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Abstract: Electron beams of most accelerators have a bunched structure and are synchronized 

with the accelerating RF field. Due to modulation of the electron beam with frequency RF  one 

can expect to observe resonances with frequencies k RFk    in radiation spectrum generated 

via any spontaneous emission mechanism (k is an integer and the resonance order). In this paper 

we present the results of spectral measurements of coherent transition radiation (CTR) generated 

by an electron bunch train from the Tomsk microtron with 2.63RF  GHz in the spectral 

frequency range from 8 to 35 GHz. We also measured the spectrum of coherent diffraction 

radiation and demonstrated that the observed spectra in both cases consist of monochromatic 

lines. For spectral measurements the Martin-Puplett interferometer with spectral resolution of 

800 MHz (FWMH) was employed. Using a waveguide frequency cut-off we were able to 

exclude several spectral lines to observe higher resonance orders of up to k =7 .  
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1. Introduction 

Recent years a few THz radiation sources based on linacs producing sub picosecond bunches 

were constructed and commissioned [1,2,3]. The radiation mechanism used to achieve the goal 

is transition radiation (TR) [4]. A continuous broadband coherent TR (CTR) spectrum is 

generated by an electron bunch from a conducting target and emitted into an angular cone of 

order of 1,x y

    , where x and y  are the projection observation angles measured from the 

direction of mirror reflection and   is the charged particle Lorenz factor. The CTR wavelength 

range is determined by the outer target dimensions (low frequency limit) and the electron bunch 

length z  (high frequency limit). Diffraction radiation (DR) appears when electrons move in 

the vicinity of a target [5]. For relativistic electrons the transverse size of electron Coulomb field 

is treated as  , where   is the wavelength of the investigated radiation. In the pseudo-photon 

approximation [6] one can consider the backward diffraction radiation as reflection of 

relativistic electron field by the target surface.  

Another application of the CTR process (as well as the coherent diffraction radiation 

(CDR)) is the measurement of longitudinal profile of ultra short bunches. As a rule one has to 

measure the CTR / CDR spectrum in order to reconstruct the bunch profile using, for instance, 

inverse Fourier transform [7]. To determine the bunch length it is necessary to measure the 

high-frequency range of the CTR spectrum with high accuracy. A train of electron bunches (or a 

modulated electron beam) can generate quasi-monochromatic radiation. The resulting spectrum 

consists of a set of the spectral lines (harmonics of the bunching frequency). This is not a trivial 

task to decode information about the bunch length from such a non-uniform spectrum. 

The CTR process generated by an electron beam consisting of a periodic train of bunches 

was also studied in [3,7,8]. In [9,10,11] the authors investigated this effect for the coherent 

synchrotron radiation mechanism, in [12] – for the coherent Smith-Purcell radiation. In all cases 

the spectrum contained monochromatic lines. The origin of those lines comes from constructive 

interference of radiation generated by successive bunches. This effect was called as the 

frequency-locked radiation [7]. The authors of [11] have used the term “superradiant radiation” 

because of the quadratic dependence of the spectral line intensity on the number of bunches. 

Despite of the fact that the distance,  , between bunches is much larger than the bunch 

length, z , the CTR spectrum contains monochromatic lines corresponding to high order 
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resonances [3,13]. Nowadays, the technology of laser photocathode RF guns allows us to obtain 

a train of femtosecond electron bunches with submillimeter spacing (see, for instance, [14]). A 

similar train of bunches can also be produced converting the transversely modulated bunch in 

high dispersion region of accelerator into a temporally separated set of micro bunches by a set 

of dipole magnets [15]. In [16] the authors measured the CTR spectrum from six ultra-short 

electron bunches ( 20z   μm) separated by L = 700 μm and showed that the spectrum 

contains the fundamental harmonic with the frequency 1 / 0.43c    THz (c is the speed of 

light) and the second harmonic  THz. However, the mechanism of formation 

of such highly monochromatic beams, limitations in wavelength and train length are not very 

well studied and understood yet. 
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Figure 1. Normalized CTR spectrum from a single bunch (black dashed line), CTR from a train 

for Nb=10 (red solid line) and for Nb=4 (bold blue line, normalized on the line for Nb=10) 

 

In the frequency range around / pc a    the spectrum of backward transition 

radiation emitted by a single charged particle in a cone with opening angle of q
x,y
∼g -1  can be 

considered as a constant ( inc / constdW d ) with high enough accuracy. Here a  is the 

transverse size of the target and p  is the plasmon frequency of the target matter [17,18]. The 

CTR spectrum generated by an electron bunch with the length z  (rms) can be presented as 

 2coh inc ,e e

dW dW
N F

d d
 

 
    (1) 

where       22 2 2

0exp / exp 2 /e zF c         is the form factor for the Gaussian 

distribution, describing the longitudinal bunch profile, 0 / zc   and eN  is the number of 

electrons in the bunch. Figure 1 (dashed line) shows the typical normalized CTR spectrum 

obtained neglecting the effect of the outer target dimensions on low-frequency part. The 

spectrum of coherent radiation from a train of bN  bunches should be multiplied by the train 

form factor [3]  

     
2

sin / 2 / sin / 2train bG N c c         .  (2) 
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Therefore the resultant spectrum is: 

   2train inc
e e train

dW dW
N F G

d d
  

 
   (3) 

Since the maximal value of the form factor (2) is equal to 2

bN , the maxima in the spectrum are 

determined by the quantity 2 2

b eN N . 

Figure 1 illustrates the normalized CTR spectrum from a single bunch (black dashed line), 

CTR from a train for Nb=10 (red solid line), and Nb=4 (bold blue line, normalized on the line for 

Nb=10) for  = 30 z . The relative bandwidth of k-th line is defined by the number of bunches 

as (Dn
k
/n

k
∼1/ N

b
). The frequency, e , corresponding to the 1/ e  fraction of the CTR 

maximum level allows us to determine the frequency 0 2 e   and to evaluate / 2z ec   . 

The frequency interval between two successive spectral peaks depends on the distance between 

bunches as /c    or, for conventional accelerators, RF   . The spectral distribution 

consists of many spectral lines with frequencies k  , k≫1. Intensity and width of 

monochromatic lines depend on the effective number of bunches producing radiation 

synchronously. Nevertheless, figure 1 shows that the envelope of the bunch form factor is 

independent of the number of bunches in a train.  

In this paper we have measured CTR and CDR spectra produced by a multi-bunched 

electron beam from the 6-MeV electron microtron. We have demonstrated that using cut-off 

wave guide we can select a certain part of the spectrum and reinforce some lines versus the 

others. 

2. Experimental setup 

The experiment was carried out using the electron beam extracted from microtron of the Tomsk 

Polytechnic University. The parameters are listed in Table 1. 

 

Table 1. Electron beam parameters 
Electron energy Ee=6.1 MeV ( 12  ) 

Macro-pulse (train) duration 4 s  

Bunch length 3 1z mm     

Bunch population Ne=10
8
 

Bunches in train Nb=10
4
 

Distance between bunches 114 mm   ( 2.63RF GHz  ) 

Transverse beam size 4 2 mm  

 

The radiation with frequency of 33.3   GHz is emitted coherently [20] due to the fact 

that its wavelength is longer than the bunch length. The experimental layout is shown in figure 

2. The bunched electron beam generates CTR from the conductive target 1. The radiation is 

reflected from mirror 2 placed at an angle q
m
= 450  relative to the electron beam trajectory and 

analyzed using Martin-Puplett interferometer. The CDR geometry is shown in the insertion in 

figure 2, where h is the impact parameter, i.e. the minimal distance from the electron beam 

trajectory to the target. The size of the copper target 1 and the mirror 2 is 300 200  mm. The 

target could be rotated around its vertical axis for radiation orientation dependence 

measurements (co-called  -scan, where   is the angle between target surface and electron 
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beam trajectory). The spectral measurements were performed using Martin–Puplett 

interferometer [21-23] (see figure 3) elaborated for millimeter wavelength range, whose 

parameters are summarized in Table 2. The frequency resolution exp  of the interferometer is 

defined by the maximal optical path l  difference achieved by the movable mirror M2: 

exp /c l    and in our case Dn
exp
» 0.8  GHz  exp RF   . 

 

Figure 2. Layout of experiment. 1 is the target, 2 

is the conductive mirror. Insertion shows the 

target geometry for the case of CDR 

measurement 

 

Figure 3. The Martin-Puplett interferometer. 

Definitions: P1 and P2 are the polarizers, S is the 

polarization splitter, Mp is the parabolic mirror with 

focus length of f = 95 mm, M1 is the fixed roof 

mirror, M2 is the movable roof mirror, D is the 

detector, BCW is the cut-off wave-guide. 

 

Table 2. Interferometer parameters and notations 
Fixed mirror M1 170   170 mm 

Movable mirror M2 170   170 mm 

Parabolic mirror Mp  =210 mm, f=95 mm 

Polarizer P1, P2  = 230, 70 mm 

Splitter S 
pr =210 mm 

Cut-off wave-guide 

BCW 
 = 10, 15, 20 mm 

  17.6, 11.8, 8.8 GHz 

Detector D DPMM-01 

Path of mirror M2 l =300 mm 
 

 

To choose the target orientation for spectral measurements we performed the   - scan (see 

figure 4). The movable mirror of the interferometer was placed in a position where two arms of 

the interferometer are equal in length.  

The detector (D in figure 3) is the room-temperature detector DPMM-01 based on a 

broadband antenna with low-threshold high frequency diode [13]. The detector spectral 

efficiency is 4 50mm mm  . However, the high frequency part of the CTR/CDR spectra are 

limited by  the longitudinal electron bunch form-factor determining the radiation coherency 

( l
min
>10mm). The cut-off wave-guide (BCW in figure 3) was used to cut the noise of the 

accelerator RF system and select a certain part of the spectrum.  
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3. Measurement results 

At the first stage we measured the  -scan of the CTR yield (see figure 4) using the cut-off 

wave-guide with diameter of 20   mm (cutting out the frequencies 8.8   GHz). The 

dependence demonstrates a typical TR behavior with a minimum along the specular reflection 

direction and two asymmetric maxima because the Lorenz-factor is small and target is tilted 

with respect to the beam trajectory [24]. Spectral measurements were carried out for the large 

maximum at the angle 0

1 18.5  . 

The obtained interferogram using the same cut-off wave-guide is presented in insertion in 

figure 5. To reconstruct the spectrum from the measured interferogram we applied the Fourier 

transform algorithm from [19]. The interferogram has a periodic macrostructure (amplitude 

modulation) with the period of / 2 . A practically ideal coincidence of the modulation period 

with a half of the distance between bunches suggests that this is the result of interference of 

radiation from subsequent bunches. 

 

Figure 4. CTR orientation dependence ( -scan). 

 

Figure 5. Spectrum reconstructed from the 

observed interferogram shown in insertion. 

The positions of measured maxima in figure 5, p , are well described by the equation 

/k k c    . The analysis of the maxima is summarized in Table 3. Therefore, we can 

confidently conclude that we observe the intra-train interference effect in the CTR spectrum up 

to the 7th order of resonance. 

The cut-off wave-guide with diameter of 10   mm (cutting out the frequencies 

17.6   GHz) we managed to isolate a single quasi-monochromatic line for k=7 shown in 

figure 6. The spectral line width ( 0.75 0.04 GHz   ) is closed to the interferometer 

resolution. It means that the effective number of bunches radiating coherently is certainly larger 

than the value of / 25b effN     .  

In the case of the CDR investigation, the target geometry was changed as presented in 

figure 2 (see insertion). To compare the CTR and CDR spectra, the microtron was operated in 

the same regime. For CDR investigation we used the BCW with diameter of 15   mm 

( 11.8   GHz). The  -scan of the radiation intensity is shown in figure 7. In contrast to the 

CTR or CDR from a slit [25] the  -scan contains a single maximum along the specular 

reflection direction because here CDR is generated by a target edge only (see figure 7). The 

interferogram measured for / 2m  , where m  is the angle of specular reflection, is presented 

in the insertion in figure 8. 
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Table 3. Comparison of the 

resonance frequencies 

k  k GHz   p GHz  

4 10.5 10.5 

5 13.2 13.3 

6 15.8 15.8 

7 18.4 18.5 

8 21.0 - 

9 23.6 - 

 

 
 

Figure 6. CTR spectrum (bottom) reconstructed from the 

interferogram (top) measured using the BCW with diameter of 

10   mm. 

The CDR interferogram has a periodic amplitude modulation with period of / 2  as well as 

CTR. The spectrum reconstructed from the measured interferogram is shown in figure 8. Thus, 

the CDR spectrum is analogous to the CTR spectrum in frequency range limited by the BCW. 

The difference might appear due to the fact that the CDR photon yield and the spectral content 

depend on the impact-parameter. For large impact-parameter h >gl  the high frequency part of 

a CDR spectrum is suppressed. However, in our case this effect is small because 

h =15mm≪gl . 

 

Figure 7.  - scan for the CDR geometry. 

 
Figure 8. Spectrum reconstructed from the 

measured CDR interferogram shown in insertion.  

4. Discussion 

We have demonstrated a possibility to generate monochromatic radiation using a 

prebunched electron beam. We managed to select or even isolate spectral lines with high 

diffraction orders using cut-off wave-guides. Another possibility to achieve high 

monochromaticity Dn
k
/n

k
∼10-2  even for a small number of bunches ( 10bN  ) is the use of a 

grating with period d ∼l  instead of a traditional flat CTR target. Choosing the grating period 
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and its tilt angle   it is possible to decrease the line bandwidth k  significantly. As we 

demonstrated in [26] the resulting radiation, so-called “grating transition radiation” (GTR), 

becomes monochromatic due to constructive interference of electromagnetic fields generated on 

each grating element. The GTR monochromaticity is determined by the transverse radius of the 

relativistic particle Coulomb field  , the number of effective periods, and the diffraction 

order, k: 

Dn
k
/n

k
∼
1

k
×
d ×sinq

gl
 

CTR from a train and GTR have the same origin mechanism but their joint effect may lead 

to effective isolation of a spectral line of interest and to reject the rest due to the difference 

between periodicity of spectral lines for CTR from a train and GTR from a single bunch. 

Figure 1 illustrates that the envelope of the spectrum “carries” information about the 

average bunch length, z , in a train. A precise measurement of this envelope can be made with 

interferometer resolution exp  much higher than k  in order to avoid large distortion of the 

spectral line shape. The interferometer detector has to cover a wide frequency range around 

characteristic frequency 0 / zc  .  
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