermal insulation layer (Fonoplast) (twice – assembly 1 & 2). 

Attach metallic sheet to assembly 1. 

Attach assembly 2 to metallic sheet already attached to assembly 1. 

Insulator 3 (total parts: 2) – Estimated number of operations: 3 

Cut-to-measure polyurethane foam. 

Cut auto-adhesive aluminium film. 

Attach polyurethane foam to auto-adhesive aluminium foam. 

Insulator 4 (total parts: 3) – Estimated number of operations: 5 

Sandwich made of three layers: 

Cut-to-measure layer of thick, fire-retardant thermal insulator with aluminium sheet (twice – assembly 1 & 2) 

Cut-to-measure layer in-the-middle heavy layer comprising stacked sheets made of elastomeric rubber EPDM type 

Attach assembly 1 to in-the-middle layer. 

Attach assembly 2 to in-the-middle heavy layer already attached to assembly 1. 

 

Table 2. Operations performed in the assembly of the selected module 

 

The identification of potential advantages in adopting composite materials to reduce the 

number of operations and reconfigure/rationalize the supply network for the module selected, 

required breaking down the BOM followed by the identification of the number of operations 

performed by first-tier suppliers making insulators 1, 2, 3 and 4.  Although the BOM of the 



module investigated may look simple at first, once the BOM has been dissected it is possible 

to appreciate the complexity of it.  For example, looking into the details: Insulator 1 is made of 

two parts (sealant and auto-adhesive aluminum film); Insulator 2 comprises five parts (two 

glass fibre covers, two acoustic and thermal insulation layers and one metallic sheet); Insulator 

3 is made of two parts (polyurethane foam and auto-adhesive aluminum film) and Insulator 4 

comprises three parts (two layers of thick, fire-retardant thermal insulator with aluminum sheet 

and one heavy layer comprising stacked sheets made of elastomeric rubber EPDM type).  The 

total number of operations nested at the OEM (bus/coach manufacturer) level for the selected 

module is 28.  Because of the proximity of this module to the engine bay, the life of it is limited 

to a span of about two years and then it will have to be replaced by a new one. 

 

4.2 Use of the Comp-Fore tool  

The Comp-Fore tool was developed in the DRUPAL PHP-written open source web content 

management platform.  The use of the Comp-Fore tool is linked to the Hub capabilities 

database, a composites industry database created in a format that facilitates regular updating.  

The aim is to ensure the model itself is sustainable and of long term value to the composites 

community.  The URL address http://compfore.co.uk hosts the Comp-Fore tool. The Hub 

database collects information to support the UK composites industry and it acts as a free way 

to advertise companies and find other composites organizations.  The Hub website is live at: 

http://www.compositesuk.co.uk/hub.  The Hub database supports full search option includes 

material, equipment/software, manufacturer, service and advanced search.  These two are free 

services. 

 

When entering data into the software tool, the user has to define the tiers associated to each part 

comprising the BOM which allows to identify the hierarchy of the elements for that particular 

module.  Once login into the Comp-Fore tool the user can click ‘Add BOM’ to start adding a 

BOM to the tool.  The user can choose tier 0 to identify an OEM and tiers 1 and above for 

external suppliers with items grouped into sub-assemblies.  A sub-assembly includes a limited 

number of items and operations.  Once the BOM has been entered, the tool generates a diagram 

illustrating the resulting supply network for that module.  Figure 5 shows a graphic 

representation of the supply network for the BOM and generated by the Comp-Fore tool. 

 

Looking at the graphical representation of the BOM, the different tiers are represented using 

different geometric shapes.  For example, a hexagon is used to represent the OEM level, a circle 

for first-tier suppliers and square for second-tier suppliers.  Based on figure 4 and the details 

already presented in table 2 particular attention is given to sub-assemblies 1 and 2 and their 

related parts as these two together may be suitable for replacement with composite materials.  

Eventually the replacements of all these parts may result in a reconfigured/rationalized supply 

chain. 

 

Once a sub-assembly suitable for substitution has been identified, a key important aspect to 

consider is the identification of the composites manufacturing process that will be required to 

make the desired components.  As mentioned before methods available for manufacturing 

composite materials include: hand layup; automated tape layup; resin transfer molding; liquid 

http://compfore.co.uk/
http://www.compositesuk.co.uk/hub


resin infusion and resin film infusion among many others.  Hand layup is a process associated 

to the manufacturing of flat surfaces which in this case it suits the characteristics of the panel 

comprising the interior hatch investigated in this case.  The use of hand layup may make possible 

the replacement of sub-assembly 2 which comprises sub-assembly 1 and all its related parts. 

 

 
 

Figure 5. Graphic representation of the multi-tier supply chain generated by the Comp-

Fore tool 

 

4.3 Parameters used in the Comp-Fore tool 

The Comp-Fore tool links itself to the “Detailed Composites” module offered by the SEER 

composites estimate costing engine (Galorath International, 2017) which is one of the most 

comprehensive composites calculation modules available to industry.  SEER is an estimate 

costing engine adopted by leading organizations in various manufacturing sectors.  Based on 

the functionality of the SEER composites estimate costing engine (Galorath International, 2017) 

once a sub assembly for substitution using composites has been identified, the user gets to 

choose from different options and parameters to start working on making a composites parts 

based on the specifications of the sub-assembly/sub-assemblies to be replaced.  There are eight 

major areas to consider when populating the parameters for composites calculations: product 

description; engineering description; process type; material; process description; cure and 

manufacturing description.  Table 3 shows the areas and parameters used in the Comp-Fore tool 

based on the Detailed Composites module of the SEER composites estimate costing engine 

(Galorath International, 2017). 



 

Area Paremeters 

Product Description Quantity Per Next Higher Assembly; Production Quantity; 

Set-up Amortization Quantity (Optional); Tooling 

Amortization Quantity (Optional); Direct Hourly Labour 

Rate; Set-up Hourly Labour Rate and Production 

Experience/Optimization 

Engineering Description Part Complexity; Overall Length (mm); Shape/Dimensions 

(mm) 

Process type Process type; Core Operation 1; Additional Ply 1 

Material Prepreg Material Type; Tape Material Type; Material Cost 

Per Kg.; Roll/Tape Width (mm); Lightning Mesh; Material 

Utilization Factor 

Process Description Cutting Type; Cut Machine Efficiency Factor; Layup Type; 

Bagging/Tool closing; Operator Attendance Factor; Debulk; 

Debulk Interval; Hot ply forming; Ply Orientation 

Bagging Material Release Agent; Breather; Sealant Tape 

Cure Cure; Cure Method; Cure Temp. (°C); Final Cure Duration 

(min); Initial Temp. Cure Duration (min); Operator 

Attendance Factor; Heat-up Rate (°C/min); Cool-down Rate 

(°C/min) 

Manufacturing 

Description 

Set-up Complexity 

 

Table 3.  Areas and parameters considered for the Comp-Fore tool 

 

A condensed description of each area and its parameters is shown in the next paragraphs. 

 

In Product Description Set-up amortization quantity refers to the quantity of parts or assemblies 

over which the set-up (i.e. preparation of the machinery and the work area) will be amortized 

shared or divided.  This is referred as the number of units in which a set-up is required as part 

of the production run (Galorath International, 2017).  Tooling amortization quantity, represents 

an optional entry of an alternate amortization quantity for the production tooling (Galorath 

International, 2017).  An assumption made is all of the tooling costs are amortized over the 

current production lot (entered in the Production Quantity parameter which by default is 1).  If 

a value of zero is entered, the estimated tooling costs will be amortized over the current 

production quantity.  The parameter production experience/optimization can be rated as Low, 

Nominal, High, Very High and Extra High.  Low rating means little or no experience in the 

activities or processes considered.  Nominal rating means the manufacturer is experienced to a 

medium degree in similar activities or processes.  High refers to the manufacturer being 

experienced in the activities or processes considered.  Very High means the manufacturer is 

highly experienced in the specified activities or processes and Extra High refers to the 



manufacturer being recognized as an industry leader in performing the specified process with a 

minimum of 10 years of experience. 

 

The Engineering Description area encapsulates inputs related to the physical dimensions and 

complexity of the part that will be produced.  Part complexity affects manufacturing time, for 

example, a flat panel made from plies is the simplest and least complex type of part that can be 

manufactured (Galorath International, 2017).  The user can rate part complexity as Very Low, 

Low, Nominal, High and Very High. 

 

In the Process Type area, the user can choose from five different composite process types 

including: Hand Lay Up (HLU), Automated Tape Layup (ATL), Resin Transfer Molding 

(RTM), Liquid Resin Infusion (LRI), and Resin Film Infusion (RFI).  The parameter Additional 

Ply indicates whether plies used types include Peel Plies using prepreg material or dry fibre 

material.  Peel plies using prepreg materials relate to bonding operations while peel plies using 

dry fibre material is normally used in drilling operations. 

 

In the Materials area, the options available include: Prepreg Materials Type, comprising of either 

carbon, glass or aramid fiber which has been pre-impregnated with uncured resin (Galorath 

International, 2017).  The selection of Tape Material Type is given in width sizes of 75, 100 and 

150 mm. 

 

In the area of Process Description the parameter Cutting Type includes values such as: None, 

Hand Cutting, Water Jet Cutting, Laser Cutting and Commercial Ultrasonic Cutter.  The 

parameter referring to Cut Machine Efficiency Factor cover values that can fluctuate in 

percentages from 50% to 85%.  Layup Type comprises the values of Manual and Automatic 

Pick & Place (moving materials using an operator or the use of robot/automation). 

 

The Bagging Material area makes reference to Release Agent films used to prevent the 

composite part from adhering to tool surfaces (Galorath International, 2017).  Regarding the 

Cure area, the value of Cure can be either Yes or No (Galorath International, 2017).  If the value 

of Cure is Yes then the user needs to specify the parameters for Cure Temperature, Final Cure 

Duration, Initial Temperature Cure Duration, Operator Attendance Factor, and Heat-up Rate 

used by all processes.   

 

The area of Manufacturing Description covers the parameter of Set-up Complexity which is 

about rating the sophistication of the manufacturing set-up (Galorath International, 2017).  Here, 

the user can rate set-up complexity as Very Low, Low, Nominal, High and Very High.  Very 

Low rating relates to standard fixtures, tools including manual insertion, placement, control and 

removal.  Low rating relates to some custom designed holding fixtures and standard tools.  

Nominal rating refers to custom designed holding fixtures, tools and tool holders.  High rating 

relates to numerically controlled machining, mechanized stock movement, tools, finished parts 

and tolerances which are computer controlled.  Very High rating relates to fully automated CNC 

operation and automated feed of raw materials. 

 



5.  Results 

As previously mentioned in section 4, the part being investigated has the shape of a panel with 

dimensions of 1100 mm in length and 860 mm in width.  Overall, the complexity of the part is 

low.  The direct hourly labour rate agreed is €58.52 and setup hourly labour rate is €62.94.  The 

number of annual units produced is 120. 

 

Process type is an important area for adopting composite materials.  In process type the user can 

choose from five of the most common process types for manufacturing composites including: 

hand layup (HLU), automated tape layup (ATL), resin transfer moulding (RTM), liquid resin 

infusion (LRI) and resin film infusion (RFI).  Also in the process option the user has the 

opportunity to specify the core materials to be used including honeycomb and populate other 

fields like quantity, length, width, thickness, vertices and cost.  Figure 6 shows a screenshot of 

the Comp-Fore tool displaying the parameters entered into process types.  Full details of all the 

parameters entered into the Comp-Fore tool for the panel comprising the interior engine hatch 

investigated in this work can be found in the appendix section.  The material area of the Comp-

Fore tool allows the user to choose the types of materials that better match the process type 

chosen to produce the desired part.  Materials available to the user include up to 9 different types 

of ‘prepregs’. 

 

 
 

Figure 6. Screen for process types available in the Comp-Fore tool 

 

Once parameters had been defined for product description, engineering description, process 

type, material, process description, cure and manufacturing description, these are sent to the 

SEER composites estimate costing engine (Galorath International, 2017), processed and then 

sent back to the Comp-Fore tool which displays the results from the calculations.  Table 4 

shows the results of the calculations related to the adoption of composites in the manufacturing 

of the panel comprising the interior engine hatch investigated in this work.  Calculations for a 



particular sub-assembly include: Total Labour Minutes/Unit, Total Cost/Unit, Set-Up 

Minutes/Unit, Direct Minutes/Unit, Inspection Minutes/Unit, Rework Minutes/Unit, Material 

Cost/Unit, Tooling Cost/Unit and Finished Weight. 

 

Cost & Time Detailed Composites 

Total Labour Minutes/Unit 563.56  

Total Cost/Unit 990.50  

Set-Up Minutes/Unit 10.86  

Direct Minutes/Unit 552.70  

Inspection Minutes/Unit 0.00  

Rework Minutes/Unit 0.00  

Material Cost/Unit 440.04  

Tooling Cost/Unit 0.00  

Finished Weight 5.83 

 

Table 4. Results of calculations for selected sub-assembly 

 

The results from the analysis of replacing traditional materials used in sub-assemblies 1 and 2 

with composites reveal some interesting facts, for example the total cost/unit is equal to €990.50 

where the manufacturing times per unit is equal to 552.70 minutes.  These results highlight one 

of the main disadvantages related to composite materials including costs and lead times.  The 

use of composite materials can be 4 to 5 times higher compared to traditional materials.  High 

cost per unit is directly linked to the costs of the material used in this case ‘prepreg’ 8552 

0.125x1200 mm in a process that uses Honeycomb material Al-48-3.  Labor also represent a 

significant cost especially for the quoted rate for direct hourly labor at €58.52 and setup hourly 

labor rate at €62.94.  Curing is an important activity related to the use of ‘prepregs’ and which 

represents a bottleneck in itself.  The parameters entered for curing comprise a final cure 

duration time of 120 minutes at a curing temperature of 170 oC.  The use of hand layup (HLU) 

may result in inherent benefits such as minimum minutes required for inspection, rework and 

negligible costs for tooling.  Although costs are still high, the aggregated operational benefits 

that can be achieved with composite materials may represent in the future a compelling business 

case. 

 

For the interior hatch selected in this study the use of composites such as CFRP will increase 

durability, eliminating the need for replacements every two years.  Interviews with the company 

director and managers showed that one of the key challenges is to identify composites 

substitutes that meet the technical specifications of the original materials.  Decision making can 

become complex as some of the properties to consider when adopting composite materials may 

have to include density, stiffness, temperature resistance, etc. 

 

In case composite materials are adopted, we can end up with a rationalized supply network by 

considering the reduction of parts related to sub-assemblies 1 and 2, this means a total of 9 

parts including a total of 13 operations.  Furthermore, it has been estimated that producing a 

carbon fiber flat panel using the hand layup process to replace sub-assemblies 1 and 2 and the 

use of glue and screws may result in a reduction of materials to approximately 3 parts and the 



number of operations to 4.  This represents a significant reduction of approximately 6 parts and 

about 9 operations. 

 

Once the tool generates the results from the calculations then it accesses the Hub composites 

capabilities database where it identifies suitable suppliers with the capabilities to manufacture 

the desired module based on the selected processes and materials.  The list generated includes 

company name and address.  Furthermore, the Comp-Fore tool allows a direct link to the Hub 

composites database showing full details such as a map with the location of the company, full 

business description and accreditations among others.   

 

The module considered in this industry case is characterized for the use of one of the simplest 

geometries found in composite materials, the flat panel.  Other components with more complex 

geometries will result in higher costs.  For example a component/part with a concave shape 

will require an operator performing more operations involving the use of a mold.  Ultimately, 

because the geometry is more complex than a flat panel hence, costs will be higher.  

Nonetheless, the same logic presented in figure 3 has be followed. 

 

6. Conclusions 

In this work a customized web-based tool, Comp-Fore, was developed to support a design 

process about supporting the adoption of composite materials in the manufacturing industry.  

Using an industry case involving the manufacturing of urban buses and long distance coaches 

this work demonstrated the feasibility of achieving operational improvements by adopting 

composite materials to substitute traditional materials in the production of certain sub-

assemblies. 

 

The composite materials industry and in particular CFRP is expected to become an important 

supplier to many industries such as aerospace, automotive, construction, marine, oil and gas, 

rail, sports gear, medical equipment and renewable energy to mention just a few.  Still the 

adoption of composite materials represents a challenging solution for most applications.  Hence 

the use of customized ICT tools like Comp-Fore can be helpful. 

 

Composite materials/CFRP may represent a more expensive solution compared to traditional 

materials, however manufacturing organizations may end up adopting and finding it an 

attractive proposition on condition of reducing the number of operations and simplification of 

the supplier network.  Although the switch to composite materials still represents an expensive 

option, advantages to the manufacturing industry may include the reduction of lead times, the 

deployment of workers in activities other than assembly, the reduction in the complexity of its 

supply chain, the selection of suppliers closer to the production site and the rationalisation in 

the number of suppliers.  In the future it may be possible to reduce costs and achieve economies 

of scale if a standard size of interior hatch is adopted along the various products offered by the 

manufacturer, so instead of 120 units there may be annual demand of 400 or 500 units. 

 

Academic projects like Comp-Fore can be used as a tool to see what are the implications 

resulting from the adoption of composite materials.  Using the tool the user can generate 



estimates and suggest processes based on parameters of dimensions and shape and also source 

appropriate suppliers from the UK Composites Hub database.  The adoption of composite 

materials may become more complicated given the challenges faced by the industry such as 

the lack of staff with the right skills, the absence of standardized manufacturing processes and 

the possibility of having multiple solutions technically viable among others.   
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Appendix 

 

Sub-assembly 

Detailed Composites  

 

Product Description 

Quantity Per Next Higher Assembly 1 

Production Quantity 120 

Set-up Amortization Quantity (Optional) 10 

Tooling Amort. Quantity (Optional) 0 

Direct Hourly Labor Rate 58.52 

Setup Hourly Labor Rate 62.94 

Production Experience/Optimization Hi Hi+ Vhi 

 

Engineering Description 

Part Complexity Low Low Low 

Overall Length (mm) 1100.00 1100.00 1100.00 

Shape/Dimensions (mm) Panel 860.00 3.00 

 

Process Type 

Process type HLU 

Core Operation 

1 

Honeycombs 

Al-48-3 
1 1100.00 860.00 47.00 4 4717.90 

Additional Ply 

1 

Peel Plies 

(Dry) 
1 100.00%     

 

Material 

Prepreg Material Type Prepreg 8552 0.125x1200mm 

Tape Material Type 8552 (0.25x75mm) 

Material Cost Per Kg. 36.25 

Roll/Tape Width (mm) 1200.00 

Lightning Mesh NO 

Material Utilization Factor 1.00 1.00 1.00 

 

Process Description 

Cutting Type ultrasonic cutter 

https://www.compfore.co.uk/bom/22/substitutions#tabs-values-item_115-detailed_composites


Cut Machine Efficiency Factor 90.00% 90.00% 90.00% 

Layup Type Auto. Pick & Place   

BAGGING/TOOL CLOSING YES   

Operator Attendance Factor 5.00% 5.00% 5.00% 

Debulk NO   

Debulk Interval 4   

HOT PLY FORMING NO   

Ply Orientation 25.00% 25.00%  

CONSUMABLES NO   

Bagging Material Fromocene Unembossed   

Release Agent PTFE Release Fabric   

Breather NW153 Medium weight fabric   

Sealant Tape Tacky Tape SM5144   

 

Cure 

CURE YES 

Cure Method Oven 

Cure Temp. (°C) 170.00 

Final Cure Duration (min) 120.00 120.00 120.00 

Initial Temp. Cure Duration (min) 60.00 60.00 60.00 

Operator Attendance Factor 5.00 5.00 5.00 

Heat-up Rate (°C/min) 2.00   

Cool-down Rate (°C/min) 3.00   

 

Manufacturing Description 

Set-up Complexity Low Low Low 

 


