
Security-Aware Network Analysis for Network
Controllability

Shuo Zhang
School of Mathematics and Information Security

Royal Holloway University of London
Egham UK TW20 0EX

Email: MYVA375@live.rhul.ac.uk

Stephen D. Wolthusen
School of Mathematics and Information Security

Royal Holloway University of London
Egham UK TW20 0EX

Email: stephen.wolthusen@rhul.ac.uk

Abstract—Although people use critical, redundant and ordi-
nary categories to concisely distinguish the importance of edges
in maintaining controllability of networks in linear time-invariant
(LTI) model, a specific network analysis is still uncertain to
confirm edges of each category for further edge protection. Given
a large, sparse, Erdős-Rényi random digraph with a precomputed
maximum matching in LTI model as an input network, we
address the problem of efficiently classifying its all edges into
those categories. By the minimal input theorem, classifying an
edge into one of those categories is modeled into analysing the
number of maximum matchings having it, while it is solved by
finding maximally-matchable edges via a bipartite graph mapped
by the input network. In the worst case, entire edge classification
is executed in linear time except for precomputing a maximum
matching of the input network.

I. INTRODUCTION

Controllability of complex networks [1] is one of network
properties, it guarantees the networks in LTI model to be
controllable via external inputs, and it can be measured by the
minimum number of inputs. Besides, network controllability
is vulnerable to malicious attack or random failure on edges
[2] [3], which increases the minimum number of inputs to
fully control the residaul network. To clarify the importance
of an edge in maintaining network controllability, Liu et al. [1]
raised critical, redundant, and ordinary categories: a removal of
a critical edge gains the minimum number of inputs to control
residual network; removing a redundant edge never affects
currently minimal inputs; removing an ordinary link changes
the control configuration, except for the minimum number of
inputs. Exactly knowing edges of each category is forward-
looking to defend network controllability against a single edge
removal. Yet, a specific network analysis to confirm all edges
for those categories in a general LTI-model network is still
uncertain.

Given a large, sparse, Erdős-Rényi random digraph that is
in LTI model and has a known maximum matching as an
input network, we thus address the problem of efficiently
classifying edges of an input network into critical, redundant
and ordinary categories respectively. Since the minimum input
theorem [1] proved that the maximum matching not only
determines the minimal inputs to fully control a network in
LTI model but also constructs a control configuration, given
an edge of the input network, classifying it into one of

three categories can be modeled into analysing the number
of maximum matchings involving it. Specifically, if an edge
out of any maximum matching, it is a redundant edge; if it is
in some maximum matchings, it is an ordinary edge; if it is
in all maximum matchings, it is a critical edge. However, the
number of maximum matchings of a general digraph increases
exponentially with network size [4], and using the best-known
maximum matching algorithms [5] [6] for several times is too
computationally massive to be a solution. Instead, finding the
maximally-matchable edges [7] of an input network, which is
out of the konwn maximum matching but involved into others,
solves the problem of classifying an edge. This is because we
can efficiently find all maximally-matchable edges, and we
also conclude that all maximally-matchable edges and edges of
the known maximum matching adjacent to them are ordinary
edges; edges involves into the known maximum matching
without adjacent to any maximally-matchable edge are critical
edges; edges not maximally matchable and out of the known
maximum matching are redundant edges.

For our contribution, we efficiently classify edges of an
input network into critical, redundant and ordinary categories
respectively by finding all maximally-matchable edges in
linear time, except for precomputing the known maximum
matching of an input network.

Following paper is structured: section II introduces the
network controllability; section III reviews previous related
work; section IV models an edge classification and shows all
kinds of maximally-matchable links; section V executes entire
edge classification. Section VI concludes this paper.

II. NETWORK CONTROLLABILITY

A controllable system can be driven from any initial state
to any final state by properly using external inputs within
limited time [8] [9] [10]. A linear-time invariant system can
be described by a state equation [11]:

ẋ(t) = Ax(t) + Bu(t) (1)

where system vector x(t) = (x1(t), x2(t), . . . , xN (t))T cap-
tures state of each system vertex at time t; A is a system
matrix, and A ∈ RN×N , for each non-zero entry aij ∈ A
(1 ≤ i, j ≤ N), it shows the impact strength of system

vertex noted by vi on another one noted by vj ; B is the input
matrix, and B ∈ RN×M . Each bij ∈ B and bij 6= 0 shows the
impact strength of any input noted by uj on a system vertex
vi; input vector u(t) = (u1(t), u2(t), . . . , uM (t))T holds M
external inputs at time t. A system is controllable via M inputs
described by equation 1, if and only if the matrix C ∈ RN×NM

and C = [B,AB,A2B, . . . ,AN−1B], has full rank, noted by
rank(C) = N [11] [8], which is called the controllability rank
condition.

However, value of entries of matrix A and B are known
by approximation except for zero-entries [12], which prevents
against using the rank condition to verify if a system of
equation 1 is controllable or not. Besides, time complexity
of calculating the rank of the matrix C is O(2N) [1], which is
computationally prohibitive, especially for large-scale systems.
Virtually, it is also said that effectively using the rank condition
is limited to a few dozen system nodes at most [13] [14]. To
avoid these two constrains, structural controllability [12] [15]
was raised, and it is defined below:

Definition 1 (Structural Controllability [12]). A system
of equation 1 is structurally controllable iff there exists a
completely controllable system with the same structure as it.

According to the rank condition [8] and this definition,
structural controllability is the necessary but not sufficient
condition of complete controllability. Additionally, a diraph
noted by G(A,B) = (V1 ∪ V2, E1 ∪ E2) is mapped from
a system described by equation 1. With a bijection α, for
aij ∈ A, α : aij →

−−−−→
〈vj , vi〉, where vi, vj ∈ V1,

−−−−→
〈vj , vi〉 ∈ E1.

For a bij ∈ B, α : bij →
−−−−→
〈uj , vi〉, where

−−−−→
〈uj , vi〉 ∈ E2,

uj ∈ V2 and vi ∈ V1. With G(A,B), Lin [12] defined
following items to give conditions of structural controllability:

Definition 2 (Inaccessibility [12]). Any vi ∈ V1 is inaccessi-
ble if it can not be approached through a directed path starting
from any uj ∈ V2 in G(A,B).

Definition 3 (Dilation of Digraphs [12]). In G(A,B), T1 ⊆
V1, T2 ⊆ V1 ∪ V2 pointing nodes of T1. G(A,B) contains a
dilation iff |T1| > |T2|, where |T1| and |T2| are the cardinality
of T1 and T2.

Definition 4 (Stem and Bud [12]). In G(A,B), a stem is a
directed path. A bud is a directed cycle pluse an arc such as
{{
−−−−→
〈v1, v2〉,

−−−−→
〈v2, v3〉, . . . ,

−−−−→
〈vj , v1〉},

−−−−−−→
〈vj+1, vj〉}, and

−−−−−−→
〈vj+1, vj〉

is called a distinguished edge.

Definition 5 (Cactus [12]). Any stem of definition 4 is
a cactus. Besides, with stem S0 and buds B1, B2, . . . , Bl,
S0∪B1∪B2∪ . . . Bl is a cactus if the tail of the distinguished
edge of any Bi (1 ≤ i ≤ l) is not the top vertex of S0 but is
the only common vertex of S0 ∪B1 ∪B2 ∪ . . . Bi−1. A set of
vertex-disjoint cacti is called a cactus.

Then, conditions of structural controllability are given:

Theorem 1 (Lin’s Structural Controllability Theorem [12]).
The following three statements are equivalent:

1) A system of equation 1 is structurally controllable.
2) The digraph G(A,B) contains neither inaccessible

nodes nor dilation.
3) G(A,B) is spanned by a cactus.

A structurally controllable system can be completely con-
trollable for almost all values of entries of A and B of equation
1 except for some pathological cases with certain constrains
[12], [15]. For example, a system’s graphic interpretation by
its state equation has nodes {n1, n2, n3}, input b1, and edges
{
−−−−→
〈b1, n1〉,

−−−−−→
〈n1, n2〉,

−−−−−→
〈n1, n3〉,

−−−−−→
〈n3, n2〉,

−−−−−→
〈n2, n3〉}, then, this sys-

tem is structurally controllable because its digraph excludes
inaccessible nodes and dilation by theorem 1. But this system
is not controllable if edge weight is one, because the rank of
matrix C [11], [8] is less than four. Strictly based on the rank
condition [8] and referring to structurally controllable systems
except for pathological cases, Liu et al. [1] generalized the
minimal input theorem [1] to fully control networks in LTI
model:

Theorem 2 (Minimal Input Theorem [1]). The minimum
number of inputs to fully control a network G(A) = (V1, E1)
is one if there is a perfect matching. Otherwise, inputs directly
drive the unmatched nodes related to a maximum matching.

A maximum matching of any graph is a set of maximum
number of edges without sharing common nodes. In digraphs,
a head of an arc of a maximum matching is called a matched
node, otherwise, it is unmatched related to a maximum match-
ing. When all vertices are matched, the digraph is said to have
a perfect matching. After this, an input digraph is defined:

Definition 6 (Input Digraph). A large, sparse Erdős-Rényi
random digraph in the LTI model is determined as an input
network D = (V , E), where V = {vi|1 ≤ i ≤ N}, E
= {
−−−−→
〈vi, vj〉|1 ≤ i, j ≤ N, i 6= j}. Particularly, it excludes

parallel arcs, selfloops, and isolated nodes, while it includes
a maximum matching noted by M0 and precomputed by
algorithm [6] or [5].

By theorem 2, our input digraph D = (V,E) of definition 6
is controllable by the minimum number of inputs due to M0,
which also constructs a control configuration. We thus model
the problem of classifying an edge of D into one of those
categories by analysing the number of maximum matchings
of D involving it. Nevertheless, we do not find any maximum
matcing of D for the purpose of efficiently executing entire
classification. Rather, finding maximally-matchable edges with
respect M0 in D is determined as the solution.

III. RELATED WORK

The problem of edge classification [16] always attracts
the attention of various research areas, especially in artificial
intelligence and data mining over years. Yet, it is very seldom
to see that there exists the secure-aware edge classification, let
along to protect the network controllability against attack or
failure on edges. Generally, given a graph G = (V,E) (a social
network mostly), where V and E are vertex set and edge set, a

subset E0 ⊆ E has been labeled or classified in advance, then,
edge classification problem is raised to determine the labels
on or categories of edges of {E − E0}. Chronologically, this
problem was initially formalized by Liben-Nowell et al. [17],
called the link-predition problem, on which people proposed
to predict new interaction among existing nodes in a social
network by analysing proximity among nodes. Meanwhile,
this problem was developed by Kunter and Golbeck [18], to
further infer the amount of trust of an edge between two
vertices according to edges with known trust values. Later,
Leskovec et al. [19] defined the sign or lable of edges of
online social networks as either negative or positive based
on the attitude from the generator to the recipient of an
edge, which is thus called the edge sign prediction problem
and people seeked to reliably predict the sign of a single
edge, where lables of remaining edges have been completely
determined by social psychology. By then, Chiang et al.
[20] reviewed some existing algorithms and methods used for
the link prediction problem, and Yang et al. [21] illustrated
that a sign of an edge of social networks can be accurately
inferred by user’s behavior of decision making. In recent years,
researchers of [22] used matrix factorization to predict lables
of multiple edges of social networks compared with single
edge prediction of [19]. Up to date, since these previous
methods of edge classification problems are based on specific
characteristics of networks, Aggarwal et al. [16] argued that
they can not be well applied into an arbitrary network with
various settings and without specific assumptions. In this case,
they correspondingly raised a general way acccording to the
weighted Jaccard coefficient as the foundmental proximity
metric to accurately predict sign of each edge of general
graphs. By contrast, in our work, we already have three lables:
critical, redundant and ordinary, defined by Liu et al. [1],
while there is no previously labeled edges, and we do not
predict the lable of each edge. Rather, we accurately confirm
edges of each category by searching all maximally-matchable
edges in an input network.

Searching maximally-matchable edges of a general graph
has been pervasively studied over recent decades. Generally,
any edge is said to be maximally-matchable with respect to a
maximum matching if and only if it can construct a different
maximum matching by the edge replacement. Initially, Rabin
and Vazirani [23] designed a randomized algorithm finding
all maximally-matchable edges in general graphs containing a
perfect matching with time complexity of O(n2.376), where
n is the nummber of graph nodes. Then, in [24], with
general graphs, a distinct randomized algorithm finding the
Gallai–Edmonds decomposition was given, as a way to find
maximally-matchable edges in polynominal time of O(n2.38).
For deterministic algorithms, with the same the purpose,
Carvalho and Cheriyan [25] found edges in at least one perfect
matching, called ear decomposition of a matching-covered
graph. Their deterministic algorithm runs in O(nm), and m
represents the number of edges. Besides, Costa et al. [26]
found maximally-matchable edges in a bipartite graph. They
decomposed a bipartite graph into three partitions: E1 whose

edges belonging to all maximum matchings; E0 whose edges
out of any maximum matching; edges involved into Ew is
neither in E1 nor E0. By finding E1 and Ew, all maximally-
matchable edges are obtained, and the time complexity is
O(nm). Compared with the worst-case execution time, Tassa
[7] claimed that finding all maximally-matchable edges in a
bipartite graph with a known maximum matching is reduced
to O(n + m) time. She classified all maximally-matchable
edges into few categories. Reviewing her method, we found a
problem. In detail, Tassa applied the breath-first search(BFS)
[27] to find some arcs in a digraph mapped by the input
bipartite graph, as a way to find some kinds of maximally-
matchable edges. However, the BFS algorithm can not traverse
all arcs of a digraph except for tree digraphs, it means that
some arcs corresponding to valid maximally-matchable edges
of the input bipartite graph may be missed. As a result,
Tassa’s method can not always find all maximally-matchable
edges in a bipartite graph with a known maximum matching.
By contrast, our input network is a random digraph, our
algorithms are all deterministic and we only concern the
worst case execution, where we accurately find all maximally-
matchable edges of an input network in linear time except
for precomputing the known maximum matching of the input
network.

IV. PRELIMINARIES

A. Modelling and solving edge classification

We define M
′

0 as any different maximum matching of D
from M0. Then, impact of removing any edge e ∈ E on the
maximum matching of D − e is shown below:

Theorem 3. In D = (V,E) of definition 6, e ∈ E is removed.
Then, the maximum matching of D − e is M0 if e 6∈ M0; or
it is M

′

0 if e ∈ M0 and e 6∈ M ′

0; or it is smaller than M0 by
one in cardinality if e is in all maximum matchings of D.

Proof. If e 6∈ M0, removing e does not influence M0. Thus,
M0 is still a maximum matching of D−e. If e ∈M0, and e 6∈
M

′

0. After removing it, M
′

0 would not be influenced, and M
′

0

is thus a maximum matching of D−e. If e is in all maximum
matchings of D, matching M0−e is obtained. Assume M0−e
is not maximal, and a matching with cardinality |M0| exists, it
means removal of e can not influence a maximum matching of
D, while e is in all maximum matchings of D is contradicted.
Thus M0 − e could be a maximum matching of D − e.

Corollary 1. In D = (V,E) of definition 6, by theorem 3,
theorem 2, any e ∈ E is a critical edge if e ∈M0 and e ∈M ′

0;
or an ordinary category if e ∈M0 and e 6∈M ′

0; or a redundant
category if e 6∈M0 and e 6∈M ′

0.

Proof. If e ∈ E is in all maximum mathcings of D, by
theorem 3, its removal leads M0−e as a maximum matching of
D−e. By theorem 2, the minimum number of inputs of D−e
is increased by one, and e is thus a critical edge. If e ∈ M0

and e 6∈M ′

0, by theorem 2, 3, removal of e does not influence
M

′

0, which constructs a control configuration in D − e with
the same minimum number of inputs as before. Thus, e is an

ordinary edge. If e is out of any maximum matching of D,
by theorem 2, 3, removal of e can not influence any existing
control configuration of D. Thus, e is a redundant edge.

By corollary 1, a single edge classification can be modelled
into checking the number of maximum matchings having
it. However, finding all maximum matchings of D is quite
massive. Because any two maximum matchings are vertex-
adjacent, M

′

0 can be derived by edge replacement into M0,
where edges out of M0 replacing edges of M0 to construct
M

′

0 are called the maximally-matchable edges with respect to
M0 [7]. With maximally-matchable edges, we conclude:

Corollary 2. By corollary 1, in D = (V,E) of definition 6,
with e ∈ M0 and M

′

0, if e is not adjacent to any maximally-
matchable edge related to M0, e ∈ M

′

0, and e is a critical
edge; otherwise, with e 6∈ M

′

0, while e and all maximally-
matchable edges are in ordinary category.

Proof. In D = (V,E), because the maximally-matchable
edges related to M0 are the arcs in any M

′

0 but excluded by
M0, if e ∈ M0 is not adjacent to any maximally-matchable
edge, e ∈ M ′

0 and e is in all maximum matchings of D. By
corollary 1, e is a critical edge. If e is adjacent to a maximally-
matchable edge related to M0 and e 6∈ M ′

0, removing either
one of them, M

′

0 or M0 can not be influenced and they are
two ordinary edges by corollary 1 and theorem 3.

By corollary 2, arcs neither in M0 nor the maximally-
matchable are redundant links and classifying all arcs of D
into critical, redundant or ordinary category can be solved by
finding maximally-matchable edges related to M0.

B. Maximally-matchable Edges

We map D into a bipartite graph, noted by B = (VB , EB)
to find all maximally-matchable edges with respect to M0.

Definition 7 (B = (VB , EB)). Given a bijection β and D =
(V,E) of definition 6, B = (VB , EB) with |EB | = |E|, VB =

V +
B ∪ V

−
B is obtained. For each

−−−−→
〈vi, vj〉 ∈ E, β :

−−−−→
〈vi, vj〉 →

(v+i , v
−
j), where (v+i , v

−
j) ∈ EB , v+i ∈ V

+
B , v−j ∈ V

−
B . MB

is the maximum matching mapped from M0 of D in B.

By definiton 7, any maximally-matchable edges of D with
respect to M0 is mapped into a maximally-matchable edge of
B with respect to MB . Thus, we find all maximally-matchable
edges of B with respect to MB , which systematically are
defined below:

Definition 8 (Alternating Single Link). In B = (VB , EB)
of definition 7, with respect to MB , any edge (v+i , v

−
j) ∈ EB

is an alternating single link if either v+i ∈MB , v
−
j 6∈MB or

v+i 6∈MB , v
−
j ∈MB .

Theorem 4. B = (VB , EB) of definition 7 holds at least one
different maximum matching from MB , iff any single edge
(v+i , v

−
j) 6∈MB is an alternating link with respect to MB .

Proof. When (v+i , v
−
j) is an alternating link with respect to

MB , if v+i ∈ MB , v−j 6∈ MB , and there must be (v+i , v
−
k) ∈

MB , replacing (v+i , v
−
k) with (v+i , v

−
j) produces a maximum

matching: MB \ (v+i , v
−
k)∪ (v+i , v

−
j). Similarly, if v−j ∈MB ,

v+i 6∈MB , a maximum matching would be also obtained.
When a maximum matching of B is obtained by replacing

an edge noted by (v+i , v
−
k) ∈ MB with an edge (v+i , v

−
j) 6∈

MB , and it can be expressed by MB \ (v+i , v
−
k) ∪ (v+i , v

−
j),

where v−j 6∈ MB . By definition 8, (v+i , v
−
j) is an alternating

link with respect to MB .

Definition 9 (Alternating Cycle). In B = (VB , EB) of
definition 7, with {m1,m2, . . . ,mt} ⊆ MB , a matching set
{e1, e2, . . . , et} * MB (1 < t ≤ |MB |) is an alternating
cycle, if {m1, e1,m2, e2, . . . ,mt, et} is a cycle alternatively
involving edges of and out of MB .

Definition 10 (Alternating Path). In B = (VB , EB) of
definition 7, with {m1,m2, . . . ,mt} ⊆ MB , a matching set
{e1, e2, . . . , et} *MB (1 < t ≤ |MB |) is an alternating path
if {m1, e1,m2, e2, . . . ,mt, et} is a path alternatively involving
edges of and out of MB .

Lemma 1. In B = (VB , EB) of definition 7, both alternating
cycle and alternating path related to MB are maximally-
matchable edge sets.

Proof. An alternating cycle {e1, e2, . . . , et} * MB (1 < t ≤
|MB |), replaces {m1,m2, . . . ,mt} ⊆MB that are adjacent to
it, can obtain a maximum matching: MB\{m1,m2, . . . ,mt}∪
{e1, e2, . . . , et}. With respect to MB , any alternating path in
B can also construct a different maximum matching from MB

by replacing edges of MB that are adjacent to them.

In B = (VB , EB) of definition 7, we call a matching set
the minimal maximally-matchable edge set, if its cardinality
is bigger than one, and a removal of its any edge would cause
either the removed edge or the remaining matching to no
longer able to oconstruct a different maximum matching from
MB by edge replacement. Then, some properties of alternating
paths and cycles are deduced:

Theorem 5. In B = (VB , EB) of definition 7, any minimal
maximally-matchable edge set related to MB is classified into
either an alternating cycle, or an alternating path.

Proof. By lemma 1, alternating cycle and path are maximally-
matchable edge sets. Also, they are minimal maximally-
matchable edge sets. because any ei(1 ≤ i < t, 1 ≤ t ≤ |MB |)
of an alternating cycle or path is adjacent to two edges
of MB , either ei or {e1, e2, . . . , et−1} can not construct a
different maximum matching from MB by edge replacement
after removing ei or et.

Assuming a minimal maximally-matchable edge set is nei-
ther alternating cycle nor path. In one aspect, if its edges are
all among nodes of MB , it should be adjacent to the same
number of edges of MB . Because any edge out of MB and
incident to nodes of MB is adjacent to two edges of MB , such
egde set can be only the alternating cycle of definition 9. In
other aspect, if such set is incident to nodes out of MB , and
it is still minimal, there should be only one alternating link of

definition 8, while remaining edges are not only among nodes
of MB but also not an alternating cycle. As a result, such edge
set can be only an alternating path.

Theorem 6. In B = (VB , EB) of definition 7, any two distinct
alternating paths incident to v+i 6∈ MB and v−j 6∈ MB

respectively, must be vertex-disjoint.

Proof. Assuming a node shared by two alternating paths
incident to v+i 6∈MB and v−j 6∈MB , respectively exists. And
this shared node is involved into a path, which alternatively
involves edges of and out of MB and has more edges out of
MB than that of MB . However, a matching bigger than MB

in cardinality emerges, which contradicts with the maximality
of MB . Thus, any two alternating paths incident to v+i 6∈MB

and v−j 6∈MB respectively, must be nonadjacent.

Theorem 7. In B = (VB , EB) of definition 7, any two distinct
alternating paths incident to v+i 6∈ MB and v−j 6∈ MB

respectively, are not adjacent to a same alternating cycle.

Proof. By definition 9,10, an alternating cycle can be adja-
cent to an alternating path. Assuming an alternating cycle is
adjacent to two distinct alternaitng paths incident to v+i 6∈MB

and v−j 6∈ MB respectively. From two shared edges by these
two distinct alternating paths and the alternating cycle, a path
between v+i and v−j alternatively involving edges of and out
of MB would exist, which is bigger than MB in cardinality.
Thus, an contradiction exists and any two distinct alternating
paths incident to v+i 6∈MB and v−j 6∈MBcan not be adjacent
to a same alternating cycle.

V. EXECUTE ENTIRE EDGE CLASSIFICATION

All maximally-matchable links of B = (VB , EB) of defini-
tion 7 are essential for entire edge classification by corollary
2. To find them, we use a digraph derived from B. In detail,
this digraph is noted by D

′
= (V

′
, E

′
), where E

′
and

V
′

are initially empty. Given B = (VB , EB) of definition
7, any edge of {EB − MB} is directed from V +

B to V −
B .

With a bijection ω, for any mi ∈ MB(1 ≤ i ≤ |MB |),
ω : mi → ui, where ui is a vertex, and we define that any
ui ∈ Sc, Sc ⊆ V

′
. After direction and mapping operations,

all nodes and edges existing are added into V
′

and E
′

respectively, leading |E′ | = |EB −MB |. We also define that
E

′
= {e′i|1 ≤ i ≤ |E

′ |} and V
′

= {v′

i|1 ≤ i ≤ |V
′ |}.

With respect to MB , any alternating single link of B is
related to an arc in D

′
, while any alternating path and cycle

of B is related to a directed path and directed cycle in D
′
.

Next, we find all maximally-matchable edges with respect to
MB in D

′
by following algorithms.

A. Find arcs related to alternating links

Algorithm 1 finds arcs of D
′

related to alternating single
links. We define Sa, Sb as two sets of returned arcs. Adj(v

′

i)
denotes a set of nodes adjacent to v

′

i, and any node of Adj(v
′

i)
is noted by v

′

k.

Proof. Initially, labelling nodes of Sc is in O(|V ′ |) time to
know if a node is in or out of Sc rather than searching it in

Algorithm 1 Find arcs related to alternating single links

Input: D
′

= (V
′
, E

′
), Sc

Output: Arcs of D
′

related to alternating single links of B
1: Label nodes of Sc

2: Sa = ∅; Sb = ∅
3: while Sc 6= ∅ and ui ∈ Sc do
4: for Adj(ui) 6= ∅ and v

′

k ∈ Adj(ui) do
5: Adj(ui) = Adj(ui)− v

′

k

6: if v
′

k out of Sc and v
′

k ∈
−−−−→
〈v′

k, ui〉 then
7: Sa = Sa +

−−−−→
〈v′

k, ui〉
8: else if v

′

k out of Sc and v
′

k ∈
−−−−→
〈ui, v

′

k〉 then
9: Sb = Sb +

−−−−→
〈ui, v

′

k〉
10: Sc = Sc − ui
11: return Sa;Sb

Sc. Firstly, a node ui ∈ Sc is chosen, then, for loop considers
each adjacent node of it. If v

′

k is out of Sc, arc involving
v

′

k and ui is mapped by an alternating single link of B by
definition 8, which is added into Sa or Sb. If @v′

k ∈ Adj(ui),
for loop terminates and ui is removed from Sc. After this,
each adjacent node of a newly-chosen node of remaining Sc

would still be considered as before. Finally, Sc = ∅ terminates
this procedure due to node removal of Sc, where Sa and Sb

containing arcs related to alternating single links of B are
returned. For the worst case running time, since choosing all
nodes of Sc takes O(|V ′ |) time, and each adjacent node of
any ui ∈ Sc is examed once only, examing all adjacent nodes
of all nodes of Sc cost O(|E′ |) time. Thus, time complexity
is O(|V ′ |+ |E′ |) excluding deriving D

′
and Sc.

B. Find arcs related to edges of alternating Paths and cycles

Algorithm 2 traverses directed paths of D
′

to find arcs
related to edges of all alternating paths and some cycles of B.
We define an arc of Sa by e

′

i, e
′

i ∈ Sa. We define P0 as an
arc set and P (P0) as a set of arcs out of P0 and pointed by
arcs of P0. Any arc of P (P0) is noted by e

′

j ∈ P (P0).

Algorithm 2 Find edges of alternating paths and cycle via D
′

Input: D
′

= (V
′
, E

′
), Sa

Output: Arcs of D
′

related to alternating paths, cycles of B
1: while Sa 6= ∅ and e

′

i ∈ Sa do
2: P0 = ∅
3: E

′
= E

′ − e′i; P0 = P0 + e
′

i

4: for P (P0) 6= ∅ and e
′

j ∈ P (P0) do
5: P0 = P0 + e

′

j ; E
′

= E
′ − e′j

6: return P0

Proof. By definition 10, any alternating path in B =
(VB , EB) of definition 7 contains an alternating single link,
and mapps into an directed path of D

′
= (V

′
, E

′
) starting

from an arc of Sa. Therefore, this procedure finds arcs pointed
by each arc of Sa through directed paths. Firstly, any e

′

i ∈ Sa

is chosen, added into P0. Then, the for loop finds all arcs
pointed by e

′

i through a directed path starting from e
′

i. If
P (P0) 6= ∅, e′i currently must point an arc e

′

j , which is added
into P0 to following search. Since e

′

j is pointed by e
′

i via a
path, e

′

j currently is related to an edge of an alternating path of
B. If P (P0) = ∅, all arcs pointed from e

′

i have been traversed.
Additionally, once an arc of P (P0) also points a node of an arc
of P0, a cycle is produced by it. Hence, P0 contains the arcs of
D

′
related to edges of alternating cyclse and alternating paths.

Then P0 is returned. After this, another arc of Sa is chosen
from remaining E

′
, and P0 is emptied to collect directed

paths and cycles from another arc of Sa via paths as before.
When Sa = ∅, due to edge removal from E

′
, this procedure

terminates. For time complexity except for precomputing Sa

by algorithm V-B and obtaining D
′

= (V
′
, E

′
), since each

traversed arc of E
′

is removed from E
′

and added into P0,
each arc of E

′
is thus traversed once at most. As a result, time

complexity is O(|E′ |).

According to theorem 6, 7, searching arcs of D
′

of alternat-
ing pahts and cycles of B from Sa does not influence searching
that by Sb in D

′
= (V

′
, E

′
), if Sb 6= ∅, algorithm V-B can

be slightly modified to finding arcs of D
′

related to edges of
alternating paths or alternating paths and cycles with respect
to MB in O(|E′ |) time. In detail, P (P0) represents the arc
set involving arcs out of P0 and pointing arcs of P0.

C. Search Arcs related to alternating cycles

By definition 9, any alternating cycle with respect to MB

of B is related to a directed cycle in D
′

= (V
′
, E

′
), we

thus find arcs of cycles of D
′

related to the alternating cycles
with respect to MB of B = (VB , EB) by searching strongly
connected components due to following theorem:

Theorem 8. In D
′

= (V
′
, E

′
), any arc of a strongly

connected component must be involved into a directed cycle.

Proof. Firstly, a strongly connected component is a compo-
nent of a digraph whose every vertex can visit any others
through a directed path [28] [29]. Assuming that an arc noted

by
−−−−→
〈v′

i, v
′

j〉 ∈ E
′

belongs to a strongly connected component,
but it is out of any cycle. Then, assuming that any distinct
node v

′

k of a same component can be visited by v
′

j through a
directed path, while v

′

k can not visit v
′

i via a directed path

because
−−−−→
〈v′

i, v
′

j〉 ∈ E
′

is excluded by any directed cycle.
However, in this case, v

′

i and v
′

k are in a same component

is contradicted. Therefore, any arc
−−−−→
〈v′

i, v
′

j〉 ∈ E
′

in a strongly
connected component is involved into a directed cycle.

The strongly connected components of D
′

= (V
′
, E

′
) can

be effectively identified by using the well-known algorithm
designed by Tarjan [29] in linear time, and each arc of the
identified components will be returned in next algorithm.

Proof. By using the algorithm of [29], time complexity of
identifying all strongly connected components is O(|V ′ | +

Algorithm 3 Find arcs mapped by alternating cycles

Input: D
′

= (V
′
, A

′
)

Output: Arcs of D
′

related to edges of alternating cycles of
B

1: Find strongly connected components of D
′

by the algo-
rithm of [29].

2: Label arcs of each identified strongly connected compo-
nents.

3: return Each labelled arc

|E′ |). Then, each arc of all found strongly connected compo-
nents are labelled in O(|E′ |) time, which is finally returned.
Except for obtaining D

′
= (V

′
, A

′
), time complexity of this

procedure is O(|V ′ |+ |E′ |).

D. Entire edge classification of D = (V, E)

We now classify all arcs of D = (V,E) of definition 6. We
define a set involving all returned arcs by the algorithm V-A,
V-B and V-C as E

′

0, and E
′

0 ⊆ E
′
. Besides, ei is defined as

any arc of M0, where ei ∈M0.

Algorithm 4 Classify all arcs of D

Input: D = (V,E), M0, B = (VB , EB), MB , E
′

0

Output: Classified arcs of D
1: if E

′

0 = ∅ then
2: return D has no ordinary links; Arcs of M0 are critical

links; Arcs out of M0 are redundant links.
3: else if E

′

0 6= ∅ then
4: Identify edges of EB related to edges of E

′

0

5: Identify arcs of E via identified edges of EB

6: return Identified arcs of E in line 5 are ordinary links.
7: Label each identified arcs of E
8: for M0 6= ∅ and ei ∈M0 do
9: if ei adjacent to an arc labelled then

10: return ei is an ordinary link.
11: else if ei not adjacent an arc labelled then
12: return ei is a critical link.
13: E = E − ei
14: return Arcs not labelled and of E are redundant links.

Proof. Initially, because E
′

0 collects all returned arcs by
previous three algorithms, it can be obtained in O(1) time
after executing the algorithm V-A,V-B,V-C. If E

′

0 = ∅, there
is no any maximally-matchable edges in B with respect to
MB , which further means that D excludes any maximally-
matchable edge with respect to M0. By corollary 2, all arcs
of M0 are critical links, and others are redundant links. If
E

′

0 6= ∅, edges of B related to arcs of E
′

0 are identified in
O(|EB |) time and those identified edges of B are also used
to identify arcs of D by definition 7 also in O(|EB |) time,
which are ordinary links by corollary 2. After this, identified
edges of E are labelled in O(|E|) time to find critical links
of D. Specifically, each ei ∈ M0 is chosen to check if it is
adjacent to a labelled edge by checking edges adjacent to it.

If so, ei ∈ M0 is an ordinary link; otherwise, it is a critical
link. Then, ei is removed from E. Because M0 ⊆ E and
each chosen ei is removed from E, for loop terminates when
M0 = ∅. Finally, unlabelled arcs of remaining E must be
the redundant links. For the worst-case execution time of this
algorithm, because each edge of M0 is chosen once only and
each labelled arcs would be checked twice at most in line
9. Above all, time complexity is O(|EB | + |E|) except for
obtaining E

′

0, M0 and B = (VB , EB).

E. Time complexity analysis

The worst-case execution time of entire edge classification
is the sum of the time complexity of the algorithm from V-A to
V-D except for precomputing M0 of D = (V,E) of defintion
6. By definition 7 and obtaining D

′
, there are |EB | = |E|,

2|V | ≥ |VB |, and |E′ | < |EB |, |V
′ | < |VB |. Besides, mapping

D into B of definition 7 thus costs Θ(|E|) time, and then
using B to obtain D

′
= (V

′
, E

′
) also costs Θ(|E|) time.

Also, time complexity of algorithm V-A, V-B, V-C and V-D,
can be thus represented by O(|V | + |E|), O(|E|), O(|V | +
|E|) and O(|E|) respectively. Eventually, in the worst case,
classifying all arcs of D = (V,E) into critical, redundant and
ordianry categories respectively, is executed in O(|V | + |E|)
time excluding precomputation of M0 of D = (V,E).

VI. CONCLUSION

Edges of minimal-input controllable networks in LTI model
are identified by critical, redundant and ordinary categories to
show the importance of each involved edge in maintaining
network controllability or the minimum number of inputs.
Nevertheless, an efficient classification method seems still in
lack. To solve this problem, we use a one-to-one mapped
bipartite graph by the given input network to find all kinds
of maximally-matchable edges in linear time, which plays a
critical role in determinging what arcs should be classified
into which one of categories. According to the adjacency
between each arc of the known maximum matching and
maximally-matchable edges, we can easily classify all arc of
an input network in linear time except for precomputation of
a maximum matching of the input network. For our future
work, we would like to define few categories to show the
importance of vertices in maintaining network controllability,
and then classify all vertices of an input network into them
efficiently.

REFERENCES

[1] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[2] J. Ruths and D. Ruths, “Robustness of network controllability under
edge removal,” in Complex Networks IV. Springer, 2013, pp. 185–193.

[3] D. Parekh, D. Ruths, and J. Ruths, “Reachability-based robustness
of network controllability under node and edge attacks,” in Signal-
Image Technology and Internet-Based Systems (SITIS), 2014 Tenth
International Conference on. IEEE, 2014, pp. 424–431.

[4] L. Zdeborová and M. Mézard, “The number of matchings in random
graphs,” Journal of Statistical Mechanics: Theory and Experiment, vol.
2006, no. 05, p. P05003, 2006.

[5] S. Micali and V. V. Vazirani, “An o (v— v— c— e—) algoithm
for finding maximum matching in general graphs,” in Foundations of
Computer Science, 1980., 21st Annual Symposium on. IEEE, 1980, pp.
17–27.

[6] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, vol. 2, no. 4,
pp. 225–231, 1973.

[7] T. Tassa, “Finding all maximally-matchable edges in a bipartite graph,”
Theoretical Computer Science, vol. 423, pp. 50–58, 2012.

[8] R. Kalman, “On the general theory of control systems,” Automatic
Control, IRE Transactions on, vol. 4, no. 3, pp. 110–110, 1959.

[9] D. Luenberger, “Introduction to dynamic systems: theory, models, and
applications,” 1979.

[10] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. prentice-Hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[11] R. E. Kalman, “Mathematical description of linear dynamical systems,”
Journal of the Society for Industrial and Applied Mathematics, Series
A: Control, vol. 1, no. 2, pp. 152–192, 1963.

[12] C. T. Lin, “Structural controllability,” Automatic Control, IEEE Trans-
actions on, vol. 19, no. 3, pp. 201–208, 1974.

[13] B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader–
follower dynamic network with switching topology,” IEEE Transactions
on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008.

[14] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multi-agent systems from a graph-theoretic perspective,” SIAM Journal
on Control and Optimization, vol. 48, no. 1, pp. 162–186, 2009.

[15] R. Shields and J. Pearson, “Structural controllability of multiinput linear
systems,” IEEE Transactions on Automatic control, vol. 21, no. 2, pp.
203–212, 1976.

[16] C. Aggarwal, G. He, and P. Zhao, “Edge classification in networks,” in
Data Engineering (ICDE), 2016 IEEE 32nd International Conference
on. IEEE, 2016, pp. 1038–1049.

[17] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” journal of the Association for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[18] U. Kuter and J. Golbeck, “Sunny: A new algorithm for trust inference in
social networks using probabilistic confidence models,” in AAAI, vol. 7,
2007, pp. 1377–1382.

[19] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 641–
650.

[20] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon, “Exploiting
longer cycles for link prediction in signed networks,” in Proceedings of
the 20th ACM international conference on Information and knowledge
management. ACM, 2011, pp. 1157–1162.

[21] S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang, “Friend or
frenemy?: predicting signed ties in social networks,” in Proceedings
of the 35th international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2012, pp. 555–564.

[22] P. Agrawal, V. K. Garg, and R. Narayanam, “Link label prediction in
signed social networks.” in IJCAI, 2013.

[23] M. O. Rabin and V. V. Vazirani, “Maximum matchings in general graphs
through randomization,” Journal of Algorithms, vol. 10, no. 4, pp. 557–
567, 1989.

[24] J. Cheriyan, “Randomized o(m(—v—)) algorithms for problems in
matching theory,” SIAM Journal on Computing, vol. 26, no. 6, pp. 1635–
1655, 1997.

[25] M. H. D. Carvalho et al., “An o (ve) algorithm for ear decompositions
of matching-covered graphs,” ACM Transactions on Algorithms (TALG),
vol. 1, no. 2, pp. 324–337, 2005.

[26] M.-C. Costa, “Persistency in maximum cardinality bipartite matchings,”
Operations Research Letters, vol. 15, no. 3, pp. 143–149, 1994.

[27] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[28] J. Bang-Jensen and G. Z. Gutin, Digraphs: theory, algorithms and

applications. Springer Science & Business Media, 2008.
[29] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

