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The mineral linarite, PbCuSO4(OH)2, is a spin 1/2 chain with frustrating nearest neighbor ferro-
magnetic and next-nearest neighbor antiferromagnetic exchange interactions. Our inelastic neutron
scattering experiments performed above the saturation field establish that the ratio between these ex-
changes is such that linarite is extremely close to the quantum critical point between spin-multipolar
phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are
fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain
interactions in favor of a dipolar fan phase. Including this anisotropy in classical simulations of a
nearly critical model explains the field-dependent phase sequence of the phase diagram of linarite,
its strong dependence of the magnetic field direction, and the measured variations of the wave vector
as well as the staggered and the uniform magnetizations in an applied field.

Interacting spin-1/2 systems provide a rich source of
remarkable discoveries due to the intricate nature of
quantum many-body physics. While interacting semi-
classical spins S � 1/2 tend to arrange themselves into
periodic magnetic structures with a finite dipole moment
at each site, the quantum character of S = 1/2 spins
may lead to disordered spin liquid ground states [1, 2].
Such quantum spin liquids are prone to appear in the
vicinity of critical points between vastly different ground
states [3]; examples are spin liquids at the boundary
between dimerization and long-range magnetic order [4]
and the multitude of chiral quantum spin liquids emerg-
ing between different types of long-range order on the
kagome lattices [5]. Of particular interest are spin models
with frustrated ferro- and antiferromagnetic couplings,
which have unusual spin-multipolar quantum phases sta-
bilized by an external magnetic field in the proximity of
a ferromagnetic ground state [6–16]. The quantum spin-
multipolar phases have entangled spin multipoles extend-
ing over two or more lattice sites in addition to the in-
complete uniform alignment of the spin dipole moments
parallel to the field.

In spin-1/2 chains with nearest-neighbor (NN) ferro-
magnetic (FM) and next-nearest-neighbor (NNN) anti-
ferromagnetic (AFM) interactions, the transverse spin-
multipolar quasi-long range order is accompanied by lon-
gitudinal spin-dipolar quasi-long-range order with an in-
commensurate propagation vector kic = 1

2p (1−m), where
m is the uniform moment per site and p = 2, 3, . . .
for quadrupolar, octupolar, . . . spin tensors, respectively
[7–10, 17]. The dipolar correlations of the p-spin den-
sity wave (p-SDW) can be probed in neutron scatter-
ing experiments as demonstrated in LiCuVO4, where
pair-correlations with incommensurate propagation vec-

tor kic = 1
4 (1−m) (p = 2) and spins parallel to the field

have been observed [18]. The existence of spin-multipolar
bond order with p > 2, however, is far less obvious and
might depend on the presence of the spin rotational U(1)
symmetry about the field direction [10, 15, 19]. In this
context, the mineral linarite plays a particular role: It
has been established that the ratio of NN-FM and NNN-
AFM exchange [20, 21] is closer to the critical value than
in LiCuVO4 [22, 23]. In addition, the propagation vector
does not follow the simple relation kic = 1

2p (1−m) [24],

and the reported complex phase diagram [20, 25–27] has
remained unexplained.

In this Letter, we combine magnetization and neutron
diffraction measurements with zero-temperature simula-
tions of a S = 1/2 model to show that a tiny orthorhom-
bic anisotropy and weak interchain interactions explain
the topology of the phase diagram of linarite for three
orthogonal field directions as well as the variations of
the ordering wave vector in high magnetic fields. Using
inelastic neutron scattering (INS) in a strong magnetic
field we determine the ratio of the NN and NNN exchange
constants and establish unambiguously that linarite is in-
deed extremely close to the critical point. These results
imply that weak anisotropies have a dramatic influence
on the field-dependent phase diagram and stabilize or-
dered dipolar states, raising doubts about the possibility
of spin-octupolar or higher multipolar ordering in linar-
ite, and in real materials in general.

Linarite with chemical composition PbCuSO4(OH)2
crystallizes in the space group P21/m with β = 102.65◦

(see [28–32] and Supplemental Material [33]). The crys-
tal structure contains strongly buckled chains of edge-
sharing CuO4 plaquettes running along the monoclinic b
axis. Like many CuO2-ribbon compounds, it orders at
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FIG. 1. Schematic phase sequence of quasi-one dimensional
spin arrays with NN ferromagnetic and NNN antiferromag-
netic intrachain exchange in the vicinity of the quantum crit-
ical point. In presence of interchain interactions, p-SDW
stands for p-type quantum spin-density wave states or spin-
multipolar bond order. SU(2)-symmetric exchange leads to
the phase sequence (a) with a p-SDW phase for all magnetic
field directions. U(1)-symmetric exchange of easy-plane type
implies sequence (a) for a magnetic field along the symmetry
axis (hard axis) and (b) for a field direction in the easy plane,
with p-SDW-phases close to saturation (p = 2). In linarite,
we observe the phase sequence (a) with field along the hardest
axis H||z, (b) with field along the easiest axis H||x, and (c)
for field along the intermediate axis H||y||b, with dipolar fan
phases instead of p-SDW phases close to saturation.

zero magnetic field into a cycloidal magnetic structure
with incommensurate propagation vector k and simul-
taneous ferroelectricity. In linarite the cycloid plane is
roughly perpendicular to the CuO4 plaquettes and con-
tains the b axis [20], while k = (0, 0.19, 12 ) and TN =
2.8 K [27, 34]. For convenience we introduce an orthogo-
nal xyz-spin coordinate system, where x and y are in the
spin-cycloid plane with y||b and z is perpendicular to the
cycloid plane. The magnetic field–temperature (H–T )
phase diagram has been studied with various techniques
for magnetic field directions parallel and perpendicular
to b||y [20, 26, 27], but not along x. The presence of
only one zero-field transition implies an easy-plane type
anisotropy as the largest deviation from isotropic ex-
change, leading to schematic phase diagrams as shown in
Figs. 1(a) and 1(b) and as observed in LiCuVO4 [18, 35].

FIG. 2. (a) Magnetization M as a function of rotation angle
in the ac plane at T = 9.995(1) K and T = 1.830(3) K for
µ0H = 100 Oe. The longest axis of the g-tensor (maximum of
M at 10 K) and the spin-plane axis x are less than 10◦ apart.
(b) Representative M(H) curves at T = 1.8 K, with their
derivatives. Solid curves indicate raising field, dotted lowering
field. (c) Phase diagram as a function of rotation angle in the
ac plane and field strength µ0H at T = 1.8 K. The spin-flop
between cycloid and cone phase occurs close to the x axis.
Near the c axis, a small unknown phase separates the cone
and fan phases with a hysteresis at its lower boundary.

However, linarite exhibits an extended commensurate
phase for H||b [20, 24] as in Fig. 1(c), in striking resem-
blance to the mean-field phase diagram of MnWO4 [36].
For field directions perpendicular to b, the commensurate
phase appears to be absent [25–27]. This indicates the
substantial role of anisotropy in linarite, in stark contrast
to recent attempts to model the high-field behavior [24]
and zero-field spin dynamics [21] of linarite based on an
entirely isotropic Hamiltonian.

Magnetization as a function of the rotation angle
around b with the magnetic field direction in the ac plane
was measured on an untwinned crystal (see Ref. [32, 33])
at T = 10 K, i.e. above the ordering temperature, and
at T = 1.8 K in the cycloid phase, see Fig. 2(a). The
angular phase shift between T = 4 K and 10 K in our
data is negligible, 1 ± 1◦, as it is in the paramagnetic
phase for temperatures between 5 and 25 K [37]. Hence,
the T = 10 K data reveal the approximate direction of
the principal axes of the g tensor perpendicular to b. At
T = 1.8 K, in the cycloid phase, the susceptibility is
dominated by the spin correlations rather than the local
g tensor, and the magnetization is lowest for a field direc-
tion in the cycloid plane. Our data show that the cycloid
axis x is very close to the longest axis of the g tensor, see
Fig. 2(a). The orientation of the spin-plane agrees well
with the electric polarization [27] and with unpolarised
neutron diffraction [20].
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Magnetization measurements as a function of magnetic
field for different directions in the ac plane are shown in
Fig. 2(b) and the corresponding transitions in Fig. 2(c).
For H||z (orthogonal to the cycloid plane) below satu-
ration, a single step in M(H) without hysteresis marks
the transition from the cone phase to the fan phase, see
Fig. 2(b). This phase sequence agrees well with previous
magnetization and dielectric data [26, 27]. In an inter-
mediate angular range including the c∗ and c directions,
a minor unknown phase is intercalated between the cone
and fan phases [cyan region in Fig. 2(c)], its boundary
with the cone phase displaying a large hysteresis, see H||c
in Figs. 2(b) and 2(c). As the field direction approaches
the cycloid plane, this minor phase disappears. With
H||x, in the cycloid plane, an S-shaped hysteresis-free
magnetization step at 3 T reveals the spin-flop transition
between cycloid and cone phase, the cone-fan transition
field is at its minimum (4.1 T), and the saturation is
already reached at about 6.3 T. The spin-flop transition
also exists for field directions up to about ±30◦ out of the
cycloid plane, see Fig. 2(c), including the crystallographic
a direction. At the angular end points, the spin-flop field
reaches 3.3 T.

Neutron diffraction [33] with H||a at a temperature
of 60 mK shows that the propagation vector remains in-
commensurate (0, kic,

1
2 ) from zero field up to the satura-

tion field, Hsat, see Fig. 3(a). At the spin-flop transition
kic(H) jumps slightly upward, while the magnetic Bragg
peak intensity decreases by a factor two, precisely as ob-
served near the spin-flop transitions of LiCuVO4 [35].
This is because neutron diffraction at this wave vector
senses both cycloid components but only one of the cone
components. The propagation vector kic(H) decreases as
the cone-fan phase transition at H ≈ 5.5 T is approached
from below but increases above, in stark contrast to the
decreasing kic(H) expected for a spin-multipolar quan-
tum phase. The intensity displays no anomaly, which
means that the visible component of the staggered mo-
ment, mb, varies smoothly across the transition. The
staggered moment vanishes at about H = 6.3 T, while
the uniform moment (measured via the intensity of the
(200) reflection, not shown) saturates, in agreement with
the saturating magnetization, Fig. 2(b). Complementary
magnetization and neutron diffraction measurements at
T ∼ 1.5 K confirm that the spin-flop transition field
is nearly temperature-independent, while the cone-fan
transition shifts to lower fields and at T = 1.8 K cor-
responds to the blue line in Fig. 2(c).

For H||b, our neutron diffraction data at T = 60 mK
confirm the major phase sequence observed in magne-
tization and neutron diffraction at higher temperatures
[20, 24]. This is illustrated in Fig. 3(b): kic(H) jumps
from incommensurate to commensurate values and back
to incommensurate. In the fan phase just below satu-
ration we observe – precisely as for H||a – a continuous
increase of kic(H) with H at constant temperature of

FIG. 3. (a–b) Measured ordering wave vector (0, kic,
1
2
) and

integrated Bragg peak intensity at T = 60 mK as a function
of magnetic field along (a) H||a and (b) H||b. The integrated
Bragg peak intensity at Q (near z) is proportional to |M(Q)−
M(Q)Q̂|2. (c–d) Calculated ordering wave vector (0, kic,

1
2
),

uniform M(0, 0, 0) and staggered magnetization amplitudes
M(Q) at T = 0 as a function of the reduced magnetic field
H/J2 along (c) H||x (near the a axis) and (d) H||y (||b).

60 mK, in sharp contrast to the decrease kic ∝ (1−m)/p
predicted for spin-multipolar quantum phases, and ob-
served in LiCuVO4 [18].

The observation of entirely different phase sequences
in three orthogonal field directions x, y, z demonstrates
that a bi-axial anisotropy is essential to understand the
magnetism of linarite. We therefore introduce a minimal
spin-1/2 Hamiltonian

H = J1

NN∑
〈ij〉

[
(1 + δ)Sxi S

x
j + Syi S

y
j + (1− ε)Szi Szj

]
+

+ J2

NNN∑
〈ij〉

SiSj + Jc

inter∑
〈ij〉

SiSj − µB
∑
i,α

gααH
αSαi (1)

with orthorhombic anisotropy included on the strongest
ferromagnetic NN bond J1 < 0. A significant second-
neighbor coupling J2 > 0 beyond the critical ratio
J2/J1 = −1/4 produces the incommensurate spiral struc-
ture along the chain b direction, whereas Jc > 0 between
direct neighbors in the c direction, see Fig. 4, assures an
antiferromagnetic spin arrangement in this direction with
an overall propagation wave vector (0, kic,

1
2 ), as observed

in linarite. We further neglect a mismatch between the
principal axes of the g tensor and the principal axes of the
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FIG. 4. Dispersion of linarite for H||a with H > Hsat (sym-
bols) and spin-wave fit (lines) to the two twins. The inset
displays the interaction scheme with Cu2+ in two unit cells
in the b-direction. Relevant interactions are shown as solid
lines, additionally considered interactions as dashed lines.

main exchange, since our magnetization measurements
above and below TN show that the mismatch is small,
see Fig. 2(a). The antisymmetric Dzyaloshinski-Moriya
interaction (DM) can play only a subsidiary role, since in
Eq. (1), DM is allowed only on J1 from space group sym-
metry, and thus cannot account for bi-axial anisotropy
[33].

We investigate the competition between incommen-
surability and anisotropy described by (1) using real-
space mean-field simulations [36] at zero temperature,
which for S = 1/2 is equivalent to the classical mini-
mization. This approach is justified by the large size of
the ordered magnetic moments in linarite in zero mag-
netic field, 1.05µB [20], which indicates the weakness
of quantum effects in presence of anisotropy and inter-
chain interaction. Further details of the approach are
explained in [33]. The general qualitative behavior of
the equilibrium magnetic structure described by (1) is
as follows. In zero field, an easy-plane anisotropy ε > 0
stabilizes the cycloid in the xy plane with a propagation
vector cos(πkic) = −J1/(4J2). The in-plane magnetic
field H ‖ x, y induces a spin-flop transition into a dis-
torted conical state, cf. Fig. 1(b). For small kic, a small
in-plane anisotropy δ > 0 is sufficient to suppress the
spin-flop for H ‖ y replacing it with a transition into a
canted commensurate state with the staggered moments
oriented along the easy axis M(0, kic,

1
2 ) ‖ x, cf. Fig. 1(c).

For H||z, the cone phase is stable from zero field to near
saturation, cf. Fig. 1(a). For all three field orientations,
the saturated phase is preceded by an incommensurate
fan phase. The absence of rotational symmetry in the
spin Hamiltonian (1) leads to variations of the propa-
gation vector in a magnetic field, which are most pro-

nounced in the fan state, corroborating previous theoret-
ical work [38].

Detailed comparison with the experimental results
shown in Fig. 3(a,b) have been made for a set of parame-
ters relevant for linarite: |Jyy1 /J2| = 3.62, |Jc/J2| = 0.17,
ε = 0.01, δ = 0.005, and g = 2, see Fig. 3(c,d). The ob-
tained phase sequences match the major observed phases
for all three field directions sketched in Fig. 1. The cal-
culation reproduces correctly numerous qualitative fea-
tures, such as the variation of the wave vector as a func-
tion of the magnetic field [upper parts in Fig. 3(c,d) ver-
sus (a,b)] or the type of anomaly of the staggered and
uniform magnetizations at the phase transitions shown
in the lower part of Fig. 3(c,d). The uniform magneti-
zation M(0, 0, 0) in Fig. 3(c,d) compares directly to Fig.
2(b) and Ref.[26]; the theoretical [Mx(Q)]2 + [My(Q)]2

of Fig. 3(c,d) matches the experimental Bragg peak in-
tensity at Q = (0, kic,

1
2 ) near z in Fig. 3(a,b) (see also

[33]).

The excellent qualitative agreement between theory
and experiment, and notably the increasing kic(H) with
field, see Fig. 3, identifies the high-field phases of linar-
ite as fan phases, in contrast to spin-multipolar quantum
phases that should feature a decreasing kic ∝ ( 1

2 −m)/p.
Since kic(H) increases with field close to saturation for
two perpendicular field directions in the cycloid plane at
a constant temperature of T = 60 mK, we can rule out a
succession of spin-multipolar phases [24]. The latter was
suggested on the basis of measurements of wave vectors
kic(H) along lines of varying and rather elevated tem-
peratures (i.e., measurements of kic(H,T ) rather than
kic(H,T → 0), see figure 2b in [24] and figures 5.49 and
5.16 in [39]).

In order to establish how close linarite is to the quan-
tum critical point, we have determined the exchange in-
teractions from INS measurements at low temperatures
of the spin-wave spectrum above Hsat, where the mag-
netic moments are aligned parallel to the magnetic field,
and hence classical spin-wave theory is applicable. The
twinning [32] observed on all large natural crystals of
linarite was taken into account explicitly, see [33].

A global fit [40–42] of all data taken at different field
strengths (10 T, 11 T, 14.5 T) gives J1 = −14.5(2) meV,
J2 = 3.93(6) meV, direct interchain exchange Jc =
0.7(1) meV, vanishing Ja = −0.1(2) meV and diagonal
interchain exchange J ′c = −0.06(3) meV, ga = 2.5(3),
gtwin = 2.3(3), ε = 0.03(1), and δ < 0.005. Our data rule
out sizable diagonal interchain exchange (J ′c ∼ −0.1J1)
that had been supposed in previous interpretations of
kic(H,T ) [24]. The low-energy zero-field dispersion of
[21], affected by quantum renormalization [43, 44], is
compatible with a wide range of parameters and cannot
distinguish between diagonal (J ′c) and direct (Jc) inter-
chain exchange. Including third-nearest neighbor intra-
chain exchange J3 improves our fit slightly [33]. With
or without J3 linarite is very close to the ferromagnetic
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phase boundary in the parameter space [45–47], about
an order of magnitude closer than e.g. LiCuVO4.

In conclusion, we find linarite very close to the crit-
ical line where ferromagnetism sets in. Our findings
demonstrate that at such close proximity to the criti-
cal point, tiny anisotropies and interchain interactions
are highly relevant and sufficient to suppress higher-order
spin-multipolar quantum phases in favor of the observed
dipolar fan phase. Indeed, replacement of the U(1) sym-
metry by two-fold C2 rotations mixes all odd magnon
sectors preventing the distinction between the ordering
of third-rank octupolar spin tensors and usual dipolar
ordering. A lower symmetry would even mix odd and
even magnon sectors. This implies that in real materials,
the stability of quantum spin-multipolar phases in com-
petition with dipolar long-range order is more limited
than suspected so far. Our work shows that in the vicin-
ity of the quantum critical point, the dipolar fan phase
occurs in the frustrated quantum chain and is stabilized
by a tiny orthorhombic anisotropy. We also note that
orthorhombic anisotropy can induce ordinary (p = 1)
spin-density waves and/or fan phases both as a function
of temperature and as a function of magnetic field even
further away from the critical point [36], where its role
has been overlooked so far [48–50].

[1] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89,
025003 (2017).

[2] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502
(2017).

[3] O. A. Starykh, Rep. Prog. Phys. 78, 052502 (2015).
[4] A. W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007).
[5] S. Bieri, L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev.

B 92, 060407(R) (2015).
[6] N. Shannon, T. Momoi, and P. Sindzingre, Phys. Rev.

Lett. 96, 027213 (2006).
[7] T. Vekua, A. Honecker, H.-J. Mikeska, and F. Heidrich-

Meisner, Phys. Rev. B 76, 174420 (2007).
[8] L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 76,

060407(R) (2007).
[9] T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys.

Rev. B 78, 144404 (2008).
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