
Ecosystems of Trusted Execution Environment on
Smartphones - A Potentially Bumpy Road

Assad Umar, Raja Naeem Akram, Keith Mayes, and Konstantinos Markantonakis
Information Security Group, Smart Card Centre, Royal Holloway, University of London,

Egham Hill, Egham, Surrey. United Kingdom
{Assad.Umar.2011, R.N.Akram, Keith.Mayes, K.Markantonakis}@rhul.ac.uk

Abstract—The advent of smartphones and the flexibility to
have multiple applications serving the user’s needs, has started a
convergence of different services into a single device. Traditional
services provided by mobile phones like voice and text commu-
nication became secondary to other domains like Online Social
Network (OSN) and entertainment applications on smartphones.
A similar trend is also happening for smart card services, in
which traditional smart card services like banking, transport-
ticketing and access control, are moving to smartphones. This
transition from smart cards to smartphone is to a large extent,
facilitated by Near Field Communication (NFC) technology which
enables a smartphone to emulate a smart card. As the smart
card services require a comparatively higher level of security
than other applications on the smartphone. Initial proposals for
this convergences were focused on secure elements. However, the
ownership issues reminiscent of traditional smart card domain
became the Achilles’ heel. A potential way forward has been
proposed by the Google Andriod in the shape of Host Card Em-
ulation (HCE) to allow mobile phone applications to communicate
via NFC. However to provide higher-level of security as required
by smart card applications, a number of proposals have been put
forward including the Trusted Execution Environment (TEE). In
this paper, we will look into how the TEE fits into the overall
picture of smart card services on a smartphone – provisioned via
the HCE. We also analyse the current state of the art of TEE
proposal and what potential ecosystem hurdles it might face due
to the nature of current trends. Finally, we provide a potential
pathway to overcome the ecosystem issues to achieve wide scale
deployment, enabling secure services to individual users.

I. INTRODUCTION

Modern mobile phones are more than just a conduit for
voice and text communication. They have taken the shape
of small mobile computers, where a large number of ap-
plications serve their users. These applications on smart-
phones include traditional communications (voice and text),
Online Social Network (OSN), gaming and entertainment.
While these applications also require a degree of security
and privacy, applications such as healthcare, banking, transport
ticketing and access control require higher levels of security
and privacy protection. The smartphone on its own cannot
provide strong security and privacy protection required by
certain applications. To that effect, solutions such as the Secure
Element (SE) [1] and Trusted Execution Environment (TEE)
[2] were proposed. The SE was proposed as a secure tamper-
resistant environment to store and execute traditional smart
card services such as contactless banking, transport ticketing
and access control.

The Near Field Communication (NFC) [3] and SE seemed
to have a natural alliance. While NFC and SE-based smart
card services have been trialled in more than 70 countries [4],
It has not seen wide scale deployment due to the ecosystem
issues related to the control and management of the SEs [5,
6].

The Host Card Emulation (HCE) [7] on the other hand
brings in a unique perspective. It enables any application on
a smartphone to emulate a smart card and communicate with
an external reader using the NFC channel, without the need
for an SE. HCE’s reliance on software protection provided by
the OS means it provides potentially less security than the
hardware backed SE, which might be an issue for sensitive
applications. For this reason, some security mechanisms have
been proposed to counter the risks introduced by HCE. We
shall discuss more on these mechanisms later1.

A TEE provides a secure process, memory and storage
protection to an application (or part of an application). During
the execution of the application, the TEE ensures isolated
execution and integrity protection for the application from any
applications running in non-TEE environments on the same
device. However, at the moment not many applications are
utilising the TEE services and mostly it is due to accessibility
issues [8, 9], where an application developer is required
to get additional permissions from the Original Equipment
Manufacturer (OEM) before its application can execute in TEE
environment.

In this paper, we will evaluate how NFC, HCE and TEE are
shaping the opportunities that might enable secure services on
a smartphone (Section II). We discuss potential options for
HCE-NFC-based services and how they can be secured, along
with why TEE fares better in comparison (Section III). We
also discuss the rationale behind why TEE is considered a
potential avenue for HCE-based smart card services. Finally,
we evaluate different ecosystems for TEE deployments that
might affect the overall acceptability and usability of HCE
applications based on TEE. (Section V).

II. SMART CARDS SERVICES AND SMARTPHONES

In this section, we will discuss how the transition of
traditional smart card services to smartphone has invigorated
both the smart card and smartphone domains.

1These mechanisms include TEE, tokenisation, White-box cryptography
and cloud-based HCE.

A. Near Field Communication - An Opportunity

Near Field Communication (NFC) is a low frequency radio
wave that operates at 13.56-MHz spectrum and has an opera-
tional distance of less than 10 cm. There are 2 types of NFC
devices: one that generates the low frequency radio-wave field,
and for this they need an internal power supply so are known as
an active NFC device. The second type is the device that when
it comes close to the NFC radio field, it generates power from
the magnetic inductive coupling, and such devices are termed
as passive NFC devices. As these devices are dependent on
the active devices for the power supply, they do not have
any internal power source of their own. An NFC device can
act as both an active and passive device as required and this
ability gives the NFC-based devices a unique capability as
compared to other contactless communication technologies.
In addition, NFC devices could operate in three different
modes that include reader/writer mode, peer-to-peer and card
emulation mode [10]. As this paper is focused on the card
emulation mode, in subsequent section we discuss what it
entails.

1) Card Emulation: In this mode, NFC devices act as
a contactless smart card or card reader in compliance with
the ISO 14443 [11]. In fact the external reader is unable
to distinguish between a smart card and an NFC device in
card emulation mode. This mode is useful, as NFC devices
could be utilised in any service sector where traditionally smart
cards are already being deployed (i.e., banking, transport and
building access, etc.). In this scenario, a mobile phone has
a built-in NFC antenna that an SE in the mobile phone can
use to emulate the contactless smart card interface. However,
with the advent of HCE, any application running on the
Android platform can now also access the NFC’s features
including the card emulation mode. The applications that
interact with the external readers either execute in an SE or on
general execution platform of the device in the case of HCE.
Therefore, protecting the HCE application is paramount and
TEE is one of such initiatives to achieve this.

2) Why Not SE?: To break up with the experience of the
multi-application smart card initiative in which a centralised
card issuer-centric ecosystem was deployed, a different ap-
proach was considered for the NFC-based multi-application
SE initiative. The architecture proposed by the GSMA was
based on an entity termed as Trusted Service Manager (TSM)
[12]. The role of the TSM was to provide a link between
a Mobile Network Operator (MNO) and other application
providers such as Card Issuing Bank (CIB) and transport-
ticketing companies. A CIB, for example, can have a relation-
ship with multiple TSMs and so can an MNO, thus providing
an inherent scalability in the architecture. However, even after
redefining the ecosystem for SEs (i.e., smart cards), they have
unfortunately not seen a wide scale deployment.

B. Host-based Card Emulation - An Alternative

Host-based Card Emulation (HCE) offers a radical alter-
native to NFC card emulation using an SE. HCE was first
introduced by Cyanogenmod [13] and more prominently when

Google introduced it from Android 4.4 (KitKat) [7] onwards.
HCE allows an application running on the OS to emulate a
smart card. As the name implies, the ‘host’ OS has full control
of NFC transactions and therefore bypasses the need for an SE.
The NFC controller routes messages directly to the application.
Therefore, HCE offers more flexibility as compared to the
card emulation with an SE, at the expense of security [14].
In HCE, an application emulating a smartcard acts like a
typical android application. This means the application relies
on the default security features provided by the OS to protect
against unauthorised access or modification of data. The
default security provided by the OS are typically not enough
for sensitive applications such as payment applications.To that
effect, a number of mechanisms have been proposed to counter
the security threats introduced by HCE, and these will be
discussed in III

III. SECURITY SENSITIVE SERVICES IN NFC-BASED
TRANSACTIONS

In this section, we outline a set of requirements that should
be considered when deploying security-sensitive NFC applica-
tions such as payment and transit applications. We also provide
an overview of mechanisms proposed to counter the security
threats introduced by HCE, and in conclusion, we provide a
comparison of the proposed mechanisms against the set of
requirements outlined.

A. NFC Applications Requirements

1) Security: Although specific requirements may vary from
one case to the other, it is important to provide strong se-
curity assurances. The security of NFC applications is no
different from the fundamentals of information security:
confidentiality, integrity, and availability (CIA). Using
an NFC transit application, as an example, the transit,
payment, and cryptographic data must be safeguarded
against unauthorised disclosure and modification both
at rest and at run-time, and the transit system should be
available for use at all times.

2) Performance: The performance of NFC-based transac-
tion must be significantly fast in order to maintain high
throughput and maintain overall user satisfaction; both
the payment and the transit industries require that a
transaction is completed within the range of 300-500
milliseconds [15]–[20].

3) Flexibility: The use of NFC applications must not in-
troduce rigidity to the ecosystem. For example, the case
of card emulation using the SE is rigid because provi-
sioning an application into the SE requires permissions
from the ‘owner’ of the SE, which in most cases is
not easy. This means developers and researchers find
it very difficult to make use of these services without
signing contracts with various stakeholders. Therefore,
an effective NFC solution must be flexible and work
out-of-the-box.

4) Complexity: The complexity of the ecosystem should
be as simple as possible. A complex ecosystem leads to

increased implementation times and added cost. For ex-
ample, the Trusted Service Manager (TSM) model used
to provision applications to the SE increases complexity
tremendously. A TSM is a trusted third party whose
responsibility it is to facilitate provisioning, and to
manage the entire life-cycle of the service. The inclusion
of these extra parties makes it more complex and also
more expensive because these services are not free.

5) Low Power Mode: In low power mode, the device’s OS
is shut down due to ‘low’ battery and therefore appears
odd to the user; however, the Power Management Inte-
grated Circuit (PMIC) is still on and can facilitate NFC
transactions with help of power generated by the reader
in the field.2

6) Connectivity: Some NFC applications may require con-
nectivity for every transaction, while some may only
require connectivity from time to time, to update creden-
tials. For example, some applications will require access
to storage in the cloud for every transaction, while others
may use a notion of tokenisation [21] and only require
periodic connectivity to request new tokens.

7) Tamper-Resistance: NFC applications require protec-
tion against modifications and reverse-engineering by
malicious entities. Software tamper-resistant techniques
such as obfuscation and other techniques are used by
developers to achieve this, although these techniques are
usually costly in terms of performance and code size
[22]. Other ways involve installing the NFC application
and related data into a tamper-resistant physical silicon
such as the SE.

8) Interoperability: In the context of this paper, it represents
the ability to host NFC applications on different devices
from different vendors. This ensures the NFC ecosystem
operates in a cohesive and efficient manner.

9) Standardised APIs and Ease of Development: The avail-
ability of standardised APIs goes a long way to easing
the development process of NFC applications, thereby
shortening the overall deployment time. Standardised
APIs also ensure that developers adhere to software
engineering global best practices, which is beneficial to
the overall security fabric.

In subsequent sections, we outline various mechanisms used
to manage the security in HCE-based NFC applications to an
acceptable level.

B. Cloud-based HCE

One of the ways to manage security in terms of risk of
exposure is to store all security sensitive data in the cloud, as
well as performing security related executions in the cloud,
and necessary data is pushed to the phone just in time for, or
during, a transaction. From a feasibility point of view, cloud-
based HCE offers a good alternative. However, it poses its
own challenges: Network connectivity is needed to perform

2Low power mode should not be confused with “battery off mode” where
even the PMIC has no power

each transaction, and this may prove difficult to guarantee in
some cases such as in transit, where the vehicle is moving,
or the train stations are underground. Also, connecting to the
cloud for every transaction will introduce latency to the overall
transaction, which may be unacceptable for certain cases.

C. White-box Cryptography
Similar to code obfuscation [23], White-Box Cryptography

(WBC) is the art of making cryptographic algorithm imple-
mentations and related keys and data unintelligible to an at-
tacker, even at run-time. This aims to provide defences against
white-box attack scenarios. In white-box attack scenarios, the
attacker is assumed to have full access to the implementation
of the crypto-algorithm, as well as full control over the
device (i.e. system calls, memory locations and registers, etc.).
However, WBC has its own weaknesses: for example, previous
work in [24, 25] have shown the cryptanalysis of both generic
and specific implementations of white-box implementations.
In addition, WBC typically require more computing resources
in terms of processing and are slower in orders of magnitude
[26]. This may call into question its applicability in use-cases
such as payments and ticketing where performance is vital.

D. Tokenisation
Payment tokenisation has been adopted by the payment

industry as the preferred way of managing the risk of exposure
in HCE-based applications, and to that effect, the EMVco has
published a specification on the use of tokenisation in the
payment ecosystem [21]. This process replaces the payment
credential with a short-lived credential referred to as a ‘token’.
In a situation where the payment device is compromised, the
attacker can only access tokens with a limited validity, as
opposed to having the real credential. Although tokenisation
mitigates the risk to a certain level, it is still leaves gaps
with respect to the security of tokens and related data. This
is because the tokens themselves still require some level of
security, which largely depends on the nature of the tokens
(single or multiple use tokens for example). Tokenisation also
requires network connectivity to the Token Service Provider
(TSP) to receive new tokens from time-to-time.

E. Trusted Execution Environment (TEE)
A TEE is an area of a processor (could also be a dedi-

cated processor) that is ‘trusted’ to provide secure services
such as isolated storage and isolated execution platforms for
applications running on the host operating system platform
(OS). There are different implementations of TEEs, but the
underlying concept is the notion of segregation between the
main OS and the trusted side. This effectively removes the host
OS of the device from the Trusted Computing Base (TCB)3

This segregation usually extends to other peripherals of the
device. The main focus of this paper is on TEEs in the context
of HCE-NFC based mobile applications; therefore, a more
detailed discussion on the services a TEE should provide, as
well as example implementations, shall be discussed in IV.

3The TCB is a collection of all the software, firmware, hardware compo-
nents that are absolutely trusted to enforce security on a device.

F. Secure-HCE Hybrid Element

HCE does not dictate where the application and its data
is stored. To that effect, there have been proposals to use an
SE to provide security services for HCE applications such as
key generation and random number generation Ṫhis model is
referred to as the hybrid model [27]. The tight control on
the SE (which gave birth to HCE) means success of this
model will depend on exactly what services the ‘owners’ of the
SE are willing to expose to developers and other third-party
entities.

TABLE I
COMPARISON BETWEEN TEE AND COMPETING TECHNOLOGIES

Criteria Cloud-based White-box Tokenisation TEE Secure
HCE Cryptography Element

1) Security
2) Performance H# #
3) Flexibility H# H# #
4) Complexity H# H# # H# #
5) Low Power Mode # # H# #
6) Connectivity # H#
7) Tamper-Resistance # H#
8) Interoperability # # H# # H#
9) Standard APIs & Easy of Deployment # # H# H#

Note: if criteria is fully satisfied, H# if criteria is partially met and # if
criteria is not satisfied..

G. Comparison between TEE and Competing Technologies

In terms of security, all technologies provide it to a certain
extent, as that is their core functionality. The level of security
they provide is beyond the scope of this paper. Their per-
formance is usually acceptable with exception of white-box
cryptography, which is slower than textbook implementations
of the algorithm used. Cloud-based HCE may also be exposed
to performance challenges because it largely depends on the
latency introduced from connecting to the cloud.

Only the SE fully satisfies the low power mode criteria; in
the case of tokenisation, it will depend on whether the tokens
are stored on the SE or on the host OS. In terms of connec-
tivity, all technologies meet the criteria except cloud-based
HCE, where connectivity is required for every transaction.
Tokenisation only partially meets the connectivity criteria,
because even though transactions can be carried out offline,
the application will still need connectivity at certain intervals
to receive new tokens.

All the technologies provide a notion of tamper-resistance,
with the exception of cloud-based HCE. Tokenisation will
also depend on implementation decisions: whether tokens are
stored in a tamper-resistant storage area.

IV. TRUSTED EXECUTION ENVIRONMENT

In this section, we give a generic set of security services a
TEE should provide for mobile applications (including NFC).
We also provide an overview of two different implementations
of a TEE.

A. TEE Security Services

1) Isolated Execution: A TEE should have the ability to
execute a piece of code in complete isolation from the
other applications running on the device (including the
main OS. This offers confidentiality and integrity of the

code and related data at “run time”. For example, a
payment application on a mobile device should be able
to generate digital signatures, without other applications
observing the process or having access to the signing
keys.

2) Secure Storage: A TEE should also provide assurances
with regards to the integrity, confidentiality and in most
cases the freshness of data at rest for the applications.
For example, applications such as transit and payment
make use of sensitive data such as cryptographic keys,
passwords and primary account numbers (PANs) that
must be protected against unauthorised access at all
times.

3) Remote Attestation: Attestation, means “to vouch for
something”. Remote attestation is the ability to vouch
for an entity or its characteristics to a third party. In
the context of TEEs, it is used to give assurances to a
service that a piece of software or OS is trustworthy.
For example, in mobile payments, the issuer can get
assurances through remote attestation on the integrity of
the banking application running on the device. A remote
attestation protocol normally begins with an integrity
measurement of the TCB as a whole. This is done by
taking a digest of the code, for example by using a hash
function, and signing it with a key, stored preferably in
a hardware RTS. A third party can verify the signature
and compare it against a list of trusted OS hashes.

4) Secure Provisioning: Secure provisioning is the ability to
send data to a device or a particular software component
running on the device in a secure fashion. This gives
service providers (SPs) a way to provision applications
and make relevant updates. For example, in payment ap-
plications, banks require a secure mechanism to deliver
the application to the device of its user. There must be
assurances on the integrity of the application as well as
the confidentiality of other cryptographic data.

5) Trusted Path: A TEE should also provide a secure
input/output mechanism with which users can interact
with applications on the device. For example, payment
applications often require user verification through PINs
or biometrics. The TEE should provide a trusted path
between the application and the keypad. This provides
protection against malware on the device, which nor-
mally might be able to access sensitive data entered by
user by logging keystrokes, or by more sophisticated
methods such as sniffing data on the physical commu-
nication layer.

B. ARM’s TrustZone

TrustZone is ARM’s security technology solution provided
by the more recent ARM processors. TrustZone achieves se-
curity by logically separating hardware and software resources
into two distinct modes, referred to by ARM as the “secure-
mode” and “normal/nonsecure mode”. The resources in the
secure-mode cannot be accessed by the resources in the normal
mode.

Monitor
mode

Privileged
mode

User mode

Secure world

0
NS-bit

User mode

Normal
mode

Normal world

1
NS-bit

Fig. 1. System Architecture of Trustzone: Showing the Two Worlds [28]

TrustZone Hardware Architecture

The secure/nonsecure separation is extended to the hardware
components, and this is enforced by a hardware logic in the
TrustZone-enabled AMBA3 AXI bus fabric [28]. The AMBA3
AXI bus provides an extra control signal, known as the NS
bit, to read and write channels which are on the main system
bus. If NS-bit = 0, then the processor is in the secure-mode;
otherwise, if NS-bit = 1 it indicates the processor is operating
in the nonsecure-mode. This transition between the two modes
is controlled by a mechanism referred to as the monitor mode
as shown in Fig 1.

TrustZone also secures peripherals such as interrupt con-
trollers, timers, and I/O components through the AMBA3 APB
peripheral bus. This ensures that the system is monitored by
a task that cannot be interrupted by malware. The AMBA3
APB peripheral bus is a low gate-count and low-bandwidth
peripheral bus that is connected to the system bus using
an AXI-to-APB bridge. This bridge controls access to the
peripherals, ensuring only requests with the necessary security
status reach the peripherals.

The processor switches between the two modes (context
switching) in a time-sliced fashion and is controlled by the
“monitor mode”. For an application running in nonsecure-
mode to make use of services offered by another application
in the secure-mode, for example to encrypt a document, a
special instruction known as the “Secure Monitor Call (SMC)”
is used. SMC immediately sets the NS-bit to ‘0’ and then
fully transfers control to the secure-mode. On the other hand,
switching back from secure-mode to nonsecure-mode is less
controlled, and the secure side can directly alter the “Current
Processor Status Register”. So, essentially, the monitor mode
can be seen as providing gate-keeping services between the
two modes.

C. Intel Software Guard Extensions (SGX)

Intel’s SGX are a set of instructions that provide extensions
to the Intel architecture processors. These extensions provide
a TEE within the computer’s untrusted environment. Intel
SGX thus aims to provide confidentiality, integrity, and replay
protection using enclaves [29].

Enclave Enclave

Page
Tables

SGX
Module

SGX User
Runtime

SGX User
Runtime

EPC EPCM

Application
Environment

Privileged
Environment

Exposed
Hardware

Instructions
EEXIT
EGETKEY
EREPORT
EENTER
ERESUME

Instructions
ECREATE
EADD
EEXTEND
EINIT
EREMOVE

Fig. 2. Hardware and Software Architecture of Intel SGX based on [29]

An enclave is part of the applications memory space which
is hardware protected. An enclave has a reserved area of
memory from which it runs, known as the enclave page cache
(EPC). Access to the EPC is protected from processes outside
of the enclave. The OS can manage the enclaves, but cannot
tamper with the code and data within the enclave itself.

The management of an enclave is carried out through a set
of instructions. The ECREATE instruction creates an enclave
and also sets the base linear address as well as the physical
address. After the creation of an enclave, the EADD instruction
is used to add relevant code and data to the enclave. This adds
4KB of protected data. For integrity protection, the EEXTEND
instruction is used to measure the contents of the enclave. This
measures 256 bytes at a time; therefore, to measure the whole
contents of the enclave, the instruction is called 16 times [29].
The enclave is then initialised using the EINIT instruction.
This sets the INIT attribute to true, which means the code in
the enclave is ready for execution.

V. ECOSYSTEM MODELS FOR TEE

In this section, we will discuss different ecosystem models
for the TEE services. These systems describe the accessibility,
business roles, liabilities, and application provisioning archi-
tecture that can potentially be categorised into six different
facets, which are discussed in the following sections.

Before we go into the discussion of different ecosystems,
first we define the individual stakeholders and the terms that
refer to them. A device manufacturer is an organisation that
develops a handset (both the hardware and software platform).
This includes both Android and Apple style of mobile de-
velopment. An application developer is an organisation that
develops an application such as banking, transport-ticketing
and access control. Finally, a consumer is the device holder
that buys the smartphone and wants to use it for NFC-HCE-
based services.

A. Centralised (Device-Manufacturer) Model

In this model, the device manufacturer has full control of
the TEE service provisioning. For an application developer that
would require access to secure services provided by the TEE,
they have to get explicit approval from the device manufacturer
to install their application on a smartphone with access to TEE.

This ecosystem is currently being used in limited roll out of the
TEE on smartphones. At the core, this is the same ecosystem
as the Issuer-Centric Ownership Model in smart cards [30].

A variant of the centralised model is when the access to the
TEE is controlled by the device manufacturer, but it allows a
trusted third party, referred to as trusted application provisioner
(TAP), to provide application provisioning on behalf of the
device manufacturer. This is similar to the Trusted Service
Manager (TSM) model in NFC-SE, argued that it would enable
flexibility and scalability for the application provisioning on
SE did not materialised in real world deployment. The TAP
facilitates the sharing and usage of the TEE services to achieve
this, the TAP would have to have a business relationship
with a wide range of device manufacturers and application
developers.

B. Security as a Service Model

This is not a full ecosystem that deals with the overall
management of the TEE services. However, this provides an
alternative which enables third party applications to use secure
services running in the secure world of a TEE. The actual
underlying model can be either of the above discussed models.
In this model, an organisation can negotiate access to the TEE
services, and provide Security as a Service (SaaS) features.
Third party applications that don’t have access to TEE services
directly, can then utilise the SaaS to provide security to their
applications.

C. Consumer-Centric Model

This model gives full control of the TEE services provi-
sioning to the user. This model is similar to the User Centric
Ownership Model for smart cards and a potential consumer-
centric model proposed by GlobalPlatform [31]. This model is
also similar to the current application provisioning mechanism
deployed in the smartphone industry, where a user can install
or delete any application as they desire.

The user in this model takes on the role of the TAP and
allows the access to the TEE services. They also have the
privilege to enrol, evoke and block access of any application
that requests the TEE services. From the liability point of
view, the applications should manage their own risk mitigation
processes and users (or the device manufacturer) might not be
liable.

VI. COMPARISON BETWEEN MODELS

In this section, we set comparison criteria on which we will
later compare and contrast different ecosystem proposals for
TEE.

A. Comparison Criteria

The rationale for constructing these criteria is to illus-
trate the positives as well as the shortcomings of individual
ecosystem models discussed in previous sections. Economic
considerations may decide the choice of model among the
competing models, however, this does not mean that it is the
best possible model. Nevertheless, the following criteria are

based on the potential elements that might play a critical role
in successfully bridging the transition of smart card services
from specialised hardware (smart card) to smartphones.

1) Market Segmentation: Is the proposed model restrictive
to a level that it might create pockets of market access?
In market segmentation, certain applications might be
only available on particular devices due to the business
relationship between application developer and device
manufacturer.

2) Scalability: The model enables a wide scale deployment
of a number of applications, from heterogeneous ap-
plication developers, therefore serving applications with
varied and potentially changing requirements.

3) Flexibility: The model is flexible in a sense that a
small application developer can also gain access to TEE
services like a big corporation can.

4) Impartiality: The model does not discriminate any par-
ticular or set of application developer(s). Any application
developer that abides by the security and privacy policies
set by the model is allowed to access TEE services.

5) Consumer-Involvement: Does the consumer (users) have
any involvement in either provisioning or evoking the
TEE services to individual application developers?

6) Open Provisioning: Any application developer can create
an application requiring access to the TEE services
and potentially use these services without requiring
expansive and potentially long approval processes set
by device manufacturers or TAP.

7) Closed Provisioning: For application provisioning of
access to the TEE services, a centralised authority such
as TAP and/or device manufacturer has to approve it.

8) User Privacy: A set of applications on a smartphone
might also signify potential privacy information about
a user. Therefore, does the model reveal the set of
applications using the TEE services to an external en-
tity including device manufacturers, TAP and/or other
application developers?

9) Application Intellectual Property (IP) Protection: The
model does not require the application developer to
reveal the source code of their application to the entity
that provisions the access to the TEE services.

B. Comparison and Discussion

Based on the defined criteria in the previous section, the
comparison is shown in Table II.

For the SaaS model, most of the partially met criteria is
due to the nature of the model. It does provide flexibility to
small application developers to gain access to secure services
from TEE, without going through the device manufacturers
and/or TAP approval model. For the criteria impartiality we
have marked all models except the consumer-centric one as
partially meeting the criteria, for the reason that there is a
centralised entity and guaranteeing its impartiality would be
difficult. However, for the consumer-centric model, we marked
it meeting the criteria as full because if a user downloads the

TABLE II
COMPARISON OF DIFFERENT ECOSYSTEMS FOR TEE DEPLOYMENT

Criteria Centralised Security as Consumer
Model Service Centric

1) Market Segmentation H# H#
2) Scalability H# H#
3) Flexibility #
4) Impartiality H# H#
5) Consumer-Involvement # H#
6) Open Provisioning # H#
7) Closed Provisioning H# #
8) User Privacy # #
9) Application IP Protection # H#

Note: if criteria is fully satisfied, H# if criteria is partially met and # if
criteria is not satisfied..

application, there is a high probability that he or she would
give the permission to use TEE services.

Centralised models do not fare well on the criteria including
open provisioning, consumer-involvement, user privacy and
applications IP protection. The reason behind this is the
process which an application has to go through before getting
access to the TEE. It can be argued that App Stores managed
by Apple and Google already do so. However, most of these
applications might not have proprietary code like banking,
transport-ticketing and mobile network operators (soft-SIMs)
might have. Such application, along with other high security
sensitive applications, might not accept it.

The consumer-centric model meets the highest number of
criterion in comparison to all other models discussed in this
paper. It might be argued that such a model might introduce
security issues, like a malicious application can also run in
the TEE. This is possible, but TEE by no means provide
an assurance that only nonmalicious application code will
execute in it. Such assumptions are based on prior vetting of an
application by device manufacturers and/or TAP, by analysing
the application source code. This, as discussed before, might
not be preferable to a large set of application providers.

C. Future Research Directions

The proposal of the TEE is still in its infancy and there are
plenty of open issues that need to be resolved. Some of these
are listed below:

• Open Deployment: To build an ecosystem that allows
open deployment of the TEE provisions is a challenging
task, especially ensuring that access provisioning, revo-
cation and blocking of applications can be achieved in a
secure and reliable manner, and, furthermore, to transfer
the application binaries that would run in the secure world
and proof of hardware (to avoid simulator attack) are an
open issue.

• Effect of Faults: High security-embedded devices along
with smart cards are targeted using radiations to change
the stored values of an applications data during its exe-
cution. If TEE was to run secure smart card applications,
then similar attacks might target the TEE. Therefore, to

ensure that TEE is protected against the effect of faults
is important.

VII. CONCLUSION

Applications that were traditionally associated with the
smart card devices are in transition from a secure and tamper-
resistant device to a feature rich environment like smartphones.
This transition was due to the emergence of the NFC technol-
ogy. To provide high levels of security assurance, similar to the
ones required by the smart card applications, initially SE was
put forward as the candidate platform. Unfortunately, this is
not gaining wide-scale acceptability. In addition to this, HCE
enabled any application running on an Android platform the
NFC channel, opening the field to any application to emulate
a smart card. To provide security to such applications the
preferable candidate is TEE. In this paper we have analysed
the TEE proposal and its potential deployment models. We
listed a set of criteria to show why the TEE is the most
preferable candidate to secure the NFC-HCE applications.
Furthermore, we have described potential deployment models
and comparison criteria, based on the potential of acceptability
and wide-scale deployment. This paper showed that there is
still a long way to go before TEE might enable smart card
applications to run in an NFC-HCE combination. However,
the deployment model is most crucial, as similar to the SE,
this could either make or break the TEE proposal for NFC-
HCE.

REFERENCES

[1] K. Mayes and K. Markantonakis, Smart Cards, Tokens, Security and
Applications, 1st ed.

[2] GlobalPlatform, “GlobalPlatform Device Technology, TEE System Ar-
chitecture v1.0,” December 2011.

[3] ISO/IEC 28361: Near Field Communication Wired Interface (NFC-WI),
International Organization for Standardization (ISO) Std., October 2007.

[4] NFC Trials, Pilots, Tests and Live Services around the World. Online.
NFC World.

[5] R. N. Akram, K. Markantonakis, and D. Sauveron, “Collaborative and
Ubiquitous Consumer Oriented Trusted Service Manager,” in 2014 IEEE
13th Inter. Conf. on Trust, Security and Privacy in Computing and
Communications. IEEE, 2014, pp. 448–456.

[6] ——, “A Novel Consumer-Centric Card Management Architecture and
Potential Security Issues, volume = 321, year = 2015,” Information
Sciences, pp. 150 – 161.

[7] A. D. Guide, “Host-based Card Emulation,” https://developer.android.
com/guide/topics/connectivity/nfc/hce.html.

[8] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The Untapped Potential
of Trusted Execution Environments on Mobile Devices, journal =IEEE
Security & Privacy, volume = 12, number = 4, issn = 1540-7993, year
= 2014, pages = 29-37, publisher = IEEE CS.”

[9] T. Nyman, B. McGillion, and N. Asokan, On Making Emerging Trusted
Execution Environments Accessible to Developers. Cham: Springer,
2015, pp. 58–67.

[10] G. Madlmayr, O. Dillinger, J. Langer, and C. Schaffer, “The benefit of
using SIM application toolkit in the context of near field communication
applications,” in the Inter. Conf. on the Management of Mobile Business.
DC, USA: IEEE CS, 2007, p. 5.

[11] ISO/IEC 14443-1: Identification Cards - Contactless Integrated Cir-
cuit(s) Cards - Proximity Cards, ISO Std., Rev. 2nd Edition, June 2008.

[12] “Pay-Buy-Mobile: Business Opportunity Analysis,” GSM Association,
White Paper 1.0, November 2007.

[13] D. Yeager, “Added NFC Reader support for two new tag types: ISO
PCD type A and ISO PCD type B,” 2012.

[14] A. Umar, K. Mayes, and K. Markantonakis, “Performance Variation in
Host-based Card Emulation Compared to a Hardware Security Element,
year=2015, pages=1-6, doi=10.1109/MOBISECSERV.2015.7072872,
month=Feb,,” in Mobile and Secure Services (MOBISECSERV), 2015.

[15] “Transit and Contactless Open Payments: An Emerging Approach for
Fare Collection,” Smart Card Alliance Transportation Council, White
Paper, November 2011.

[16] M. Emms, B. Arief, L. Freitas, J. Hannon, and A. van Moorsel,
“Harvesting High Value Foreign Currency Transactions from EMV
Contactless Credit Cards without the PIN,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 716–726.

[17] “The Future of Ticketing: Paying for Public Transport Journeys Using
Visa Cards in the 21st Century,” VISA, Whitepaper, January 2013.

[18] “MasterCard Contactless Performance Requirement,” MasterCard, On-
line, March 2014.

[19] “EMV Contactless Specifications for Payment Systems: Book D - EMV
Contactless Communication Protocol Specification,” EMVCo, LLC,
Specification Version 2.6, March 2016.

[20] “Transactions Acceptance Device Guide (TADG),” VISA, Specification
Version 3.0, May 2015.

[21] “Payment Tokenisation Specification,” Online, EMV, Specification,
March 2014.

[22] M. H. Jakubowski, C. W. N. Saw, and R. Venkatesan, Tamper-Tolerant
Software: Modeling and Implementation. Springer, 2009, pp. 125–139.

[23] G. Wroblewski and G. Wroblewski, “General Method of Program Code
Obfuscation,” 2002.

[24] W. Michiels, P. Gorissen, and H. D. L. Hollmann, Cryptanalysis of
a Generic Class of White-Box Implementations. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 414–428. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04159-4 27

[25] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen, Differential
Computation Analysis: Hiding Your White-Box Designs is Not Enough.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 215–236.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-53140-2 11

[26] M. Joye, “On White-Box Cryptography,” in Security of Information and
Networks (SIN). Trafford Publishing, 2008, pp. 7 – 13.

[27] S. C. Alliance, “Host card emulation (hce) 101,” Smart Card Alliance,
Mobile and NFC Council, Tech. Rep., August 2014.

[28] A. Limited, “ARM Security Technology Building a Secure System using
TrustZone Technology,” April 2009.

[29] I. Corporation, “Intel Software Guard Extensions Programming Refer-
ence,” October 2014.

[30] R. N. Akram, K. Markantonakis, and K. Mayes, “A Paradigm Shift in
Smart Card Ownership Model,” in ICCSA Workshops, B. O. Apduhan,
O. Gervasi, A. Iglesias, D. Taniar, and M. L. Gavrilova, Eds. IEEE
CS, 2010, pp. 191–200.

[31] “A New Model: The Consumer-Centirc Model and How it Applies to
the Mobile Ecosystem,” GlobalPlatform, Whitepaper, March 2012.

