
Enhanced Threshold Schemes and their Applications

Thalia May Laing

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Mathematics and Information Security

Royal Holloway, University of London

2018

Declaration

These doctoral studies were conducted under the supervision of Professor Keith M. Martin.

The work presented in this thesis is the result of original research I conducted, in collabo-

ration with others, whilst enrolled in the School of Mathematics and Information Security

as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

for any other degree or award in any other university or educational establishment.

Thalia May Laing

18th September 2017

2

Abstract

Techniques that distribute data across multiple players in such a way that a threshold
number of players can reconstruct the data, whilst any fewer than the threshold cannot
learn information about the data, are well established. These techniques are called thresh-
old schemes and are important as they allow for increased availability, add redundancy
and offer security without the reliance on cryptographic keys. With constrained devices
restricted by low computational capabilities becoming more prevalent, it is important to
discuss the use of threshold schemes in this setting. We study efficient threshold schemes
and their applications in constrained devices and illustrate the compromise between effi-
ciency and security.

We begin by using combinatorial techniques to propose an ideal, efficient, perfectly secure
threshold scheme, which we analyse and compare to existing efficient threshold schemes.
We show our scheme is efficient, with respect to the number of bitwise operations, com-
pared to other schemes.

Next, we revisit a computationally secure threshold scheme, called AONT-RS, originally
proposed in 2010. We generalise the scheme to allow for greater cryptographic flexibil-
ity and prove the scheme to be secure in the random oracle model. When compared to
Krawczyk’s scheme, the generalised scheme is more efficient, but requires greater assump-
tions in order to be proven secure. We then discuss extending AONT-RS to be robust,
which prevents the unauthorised alteration of data.

Following this, we consider repairable threshold schemes, which enable recovery of a cor-
rupted share without the help of a dealer. We consider and refine existing methods,
analysing the storage costs and bandwidth required for each repair. We introduce a new
metric to measure the repairability of the scheme, then consider secure regenerating codes
and applying these techniques to repairable threshold schemes. We finish by comparing
a range of techniques and highlight how they find a compromise between bandwidth and
storage.

Finally, we propose localised multi-secret sharing schemes, which are multi-secret sharing
schemes for an ordered set of players in which a sufficient number of sufficiently close
players are able to recover secrets. We define threshold versions of localised multi-secret
sharing schemes, provide lower bounds on the share size and give explicit constructions of
schemes to show these bounds are tight. We then analyse a range of approaches to relaxing
the model that provides a trade-off between the share size and the security provided by
the scheme. Finally, we explore applying localised threshold multi-secret sharing schemes
to RFID enabled supply chains.

3

Contents

1 Introduction 10

1.1 Motivation . 10

1.2 Chapter overviews . 12

1.3 Publications . 14

2 Preliminaries 15

2.1 Principles of information security and cryptography 16

2.1.1 Basic principles . 16

2.1.2 Security goals . 17

2.1.3 Adversaries . 17

2.1.4 Security games . 19

2.1.5 Encryption schemes . 20

2.1.6 Information theory and the entropy function 21

2.1.7 Constrained devices . 22

2.2 Symmetric-key encryption schemes . 23

2.2.1 Perfect secrecy . 24

2.2.2 Computational security . 25

2.2.3 Relating security notions . 27

2.3 Threshold schemes . 28

2.3.1 Perfect threshold schemes . 31

2.3.2 Ramp schemes . 37

2.3.3 Computationally secure threshold schemes 39

2.3.4 Robust threshold schemes . 41

2.4 Information dispersal algorithms . 42

2.4.1 General information dispersal algorithms 42

2.4.2 Error correcting codes and IDAs . 44

2.4.3 Secure IDA constructions using ECCs 46

3 An efficient, perfect threshold scheme 52

4

CONTENTS

3.1 Introduction . 53

3.1.1 Efficiency of threshold schemes . 53

3.1.2 Efficiency of Shamir’s threshold scheme 54

3.1.3 Alternative efficient threshold schemes 54

3.1.4 The presented scheme . 55

3.2 The modified HP scheme . 56

3.2.1 Definition of the scheme . 56

3.2.2 Security analysis . 59

3.3 Efficiency analysis . 63

3.3.1 The modified HP scheme . 63

3.3.2 Shamir’s threshold scheme . 67

3.3.3 The threshold scheme by Kurihara et al. 71

3.3.4 Wang and Desmedt’s threshold scheme 74

3.3.5 Discussion . 75

4 An efficient, computationally secure threshold scheme 83

4.1 Introduction . 84

4.2 Preliminaries . 85

4.2.1 Block cipher modes of operation . 85

4.2.2 Cryptographic hash functions . 89

4.3 The AONT-RS scheme . 90

4.3.1 The original AONT-RS definition . 90

4.3.2 Generalising AONT-RS to AONT-RS0 92

4.3.3 Security analysis of AONT-RS0 . 99

4.3.4 Efficiency analysis of AONT-RS0 and comparison with HK0 101

4.4 Extending AONT-RS0 to be robust . 106

4.4.1 Data integrity using a canary . 106

4.4.2 Robust extension using hash functions 107

4.4.3 Robust extension using commitment schemes 109

4.4.4 Comparing robust extensions . 120

4.5 Conclusion . 121

5 Repairable threshold schemes 122

5.1 Introduction . 123

5.1.1 Problem statement . 123

5.1.2 Näıve solution . 124

5

CONTENTS

5.1.3 Efficiency metrics . 125

5.2 Preliminaries . 127

5.2.1 Combinatorial design theory . 127

5.2.2 Regenerating codes . 130

5.3 Existing solutions . 136

5.3.1 The enrolment RTS . 136

5.3.2 Combinatorial repairability . 146

5.3.3 GLF scheme . 151

5.4 Solutions using regenerating codes . 151

5.4.1 Applying regenerating codes to RTSs 152

5.4.2 Constructions of secure regenerating codes for RTSs 154

5.5 Comparison of techniques . 158

5.5.1 Comparing MBR and MSR codes . 158

5.5.2 Comparison of techniques prioritising communication complexity . . 160

5.5.3 Comparison of techniques prioritising information rate 161

6 Localised multi-secret sharing schemes 162

6.1 Introduction . 163

6.2 Localised threshold multi-secret sharing schemes 164

6.2.1 Multi-secret sharing . 164

6.2.2 Localised threshold multi-secret sharing schemes 165

6.3 Bounds and constructions for LMSSs . 166

6.3.1 Optimal constructions . 166

6.3.2 Time dependent schemes . 171

6.4 Relaxing security requirements to construct more efficient schemes 172

6.4.1 Shifting to a non-perfect model of secret sharing 173

6.4.2 Changing the access structures . 173

6.4.3 Staggering key windows . 176

6.4.4 Combining techniques . 177

6.5 Application to key distribution in RFID enabled supply chains 178

6.5.1 RFID enabled supply chains . 180

6.5.2 Existing solutions . 182

6.6 Conclusion . 187

7 Concluding Remarks 188

Bibliography 191

6

List of Figures

2.1 Indistinguishability and key-unrecoverability games used to define security

notions in a symmetric-key encryption scheme, previously defined in [8]. . . 26

2.2 Privacy and recoverability games used to define perfect, computationally

secure and robust, computationally secure threshold schemes. 35

2.3 The share and recover algorithms defining HK0. 40

3.1 The share and recover algorithms defining the modified HP scheme. 57

3.2 The number of bitwise operations required for the three share algorithms,

given parameters λ = 128, n = 16 and for varying 1 ≤ t ≤ n. 78

3.3 The number of bitwise operations required for the recover algorithms, given

parameters λ = 128, n = 16 and for varying 1 ≤ t ≤ n. 81

4.1 Encryption using ECB mode . 86

4.2 Encryption using CFB mode . 87

4.3 Encryption using CTR mode . 88

4.4 The share and recover algorithms defining AONT-RS, as proposed in [85]. . 91

4.5 The share and recover algorithms defining AONT-RS0. 98

4.6 Procedures used to construct games G0 and G5, used to prove the privacy

of AONT-RS0 in Theorem 4.3.1. 99

4.7 The share and recover algorithms defining HK1, a robust, computationally

secure threshold scheme by Krawczyk [60]. 108

4.8 The share and recover algorithms defining AONT-RS1, the robust extension

of AONT-RS0 via hash functions. 109

4.9 Hiding and binding games used to define security notions in a commitment

scheme. 111

4.10 The share and recover algorithms defining HK2, a robust, computationally

secure threshold scheme by Bellare and Rogaway [8]. 112

4.11 The share and recover algorithms defining AONT-RS2, the robust extension

of AONT-RS0 via commitment schemes. 113

7

4.12 Procedures used to construct games G0, G1, G2, G3, G4 and G5, which are

used to prove Theorem 4.4.2, the privacy of AONT-RS2. 115

4.13 Procedures used by adversary B to respond to adversary A in the proof of

Theorem 4.4.3, the robustness of AONT-RS2. 118

6.1 Depiction of window W2 in a (3, 7)-LMSS. 166

6.2 When ` = 4 and n = t = 2, any pair of adjacent players are authorised to

recover the secret. 174

6.3 Illustration of properties of the (30, 50; 100, 150, 40)-fLMSS of Example 6.4.2.179

List of Tables

3.1 The number of operations in the field GF (2d
λ
t e) computable before and

after the secret is submitted to the share algorithm of the modified HP

scheme. 66

3.2 The number of operations in the field GF (2λ) computable before and after

the secret is submitted to Shamir’s share algorithm. 70

3.3 The number of bitwise XORs computable before and after the secret is

submitted to the share algorithm by Kurihara et al., where λ = d(p−1) for

some prime p ≥ n. 73

3.4 Complexity of share and recover algorithms for different perfect threshold

schemes. 76

5.1 Comparing metrics for universally repairable RTS constructions. 159

5.2 Comparison of (t, n, d)−RTSs based on (m, d, 1)−BIBDs, as in [97], and

secure MBR codes, as in [90]. 160

8

Acknowledgements

Without my untiring supervisor, Keith, I would not have reached this point. He has

guided me through the last four years, encouraging me to step outside my comfort zone

and keeping me motivated throughout, all whilst maintaining a good sense of humour. For

every email telling me not to fret, and for the continual encouragement, I am immeasurably

grateful.

I have learnt much from, and am beholden to, my co-authors, Li, Maura and Doug, each

of whom have provided me with invaluable advice and guidance.

I am fortunate to have been surrounded by good friends in the department, including my

favourite Rachel, Rob and Victor, all of whom have taught and supported me. In partic-

ular, I reserve a special mention for Sam, who has fielded many questions and provided

much cake, for Thyla, who has been a steady source of wisdom and company, and Pip,

who has provided me with advice, wine and laughter. I also extend my thanks to my

non-departmental friend Ben, who proofread as much as he could before comparing his

brain to a small device with limited computing ability, power and memory.

Finally, on a personal note, I would be lost were it not for the ongoing love and support of

my friends and, in particular, my family, to whom words of thanks always feel inadequate.

So, to Chris, for making me countless cups of tea, listening with unwavering patience and

making even the hardest of tasks seem achievable; to Mum, Dad, Mandi and Mick, for

their enduring belief and confidence in me; and to my phenomenal sisters, Claire, Pari,

Cara, Marissa and Sian, for being my best friends and my comfort; thank you.

9

Chapter 1

Introduction

1.1 Motivation

Consider a scenario in which a secret key provides access to a number of important,

confidential files. This set-up has three main drawbacks. Firstly, the security of the files

relies on the secret key being stored securely; if an adversary is able to gain access to

the key, they are able to access the files. Once access to the files has been gained, the

adversary can read, alter, and/or delete any of the confidential information. The second

drawback is that, if the key is lost, access to the files is lost with it. Finally, complete trust

is placed in the entity that holds the key; if the important files do not belong exclusively

to them, how can the entrusted entity be prevented from exploiting their responsibility?

To illustrate this scenario, consider a government with a secret key used to authorise the

launching of nuclear missiles. The government wishes to avoid storing the key somewhere

where an adversary may be able to gain access to it, for obvious reasons. They discuss

giving the key to an individual, say the president, but have two main concerns with this

idea. Firstly, they fear the president may be unavailable if the key is required, or that an

adversary may remove the president, meaning the key is lost to the government and the

nuclear missiles cannot be launched. Secondly, they worry the president may exploit his

responsibility and use the key to launch the nuclear missiles, even if it is not absolutely

necessary.

Instead of giving sole responsibility to the president, the government decide to distribute

the key amongst three of its members by giving each of the three members a share of

the key. The distribution is done in such a way that any two of the three members can

collaborate and decide to use and recover the key, but any individual cannot do so alone.

10

1.1 Motivation

This solution of splitting the key addresses a number of the drawbacks previously high-

lighted. Firstly, an adversary would be unable to learn the key by gaining access to just

one share; instead, they would be required to learn the shares of at least two of the three

chosen members of government. Secondly, even if one member becomes unavailable, the

key is not lost as the other two members can collectively reconstruct it. Finally, as no indi-

vidual knows the key, nobody is solely responsible for, or able to exploit, their knowledge

of the key.

This process of sharing a key, or a secret, amongst a set of n players (which could be

devices, servers or people), such that authorised sets of players can collectively recover the

secret, whilst unauthorised sets of players cannot, is called secret sharing. In particular,

a sharing of the secret that allows only sets of t players to recover the secret is called

a (t, n)-threshold scheme, where the threshold, t, is the number of players required to

collaborate in order to recover the secret. The previous example of distributing a key

used to authorise the launching of nuclear missiles is an application of a (2, 3)-threshold

scheme, as three members of the government are given shares, and any two of the three

are able to recover the key. Threshold schemes are a well-studied cryptographic primitive

that were first introduced independently by Shamir and Blakley in 1979 [10, 91].

Now, more than ever, threshold schemes are of increasing importance. Given the growth

and ubiquity of the Internet of Things, there are an increasing number of constrained

devices that store an ever-growing amount of personal information and data. These devices

may be small and mobile with limited computing ability, power and memory and, most

importantly, may be vulnerable to compromise. To store confidential data solely on one

of these devices would be a high-risk strategy and could lead to a host of problems. For

example, an adversary may physically steal a mobile device or exploit a vulnerability,

or a device may run out of power, making the data stored on it unavailable. In either

case, securely distributing the data amongst multiple devices will increase confidentiality,

provide reliability and enable a more robust system.

Providing security in this distributed manner does, however, have its limitations. In

particular, there are lower bounds on the size of the data each device must store as their

share, lower bounds on the amount of randomness required as input in order for the

scheme to be secure, and potentially heavy computation required from each device in the

system. Given the aforementioned limitations of the devices, it is necessary to explore

threshold schemes that are efficient. That is, it is vital to seek schemes which guarantee

11

1.2 Chapter overviews

security whilst meeting these lower bounds and requiring minimal computation. In some

applications, increasing the efficiency of the system may only be possible by relaxing the

security definition, but it is vital that the resulting security be well understood and remain

sufficient for the application.

Threshold schemes also introduce some of their own, unique problems. For example,

consider an adversary who gains access to one device which is a player in a threshold

scheme. Although they are unable to learn any of the distributed data from the share

stored on the individual device, the adversary may be able to alter the share on the

device. If this device then contributes to recovering the data, the corrupted share it

supplies may lead to some incorrect data being recovered by the authorised set of devices.

One would hope the threshold scheme can recognise incorrect data has been recovered and

even recover the correct data whilst also recognising which device submitted a corrupted

share. Threshold schemes achieving this are called robust. After identifying which share

has been corrupted, it may be desirable for the associated device to recover the correct

share they were originally storing. Schemes able to do this without the help of a trusted

third party are called repairable.

Threshold schemes have a number of applications besides the examples of secure storage,

outlined above. Further applications include key escrow [38], and their application in

building other cryptographic primitives, such as secure multiparty computation [46, 81, 28]

and electronic voting [89, 49].

The aim of this thesis is to explore efficient threshold schemes and their extensions. In a

number of cases, we will consider compromising security in order to improve efficiency.

1.2 Chapter overviews

We begin with Chapter 2, which introduces basic principles and notions to be used

throughout the thesis. An introduction to the necessary definitions of information se-

curity as well as a primer on threshold schemes and information dispersal algorithms is

given.

This is followed by Chapter 3, which focuses on perfect threshold schemes, which are

threshold schemes that achieve information theoretic security. Here, we present an en-

hancement of a perfect threshold scheme originally proposed in a patent by HP [21]. We

conduct a security and efficiency analysis of the scheme, concluding that the scheme is

12

1.2 Chapter overviews

both ideal (meaning it requires the minimal amount of memory possible), and optimal

with respect to the number of random bits required. Following this, we explore a number

of other threshold schemes in the literature and compare their efficiencies. We conclude

our scheme is more efficient than Shamir’s threshold scheme [91], and has a more efficient

recovery of the secret than the scheme by Kurihara et al. [62], whilst having a not much

slower algorithm for sharing the secret.

Following this, Chapter 4 considers relaxing the security of threshold schemes from infor-

mation theoretic to computational. Computationally secure threshold schemes are able

to achieve smaller share sizes than perfect schemes and are ideal in settings where either

the devices storing the data have small memory, or when the data to be stored is com-

parably large. We present a generalised version of the AONT-RS scheme by Plank and

Resch [85], called AONT-RS0, and conduct the first formal security analysis. We then

compare AONT-RS0 to Krawczyk’s benchmark computationally secure threshold scheme

[60]. We find AONT-RS0 is more efficient than Krawczyk’s scheme, but achieves this

by assuming the internal hash function is indistinguishable from a random oracle. We

then discuss an adversary who is able to corrupt shares in order to prevent the original

data from being recovered. By utilising two different techniques previously used to extend

Krawczyk’s scheme to be secure against such as adversary, we extend AONT-RS0 to be

robust, and therefore able to recover the correct data in the face of such an adversary. We

discuss how these two techniques vary in security and efficiency, with the more efficient

scheme making greater assumptions and thereby achieving a weaker, yet still sufficient,

level of security.

After considering schemes that are able to recognise corrupted shares and recover the

original data in spite of this, in Chapter 5 we discuss schemes in which players are able to

recover their share without the presence of a trusted third party, but with the help of other

players. Schemes with this property are called repairable threshold schemes. We present,

analyse and enhance a number of existing repairable threshold schemes before exploring

the field of regenerating codes, which is able to offer a number of competitive solutions. We

conclude by identifying the direct trade-off between storage and bandwidth requirements,

and dispute the suggested trade-off between storage and recoverability conjectured in [97].

Chapter 6 proposes and defines localised threshold multi-secret sharing schemes (LMSS),

which enable a threshold set of ordered players, that are close to each other in the under-

lying ordering, to recover some shared secret. If the set of players are either fewer than

13

1.3 Publications

the threshold, or insufficiently close, they are unable to recover the secret. We provide a

motivating scenario for such schemes, then discuss bounds and present constructions that

meet these bounds. We then relax the security, in a number of measurable ways, in order

to achieve more efficient schemes, then combine these techniques to give a flexible LMSS

and explore their application to RFID enabled supply chains, an application originally

considered in [56].

Finally, we summarise the work and explore further research questions in Chapter 7.

1.3 Publications

The research in Chapter 3 is joint work with Liqun Chen and Keith Martin [25], and was

presented at CANS 2016.

Chapter 4 is based on the paper ‘Revisiting and extending the AONT-RS scheme: a

robust computationally secure secret sharing scheme’ [26]. This work is also joint with

Liqun Chen and Keith Martin and was presented at AfricaCrypt 2017.

Chapter 5 is joint work with Doug Stinson and has been accepted to appear in the Journal

of Mathematical Cryptography [64].

Finally, Chapter 6 is joint work with Keith Martin, Doug Stinson and Maura Paterson

and is based on the paper ‘Localised multi-secret sharing’, which appears in [63].

14

Chapter 2

Preliminaries

Contents

2.1 Principles of information security and cryptography 16

2.1.1 Basic principles . 16

2.1.2 Security goals . 17

2.1.3 Adversaries . 17

2.1.4 Security games . 19

2.1.5 Encryption schemes . 20

2.1.6 Information theory and the entropy function 21

2.1.7 Constrained devices . 22

2.2 Symmetric-key encryption schemes . 23

2.2.1 Perfect secrecy . 24

2.2.2 Computational security . 25

2.2.3 Relating security notions . 27

2.3 Threshold schemes . 28

2.3.1 Perfect threshold schemes . 31

2.3.2 Ramp schemes . 37

2.3.3 Computationally secure threshold schemes 39

2.3.4 Robust threshold schemes . 41

2.4 Information dispersal algorithms . 42

2.4.1 General information dispersal algorithms 42

2.4.2 Error correcting codes and IDAs 44

2.4.3 Secure IDA constructions using ECCs 46

15

2.1 Principles of information security and cryptography

This chapter will introduce the core principles, notation and definitions that will be used

throughout. We begin in Section 2.1 by introducing some of the key principles of infor-

mation security and cryptography. We then introduce symmetric-key encryption schemes

in Section 2.2, then define and explore secret sharing schemes and, in particular, thresh-

old schemes in Section 2.3. We complete this chapter by discussing information dispersal

algorithms in Section 2.4.

2.1 Principles of information security and cryptography

2.1.1 Basic principles

The desire, or need, to restrict access to information is familiar to many people; we are

increasingly surrounded by scenarios where information must be stored, or transmitted,

securely. Information security considers the protection of information, while cryptography

provides the techniques used to secure information. We use the following terminology and

notation to discuss cryptographic concepts.

A cryptographic primitive is a process that provides a number of security services. Prim-

itives can be used as building blocks to construct more complex cryptographic structures.

Two examples of primitives discussed include symmetric-key encryption schemes in Sec-

tion 2.2, and cryptographic hash functions in Section 4.2.2.

A cryptographic algorithm is a specification of a primitive. It is a list of computational

steps that can be implemented. A number of algorithms are defined throughout; the first

two of which are the share and recover algorithms of Krawczyk’s computationally secure

threshold scheme, given in Figure 2.3. If an algorithm A is deterministic, meaning that

each input to A will result in the same output, we write x ← A(·). If A is probabilistic,

we write x
$←− A(·), which means to choose x according to the distribution induced by

algorithm A. If A is a finite set, x
$←− A means to choose x uniformly at random from A.

A cryptographic scheme or system refers to a collection of algorithms and the related

infrastructure. The first cryptographic scheme we consider is a symmetric-key encryption

16

2.1 Principles of information security and cryptography

scheme, presented in Definition 2.2.1. We then consider a number of threshold schemes,

which are formally presented in Definition 2.3.2.

Finally, a cryptographic protocol is a sequence of message exchanges and operations be-

tween multiple players. One example of a protocol considered is the enrolment repairable

threshold scheme repair protocol in Section 5.3.1.1.

2.1.2 Security goals

Before exploring any cryptographic techniques in detail, it must first be established what

is meant by security. At a fundamental level, security is about providing a number of

core security services. We focus on three security services: confidentiality, integrity and

availability.

Confidentiality is the assurance that no one other than the intended recipient(s) can read

the data. In other words, the data is private between the sender and the receiver.

Besides keeping data private, it can be important to know the data has not been tampered

with. Integrity is the assurance that the data has not been altered, either maliciously or

accidentally, in an unauthorised way.

The last security service we discuss is availability. Availability ensures that accessibility

and usability are available upon demand by an authorised entity. The loss of availability

as a result of an adversary’s interventions is commonly referred to as a denial of service

attack.

2.1.3 Adversaries

An adversary is a malicious entity who wishes to prevent a system from achieving its

security goals. Before we evaluate the security of a system, it is important to first establish

what the assumptions on, and the behaviour of, any adversaries are. If we underestimate

the adversary’s capabilities, the security of the system may be inadequate. Thus, it makes

sense to err on the side of caution and assume a worst-case scenario with a strong adversary.

17

2.1 Principles of information security and cryptography

First and foremost, it is assumed the adversary knows the scheme it is attacking. That

is, the details of all algorithms and protocols defined in the scheme are publicly available

and known to the adversary. Instead of the scheme being private, there will be some

information, such as a cryptographic key, that is unknown to the adversary. The security

of the scheme relies on the privacy of this information. If it is made publicly available, the

scheme cannot hope to achieve any of its security goals.

After assuming an understanding of the scheme, we must establish what other information

the adversary is given. This is historically categorised into four theoretical attacks. The

four attacks, increasing in power, are:

• Ciphertext only attacks: as well as the understanding of the scheme, the adversary

has access to samples of ciphertext.

• Known plaintext attack : the adversary is given some arbitrary plaintext and the

corresponding ciphertext.

• Chosen plaintext attack : the adversary is given some plaintext and ciphertext pairs,

where the plaintexts are chosen by the adversary.

• Chosen ciphertext attack : the adversary is given some plaintext and ciphertext pairs,

where either the plaintexts or ciphertexts are chosen by the adversary.

After assuming an understanding of the scheme and defining what other information the

adversary has access to, we must establish the allowed adversarial behaviour. This defines

what actions the adversary is permitted to undertake. An adversary may be restricted

to eavesdropping on messages exchanged during a protocol, or they may have greater

capabilities and be able to corrupt a player (for example, a device or a server), or multiple

players, in the scheme. When a player is corrupted by an adversary, we assume they are

henceforth under the control of the adversary and all information stored by the player is

accessible to them. After corrupting a player, a passive adversary must correctly follow

the protocol (or algorithm), but attempts to learn information that should remain private.

This is a fairly weak adversary to consider, but models information leakage in a system. In

contrast, an active adversary can deviate from the protocol, according to their instructions.

This is a stronger adversary to consider and providing security in the presence of an active

adversary is preferable. Throughout this thesis, we consider adversaries with differing

18

2.1 Principles of information security and cryptography

abilities and behaviours.

The computational complexity of the adversary must also be considered. A polynomial

time adversary is one allowed to run in (probabilistic) polynomial time. Schemes achieving

security against this type of adversary are called computationally secure. In contrast,

a computationally unbounded adversary has no computational or time limits. Schemes

achieving security against this power of adversary are called information theoretically

secure.

Finally, we consider the corruption strategy of an adversary. In settings with multiple

players, the adversary may be able to corrupt more than one player. If so, it is important

to define when and how the players are corrupted. There are two main strategies to

consider. A static corruption model assumes the adversary is given a fixed set of players

whom it controls. These players are corrupted and remain corrupted throughout, whereas

the other players are honest and will remain so throughout. The alternative is an adaptive

corruption model. Rather than being given a fixed set of player, this model allows an

adversary to corrupt players during the procedure. An adversary can choose which players

to corrupt depending on its view of the execution. As before, when a player is corrupted,

they remain corrupted throughout.

2.1.4 Security games

In some circumstances, it may be useful to define different notions of security as games.

Each game is executed by an entity called the challenger. The adversary is modelled as

a probabilistic polynomial time algorithm A, which will be called by the challenger with

some input. The adversary Amust then submit an output as response within a polynomial

number of steps. Games may consist of multiple procedures and the challenger may call

A numerous times. Between each call, the adversary will maintain its state. Games are

designed to model realistic threats and the evolution of a system. For example, each call

of A by the challenger models the adversary performing tasks at different points during

the execution of the system.

During games, the challenger may provide the adversary with access to an oracle for a

given function. Each oracle allows A to submit queries to the challenger and receive the

19

2.1 Principles of information security and cryptography

corresponding output of the function for their chosen input. This enables the adversary to

learn the outcome of a function without learning the private information used to compute

the output. Oracle access models an adversary learning information by observing a system,

witnessing messages being exchanged, or by corrupting players and learning information

stored by them.

Some games end with the challenger outputting either ‘0’ or ‘1’, determined by the in-

formation submitted to the challenger by the adversary during the finalise procedure. A

‘1’ is synonymous with ‘true’ and means the output from the adversary is correct. In

other cases, we write b′ = b as the end of the game. This denotes an equality comparison

between b and b′, where the game returns ‘true’ only if b and b′ are equal.

2.1.5 Encryption schemes

An encryption scheme provides a method of translating some data, called a plaintext

and denoted by M , into a ciphertext, denoted C, and back again. Even after seeing

the ciphertext, the plaintext should remain confidential. Encryption schemes rely on

cryptographic keys, with one being used for encryption and one for decryption. There

exist two types of cryptographic schemes: symmetric and asymmetric.

In a symmetric-key encryption scheme, the same key is used for both encryption and

decryption. With knowledge of the one key, someone can both encrypt a plaintext and

decrypt a ciphertext. Because of this, if two entities wish to communicate privately, they

must have a shared key. Importantly, this key must be private to the two parties; if an

adversary has access to the key, no security can be expected.

If the scheme is asymmetric, the keys used for encryption and decryption are distinct.

This ground-breaking technique was first developed in 1973 by mathematicians at GCHQ

but was not publicised. Similar ideas, however, were developed by Diffie and Hellman in

1976 [32] and expanded on by Rivest, Shamir and Adleman in 1978 [87]. An asymmetric

scheme is sometimes known as a public-key scheme as the encryption key can be made

public. This is possible because these schemes rely on the idea that it is computationally

infeasible to derive the decryption key from the encryption key, dependent on the compu-

tational infeasibility of an underlying computational problem. The proposal of public-key

20

2.1 Principles of information security and cryptography

systems enabled two entities to send and receive data without having previously agreed

on a symmetric key.

In this thesis, we use symmetric-key encryption schemes, which are formally defined in

Section 2.2.

2.1.6 Information theory and the entropy function

Information theoretic notation will be useful in portraying the concept of perfect secrecy,

which is the idea that a computationally unbounded adversary learns no additional infor-

mation about a plaintext after learning the corresponding ciphertext. We briefly introduce

information theory and the concept of entropy here.

Information theory was introduced by Shannon in 1948 [92]. One important notion of

information theory is that of Shannon entropy, which quantifies the amount of uncertainty

involved in a system. Specifically, for a discrete random variable X with possible values

X = {x1, . . . , xn} and probability mass function Pr(X), the entropy, denoted by H(X),

can be written as

H(X) = −
∑
x∈X

Pr(x) logb Pr(x),

where b is the base of the logarithm. We often choose b = 2 and refer to the units of

entropy as bits. If a system has the maximum amount of uncertainty, we say it has

maximal entropy. For example, if x is chosen uniformly at random from {0, 1}λ, for some

positive integer λ, x has maximal entropy and H(x) = 2λ.

Conditional entropy is the amount of uncertainty involved in a system, given that some

information is known. Specifically, for discrete random variables X and Y , with possible

values X = {x1, . . . , xn} and Y = {y1, . . . , ym} and probability mass functions Pr(X) and

Pr(Y) respectively, the conditional entropy, denoted by H(X | Y), can be written as

H(X | Y) =
∑
x∈X
y∈Y

Pr(x, y) logb
Pr(x)

Pr(x, y)
.

The interested reader is directed to [92] for an in depth explanation of the entropy function.

21

2.1 Principles of information security and cryptography

The notion of perfect secrecy in a symmetric-key encryption scheme, and an example of

a scheme that achieves this, is given in Section 2.2.1. The notion of perfect secrecy in a

threshold scheme is given in Definition 2.3.4.

2.1.7 Constrained devices

This thesis considers a number of applications of threshold schemes in different settings. In

some settings, the devices involved may be lightweight and have a number of constraints.

These constraints include:

1. Power: Each device may have a small amount of energy and be unable to recharge.

Thus, once the power has been drained, the device will terminate and no longer be

able to communicate data. Both computations and communicating deplete energy

from the device and so it is desired both are kept to the minimum level possible.

2. Memory storage: The devices may have limited memory to store information. It is

therefore desirable that the amount of information needed to be stored is kept to a

minimum.

3. Vulnerable to compromise: Each device may have minimal security protection. This

means the device may be vulnerable to compromise, resulting in the confidential

data it possesses being exposed.

Given these restrictions, it is important to carefully consider the computational power and

memory required for each scheme.

One way to measure how complex an algorithm is is to use big ‘O’ notation, sometimes

called asymptotic notation. Big ‘O’ notation is used to describe the behaviour of a function,

or algorithm, when the input size grows. An introduction to big ‘O’ notation can be found

in [2]. We will use big ‘O’ notation to analyse the bitwise complexity of a number of

different algorithms. We do, however, note that big ‘O’ notation may not be very useful

at describing the behaviour of functions with small inputs, as it only considers the leading,

largest term, and does not consider any coefficients or smaller terms.

22

2.2 Symmetric-key encryption schemes

2.2 Symmetric-key encryption schemes

We now formally consider the definition and security of symmetric-key encryption schemes.

Recall from Section 2.1.5 that, in a symmetric-key encryption scheme, the same key is used

for both encryption and decryption.

Definition 2.2.1. A symmetric-key encryption scheme E consists of three algorithms:

KeyGen, Enc and Dec, as follows:

• The key-generation algorithm KeyGen is a probabilistic algorithm that outputs a key

k chosen uniformly at random from a key space K ⊆ {0, 1}λ, where λ is the security

parameter. We denote this generation as k
$←− K.

• The encryption algorithm Enc takes as input a key k ∈ K and a plaintext message

M , chosen from a plaintext space M, and outputs a ciphertext C from a ciphertext

space C. Denote Enck(M) as the encryption of the message M under the key k.

• The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext C ∈ C

and outputs a plaintext M ∈M. Denote Deck(C) as the decryption of the ciphertext

C under the key k.

A symmetric-key encryption scheme E must satisfy the perfect correctness requirement:

for every key k ∈ K and M ∈M,

Deck(Enck(M)) = M.

That is, encrypting a plaintext message M under k and then decrypting the resulting

ciphertext C under the same key k, assuming no decryption errors occur, must result in

the return of the original plaintext M .

Essentially, a symmetric-key encryption algorithm inputs a sequence of plaintext bits,

performs a series of operations on these bits, then outputs a sequence called the ciphertext.

The decryption algorithms inputs the ciphertext and reverses the operations to output the

original sequence of plaintext bits.

We will normally assume that K = {0, 1}λ, and M = C = {0, 1}∗, where {0, 1}∗ denotes

a binary string of finite length.

23

2.2 Symmetric-key encryption schemes

Symmetric-key encryption schemes can either be stream ciphers, in which the plaintext is

processed one bit at a time, or block ciphers, that operate on blocks of bits. An example

of a stream cipher is the one-time pad, which is defined in Definition 2.2.2. An example

of a block cipher is AES [30]. We do not focus on block ciphers here, but an introduction

to their modes of operation is given in Section 4.2.1.

2.2.1 Perfect secrecy

In an encryption scheme, perfect secrecy is the notion that a computationally unbounded

adversary learns no extra information about the plaintext after seeing the ciphertext. Us-

ing information theoretic notation (introduced in Section 2.1.6), if M denotes the discrete

random variable corresponding to the choice of the plaintext and C denotes the corre-

sponding ciphertext, the notion of perfect secrecy in an encryption system can be written

as

H(M) = H(M | C),

meaning that an adversary with an amount of uncertainty about the plaintext, denoted

by H(M), has the same amount of uncertainty about the plaintext even if they are given

the ciphertext.

We now give an example of a symmetric-key stream cipher achieving perfect secrecy, called

a one-time pad. In the following definition, the symbol ‘⊕’ denotes exclusive or, better

known as XOR, which is essentially the bitwise addition of binary numbers modulo two.

Definition 2.2.2. The following defines a one-time pad (OTP). Fix an integer ` > 0.

Let the message space M, key space K and ciphertext space C all be {0, 1}`.

• Let KeyGen choose a key k
$←− K = {0, 1}` according to a uniform distribution

(meaning that each of the 2` strings in the key space is chosen with probability 2−`).

• Given a key k ∈ K and a plaintext message M ∈M, define Enck(M) = k⊕M = C.

• Given a key k ∈ K and a ciphertext message C ∈ C, define Deck(C) = k ⊕ C = M .

24

2.2 Symmetric-key encryption schemes

2.2.2 Computational security

Encryption schemes are primarily concerned with providing confidentiality. Here, we de-

fine two security properties, via security games, that characterise the confidentiality of a

symmetric-key encryption scheme against a polynomial time adversary. The two properties

are called indistinguishability and key-unrecoverability and are summarised in Figure 2.1.

Both games aim to model a polynomial time adversary launching a chosen-plaintext at-

tack. Both definitions of indistinguishability and key-unrecoverability are taken from [8].

2.2.2.1 Indistinguishability

As in [8], the game describing indistinguishability of an encryption scheme E is given as

Game 2.1 and consists of three procedures: Initialise, Deal and Finalise. Intuitively,

the challenger randomly chooses a bit b and generates a key k. The adversary can then

submit any two distinct plaintext messages M0,M1 ∈ M of equal length. The challenger

encrypts Mb and returns the ciphertext C to the adversary. The adversary may repeat this

procedure multiple times, depending on their instructions. The adversary then outputs a

guess b′ for b and wins if b′ = b.

Informally, a scheme achieving the indistinguishably property is such that no efficient

algorithm can distinguish which of the two submitted plaintext messages were encrypted.

Let A be an adversary playing the indistinguishability game against a symmetric-key

encryption scheme E . Call A an indistinguishability adversary and the corresponding

challenger an indistinguishability challenger. Let Pr[IndA] denote the probability A out-

puts the correct guess b′ for b during the finalise procedure. Define the advantage of A

as

AdvIndE (A) = 2 · Pr[IndA]− 1. (2.2.1)

Say the encryption scheme E has the property of indistinguishability if the advantage of A

is negligible, meaning that, for the given security parameter λ, the advantage of A vanishes

faster than the inverse of any polynomial.

We said the adversary is allowed to repeat the deal procedure multiple times, dependent

25

2.2 Symmetric-key encryption schemes

Game 2.1: Ind

Procedure Initialise

1 b
$←− {0, 1};

2 k
$←− KeyGen{0, 1}λ;

Procedure Deal(M0,M1)
1 if M0 = M1, |M0| 6= |M1|, or

M0,M1 /∈M then
return ⊥;

2 else C
$←− Enck(Mb);

3 return C;

Procedure Finalise(b′)
1 if b′ = b then

return true;
2 else return false;

Game 2.2: Key

Procedure Initialise

1 b
$←− {0, 1};

2 k
$←− KeyGen{0, 1}λ;

Procedure Deal(M)
1 if M /∈M then

return ⊥;

2 else C
$←− Enck(M);

3 return C;

Procedure Finalise(k′)
1 if k′ = k then

return true;
2 else return false;

Figure 2.1: Indistinguishability and key-unrecoverability games used to define security
notions in a symmetric-key encryption scheme, previously defined in [8].

on their instructions. Rather than allowing A to repeat the procedure, we can consider

a weaker adversary who is limited to only calling the deal procedure once. We call an

adversary bounded in this way an ind-1 adversary and the corresponding challenger an

ind-1 challenger. The advantage of an ind-1 adversary is computed as in (2.2.1). Any

scheme achieving indistinguishability is also ind-1 secure, as an ind-1 adversary is weaker

than an indistinguishability adversary.

2.2.2.2 Key-unrecoverability

As in [8], the key-unrecoverability game for a symmetric-key encryption scheme E (given

here as Game 2.2) consists of three procedures: Initialise, Deal and Finalise. Intuitively,

the challenger randomly chooses a bit b and generates a key k ∈ K. The adversary can

then submit any plaintext message M ∈M during the deal procedure and will receive C,

the encryption of M under k, in return. The adversary may repeat this procedure multiple

times, depending on their instructions. The adversary then outputs a guess k′ for k and

wins if k′ = k.

Informally, for a scheme achieving key-unrecoverability, no efficient algorithm can deter-

mine the key from sets of corresponding plaintext and ciphertext pairs.

26

2.2 Symmetric-key encryption schemes

Let A be an adversary playing the indistinguishability game against a symmetric-key

encryption scheme E . Call A a key-unrecoverability adversary and the corresponding chal-

lenger a key-unrecoverability adversary. Let Pr[KeyA] denote the probability A outputs

the correct guess k′ for k during the finalise procedure. Define the advantage of A as

AdvKeyE (A) = 2 · Pr[KeyA]− 1. (2.2.2)

Say the encryption scheme E has the property of key-unrecoverability if the advantage of

A is negligible.

As before, a key-unrecoverability adversary is able to call the deal procedure multiple

times. Again, we can consider a weaker adversary and restrict A to calling the deal pro-

cedure only once. Call this restricted adversary a key-1 adversary and the corresponding

challenger a key-1 challenger. The advantage of a key-1 adversary is computed as in

(2.2.2). Any scheme achieving key-unrecoverability is also key-1 secure.

2.2.3 Relating security notions

We conclude this introduction to symmetric-key encryption schemes by commenting on

the relationship between the aforementioned security notions.

A symmetric-key encryption scheme that achieves perfect secrecy also achieves indistin-

guishability, but does not necessarily achieve key-unrecoverability.

To illustrate this, consider the OTP from Definition 2.2.2. The OTP has perfect secrecy

against an unbounded adversary; that is, seeing the ciphertext reveals no new information

about the plaintext. A polynomial time adversary is weaker than an unbounded adversary,

and so, if we consider a weaker, polynomial time adversary against the OTP, we can

comment on the OTP and the properties of indistinguishability and key-unrecoverability.

Obviously, the OTP achieves indistinguishably as, prior to seeing the ciphertext, the

adversary knows only that either M0 or M1 was encrypted but, as the OTP has perfect

secrecy, after receiving the ciphertext they learn no extra information and therefore cannot

determine which plaintext was chosen. Any scheme achieving indistinguishability is also

27

2.3 Threshold schemes

ind-1 secure and so the OTP is ind-1 secure.

However, the OTP is not key-1 secure. This is because, during the deal procedure of

the key-unrecoverability game, the adversary learns a plaintext and the corresponding

ciphertext. Now, because M ⊕k = C and C⊕k = M , the adversary is able to recover the

key by computing M ⊕C = k. Intuitively, despite the OTP achieving perfect secrecy, it is

not secure under a known plaintext attack, or any stronger theoretical attack. Because the

OTP is not key-1 secure, it does not achieve the stronger security of key-unrecoverability.

Conversely, neither indistinguishability nor key-unrecoverability guarantee perfect secrecy.

Now, we relate ind-1 and key-1 security. It is mentioned in [85] that schemes in which the

ratio of message length to key length is large (rather than equal to one, as is true in the

OTP), then it may be the case that ind-1 security implies key-1 security. However, the

authors were unable to find neither a proof nor a counterexample that this is true, and

there does not appear to be any solution in the literature since.

To summarise, perfect security implies indistinguishability, which in turn implies ind-1 se-

curity. However, perfect security does not imply key-unrecoverability, but key-unrecoverability

does imply key-1 security. There are no concrete results relating ind-1 and key-1 security.

Moving forwards, we assume symmetric-key encryption schemes have both ind-1 and key-

1 security. We note that conventional encryption schemes, including AES, achieve both

security properties and thus it is a reasonable assumption to assume the existence of such

a scheme [5].

2.3 Threshold schemes

In this section, we begin by defining secret sharing schemes. We then define and focus

on threshold schemes, which are a type of secret sharing scheme, and discuss the relevant

security notions.

Intuitively, a secret sharing scheme is a means of distributing a secret amongst a set of

players so that authorised subsets of players can recover the secret, whereas the shares

28

2.3 Threshold schemes

belonging to unauthorised subsets do not reveal any information about the secret.

Definition 2.3.1. Given a set P = {P1, . . . , Pn} of n players, a secret sharing scheme Π

is a pair of algorithms, Share and Recover, and an access structure, which is a collection

of sets of players: Γ ⊆ 2P . The access structure Γ must be monotonic, meaning that for

A,B ⊆ P with A ⊆ B, if A ∈ Γ we have B ∈ Γ also.

• The Share algorithm is a probabilistic algorithm run by a dealer that takes as input a

secret s from some secret space S and the access structure Γ and outputs n elements

v1, . . . , vn. Player Pi, for 1 ≤ i ≤ n, is given vi as their share.

• The Recover algorithm is a deterministic algorithm that takes as input a set A of

player’s shares and outputs a value s′ ∈ {S ∪ ⊥}, where ⊥ represents an error.

The secret sharing scheme should be both

• recoverable, meaning that if A is an authorised subset of players, the secret output

by the recover algorithm is the original secret. In other words, if A ∈ Γ then s′ = s,

and

• private, meaning that if if A is an unauthorised subset of players, they cannot col-

lectively recover the secret. I.e., if A /∈ Γ then s′ 6= s.

We will focus almost completely on (t, n)-threshold schemes, which are n player secret

sharing schemes where the access structure Γ consists of all subsets containing at least t

players. Intuitively, a (t, n)-threshold scheme guarantees that any t of the n players can

recover the secret, whereas any fewer than t players will be unable to recover the secret.

Such schemes were proposed independently by Blakley and Shamir in 1979 [10, 91].

Definition 2.3.2. Let t ∈ N, such that 1 ≤ t ≤ n. A (t, n)-threshold scheme is a secret

sharing scheme with n players such that the access structure Γ consists of all subsets of P

that contain at least t players, so Γ = {A ⊆ 2P : |A| ≥ t}. A (t, n)-threshold scheme is

recoverable, meaning that any set of at least t players can collectively recover the shared

secret, and private, meaning that any fewer than t players cannot recover the secret.

In Definition 2.3.2, t is such that 1 ≤ t ≤ n. We note that, if t = 1, any player could

individually recover the secret. Thus, in general, we assume that 1 < t < n.

29

2.3 Threshold schemes

We will also assume that the secret is ‘large’. That is, that |s| > |n|. This will be generally

be true in the cases we consider, as the shortest s shared is likely to be the length of a

key, so at least 128 bits, whereas n is likely to be much smaller than this. Exploring

sharing a small secret (for example, a one bit secret), and the efficiencies of such a scheme

is considered in [17, 16].

The following construction is due to Shamir and yields a (t, n)-threshold scheme for positive

integers t and n with 1 ≤ t ≤ n. It was one of the first proposed constructions for threshold

schemes and widely used and standardised [52].

Construction 2.3.3. Let P be a set of n players, and let p > n be a prime number. Let

the secret space S be equal to the finite field of p elements, Zp. For a given secret s ∈ Zp,

the share and recover algorithms comprising Shamir’s threshold scheme are as follows.

• Share: Select t − 1 values r1, r2, . . . , rt−1 uniformly at random from Zp, and let

f ∈ Zp[x] be the polynomial defined by

f(x) = rt−1x
t−1 + rt−2x

t−2 + · · ·+ r1x+ s.

We give each player Pi, for 1 ≤ i ≤ n, the share vi = f(i).

• Recover: A collection of t (or more) players perform polynomial interpolation on

their shares in order to recover the polynomial f and hence determine the secret

s = f(0).

Shamir’s scheme is recoverable, as any set of t players can recover the secret via interpo-

lation. Shamir’s scheme is also private, as for any set of t−1 or fewer players, and for any

element s′ ∈ Zp, there exists a polynomial of degree at most t − 1 consistent with their

shares and having constant term s′. Thus the shares of an unauthorised set of players

yield no information about the true value of s.

To illustrate Shamir’s threshold scheme, we present Example 2.3.1.

Example 2.3.1. Let P be a set of n = 5 players and let t = 3, so any three players can

collaborate to recover the secret. Let p = 7, so all computations are computed modulo 7,

and choose s = 4 ∈ Z7.

30

2.3 Threshold schemes

To share the secret, choose t−1 = 2 values at random from Z7. Let these values be r1 = 6

and r2 = 2. Let f ∈ Z7[x] be

f(x) = r2x
2 + r1x+ s

= 2x2 + 6x+ 4,

and give player Pi, for 1 ≤ i ≤ 5, the share vi, where vi = f(i). So P1 receives v1 = 5,

player P2 receives v2 = 3, P3 receives v3 = 5, P4 receives v4 = 4 and P5 receives v5 = 0.

Assume the three players P2, P3 and P5 collaborate to recover the secret. They combine

their shares to compute f via Lagrange interpolation, as follows:

f(x) = v2
(x− 3)

(2− 3)

(x− 5)

(2− 5)
+ v3

(x− 2)

(3− 2)

(x− 5)

(3− 5)
+ v5

(x− 2)

(5− 2)

(x− 3)

(5− 3)

= 3
(x− 3)

6

(x− 5)

4
+ 5

(x− 2)

1

(x− 5)

5
+ 0

= (x− 3)(x− 5) + (x− 2)(x− 5)

= 2x2 + 6x+ 4,

and so calculate the secret to be s = f(0) = 4.

Note that it is possible to replace Zp by the finite field GF (q) for any prime power q > n,

and that a slight adjustment can make the scheme work for q ≥ n. We analyse the

efficiency of Shamir’s threshold scheme in Section 3.3.2.

Now we have introduced threshold schemes and demonstrated a construction, we will for-

mally define the relevant security notions. We begin by defining perfect threshold schemes,

then progress to define computationally secure threshold schemes. Intuitively, a perfect

threshold scheme requires sets of fewer than t players to learn (information theoretically)

no information about s, whereas in a computationally secure scheme a negligible amount

of information about s can be learnt.

2.3.1 Perfect threshold schemes

Here, we define perfect secrecy in a threshold scheme. Note that threshold schemes with

perfect secrecy are call perfect threshold schemes. We begin by defining such schemes with

31

2.3 Threshold schemes

information theoretic notation. We then consider two security games that allow us to

provide an alternative, but equivalent, definition of perfect threshold schemes.

2.3.1.1 Information theoretic definition

In a threshold scheme, the notion of perfect secrecy is that a computationally unbounded

adversary learns no information about the secret after seeing at most t − 1 shares. Let

S denote the discrete random variable corresponding to the choice of secret, and let A

denote the discrete random variable corresponding to the set of shares given to the players

in the set A ⊆ P.

Definition 2.3.4. A (t, n)-threshold scheme is perfect if it is both

• recoverable, meaning that H(S | A) = 0 for any authorised set |A| ≥ t, and

• private, so H(S | B) = H(S) for any unauthorised set |A| < t.

Shamir’s threshold scheme, given in Construction 2.3.3, achieves perfect secrecy and is

thus an example of a perfect threshold scheme.

We briefly note here that, in any perfect (t, n)-threshold scheme, distributing a secret of λ

bits requires the generation of a minimum of λ(t−1) bits of randomness [15]. As Shamir’s

scheme requires the generation of t− 1 elements in the same field as the secret, Shamir’s

scheme achieves the minimal amount of randomness required to securely distribute the

secret.

An alternative, but equivalent, definition of perfect threshold schemes relies on two security

games between an adversary and a challenger. We discuss the security games, called Priv

and Rec, which define the privacy and recoverability of a threshold scheme. Both games

are attributed to [8] and are summarised in pseudo-code in Figure 2.2 as Games 2.3 and 2.4.

2.3.1.2 Privacy game

Intuitively, the privacy game, as in Game 2.3, models an adversary launching a chosen

plaintext attack against the privacy of the threshold scheme, where the adversary learns

32

2.3 Threshold schemes

t− 1 shares instead of the ciphertext.

The privacy game executes as follows. Given the parameters t and n, the challenger

chooses a bit b at random. The adversary then chooses two secrets s0, s1 ∈ S and sends

these to the challenger. The challenger checks s0, s1 ∈ S; if not, the challenger halts and

returns ⊥ to the adversary. Otherwise, the challenger inputs sb to the share algorithm

of the threshold scheme, which outputs an n-vector V consisting of the n shares (where

V [i] = vi). Nothing is returned to the adversary at this stage. The adversary can then

make up to t−1 queries of the form Corrupt(i) for 1 ≤ i ≤ n and receives the corresponding

share V [i] in return. After the corrupt stage, the adversary must output a guess b′ for b.

The adversary wins if b′ = b.

Let A be an adversary playing the Priv game against a secret sharing scheme Π. Call A

a privacy adversary and the corresponding challenger a privacy challenger. Let Pr[PrivA]

denote the probability A outputs the correct guess b′ = b during the finalise procedure.

Define the advantage of A as

AdvPrivΠ (A) = 2 · Pr[PrivA]− 1. (2.3.1)

We define two notions of privacy, according to the advantage of a privacy adversary playing

the Priv game.

Definition 2.3.5. If the advantage of privacy adversary A against a secret sharing scheme

Π, defined in (2.3.1), is equal to zero, we say the scheme Π has perfect privacy.

Definition 2.3.6. If the advantage of privacy adversary A against a secret sharing scheme

Π, defined in (2.3.1), is negligible, we say the scheme Π has computational privacy.

Notice that perfect privacy is a stronger security notion than computational privacy.

The privacy adversary can be considered to be either computationally unbounded or poly-

nomial time. As the privacy adversary is able learn the shares during the corrupt procedure

in an adaptive manner, A is an adaptive adversary.

The privacy game can be interpreted as a threshold scheme analogue of the indistinguisha-

bility game, defined in Game 2.1, played against a symmetric-key encryption scheme E .

33

2.3 Threshold schemes

This is because a privacy adversary is unable to distinguish which secret was distributed,

even after seeing t− 1 shares.

2.3.1.3 Recoverability game

The recoverability game Rec for a (t, n)-threshold scheme is summarised in Game 2.4.

Intuitively, the game models an adversary’s ability to prevent the recovery of s by either

deleting shares or submitting at most n − t false shares to the recover algorithm of the

threshold scheme. The game is initialised by letting the set T , which will denote the

players the adversary corrupts, be the empty set. The adversary then chooses a secret s

and submits this to the challenger, who inputs it to the share algorithm of the threshold

scheme. As before, nothing is returned to the adversary at this stage. The adversary

can then make up to n − t queries of the form Corrupt(i) for 1 ≤ i ≤ n and receives

the corresponding share V [i] in return. Each player corrupted by the adversary is noted

in the set T . During the finalise procedure, the adversary outputs a partially complete

n-vector VT . This vector consists of n− t shares learnt during the corrupt procedure, but

each share has either been altered, so the learnt share has been replaced with an incorrect

share, or deleted, meaning the learnt share is replaced with an empty string. This vector

is then completed by the challenger who fills the remaining elements with valid shares

from uncorrupted players; these shares are noted in the vector VT . The complete vector

VT ∪ VT is then submitted to the recover algorithm. The adversary wins if the recovered

secret s′ is not equal to s, and hence the algorithm returns true. Otherwise, if s′ = s, the

adversary loses and hence false is returned.

Let A be an adversary playing the recoverability game Rec against Π. Call A a recoverabil-

ity adversary. Let Pr[RecA] denote the probability s is not recovered by the deterministic

algorithm Recover(VT ∪ VT). Define the advantage of A as:

AdvRecΠ (A) = Pr[RecA]. (2.3.2)

Definition 2.3.7. If the advantage of privacy adversary A against a secret sharing scheme

Π, defined in (2.3.1), is equal to zero, we say the scheme Π has perfect recoverability.

Definition 2.3.8. If the advantage of recoverability adversary A against a secret shar-

ing scheme Π, defined in (2.3.2), is negligible, we say the scheme Π has computational

34

2.3 Threshold schemes

Game 2.3: Priv

Procedure Initialise(t, n)

1 b
$←− {0, 1};

2 j = 1;
3 return;

Procedure Deal(s0, s1)
1 if s0, s1 /∈ S then

return ⊥;

2 else V
$←− Share(sb);

Procedure Corrupt(i)
1 if j ≤ t− 1 then

return V [i];
j = j + 1;

2 else return ⊥;

Procedure Finalise(b′)
1 if b′ = b then

return true;
2 else return false;

Game 2.4: Rec

Procedure Initialise(t, n)
1 T ← ∅;
2 j = 1;
3 return;

Procedure Deal(s)
1 if s /∈ S then

return ⊥;

2 else V
$←− Share(s);

Procedure Corrupt(i)
1 if j ≤ n− t then

return V [i];
j = j + 1;
T ← T ∪ {i};

2 else return ⊥;

Procedure Finalise(VT)
1 s′ ← Recover(VT ∪ VT);
2 if s′ 6= s then

return true;
3 else return false;

Figure 2.2: Privacy and recoverability games used to define perfect, computationally secure
and robust, computationally secure threshold schemes.

recoverability.

Notice that perfect recoverability is a stronger security notion than computational recov-

erability. As in the privacy game, the recoverability adversary can be considered to be

either computationally unbounded or polynomial time. Also as before, the recoverability

adversary is adaptive as they are able to learn the shares during the corrupt procedure in

an adaptive manner.

We will consider two recoverability adversaries with varying powers. The first adversary

we consider is the weaker of the two and called a restricted recoverability adversary. Of

the n − t shares this adversary learns during the corrupt procedure, all must be erased,

meaning the vector VT consists of only empty shares. This adversary models an adversary

who deletes or removes shares from the system.

The strongest recoverability adversary we consider, called an unrestricted recoverability

adversary is allowed to replace at most t of the n − t corrupted shares with incorrect

shares, whilst the remaining shares must be replaced with empty strings [8]. That is, VT

35

2.3 Threshold schemes

must consist of at most t falsified shares, and the rest must be empty. This adversary

models an adversary who actively corrupts shares, rather than just deleting them.

2.3.1.4 Game-based definition

Now we have introduced the relevant security games, we present the game-based definition

of a perfect threshold scheme. This definition is equivalent to the information theoretic

definition given in Definition 2.3.4.

Definition 2.3.9. A perfect (t, n)-threshold scheme is a (t, n)-threshold scheme in which

a computationally unbounded privacy adversary playing Game 2.3 has an advantage of

zero and a computationally unbounded restricted recoverability adversary playing Game 2.4

also has an advantage of zero. In other words, a perfect (t, n)-threshold scheme is a (t, n)-

threshold scheme with perfect privacy (against a computationally unbounded adversary)

and perfect recoverability (against a restricted recoverability adversary).

Intuitively, in a perfect (t, n)-threshold scheme, a privacy adversary who learns t−1 shares

has no advantage over merely guessing which secret was distributed by the share algorithm.

2.3.1.5 Information rate

A measure of efficiency for a perfect threshold scheme is the information rate [95]. Let

Vi denote the possible shares player Pi may receive, so Pi’s share vi ∈ Vi. As the secret

s ∈ S, we can think of s as being represented by a bit-string of length log2 |S|, by using

a binary encoding, for example. Intuitively, player Pi receives log2 |Vi| bits of information

as their share, but the information content of the secret is log2 |S| bits.

Definition 2.3.10. In a perfect threshold scheme, the information rate for player Pi,

denoted ρi, is the ratio

ρi =
log2 |S|
log2 |Vi|

.

The information rate of the scheme is defined as

ρ = min{ρi : 1 ≤ i ≤ n}.

36

2.3 Threshold schemes

A scheme is called ideal if ρ = 1.

Obviously, a high information rate is desirable and it is well known that the information

rate for a perfect threshold scheme is upper bounded by one, so ρ ≤ 1 [95]. This is

why a perfect threshold scheme that achieves the optimal information rate is called ideal.

The notion of an ideal threshold scheme was first introduced by Brickell [20]. Informally

speaking, in a perfect threshold scheme, the size of each share is at least the size of the

secret. An ideal scheme is one in which each player’s share is the same size as the secret.

This bound on the information rate of a perfect threshold scheme can be restrictive. This

may be especially true in settings where either the secret is large or the storage available

to each player is small. In either case, it may be preferable to use a threshold scheme that

achieves incremental, rather than perfect, secrecy. Ramp schemes offer such security and

are introduced next.

2.3.2 Ramp schemes

One way to construct schemes with smaller shares, whilst still considering a computation-

ally unbounded adversary, is to relax the requirement for the scheme to be perfect and

allow the adversary to learn a measured amount of information about the secret. Ramp

schemes are one example of how this can be done.

Definition 2.3.11. Given a set P = {P1, . . . , Pn}, a (t0, t1;n)-ramp scheme is a set of

algorithms, Share and Recover, and two integers t0, t1 such that 0 ≤ t0 < t1 ≤ n. The

share algorithm distributes a secret s such that any set of at least t1 players can pool their

shares to recover the secret and a set of t0 or fewer players reveals no information about

the secret.

Sets of players of size greater than t0 but smaller than t1 may learn partial information

about the secret, hence ramp schemes are not necessarily perfect. To illustrate this, we

observe that a (t− 1, t;n)-ramp scheme is a perfect (t, n)-threshold scheme, and therefore

a perfect threshold scheme is also a ramp scheme, but that a (t− 2, t;n)-ramp scheme is

not a perfect threshold scheme.

The average entropy of a player’s share in a (t0, t1;n)-ramp scheme is known to be at least

37

2.3 Threshold schemes

log2 |S|/(t1 − t0) bits [54].

If we wish the security of the ramp scheme to be maximised with respect to the size of

each share, then the information theoretic knowledge about the secret is likely to increase

linearly with respect to the number of participants colluding in order to determine the

secret. This motivates the following definition, which was first seen in [11].

Definition 2.3.12. A (t0, t1;n)-ramp scheme is said to be linear if, for any set of players

A ⊆ P such that |A| = r, where t0 ≤ r ≤ t1,

H(S | A) =
t1 − r
t1 − t0

H(S).

So, in a linear (t0, t1;n)-ramp scheme, any set of at least t1 players can recover the se-

cret, whereas t0 or fewer players learn no information about the secret. For every player

contributing after the initial t0 players have contributed their shares, a fixed amount of

information is learnt about s. This continues in a linear fashion until t1 players have

contributed and s is learnt completely. In fact, after t0 shares are pooled, every further

share reveals log2 |S|/(t1 − t0) bits of information about s.

The following construction is based on Shamir’s threshold scheme, presented in Construc-

tion 2.3.3, and is due to McEliece and Sarwate [73].

Construction 2.3.13. Assume there is a (t, n)-threshold scheme as in Construction 2.3.3.

In order to construct a linear (t0, t1;n−m+1)-ramp scheme, where m = t1−t0 and t! = t,

let P be a set of n−m+ 1 players, and let p > n be a prime. The secret for this scheme is

an element s = (s0, s1, . . . , sm−1) ∈ Zmp . It is shared by selecting a polynomial f uniformly

from the set of all polynomials in Zp[m] that satisfy f(0) = s0, f(1) = s1, . . . , f(m− 1) =

sm−1. We identify each player with a unique nonzero element of Zp \ {0, 1, . . . ,m − 1},

and to player Pi we assign the share vi = f(i).

As before, any set of t1 players can perform interpolation to recover f , which enables them

to recover the entire secret. In addition, it can be shown that any set of t0 or fewer players

learn no information about the secret.

We present the following example, which illustrates Construction 2.3.13 by forming a linear

(t0, t1;n− (t1 − t0) + 1)-ramp scheme from a perfect (t1, n)-threshold scheme.

38

2.3 Threshold schemes

Example 2.3.2. Consider Example 2.3.1, where t = 3 and n = 5 with all computations

computed in Z7. For the ramp scheme, let t1 = t = 3 and choose t0 to be strictly less

than t1, say t0 = 1. We will construct a linear (t0, t1;n − m + 1)-ramp scheme using

Construction 2.3.13. In this example, this is a linear (1, 3; 4)-ramp scheme.

Let P = {P2, P3, P4, P5} denote the four players and let the secret be s = (s0, s1) =

(4, 5) ∈ Z2
7. Then, if we let f = 2x2 + 6x + 4 ∈ Z7[x] (as in Example 2.3.1) be the

randomly generated polynomial that satisfies f(0) = s0 = 4 and f(1) = s1 = 5, we can

give each player Pi, for 2 ≤ i ≤ 5, the share vi = f(i). As in Example 2.3.1, any three

players can construct s via polynomial interpolation. It can additionally be shown that

any individual player learns no information about the secret, whilst two players learn one

element of the secret.

Note that Example 2.3.2 is very similar to Example 2.3.1, but player P1’s share becomes

part of the secret (so the secret increases from one to two elements) and the number of

players in the scheme decreased from five to four (as P1 is excluded from P).

As with perfect threshold schemes, it is possible to calculate the information rate of a

linear ramp scheme. This is done in [54], where they explain that in a linear (t0, t1, n)-

ramp scheme, for any set A of r players,

H(A) ≥ r ·H(S)

(t1 − t0)
.

That is, for any player Pi in a linear ramp scheme, the size of their share vi is at least

H(S)/(t1 − t0) bits, meaning the information rate of the scheme is upper bounded by

ρ ≤ t1 − t0. If this lower bound is obtained for every player’s share, the ramp scheme

is called optimal. Farras et al. [35] provides a further discussion on the bounds and

construction of ramp schemes.

2.3.3 Computationally secure threshold schemes

An alternative way to construct a threshold scheme with smaller shares than in a per-

fect threshold scheme is to consider a weaker adversary. Rather than a computationally

unbounded adversary, we can consider a polynomial time adversary.

39

2.3 Threshold schemes

Algorithm 2.5: ShareHK0(M).

1 k
$←− KeyGen({0, 1}λ);

2 C
$←− Enck(M);

3 K
$←− SharePTS(k);

4 C
$←− ShareIDA(C);

5 for i← 1 to n do
V [i]← (K[i]||C[i]);

6 return V .

Algorithm 2.6: RecoverHK0(V).

1 for i← 1 to n do
K[i]C[i]← V [i];

2 k ← RecoverPTS(K);
3 C ← RecoverIDA(C);
4 M ← Deck(C);
5 return M .

Figure 2.3: The share and recover algorithms defining HK0.

Computationally secure threshold schemes were first mentioned by Karnin et al. [58], with

the first construction of a scheme being made by Krawczyk [60]. We define computation-

ally secure schemes as defined in [8]. As with the game-based perfect threshold scheme

definition, given in Definition 2.3.9, this definition relies on the privacy and recoverability

games given in Figure 2.2. Computationally secure threshold schemes consider a polyno-

mial time, adaptive adversary.

Definition 2.3.14. A computationally secure (t, n)-threshold scheme is a (t, n)-threshold

scheme in which a polynomial time privacy adversary has a negligible advantage and a

polynomial time restricted recoverability adversary has an advantage of zero. In other

words, a computationally secure (t, n)-threshold scheme is a (t, n)-threshold scheme with

computational privacy (against a polynomial time adversary) and perfect recoverability

(against a restricted recoverability adversary).

In a computationally secure (t, n)-threshold scheme, the advantage of the privacy adver-

sary is negligible. Because of this, perfect security is a stronger notion of security than

computational security. However, computationally secure schemes are sufficient for most

applications [60].

In 1994 Krawczyk proposed the first computationally secure threshold scheme [58]. We

call this the HK0 scheme with share and recover algorithms denoted by ShareHK0 and

RecoverHK0, which are defined in Figure 2.3. Krawczyk’s motivation in proposing HK0

was to achieve shares smaller than were possible in perfect threshold schemes.

The HK0 share algorithm takes as input the plaintext M to be distributed, generates

a λ bit key k and encrypts M under k to get the ciphertext C. The key k is shared

40

2.3 Threshold schemes

via a perfect (t, n)-threshold scheme (denoted by SharePTS), which returns an n vector

K. The ciphertext C is shared via some (t, n)-information dispersal algorithm (denoted

by ShareIDA and discussed in more detail in Section 2.4), which returns an n-vector

C. Each player Pi is given a share V [i] that consists of the ciphertext and the key, so

V [i] = K[i]C[i].

The recover algorithm takes as input an n-vector V , where the ith element of this vector

V [i] is either a string V [i] ∈ {0, 1}∗, or the value ♦. In the first case, V [i] is the purported

share of player Pi, while in the second case, V [i] = ♦, the share has been marked as

missing. Each share V [i] is then parsed into the ciphertext and key shares, C[i] and

K[i], and the key k and ciphertext C are then recovered via the recovery algorithm of

the perfect threshold scheme and the recovery procedure of the information dispersal

algorithm, respectively. Finally, C is decrypted under k to return the plaintext, M .

2.3.4 Robust threshold schemes

In both perfect and computationally secure threshold schemes, we have considered the

restricted recoverability adversary, who is limited to only deleting, and not altering, shares.

With an adversary restricted in this way, it is guaranteed that, as long as t shares are

submitted to the recover algorithm, s will be correctly recovered.

We now consider the unrestricted recoverability adversary, who is able to query n − t

shares during the corrupt procedure and can submit a vector VT consisting of at most

t false shares and the rest empty. An adversary with these powers was first considered

by Tompa and Woll in [98], who demonstrated that such an adversary has a number of

undesirable capabilities. For example, they may be able to prevent the correct secret from

being recovered, the players may not know an incorrect secret has been recovered, and the

adversary may be able to recover the correct secret for themselves.

Definition 2.3.15. A robust, computationally secure (t, n)-threshold scheme is a (t, n)-

threshold scheme in which a polynomial time privacy adversary playing Game 2.3, and

a polynomial time unrestricted recoverability adversary playing Game 2.4, both have a

negligible advantage at winning their respective games. In other words, a robust, compu-

tationally secure (t, n)-threshold scheme is a (t, n)-threshold scheme with computational

privacy (against a polynomial time adversary) and computational recoverability (against

41

2.4 Information dispersal algorithms

an unrestricted recoverability adversary).

Intuitively, a robust scheme ensures the recovery of the correct secret in the setting

where the unrestricted recoverability adversary is allowed to both corrupt and/or delete a

bounded number of shares.

2.4 Information dispersal algorithms

In this section, we introduce information dispersal algorithms, which are used regularly

throughout this thesis and are closely related to a number of other constructions, such as

threshold schemes, ramp schemes and error correcting codes. We will see that informa-

tion dispersal algorithms are not necessarily secure, but that different constructions can

guarantee some security. For this reason, we give a number of examples and delve into

more detail than we have done previously.

2.4.1 General information dispersal algorithms

Information dispersal algorithms were first introduced by Rabin in 1989 [80].

Definition 2.4.1. Let t, n ∈ N and let 1 ≤ t ≤ n. A (t, n)-information dispersal algorithm

(denoted as (t, n)-IDA) consists of a message space M and two algorithms ShareIDA and

RecoverIDA.

• ShareIDA takes as input a message M ∈M and outputs an n-vector V .

• RecoverIDA takes as input elements of the vector V . If at least t elements are

submitted correctly to RecoverIDA, the algorithm will output the original message M .

Intuitively, a (t, n)-IDA transforms some data M into n shares, such that any t of these

shares can recover the original data M .

The concept of a (t, n)-IDA is similar to that of a threshold scheme from Definition 2.3.2.

They are similar in one way because they both distribute data and require the data to be

42

2.4 Information dispersal algorithms

recoverable from t shares. However, there is a key difference: the IDA does not consider

the privacy of the scheme. In an IDA, there is no limit to the amount of information a

set of fewer than t players can learn about the data, whereas in a threshold scheme fewer

than t players should learn nothing (or a negligible amount) about the data.

However, by not considering the privacy of the data, IDAs are able to achieve smaller

share sizes than threshold schemes. Recall how in a perfect threshold scheme, the size of

each share must be at least the size of the secret. In contrast, IDAs are able to achieve

much smaller shares. In fact, IDAs are able to generate shares that are about one tth of

the size of the data. IDAs such as these are very similar to linear ramp schemes, as we will

see in Section 2.4.2.2. Assuming the input data has maximal entropy, one tth of the size

of the data is the theoretical lower bound on the size of each share whilst guaranteeing

recoverability of the data for any set of t players [50]. We call an IDA achieving this bound

optimal.

We measure how ‘close’ to optimal an IDA is by calculating the information rate. The

information rate of an IDA is similar to the information rate of a perfect threshold scheme

from Definition 2.3.10, and is computed in a similar manner: by calculating the minimum

ratio between the size of shares given to players and the size of the data being shared.

Using the theoretical share size given in [50], the upper bound on the information rate

of an IDA is t. This is the information rate achieved by optimal IDAs. IDAs with an

information rate lower than t are non-optimal.

One example of an IDA is a perfect threshold scheme, as it is able to guarantee recovery

of the data from any t players. However, threshold schemes are non-optimal IDAs as their

share sizes are much larger than the smallest possible share size for an IDA. The converse,

however, is not true: not all IDAs are perfect threshold schemes, as they do not consider

the security of the data.

Another example of an IDA is replication, in which data M is distributed amongst n

players by giving each player an exact copy of M . Generally, for any 1 ≤ t ≤ n, any t

players can trivially recover M and thus replication is a valid (t, n)-IDA. Obviously, as any

t− 1 players can also recover M , this is not a perfect (t, n)-threshold scheme. Replication

is a second example of an IDA in which each player’s share is the same size as the data

being distributed. Thus, replication achieves share sizes equal to those in an ideal, perfect

43

2.4 Information dispersal algorithms

threshold scheme; in both cases, these are much larger than achieved by optimal IDAs.

Despite being non-optimal, replication requires no (or minimal) computation in order to

distribute (or recover) the data. Replication is an IDA that prioritises computational

complexity above memory. However, we do note that non-optimal IDAs cannot guarantee

successful decoding. To illustrate this, consider two players recovering the data from a

replication IDA whose shares disagree in one symbol. There is no way to tell which player’s

share is correct, if either. Other non-optimal IDAs that achieve lower complexities by

compromising memory (although not as completely as replication does), are found in [67]

and [3].

Error correcting codes is a field of research that can provide a number of constructions

for optimal (t, n)-IDAs that also provide some level of security. Influenced by this, we

introduce error correcting codes next and explore their relation to IDAs.

2.4.2 Error correcting codes and IDAs

2.4.2.1 An introduction to error correcting codes

An error correcting code is a method of encoding data with some redundant information

to ensure the original data can be recovered, or decoded, even if a number of errors occur

during either data transmission or storage [70].

Definition 2.4.2. An error correcting code (ECC) E of length n over a finite alphabet

F is a subset of Fn. The elements of E are called codewords. The size of E is the number

of codewords in the code, |E| = m. Define the Hamming distance between two codewords

u, v in E, denoted d(u, v), to be the number of positions in which u and v are different.

The minimum distance of the code E is the minimum Hamming distance between any two

distinct codewords in E, and is denoted by d.

ECCs are able to detect and correct a number of errors. A code E is said to be e1-error

detecting if, whenever a codeword u ∈ E is sent and between one and e1 errors occur, the

received word u′ is not a codeword (meaning u′ /∈ E), and so the receiver will know an

error has occurred in the channel. A code E is e2-error correcting if, when a word w /∈ E

is received, the Hamming distance between a codeword u ∈ E and w is at most e2, then

44

2.4 Information dispersal algorithms

w is decoded to u using nearest neighbour decoding; that is, of all the codewords in the

code E, the hamming distance between u and w is minimal.

Let E be a code of length n. Say E is linear if, for all codewords u,w ∈ E, we have

u + w ∈ E, where addition is computed modulo q, where |F | = q. Intuitively, a code is

linear if all linear combinations of the codewords are also codewords.

Definition 2.4.3. If u1, . . . , ut is a basis for a linear code E, then we say E has dimension

t. Assume E is a code over alphabet F with dimension t such that each codeword in E is

of length n and d is the minimum distance of E. Call such a code an [n, t, d]-code. In any

[n, t, d]-code, there are qt possible codewords in E, where |F | = q.

We briefly introduce the notion of a dual code.

Definition 2.4.4. For a linear code E of length n over an alphabet F of size q (i.e.

E ⊂ Fn), the dual code of E is the linear code E∗ = {u ∈ Fn | 〈u,w〉 = 0 ∀w ∈ E}, where

〈u,w〉 =
∑n

i=1 uiwi is a scalar product. The dual distance of E is the minimum distance

of the code E∗ and is denoted by d∗.

One important type of ECC is a maximum distance separable code [70]. The definition of

such codes relies on the Singleton bound [93], which says that, for any code E with length

n, minimum distance d and dimension t, d < n− t+ 1.

Definition 2.4.5. A maximum distance separable (MDS) code is an [n, t, d]-code that

meets the Singleton bound, so d = n− t+ 1. We call such a code an [n, t, d]-MDS code.

MDS codes have the maximum possible Hamming distance between codewords and each

codeword can be separated into message symbols and check symbols. One important

example of an MDS code is a Reed Solomon (RS) code [84].

Finally, we introduce the notion of an erasure code. An erasure code is a code that is able

to recover data if it knows which symbols are missing or corrupt; that is, if it knows where

the errors are, it can correct them, but it may not necessarily be able to detect them. An

erasure code can tolerate up to n− t erasures, where a known corrupted symbol is treated

as an erasure. In such a code, recovery of a codeword is possible from any t of the n

symbols. Because of this property, we refer to such a code as a (t, n)-ECC. For example,

an RS code can be used as an erasure code and can thus be interpreted as a (t, n)-ECC.

45

2.4 Information dispersal algorithms

2.4.2.2 Relating ECCs to IDAs

We can relate ECCs to IDAs. Conceptually, a (t, n)-IDA can be treated as a (t, n)-

ECC, or, more specifically, an [n, t, n − t + 1]-MDS code. When t shares are input to

the recover algorithm of the IDA, the scenario is equivalent to erasing n− t symbols in a

length n codeword, where the erased symbols are analogous to non-received shares. Thus,

MDS codes, such as RS codes, can be used as IDAs. This is well known and there are

many algorithms using these techniques, including Rabin’s initial proposal for an IDA

in [80]. These IDAs are optimal with respect to the size of each share and, if conventional

approaches at implementation are used, require O(nt) operations for dispersal and O(t2)

operations for recovery.

We can also relate ECCs to threshold schemes; their relationship has been long studied [73,

71]. It is known that a length n code with minimum distance d and dual distance d∗ gives

a (t0, t1;n− 1)-ramp scheme with t0 = d∗− 2 and t1 = n− d+ 1 (see, for example, [77] for

details). We, however, will use a result from [24] that equates a [n, t, n− t+ 1]-MDS code

with a linear (0, t;n)-ramp scheme, as in Definition 2.3.11, assuming maximal entropy on

the input data.

From now on, if we require a (t, n)-IDA with security properties equivalent to that of a

linear (0, t;n)-ramp scheme, we use a [n, t, n − t + 1]-MDS code with share and recover

algorithms denoted by ShareECC and RecoverECC . If there are no security requirements

on the IDA, we use the more general ShareIDA and RecoverIDA to denote the share and

recover algorithms. In this case, either an ECC or a lower complexity algorithm, such as

replication, will suffice with respect to security concerns. The choice of exactly which IDA

construction to use, however, will depend on the application.

2.4.3 Secure IDA constructions using ECCs

Here, we introduce a construction of a secure IDA that was originally introduced by Rabin.

This IDA will be used throughout the thesis to build threshold schemes. After introducing

the construction, we consider one method for improving the efficiency of this scheme and

mention some efficient IDAs proposed in the literature.

46

2.4 Information dispersal algorithms

2.4.3.1 Rabin’s IDA

The construction of Rabin’s IDA, and many other MDS encodings, relies on a matrix-

vector product. The following describes an IDA, attributed to Rabin [80]. This IDA is

equivalent to a linear (0, t;n)-ramp scheme and is optimal with respect to the memory

required for each share.

Consider an n× t public matrix G. Let the elements of G be in some finite field F and let

G be such that any t of the n rows are linearly independent. Consider the message to be

dispersed as a t vector, M , with each element of the vector also in the finite field F. Now,

to distribute the data M , compute the matrix-vector product G ·M . This will result in

an n vector V , where each player Pi is allocated the element V [i] as their share.

To recover the data M , a set of t players must collaborate and pool their shares to

construct a t vector V ′. A t × t matrix G′ is then constructed from the t rows of G

that correspond to the t players collaborating for the reconstruction. The matrix-vector

product (G′)−1 · V ′ is then computed, which will recover the message vector M . Note

that the inverse of G′ will always exist because G was chosen such that any t rows are

linearly independent.

We illustrate this process in Example 2.4.1.

Example 2.4.1. Let n = 5 and t = 3 and let us work in the finite field of seven elements,

Z7. Consider the message to be distributed as a 3-vector, where M = (5, 3, 2)T . Let the

publicly known 5× 3 matrix G be

G =



1 1 1

2 4 1

3 2 6

4 2 1

5 4 6


,

which is such that any t rows are linearly independent over the finite field Z7. To en-

code M , compute the matrix-vector product G ·M , where all operations are computed

47

2.4 Information dispersal algorithms

modulo 7:

G ·M =



1 1 1

2 4 1

3 2 6

4 2 1

5 4 6




5

3

2

 =



3

3

5

0

0


= V .

Allocate V [i] to player Pi as their share, for 1 ≤ i ≤ 5.

Assume a set of t = 3 players wishes to reconstruct the data. Say these three players are

P2, P3 and P5. They construct a vector from their shares, V ′ = {3, 5, 0}T and construct a

matrix G′ consisting of the rows of G corresponding to their shares. So, here, G′ consists

of the second, third and fifth rows of G. Then, compute (G′)−1V ′ as follows:

(G′)−1 · V ′ =


2 4 1

3 2 6

5 4 6


−1

3

5

0

 =


6 3 3

1 0 1

6 1 4




3

5

0

 =


5

3

2

 .

This results in the message M being output.

Although we have presented Example 2.4.1 as an IDA, it can be interpreted as an MDS

code. The matrix G is called the generator matrix of the code; all possible output vectors

V are the codewords of the code which each have length n = 5. Any three rows of the

matrix G can act as a basis for the codeword, which has dimension t = 3. The minimum

Hamming distance between any two codewords is n − t + 1 = 3. Shares that are not

submitted to the recover algorithm are treated as erasures and the code is able to tolerate

up to n− t erasures. Hence, this is a [5, 3, 3]-MDS erasure code.

In general, the complexity of the share and recover algorithms, illustrated by Exam-

ple 2.4.1, is dependent on the overhead of computing matrix-vector products. In partic-

ular, the matrix-vector multiplication required for dispersal requires multiplying an n× t

matrix with a t-vector, which would require O(nt) operations. Recovery requires the

multiplication of a t× t matrix with a t-vector, which requires O(t2) operations.

Prior to briefly exploring efficient IDAs, we present the following result, which will be used

in Chapter 3.

48

2.4 Information dispersal algorithms

Theorem 2.4.6. Consider an IDA based on a matrix-vector product construction with

algorithms ShareECC and RecoverECC . Assume there are `−1 t-vectors over a finite field

F, denoted x1, . . . , x`−1 ∈ Ft, where the jth element of xi is denoted as xi[j]. Consider

a further vector, x` ∈ Ft, such that x` = x1 + · · · + x`−1. Assume each vector xi, for

1 ≤ i ≤ `, is dispersed via ShareECC , resulting in the n-vector Xi ← ShareECC(xi). Let

the kth element of Xi, for 1 ≤ k ≤ n, be denoted as Xi[k]. Then, for all i,

X1[i] +X2[i] + · · ·+X`−1[i] = X`[i].

Proof. If the vector x` is distributed via the IDA, then

x`G = X`.

Now, as x` = x1 + · · ·+ x`−1, we can expand this to give

x`G = (x1 + · · ·+ x`−1)G

= x1G+ · · ·+ x`−1G

= X1 + · · ·+X`−1

= X`,

and hence

X1[i] +X2[i] + · · ·+X`−1[i] = X`[i],

as required.

2.4.3.2 Efficient, secure IDA constructions

Since Rabin proposed the IDA presented in Section 2.4.3.1, there have been a number

of proposals for more efficient schemes. One simple refinement of the scheme, suggested

in [8], is to let the first t rows of G be the identity matrix, It. This means that the first

t elements of the codeword V need not be encoded. We briefly illustrate this idea in

Example 2.4.2 by continuing from Example 2.4.1.

Example 2.4.2. Replace the first t = 3 rows of G with the 3× 3 identity matrix It and

49

2.4 Information dispersal algorithms

compute the matrix-vector product G ·M :

G ·M =



1 0 0

0 1 0

0 0 0

4 2 1

5 4 6




5

3

2

 =



5

3

2

0

0


= V .

The first three elements of V required no computation. Recovery is as before, but we

note that if players P1, P2 and P3 pooled their shares no computation would be required

as G′ = It = (G′)−1.

We call a code which contains the original word in the codeword, as in Example 2.4.2,

systematic. Perhaps it is more intuitive to view this systematic IDA as a linear (0, t;n)-

ramp scheme than it was to view Rabin’s original IDA as one. Clearly, each player learns

some information (specifically, one tth of the information) about the original data. As

more players pool their shares, more information about the data is contributed, until t

shares completely recover the data.

This systematic IDA is slightly more efficient than the original IDA proposed by Rabin

because the first t elements of the codeword require no encoding. Instead, distribution can

be interpreted as treating the final n− t rows of G as a matrix and multiplying this by the

vector in order to compute the check sums, which are then appended to the word. This

dispersal requires multiplying an (n − t) × t matrix with a t-vector, which is equivalent

to O(t(n − t)) ≈ O(nt) operations. Recovery is as before, requiring O(t2) operations,

unless the elements submitted to the recover algorithm are the first t elements of the

codeword that were not encoded. If this is the case, no operations would be required as

the computation required to recover the message would be (G′)−1 ·M = (It)
−1 ·M =

It ·M = M , which is trivial to compute.

There are a number of other IDA constructions that deviate from the matrix-vector con-

struction and, in doing so, achieve optimal IDAs with a lower complexity than Rabin’s

construction. These include: [79], which achieves a complexity of O(n log n) for encoding

and O(t(n− t+ log t)) for decoding; [94], which requires O(n log n) for both encoding and

decoding, and [66], which achieves O(n log t) for encoding and O(t log2 t) for decoding.

Further exploring efficient IDAs is outside the scope of this thesis, but interested readers

50

2.4 Information dispersal algorithms

are directed to [66] for a discussion on efficient IDAs.

51

Chapter 3

An efficient, perfect threshold

scheme

Contents

3.1 Introduction . 53

3.1.1 Efficiency of threshold schemes 53

3.1.2 Efficiency of Shamir’s threshold scheme 54

3.1.3 Alternative efficient threshold schemes 54

3.1.4 The presented scheme . 55

3.2 The modified HP scheme . 56

3.2.1 Definition of the scheme . 56

3.2.2 Security analysis . 59

3.3 Efficiency analysis . 63

3.3.1 The modified HP scheme . 63

3.3.2 Shamir’s threshold scheme . 67

3.3.3 The threshold scheme by Kurihara et al. 71

3.3.4 Wang and Desmedt’s threshold scheme 74

3.3.5 Discussion . 75

The work in this chapter is joint with Liqun Chen and Keith Martin and is published in

[25].

52

3.1 Introduction

3.1 Introduction

In Definition 2.3.4, we gave an information theoretic based definition of a perfect (t, n)-

threshold scheme and in Definition 2.3.10 we described what it meant for such a scheme

to be ideal. In this chapter, we propose an ideal, perfect threshold scheme that is compu-

tationally efficient.

3.1.1 Efficiency of threshold schemes

We begin by qualifying what is meant by an efficient threshold scheme. In order to do

this, we consider the limitations of constrained devices, presented in Section 2.1.7. Firstly,

constrained devices have a limited amount of power, so an efficient scheme should minimise

the number of computations required by the device. Secondly, the constrained devices may

have minimal memory available for storage. Therefore, an efficient scheme should minimise

the share sizes, meaning it should be ideal, or at least close to ideal. Finally, we note that

generating true random bits is incredibly difficult to do, even for computationally able

devices. So, an efficient threshold scheme should minimise the number of random bits

required.

It may be the case that the share and recover algorithms of the threshold scheme are run

by different devices. For example, a dealer may be responsible for generating the secret,

running the share algorithm and securely sending the shares to the n players. When the

time comes to recover the secret, the players themselves may collaborate and run the

recover algorithm, or may outsource this computation to a trusted external player. Each

case may require different efficiency demands. For example, if the dealer is a constrained

device which must generate and distribute multiple distinct secrets, reducing the number

of computations in the share algorithm may be a priority. If, however, the dealer is

a computationally able device and the players collaborating to recover the secret are

constrained, reducing the number of computations in the recover algorithm may be a

priority.

For this reason, we will consider the computational efficiency of the share and recover

algorithms separately, as different schemes may be more appropriate, dependent on what

is being prioritised in the application.

53

3.1 Introduction

Note that, in this chapter, we only consider perfect, ideal threshold schemes and analysing

the efficiency of such schemes. There are many ways the efficiency of schemes could

be improved on if we relax these requirements; this is out of the scope for this thesis,

but we give some examples of how to relax these requirements here. Firstly, we could

firstly relax the requirement of perfect security to non-perfect security, such as is done

in ramp schemes or computationally secure schemes, and consider the resulting efficiency

gains. Non-perfect schemes and improved information rate are considered in [35], whilst

computationally secure schemes are considered in Chapter 4. Secondly, we could relax

the requirement for the schemes to be ideal and explore if allowing for larger share sizes

can improve the efficiency. Finally, we could relax the requirement for the schemes to be

threshold and instead consider near-threshold schemes and explore their efficiencies, as is

done in [29].

3.1.2 Efficiency of Shamir’s threshold scheme

Shamir’s (t, n)-threshold scheme, presented in Construction 2.3.3, is an ideal, perfect

threshold scheme that requires the generation of minimal randomness and is based on

polynomial interpolation. The scheme is elegant but, despite improvements in implemen-

tation, has a fairly heavy computational cost; this is particularly true for the recover

algorithm, due to its reliance on polynomial interpolation. In applications where con-

strained devices are responsible for running either the share or recover algorithm, any

improvements to the computational cost are of clear benefit.

In particular, we see in Section 3.3.2 that the complexity of Shamir’s share algorithm

when a λ bit secret is distributed is O(λ2nt), whilst the complexity of Shamir’s recover

algorithm is O(λ2t log2 t). Given the constrained devices that may be required to run these

algorithms, there has been effort in the literature to construct more efficient schemes.

3.1.3 Alternative efficient threshold schemes

There have been efforts in the literature to create threshold schemes that achieve the

properties of Shamir’s threshold scheme (that is, a perfect, ideal threshold scheme requiring

minimal randomness) but that can be implemented efficiently, possibly using only XOR

54

3.1 Introduction

operations. These schemes claim to be lighter than Shamir’s and are therefore more

applicable to constrained devices.

Kurihara et al. presented the first XOR-based, ideal (t, n)-threshold scheme in [62] as

a generalisation of the work in [61], which considered (3, n)-threshold schemes. In their

work, Kurihara et al. construct shares by XORing pieces of the secret with multiple random

numbers and distributing these amongst the players. Recovery is possible by multiplying

a vector consisting of the shares by a matrix generated via Gaussian elimination, which

is computationally heavy. Kurihara et al. analysed the efficiency of their scheme and

compared it to Shamir’s scheme.

Since the work by Kurihara et al., few schemes achieving the same properties have been

proposed. Lv et al. proposed one such scheme in [69] and a multi-secret analogue in [68],

but Wang and Desmedt [99] show that in [69] the size of the shares are smaller than the

size of the secret and therefore cannot be correct. Their criticism is, however, only true in

the multi-secret sharing case. Nonetheless, the scheme by Lv et al. does have a number of

flaws, such as incompatible matrix-vector multiplications and an incorrect analysis of the

number of randomly generated values, and will therefore not be further considered.

Wang and Desmedt proposed their own (t, n)-threshold scheme that is equivalent to an

ECC [99]. They proved their scheme to be secure and claimed it could be implemented

using only XOR and cyclic shift operations. However, they do not provide an exact share

algorithm, an efficiency analysis or compare their scheme to the current literature.

3.1.4 The presented scheme

In this chapter, we present a perfect (t, n)-threshold scheme that is ideal and requires

minimal randomness. The scheme is efficient to implement, dependent on the chosen

primitives. The scheme presented is a modified version of a perfect threshold scheme that

forms an embedded component of a computationally secure threshold scheme presented

by Camble, Chen, Henry and Watkins from Hewlett Packard (HP) in [21]. From their

computationally secure threshold scheme, we extract a perfect threshold scheme and im-

prove it by reducing the number of randomly generated bits required, thereby achieving

smaller share sizes for each player. Throughout, we refer to the perfect threshold scheme

55

3.2 The modified HP scheme

directly extracted from the computationally secure threshold scheme as the original HP

scheme, and to our improved version of their scheme as the modified HP scheme.

After presenting the modified HP scheme, we analyse the components of the scheme and

highlight the security assumptions on each element. As the original HP scheme was

presented without analysis, we present a proof of security for the modified HP scheme,

which can be easily adapted to prove the security of the original HP scheme, and provide

an efficiency analysis. We then compare the modified HP scheme with other threshold

schemes, including Shamir’s threshold scheme [91], a scheme presented by Kurihara et al.

[62], and one by Wang and Desmedt [99].

3.2 The modified HP scheme

In this section, we present the modified HP scheme, which is a perfect (t, n)-threshold

scheme. The scheme is defined in the Galois field F = GF (2`), as this is most likely the

chosen field for implementation. Therefore, the secret and all shares are binary strings.

The scheme could, however, be generalised to any Galois field GF (q`).

3.2.1 Definition of the scheme

The modified HP scheme constitutes a share and recover algorithm, both presented in

Figure 3.1.

For the scheme, we assume there exists an IDA with equivalent security properties to a

linear (0, t;n)-ramp scheme. As discussed in Section 2.4.2, such an IDA can be conceptually

treated as an ECC, and thus the share and recover algorithms of the IDA will be denoted

by ShareECC and RecoverECC . Throughout this chapter, when we refer to an IDA, we

mean one with this security property. One possible candidate for the IDA is the systematic

version of Rabin’s IDA, introduced in Section 2.4.3.2.

56

3.2 The modified HP scheme

Algorithm 3.1: Share(s).

1 for i← 1 to t− 1 do

ri
$←− {0, 1}λ;

2 s′ = s⊕ r1 ⊕ · · · ⊕ rt−1;
3 S ← ShareECC(s′);
4 for i← 1 to t− 1 do

Ri ← ShareECC(ri);

5 for i← 1 to n do
V [i]← (S[i]||R1[1 + i mod n]|| . . . ||Rj [j + i mod n]|| . . . ||Rt−1[(t− 1) + i
mod n]);

6 return V .

Algorithm 3.2: Recover(V).

1 for i← 1 to n do
(S[i]||R1[1 + i mod n]|| . . . ||Rj [j + i mod n]|| . . . ||Rt−1[(t− 1) + i
mod n])← V [i];

2 s′ ← RecoverECC(S′);
3 for i← 1 to t− 1 do

ri ← RecoverECC(R′i);

4 s = s′ ⊕ r1 ⊕ r2 ⊕ · · · ⊕ rt−1;
5 return s.

Figure 3.1: The share and recover algorithms defining the modified HP scheme.

3.2.1.1 The share algorithm

The share algorithm, as in Algorithm 3.1, is a probabilistic algorithm that inputs a secret

s ∈ {0, 1}λ. The algorithm begins by randomly generating t − 1 dummy keys of equal

length to the secret, which are labelled r1, . . . , rt−1. The t− 1 dummy keys and the secret

s are all XORed to give s′ ∈ {0, 1}λ.

Now, consider s′ and each dummy key r1, . . . , rt−1 as a string of t words, where each word

consists of
⌈
λ
t

⌉
bits. This is achieved by parsing each of s′, r1, . . . , rt−1 into t elements,

with each element in GF (2d
λ
t e). This enables us to treat each value s′, r1, . . . , rt−1 as a

t-vector or, specifically, as an element in Ft, where F = GF (2d
λ
t e).

If λ is divisible by t, s′ and the dummy keys will parse exactly into t words. If not, each

string must be padded with (−λ) mod t elements to ensure that, when parsed, each word

is an element in F. For ease of notation, we assume λ is divisible by t.

So, the dummy keys r1, . . . , rt−1 and s′ are treated as t-vectors and then independently

57

3.2 The modified HP scheme

dispersed via the IDA share algorithm, ShareECC . This results in t n-vectors, which we

denote as S,R1, . . . ,Rt−1 ∈ Fn. Let Ri[j] denote the jth element in the vector Ri.

Elements of each of the output vectors are then allocated to a vector V , where the ith

element of V [i] is the share to be given to Pi. Elements are allocated to the vector V

such that each share V [i] contains exactly t elements, where each element is from both

a distinct vector (of S,R1, . . . ,Rt−1) and from a distinct position in their vector (so no

two elements in the share come from the same position in their vector). The t elements

allocated to share V [i] are then concatenated and given to player Pi, for 1 ≤ i ≤ n. Note

that V [i] ∈ Ft.

One possible way to allocate elements to the share vector can be illustrated by constructing

a t× n matrix D, where each n-vector S,R1, . . . ,Rt−1 defines a row of D, so

D =


S[1] S[2] . . . S[n− 1] S[n]

R1[1] R1[2] . . . R1[n− 1] R1[n]

.

Rt−1[1] Rt−1[2] . . . Rt−1[n− 1] Rt−1[n]

 .

A new matrix, D′, can then be constructed from D by shifting elements in row i, for

1 ≤ i ≤ t, i − 1 places to the left. So, the first row consisting of S does not change, but

the second row of D′, consisting of R1 shifts each element one place to the left from D′,

and so on. Call D′ the dispersal matrix, where:

D′ =


S[1] S[2] . . . S[n− 1] S[n]

R1[2] R1[3] . . . R1[n] R1[1]

.

Rt−1[t+ 1] Rt−1[t+ 2] . . . Rt−1[t− 1] Rt−1[t]

 .

The elements in column j of D′ are then allocated to the jth element of V , denoted V [j],

and then given to Pj as their share.

58

3.2 The modified HP scheme

3.2.1.2 The recover algorithm

The recover algorithm, as in Algorithm 3.2, inputs an n-vector V , where the ith element

of the vector, V [i], is either a string V [i] ∈ {0, 1}∗, or the value ♦. In the first case, V [i]

is the purported share of player Pi. In the second case, V [i] = ♦, the share from player

Pi has not been submitted and so is marked as missing.

Each share V [i] is parsed into the t elements from column i of D′. From these values,

the t-vectors S′,R′1, . . . ,R
′
t−1 are constructed, which are then used to recover the values

s′ and r1, r2, . . . , rt−1 via the RecoverECC algorithm. These values are then XORed to

retrieve the secret, s.

3.2.1.3 Comparison to the original HP scheme

In the modified HP scheme, presented in Section 3.2.1, t − 1 random dummy keys are

generated. This is an improvement on the original HP scheme, where t random dummy

keys are generated [21]. The generation of fewer dummy keys improves the scheme to be

more lightweight, as generating true randomness is hard, and results in smaller dimensions

for the matrices D and D′ which thereby decreases the size of the shares given to each

player and increases the information rate of the scheme.

Additionally, the original HP scheme did not specify the security requirements of the

IDA, whereas we have noted the IDA must have equivalent security properties to a linear

(0, t;n)-ramp scheme.

3.2.2 Security analysis

It will now be proved that the modified HP scheme presented in Section 3.2.1, and sum-

marised in Figure 3.1, satisfies the recoverability and privacy requirements for a perfect

(t, n)-threshold scheme, as in Definition 2.3.10. The original HP scheme has no such anal-

ysis [21] and so this security analysis is novel. It is noted that the proof given here can be

easily adapted to prove the original HP scheme is also perfectly secure.

59

3.2 The modified HP scheme

The structure of the proof is as follows. In Lemma 3.2.1, it is shown that any distribution

of elements from the matrix D to the n players that allows any t players to learn at least

t shares in every row of D will allow recovery of the secret. Theorem 3.2.2 then shows

that the distribution of elements from D via D′ satisfies this condition, thus the scheme

achieves recoverability. Lemma 3.2.3 shows that any distribution of elements from the

matrix D that allows no more than t − 1 players to learn at most t − 1 elements in each

column of D achieves privacy. Theorem 3.2.4 shows that the distribution of elements

from D via D′ satisfies this property, thus achieving privacy. Together, Theorems 3.2.2

and 3.2.4 show that the modified HP scheme satisfies the requirements to be a perfect

(t, n)-threshold scheme, as in Definition 2.3.10.

3.2.2.1 Recoverability

Lemma 3.2.1. Let n players be allocated elements from the matrix D. If any set of at

least t players learn at least t elements in every row of D, s can be recovered.

Proof. Assume elements from the t × n matrix D are allocated such that any t players

learn at least t shares in every row. We wish to show that a set of (at least) t players can

pool their shares and learn s′, r1, . . . , rt−1, then recover s.

Let Di denote the ith row of D, for 1 ≤ i ≤ t. Each row Di, when transposed and

considered as an n-vector, is the output of a (t, n)-IDA. In particular, DT
1 ← ShareECC(s′)

and DT
i+1 ← ShareECC(ri) for 1 ≤ i ≤ t− 1.

For any row Di, t players can pool their corresponding elements to form a t-vector, which

can be used as input to RecoverECC , which will return the dispersed value: s′ if i = 1, or

ri if 2 ≤ i ≤ t. The players can repeat this procedure for every row of D and reconstruct

all the values s′, r1, . . . , rt−1. Once these values are obtained, they are able to XOR them

and output s.

Theorem 3.2.2. The modified HP (t, n)-threshold scheme satisfies the property that any

set of t players learn at least t elements in every row of D.

Proof. Each player is given a column of the matrix D′, where D′ is formed by shifting row

60

3.2 The modified HP scheme

i of D, for 1 ≤ i ≤ t, i places to the left. As each player is allocated a distinct column

of D′, each player is necessarily given a distinct element from every row. Therefore, when

any t players pool their shares, there will be t distinct elements in every row.

Theorem 3.2.2 shows that the modified HP scheme meets the requirements in Lemma 3.2.1

and hence meets the recoverability requirements of a perfect (t, n)-threshold scheme.

3.2.2.2 Privacy

Now we must prove the privacy requirement is also satisfied. Intuitively, Lemma 3.2.3

shows that an unauthorised set of players must be prevented from learning all elements in

a given column of D, otherwise the players could calculate the corresponding part of s by

XORing all elements in that column.

Lemma 3.2.3. If elements from D are allocated to shares such that any unauthorised set

of at most t−1 players learn no information about at least one element from every column,

then no information is learnt about s. In information theoretic terms, H(S) = H(S | U),

where U is the set of shares given to the set of unauthorised players.

Proof. Let s be a string of λ bits. Assume an unauthorised set of at most t − 1 players

collectively has the set U of shares, made of elements from the matrix D. Assume the set

of players can learn no information about at least one element from every column in D.

Using the result from Theorem 2.4.6 and working in the field F = GF (2`), we can see that

XORing any of the first t columns of the matrix D will give the corresponding fragment of

the secret s. Similarly, if we XOR any of the final n− t columns of D, the output will be

the corresponding entry of the codeword vector output by the IDA share algorithm with

s as its input.

Now, let D[i] denote the ith column of D. For any given column i, for 1 ≤ i ≤ n, U can

contain any number of elements (but not every element) of D[i]. So U will contain at most

t− 1 of the t elements in each column. Without loss of generality, choose a column j; we

will prove no information is learnt about s from this individual column. This argument

can then be applied to every other column of D.

61

3.2 The modified HP scheme

Denote the set of elements in column j and not in the set U as U ′j . Note that |U ′j | ≥ 1.

Let uj be the XOR of all the elements in U . Let xj be the XOR of all elements in U ′j , so

xj is the XOR of all elements in column j that are unknown to U . Assume the secret s is

also distributed via the IDA, resulting in the n-vector S∗. Denote the ith element of S∗

as S∗[i]. Note that ui ⊕ xi = S∗[i]. As the dummy keys are all randomly generated, each

value ri has entropy 2λ. Thus each element of Ri has entropy 2λ/t, and so H(xj) = 2λ/t.

Now, we can equate this to a OTP, presented in Definition 2.2.2, as follows. The value

ui is equivalent to a known ciphertext and xi is equivalent to an unknown key. The

XOR of these would reveal the plaintext message, which here is S∗[i]. As xi has entropy

H(xi) = 2λ, the value S∗[i] also has entropy 2λ. Thus no information is learnt about S∗[i].

This is true for any 1 ≤ i ≤ n, and thus no information about s is learnt by the unautho-

rised set of at most t− 1 players with the combined set of shares U .

Theorem 3.2.4. The modified HP (t, n)-threshold scheme satisfies the condition that any

set of t− 1 players learns no information about at least one element in every column.

Proof. In the scheme, each player is given a column of the matrix D′, so each player will

receive exactly one element from each row of D. Therefore, any set of t − 1 players will

learn exactly t− 1 elements of each row. As the IDA is a linear (0, t;n)-ramp scheme and

because each of the dummy keys and s are generated uniformly at random, players with

only t− 1 elements are unable to learn any further elements from each row.

Each player will also be given elements that come from n − t distinct columns of D.

Therefore, a set of up to t− 1 players can pool their shares and learn at most t− 1 shares

in each column.

Theorem 3.2.4 proves the modified HP scheme meets the requirements of Lemma 3.2.3

and thus satisfies the privacy requirement. Therefore the modified HP scheme presented

in Section 3.2, and summarised in Figure 3.1, satisfies both the recoverability and privacy

requirements to be a perfect (t, n)-threshold scheme.

62

3.3 Efficiency analysis

3.3 Efficiency analysis

In this section, we analyse the efficiency of the modified HP scheme, defined in Figure 3.1,

then analyse other efficient, perfect threshold schemes in the literature and compare them

to the modified HP scheme.

All schemes considered are ideal and require the minimum number of random bits. Our

comparison focuses on the efficiency of the share and recover algorithms and, in particular,

considers the number of bitwise operations required for each of the algorithms separately.

This allows us to highlight which scheme may be best in environments where the efficiency

of either the share or recover algorithm is prioritised. Note that, for the analysis and com-

parison, we follow [62] and consider the number of bitwise operations required, including

the number of XORs and multiplications, but do not consider the number of bit shifts.

The comparable schemes we consider, besides the modified HP scheme, are Shamir’s

threshold scheme [91], which is a benchmark scheme for secret sharing and the scheme

presented by Kurihara et al. [62], which claims to be the first ideal, perfect (t, n)-threshold

scheme implementable using only XOR operations. We also briefly discuss an ideal thresh-

old scheme by Wang and Desmedt [99].

3.3.1 The modified HP scheme

Here, we analyse the efficiency of the modified HP scheme presented in Section 3.2.1 and

summarised in Figure 3.1.

3.3.1.1 Information rate

We show that the modified HP scheme, which is a perfect (t, n)-threshold scheme, is ideal

and thus is an improvement on the original HP scheme [21].

Theorem 3.3.1. Let s ∈ {0, 1}λ. The (t, n)-threshold scheme is ideal if λ is divisible by

t. If λ is not divisible by t, each share has λ mod t more elements than the secret.

63

3.3 Efficiency analysis

Proof. In general, (−λ) mod t bits of padding will be added to s to ensure each element

in the matrix D will consist of
⌈
λ
t

⌉
bits. Each player will receive t elements from D, and

thus the size of each player’s share will be
⌈
λ
t

⌉
t bits. Therefore, the information rate is

calculated as

ρ = λ

/(⌈
λ

t

⌉
t

)
.

If λ is divisible by t, the information rate of the scheme is equal to one and the scheme is

ideal.

In contrast, the original HP scheme required t strings of λ bits to be randomly generated,

rather than t − 1 strings [21]. As a result, D is a (t + 1) × n matrix, with each element

consisting of
⌈
λ
t

⌉
bits. Each player is required to store t+ 1 elements of D as their share,

and so the information rate of the original HP scheme is

ρ = λ

/(⌈
λ

t

⌉
t+ 1

)
.

Assuming that λ is divisible by t, the information rate of the original HP scheme can be

written as:

ρ =
t

t+ 1
.

3.3.1.2 Complexity of share algorithm

With respect to randomness, the share algorithm of the modified HP scheme requires the

generation of λ(t − 1) bits, treated as t − 1 strings of length λ. These are the strings

r1, . . . , rt−1. This is the minimum possible number of random bits that could be generated

in order for the scheme to be perfectly secure [15], and thus, in this respect, the threshold

scheme is optimal.

These random strings are XORed, along with the secret s, to calculate s′. In total, this

requires t − 1 XORs of λ bit strings. This is equivalent to λ(t − 1) XORs in the field

GF (2λ).

Each value s′, r1, . . . , rt−1 is then dispersed via the IDA algorithm ShareECC . This is

computationally the most expensive operation and the complexity depends on the choice

of IDA. If the systematic version of Rabin’s IDA is used, described in Section 2.4.3.2,

64

3.3 Efficiency analysis

each distribution requires O(t(n− t)) operations due to the matrix-vector multiplication.

Specifically, if we consider this in more detail, each distribution requires t(n − t) multi-

plications and (n− t)(t− 1) additions in the field GF (2d
λ
t e). As there are t values to be

distributed (s′, r1, . . . , rt−1), the dispersal of all values requires a total of t2(n− t) multi-

plications and t(n − t)(t − 1) additions. (Note that we do not consider the computation

costs of constructing the dispersal matrix for the IDA, as it is a public matrix that can be

pre-computed and reused each time.) Each player is then allocated elements output by

the IDA, which requires no additions or multiplications.

Therefore, a total of t(t− 1)(n− t) + t(t− 1) additions and t2(n− t) multiplications in the

field GF (2d
λ
t e) are required.

Let us give the complexity of the modified HP share algorithm using big ‘O’ notation.

Obviously, XORing two λ bit strings requires λ bitwise XORs, and if we assume that

multiplication of two λ bit numbers requires 2λ2 bitwise XORs (λ2 operations to multiply

the strings and another λ2 operations to compute modular reduction), we can say the

share algorithm requires

λ

t
(t(t− 1)(n− t) + t(t− 1)) + 2

(
λ

t

)2

t2(n− t)

bitwise operations, which gives a complexity of O(λ2n), as, in general, λ > t.

Pre-computation: We may have the ability to compute some operations required prior

to the secret s being submitted. Pre-computing operations can minimise the com-

plexity of the algorithm after s is submitted. In particular, the t − 1 dummy keys

r1, . . . , rt−1 can be generated and XORed in advance. Then, when the secret s is

submitted, only one XOR of λ bits is left to compute s′ = s ⊕ (r1 ⊕ . . . ⊕ rt−1).

The t− 1 dummy keys can also be distributed via the IDA, which allows us to com-

pute the majority of the operations in advance. Specifically, we can pre-compute

t(t − 1)(n − t) multiplications and (t − 1)2(n − t) additions in the field GF (2d
λ
t e),

leaving only t+t(n−t) additions and (n−t)(t−1) multiplications after the submission

of s.

If we again want to use big ‘O’ notation, the pre-computation bitwise complexity is

O(λ2n), whilst the bitwise complexity after s is submitted is reduced to O(λ2n/t).

Therefore, allowing pre-computation reduces the bitwise complexity of the algorithm

65

3.3 Efficiency analysis

Additions Multiplications

Before s is input (t− 1)2(n− t) + t(t− 2) t(t− 1)(n− t)

After s is input (t− 1)(n− t) + t t(n− t)

Total t((t− 1)(n− t) + (t− 1)) t2(n− t)

Table 3.1: The number of operations in the field GF (2d
λ
t e) computable before and after

the secret is submitted to the share algorithm of the modified HP scheme.

run after s is submitted.

Table 3.1 summarises the exact number of operations that can be pre-computed (prior

to knowledge of the input s), the number of operations that must wait until after s is

submitted, and the total number of operations. Note that the operations are computed in

the field GF (2d
λ
t e).

3.3.1.3 Complexity of recover algorithm

The recover algorithm is initiated by at least t players submitting shares. The first step

for the algorithm to take is to parse the shares into their respective parts and recover

the values s, r1, . . . , rt−1. This is done via the IDA recover algorithm, which, if an IDA

such as Rabin’s is used, requires the inversion of a t × t matrix G′ followed by a matrix-

vector product. Matrix inversion could be achieved via Gauss-Jordan elimination, this

requires approximately 2t3/3 operations [41]. More specifically, Gauss-Jordan elimination

will require about t(t − 1)(2t + 5)/6 additions and t(t2 + 3t − 1)/3 multiplications in

GF (2d
λ
t e).

Once the inverse of G′ has been computed, it must be multiplied with each t-vector

S′,R′1, . . . ,R
′
t−1. Each matrix-vector multiplication requires t2 multiplications and t(t−1)

additions in the field GF (2d
λ
t e). This must be done for each of the t vectors, totalling t3

multiplications and t2(t−1) additions. Finally, the strings s′, r1, . . . , rt−1 must be XORed.

This requires (t − 1) additions in the field GF (2λ), which is equivalent to about t(t − 1)

additions in GF (2d
λ
t e).

So, the recover algorithm requires a total of t2(t− 1) + t(t− 1) = t3 − t additions and t3

multiplications in GF (2d
λ
t e), plus the operations required to invert the t × t matrix G′.

66

3.3 Efficiency analysis

This is a grand total of t2(t− 1) + (t(t− 1)(2t+ 5)/6) additions and t3 + (t(t2 + 3t− 1)/3)

multiplications in GF (2d
λ
t e).

As with the share algorithm, we know the XOR of two λ bit strings requires λ bitwise

XORs, and we can assume multiplication of two λ bit strings requires 2λ2 bitwise opera-

tions, therefore we can calculate the number of bitwise XORs and the complexity of the

recover algorithm to be:

λ

t

(
t2(t− 1) +

t(t− 1)(2t+ 5)

6

)
+
λ

t

2(
t3 +

t(t2 + 3t− 1)

3

)
= O(λ2t).

Pre-computation: In the recover algorithm, there are not many computations that could

be calculated in advance of the players submitting their shares. The only operation

that could possibly be computed is the inversion of the matrix G′ required for the

IDA recover algorithm. Note that the matrix G′ is constructed according to the

identities of the players submitting shares to the recover algorithm, thus it is easy

to pre-compute the inverse if we know which players will, or are likely to, submit

shares to the recover algorithm. However, if we do not know which players will

submit (or are likely to submit) their shares, there are a total of
(
n
t

)
possible sets

of players that could submit their shares and thus there are that many possibilities

for the matrix G′. Constructing every possible G′ and computing each inverse may

be computationally heavy and unnecessary, dependent on the parameters n and t.

For example, if n = 4 and t = 3, there are only four possibilities for the matrix G′,

so it may be reasonable to pre-compute the four inverses for the four possibilities of

G′. But if n = 16 and t = 10, there are 8008 possibilities for G′, which may be too

heavy to pre-compute. In this case, inverting the matrix G′ will have to be delayed

until after the players have submitted their shares and their identities are known.

If G′ is able to be constructed and inverted prior to s being submitted, the recover

algorithm requires only t3 multiplications and t2(t− 1) + t(t− 1) = t3 − t additions

in GF (2d
λ
t e), which is a complexity of O(λ2t).

3.3.2 Shamir’s threshold scheme

Shamir’s perfect threshold scheme was initially introduced in Construction 2.3.3.

67

3.3 Efficiency analysis

3.3.2.1 Description of Shamir’s threshold scheme

In order to allow for easy comparison, we consider Shamir’s threshold scheme over the

finite field GF (2λ), where 2λ ≥ n. Recall that, for some secret s ∈ GF (2λ), sharing a

secret requires evaluating a polynomial f(x) ∈ GF (2λ)[x], with coefficients r1, r2, . . . , rt−1

chosen uniformly at random from GF (2λ). The share given to player Pi is f(xi), for

1 ≤ i ≤ n. Recovery requires polynomial interpolation on any t shares.

3.3.2.2 Complexity of Shamir’s share algorithm

As already discussed, Shamir’s scheme requires the minimal amount of randomness and is

ideal.

In order to calculate the player’s shares, a polynomial of degree t− 1, namely

f(x) = rt−1x
t−1 + rt−2x

t−2 + · · ·+ r1x+ s, (3.3.1)

must be evaluated at n distinct points. We briefly consider three methods of decreasing

complexity for how to evaluate a polynomial at a point, x. In each method, we count the

number of multiplications and additions in the field GF (2λ).

1. Näıve approach: We could independently compute each term rix
i, for 0 ≤ i ≤ t− 1,

which would require t(t− 1)/2 multiplications and t− 1 additions for each x.

2. Recursively computing xi: Compute xi recursively, so once xi has been computed,

store this and calculate xi+1 by computing just one more multiplication, xi+1 = xi ·x.

This would require a total of 2(t− 1)− 1 multiplications and t− 1 additions.

3. Nested Multiplications: Treat the polynomial as a sequence of additions and multi-

plications and iteratively evaluate it. For example, for different degree polynomials,

we can treat the polynomial as a nested sequence:

if t− 1 = 2, f(x) = s+ x(r1 + r2x)

if t− 1 = 3, f(x) = s+ x(r1 + x(r2 + r3x))

. . . .

68

3.3 Efficiency analysis

In general,

f(x) = s+ x(r1 + x(r2 + . . . x(rt−2 + rt−1x) . . .)).

Then compute the following values:

bt−1 = rt−1

bt−2 = rt−2 + xbt−1

. . .

b1 = r1 + xb2

f(x) = b0 = s+ xb1.

This method requires just t− 1 multiplications and t− 1 additions.

If we use the method of nested multiplications, the evaluation of each of the n values

f(i), for 1 ≤ i ≤ n, requires a total of n(t − 1) additions and n(t − 1) multiplications in

GF (2λ). If we wish to use big ‘O’ notation, this is a total number of bitwise operations

and complexity of

λn(t− 1) + 2λ2n(t− 1) = O(λ2nt).

Pre-computation: Prior to s being submitted, we are able to generate the random values

r1, . . . , rt−1. We can compute the majority of the operations in the polynomial: in

fact, for each i, we can compute f(i)−s. Then, when the secret is input, we can add

s to each pre-computed value and all the shares are thus calculated. If we employ

the third, most efficient method of evaluating f(x), this allows us to pre-compute all

n(t−1) multiplications and n(t−2) additions. After s is submitted, only n additions

are left to compute.

The pre-computation has a bitwise complexity of O(λ2nt). After s is submitted, the

complexity of computation required is O(λn).

Table 3.2 summarises the number of additions and multiplications required for Shamir’s

share algorithm and highlights the number that can be pre-computed.

69

3.3 Efficiency analysis

Additions Multiplications

Before s is input n(t− 2) n(t− 1)

After s is input n 0

Total n(t− 1) n(t− 1)

Table 3.2: The number of operations in the field GF (2λ) computable before and after the
secret is submitted to Shamir’s share algorithm.

3.3.2.3 Complexity of Shamir’s recover algorithm

In order to recover the secret, Shamir’s recover algorithm requires the submission of t

shares. Without loss of generality, we denote the t submitted shares as v1, . . . , vt. These

shares are used as input to a polynomial interpolation algorithm, which will output the

original polynomial f .

As an example, Lagrange interpolation could be used to compute f(x) by letting (xi, yi) =

(i, vi) and calculating

f(x) =

t∑
j=1

fj(x),

where

fj(x) = yj

t∏
k=1
k 6=j

x− xk
xj − xk

.

The computation of each fj(x) requires t−2 subtractions (which are counted as additions)

and t − 1 multiplications. This needs to be repeated for each 1 ≤ j ≤ t, then each fj(x)

must be summed to calculate f(x), which is an additional t − 1 additions. So, Lagrange

interpolation requires a total of t(t−1)+(t−1) = t2−1 additions and t(t−1) multiplications

in GF (2λ). Thus, we can calculate the complexity of Shamir’s recover algorithm to be

λ(t2 − 1) + 2λ2t(t− 1) = O(λ2t2).

Polynomial evaluation algorithms that have a lower asymptotic complexity of O(λ2t log2 t)

are discussed in [59] and [2]. If one of these algorithms were to be used, the recover algo-

rithm would have complexity O(λ2t log2 t) instead of O(λ2t2). Which algorithm is used in

practice depends on the parameters t, n and λ and the application. Given the asymptotic

70

3.3 Efficiency analysis

nature of big ‘O’ notation, it may be that an algorithm with a higher bitwise complexity

actually requires fewer operations for smaller parameters (because big ‘O’ notation does

not take into account the coefficients or other terms). Therefore, when comparing asymp-

totic complexities, we will take into account these more efficient algorithms with lower

complexities, but when we are explicitly considering the exact number of operations in

the scheme, we will use the number of multiplications and XORs computed using Lagrange

interpolation.

Pre-computation: No computations are possible prior to the t players submitting their

shares.

3.3.3 The threshold scheme by Kurihara et al.

In [62], Kurihara et al. present the first XOR-based, ideal, perfect (t, n)-threshold scheme.

We discuss and analyse their scheme here.

3.3.3.1 Description of the scheme by Kurihara et al.

Assume a secret s ∈ {0, 1}λ is to be distributed. The share algorithm begins by fixing a

prime p ≥ n, such that λ = d(p − 1) for some d, then parses s into p − 1 elements, with

each element consisting of d bits. Next, they generate (t− 1)(p− 1) random strings, each

consisting of d bits, then XOR sets of the random strings with specified elements of s to

create n(p − 1) other elements, ω(i,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ p − 1. Of these values,

p− 1 are allocated to each share.

In order to reconstruct the secret, t players submit their shares to the recover algorithm,

which are each parsed into their p− 1 d-bit elements ω(i,j). From all these elements, they

construct a t(p − 1)-dimensional vector w with each element being a d bit string. They

then define a function MAT (·) which takes as input the indices of the collaborating players

and uses forward and backward substitution to output a binary (p− 1)× t(p− 1) matrix

D such that D ·w = s, where s is a (p− 1)-dimensional vector with d bit elements such

that the concatenation of elements of s reveals the secret s.

71

3.3 Efficiency analysis

3.3.3.2 Complexity of the share algorithm by Kurihara et al.

As each player receives p− 1 of the ω(i,j) values, where each ω(i,j) consists of d bits, each

share is (p − 1)d = λ bits and thus the scheme is ideal. Also, the scheme requires the

random generation of (t−1)(p−1)d = λ(t−1) bits, which is the minimum number possible

in order for the scheme to be perfectly secure. In this respect, the scheme by Kurihara et

al. is optimal.

Now, we consider the number of operations required to share s. Interestingly, the scheme

by Kurihara et al. requires only XORs and no multiplications. The only computation

required is during the step that XORs sets of the random strings with specified elements

of s. Of the n shares, n − 1 shares require (p − 2)(t − 1)d + (t − 2)d XORs to compute,

whereas the nth shares requires (p− 1)(t− 1)d XORs. This is a total of

d(npt− np− nt+ 1)

bitwise operations.

Using big ‘O’ notation, we say the share algorithm has a bitwise complexity of O(dnpt).

As d(p− 1) = λ, we count this as O(λnt).

Pre-computation: As with the modified HP scheme, the random strings can be gener-

ated and XORed prior to the submission of s. This means that we can compute

(p− 2)(t− 2)d+ (t− 2)d XORs for the first n− 1 shares, and (p− 1)(t− 2)d XORs

for the last share. After some rearranging, this is a total of

d(p− 1)(t− 2)n

bitwise operations, leaving (p− 2)(n− 1)d+ (p− 1)d bitwise XORs to be computed

after s is submitted. This is a complexity of O(λnt) before s is submitted, and

O(d(p− 2)n) ≈ O(λn) after.

Table 3.3 shows the number of XORs needed before and after s is submitted to the share

algorithm, as well as the total number of bitwise XORs.

72

3.3 Efficiency analysis

Additions

Before s is input d(p− 1)(t− 2)n

After s is input (p− 2)(n− 1)d+ (p− 1)d

Total d(n(pt− p− t) + 1)

Table 3.3: The number of bitwise XORs computable before and after the secret is sub-
mitted to the share algorithm by Kurihara et al., where λ = d(p − 1) for some prime
p ≥ n.

3.3.3.3 Complexity of the recover algorithm by Kurihara et al.

The only steps of the recover algorithm that require computations (other than bit shifts,

concatenations and parsing), are the function MAT (·) and the matrix-vector multiplica-

tion D ·w.

We first consider the number of operations in the function MAT (·). The function MAT (·)

requires forward substitution on a (t(p− 1))× (tp− 2) matrix, and backward substitution

on a (p − 1) × (t + 1)(p − 1) matrix. Using big ‘O’ notation, the authors claim this is a

bitwise complexity of O(t3p3). When calculating the number of operations, we assume the

coefficient is 2/3, as is true with Gaussian elimination, and so will count this as a total of

(2t3p3)/3 bitwise operations.

Next, we analyse the number of operations required to compute D ·w = s. Each element

of s requires a total of t(p− 1) multiplications between the binary elements of M and the

d bit elements of w, and t(p− 1)− 1 XORs of d bit elements. There are p− 1 elements in

s, so this is a total of t(p− 1)2 multiplications (of binary elements with d bit strings) and

(t(p− 1)− 1)(p− 1) additions (of d bit strings).

If we implement multiplication between elements of M and w such that, for any a ∈ {0, 1}

and b ∈ {0, 1}d

a · b =

 b if a = 1

0 ∈ {0, 1}d if a = 0,

then multiplication can be implemented via a look-up table and thus we count each mul-

tiplication as one bitwise operation. So, calculating M ·w = s requires t(p − 1)2 bitwise

operations (attributed from the multiplications), plus (t(p− 1)− 1)(p− 1) XORs of d bit

strings. This is a total of d(tp− t− 1)(p− 1) + t(p− 1)2 bitwise operations.

73

3.3 Efficiency analysis

We can then compute the total complexity of this recover algorithm as

d(tp− t− 1)(p− 1) + t(p− 1)2 +
2

3
t3p3 = O(t3p3) ≈ O(t3n3),

given that p and n are of the same magnitude.

Pre-computation: In [62], they claim the function MAT (·) can be pre-computed, i.e.

prior to the shares being submitted to the recover algorithm. However, just as in

the modified HP recover algorithm, the MAT (·) function acts on the identities of

players submitting shares to the recover algorithm: for example, if t = 3 and players

P1, P2 and P3 submitted shares, MAT (1, 2, 3) would need to be computed, whereas

if players P1, P2 and P4 submitted shares, MAT (1, 2, 4) should be computed. Thus,

as with the recover algorithm of the modified HP scheme, whether or not MAT (·)

is pre-computed depends on whether it is known which players will submit shares

to the recover algorithm, and the parameters t and n (in case all possibilities for

MAT (·) are computed in advance).

So, the computation of MAT (·) must wait until after the players have submitted

shares, unless it is know which players will submit, or are likely to submit, their

shares to the recover algorithm.

If we are able to pre-compute the MAT (·) function, the complexity of operations

required after s is submitted is

d(tp− t− 1)(p− 1) + t(p− 1)2 = O(dtp2) ≈ O(λtn),

as d(p− 1) = λ and p is of the same magnitude as n.

3.3.4 Wang and Desmedt’s threshold scheme

In [99], Wang and Desmedt present an efficient, ideal (t, n)-threshold scheme for λ ≥ n,

equivalent to an [q, t, q − t + 1]-MDS code, for some prime q ≥ λ + 1. They define the

scheme to be a collection of t × n matrices, where each matrix is a different distribution

of the secret, and each column of any given matrix is a share. As no specific method of

constructing these matrices is defined, we do not describe the scheme in great detail, but

do include it as another example of a perfect, ideal, efficient threshold scheme.

74

3.3 Efficiency analysis

One possible share algorithm involves constructing a t-vector from the secret and multi-

plying this vector with a t×n binary matrix. If multiplication is implemented as a look-up

table, the bitwise complexity of constructing this matrix and computing the product is

O(λnt). The binary matrix can be generated in advance, but the matrix-vector product

cannot be pre-computed. Therefore, the ability to compute computations in advance does

not reduce the complexity of operations required after s is submitted.

The recover algorithm for the scheme is equivalent to a decoding procedure presented by

Blaum and Roth [12] that decodes an array code with at most r erasures and no errors.

The procedure requires O(r(q2 + r)) XOR operations, for some prime q ≥ λ. The number

of erasures Wang and Desmedt’s scheme can correct is n− t, thus the decoding algorithm

requires O((n − t)(q2 + n − n)) = O(q2n) bitwise XORs. As q is of the same magnitude

as λ, we say the recover algorithm requires O(λ2n) bitwise XOR operations.

3.3.5 Discussion

All schemes considered are ideal and require the minimal amount of randomness. In this

respect, all schemes are optimal. However, the schemes range in efficiency for the share

and recover algorithms. We discuss and compare these now.

Table 3.4 shows the bitwise complexities for the share and recover algorithms. The analysis

of the share algorithm is separated into three columns: the first shows the complexity of

the operations that can be pre-computed; the second shows the complexity of operations

that must wait to be computed until after s is submitted, and the third is the complexity,

assuming no pre-computation is possible.

3.3.5.1 Comparing share algorithms

Without pre-computation. Let us consider the efficiency of the share algorithms with-

out pre-computation. Clearly, from Table 3.4, the schemes by Kurihara et al. and Wang

and Desmedt achieve the lowest complexities. The modified HP scheme has the next

lowest complexity, with Shamir’s scheme having the highest.

75

3.3 Efficiency analysis

Share Recover

Before s is After s is

Scheme submitted submitted Total Total

Modified HP O(λ2n) O(λ2n/t) O(λ2n) O(λ2t)

Shamir [91] O(λ2nt) O(λn) O(λ2nt) O(λ2t log2 t)

K. et al. [62] O(λnt) O(λn) O(λnt) O(λnt+ n3t3)

W. & D. [99] O(λnt) O(λnt) O(λnt) O(λ2n)

Table 3.4: Complexity of share and recover algorithms for different perfect threshold
schemes.

Now, as already discussed, big ‘O’ complexity does not take into account any coefficients

or smaller terms and is useful for giving the complexity when the parameters are very

large. In a setting such as ours, when the parameters λ, n and t are reasonably small (an

example implementation in [8] requires λ = 128, n = 16, t = 10), it may be the case that

the schemes with higher complexities are able to run with fewer bitwise operations than

those with lower complexities.

Considering the schemes in more detail than the asymptotic complexity is difficult as there

are a number of variables; we cannot straightforwardly compare the number of multiplica-

tions and XORs in the schemes as, in general, these operations are computed in different

fields. On top of this, much of the efficiency depends on the implementation of each scheme

and the hardware it runs on. Note that we have already assumed multiplication of two

λ bit strings requires 2λ2 bit operations (λ2 bitwise operations for multiplication and a

further λ2 for modulo reduction), but this is a fairly näıve implementation and could be

reduced with, for example, the use of Karatsuba’s algorithm; this is just one example of

how the implementation can affect the efficiency.

To demonstrate the number of bitwise operations required for each scheme and the ef-

fect of different implementations, we fix some parameters and assume multiplication is

implemented näıvely, at first, then using Karatsuba’s algorithm [57]. We assume no pre-

computation is allowed and choose the parameters to be n = 16, t = 10 and λ = 128

bits.

Assuming a näıve implementation of multiplication, where multiplication of two λ bit

strings requires 2λ2 bitwise operations, we can calculate the number of operations required

76

3.3 Efficiency analysis

for the modified HP scheme and the schemes proposed by Shamir and Kurihara et al.

The modified HP share algorithm would require

⌈
λ

t

⌉
[t((t− 1)(n− t) + (t− 1))] + 2

(⌈
λ

t

⌉)2

[t2(n− t)]

= 13[(10((9× 6) + 9))] + (2× 169)(100× 6)

= (13× 10× 63) + (2× 169× 600)

= 210990

bitwise operations. Shamir’s share algorithm would require

λ[n(t− 1)] + 2λ2[n(t− 1)]

= (128× 16× 9) + (2× 1282 × 16× 9)

= 18432 + 4718592

= 4737024

operations. Finally, as the share algorithm by Kurihara et al. requires no multiplication,

we can let p = 17 and d = 8 and compute the number of bitwise operations required in

their share algorithm as:

d(n(pt− p− t) + 1)

= 8(16(170− 17− 10) + 1)

= 8((16× 143) + 1)

= 8× 2289

= 18312.

Now, if we use a more efficient implementation that utilises Karatsuba’s algorithm [57],

multiplication of two λ bit strings requires 2λlog2(3) bitwise operations, rather than 2λ2.

The number of operations required for the modified HP share algorithm is reduced to

78990, whilst the number of operations in Shamir’s share algorithm is reduced to 648288.

The number of operations in the scheme by Kurihara et al. remains the same, as no

multiplications are required.

77

3.3 Efficiency analysis

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2
·106

t

N
o.

of
b

it
w

is
e

op
er

a
ti

o
n

s

Shamir
Modified HP

Kurihara et al.

Figure 3.2: The number of bitwise operations required for the three share algorithms,
given parameters λ = 128, n = 16 and for varying 1 ≤ t ≤ n.

Figure 3.2 shows the number of bitwise operations required for the three share algorithms

for the parameters λ = 128, n = 16 and for varying values of 1 ≤ t ≤ n, assuming Karat-

suba’s implementation of multiplication. It is obvious to see that Shamir’s share algorithm

requires the greatest number of operations, whilst the share algorithm by Kurihara et al.

requires the least. However, it is interesting to note that, if either t is very small or very

large (comparative to n), the number of bitwise operations required in the modified HP

share algorithm is close to that in the share algorithm by Kurihara et al. In particular, if

t = n, the modified HP scheme requires the fewest number of bitwise operations. This is

because, if t = n, the scheme does not require the use of an IDA and essentially generates

t−1 strings as the first t−1 shares, then calculates the final share as the sum of all others.

We briefly note that the hardware used will affect the efficiencies. Some hardware can

compute one multiplication in one clock cycle. One example of such a processer is ARM’s

Cortex M-Series, which is able to compute the multiplication of 16 bit strings in one

clock cycle [4]. If such a processor is used, both the XOR of two 16 bit strings and the

multiplication of two 16 bit strings could be be computed in one clock cycle. Assuming

the same parameters as before (n = 16, t = 10, λ = 128, p = 17, d = 8), and assuming

computations are done on strings of λ/t = 13 bit, the modified HP share algorithm would

be computable in 1230 clock cycles, whilst the share algorithm by Kurihara et al. would

be computable in 1408 clock cycles.

With pre-computation. Now, let us consider the effect allowing pre-computation has.

78

3.3 Efficiency analysis

From Table 3.4, we can see that the share algorithms by Shamir and Kurihara et al. are

reduced in complexity with respect to the number of operations required after s is input.

The modified HP share algorithm is able to reduce the complexity by a factor of t, whilst

Wang and Desmedt’s algorithm maintains the same complexity.

If we consider the number of bitwise operations required more closely, we can see that, in

fact, if λ and n are fixed, both share algorithms by Shamir and Kurihara et al. require a

constant number of operations for any 1 ≤ t ≤ n. In contrast, the number of operations

required in the modified HP share algorithm after s is submitted is dependent on t and is

always greater than either algorithm by Shamir or Kurihara et al., except for, again, when

t = n. In the case where t = n the modified HP share algorithm requires fewer bitwise

operations than either algorithm by Shamir or Kurihara et al.

3.3.5.2 Comparing recover algorithms

Without pre-computation. We can compare the complexities of the recover algorithms,

given in Table 3.4, assuming pre-computation is not possible. It is immediately obvious

that the complexity of the modified HP recover algorithm is lower than the complexities

of both Shamir and Wang and Desmedt’s schemes, given that t is necessarily equal to,

or less than, n. However, it is not immediately obvious whether the modified HP recover

algorithm is more efficient than the recover algorithm by Kurihara et al. This depends on

the choice of λ, n and t.

As before, if we consider implementing multiplication using Karatsuba’s algorithm, we can

consider the number of bitwise operations required. For now, we include the computations

required to invert the t × t matrix D′ for the IDA in the modified HP recover algorithm

and the MAT (·) function in the recover algorithm by Kurihara et al.

79

3.3 Efficiency analysis

The modified HP recover algorithm requires

λ

t

(
t(t2 − 1) +

t(t− 1)(2t+ 5)

6

)
+ 2

(
λ

t

)log2(3)(
t3 +

t(t2 + 3t− 1

3

)
= 13×

(
(10× 99) +

(10× 9× 25)

6

)
+ (2× 59)

(
1000 +

1000 + 300− 10

3

)
= 13× (990 + 375) + 118× (1000 + 430)

= 185315

bitwise operations, whilst Shamir’s recover algorithm requires

λ(t2 − 1) + 2λlog2(3)t(t− 1)

= 128(100− 1) + (2× 2187)(10× 9)

= 406332

bitwise operations. If we assume the forward and backward substitution in the recover

algorithm by Kurihara et al. requires about 2/3(n3p3) bitwise operations, their recover

algorithm requires a total of:

d(tp− t− 1)(p− 1) + t(p− 1)2 +
2

3
t3p3

= 8(170− 10− 1)(16) + 10(16)2 +
2

3
(103 × 173)

= (8× 159× 16) + 2560 +

(
2

3
× 1000× 4913

)
= 20351 + 2560 + 3275333

= 3298244

bitwise operations.

The number of bitwise operations required for the parameters n = 16, λ = 128, and for

varying values of 1 ≤ t ≤ n for the three recover algorithms, are shown in Figure 3.3,

assuming Karatsuba’s implementation of multiplication.

As we can see, the modified HP recover algorithm requires fewer bitwise operations than

both the recover algorithms by Kurihara et al. and Shamir. From Figure 3.3, we can see

that the recover algorithm by Kurihara et al. requires many more bitwise operations. This

is mainly due to the forward and backward substitution required in the MAT (·) function

80

3.3 Efficiency analysis

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2
·106

t

N
o.

of
b

it
w

is
e

op
er

a
ti

o
n

s

Shamir
Modified HP

Kurihara et al.

Figure 3.3: The number of bitwise operations required for the recover algorithms, given
parameters λ = 128, n = 16 and for varying 1 ≤ t ≤ n.

of their recover algorithm.

With pre-computation. As previously said, Kurihara et al. claim the forward and

backward substitution required in the MAT (·) function of their recover algorithm can be

pre-computed. As we have already said, MAT (·) relies on the identities of the players

submitting shares, so whether it can be pre-computed depends on either knowledge of the

players that will submit shares (which would be unusual), or on the parameters t and n

(if
(
n
t

)
is small enough it may be worthwhile computing). If pre-computation is possi-

ble, continuing from the same parameters as before, the modified HP recover algorithm

requires 130672 bitwise operations, whilst Shamir’s algorithm requires the same number

of operations (as no pre-computation is possible with Shamir’s recover algorithm), whilst

the scheme by Kurihara et al. would require only 22912 bitwise operations. Therefore,

if pre-computation in the recover algorithm is possible, the algorithm by Kurihara et al.

requires, by far, the least number of bitwise operations.

3.3.5.3 Summary

To summarise, here are the conclusions we draw from the analysis.

• The modified HP share algorithm requires fewer bitwise operations than Shamir’s

share algorithm for all 2 ≤ t ≤ n.

81

3.3 Efficiency analysis

• For 2 ≤ t < n, the modified HP share algorithm requires more bitwise computations

than the share algorithm proposed by Kurihara et al. How many more depends on a

number of parameters, including the implementation of multiplication of bit strings

and the hardware used.

• For 2 ≤ t < n, and assuming pre-computation is possible, the modified HP share

algorithm requires more bitwise operations to be computed after s is submitted than

both share algorithms by Shamir and Kurihara et al.

• When t = n, the modified HP share algorithm requires fewer bitwise XORs than both

share algorithms by Shamir and Kurihara et al., with or without pre-computation.

• The modified HP recover algorithm is faster than both recover algorithms proposed

by Shamir and Kurihara et al., assuming no pre-computation is possible.

• If pre-computation of the MAT (·) function in the recover algorithm by Kurihara et

al. is possible, the recover algorithm by Kurihara et al. is the most efficient.

The modified HP scheme finds a compromise between the efficiencies of the share and

recover algorithms. Even though the share algorithm is not the most efficient, it requires

fewer bitwise computations than Shamir’s share algorithm and manages to achieve an

efficient recover algorithm simultaneously.

82

Chapter 4

An efficient, computationally

secure threshold scheme

Contents

4.1 Introduction . 84

4.2 Preliminaries . 85

4.2.1 Block cipher modes of operation 85

4.2.2 Cryptographic hash functions 89

4.3 The AONT-RS scheme . 90

4.3.1 The original AONT-RS definition 90

4.3.2 Generalising AONT-RS to AONT-RS0 92

4.3.3 Security analysis of AONT-RS0 99

4.3.4 Efficiency analysis of AONT-RS0 and comparison with HK0 . . 101

4.4 Extending AONT-RS0 to be robust . 106

4.4.1 Data integrity using a canary 106

4.4.2 Robust extension using hash functions 107

4.4.3 Robust extension using commitment schemes 109

4.4.4 Comparing robust extensions 120

4.5 Conclusion . 121

This chapter is based on joint work with Liqun Chen and Keith Martin [26].

83

4.1 Introduction

4.1 Introduction

Computationally secure threshold schemes, which were introduced in Definition 2.3.14,

relax the security requirements of perfect threshold schemes and, in doing so, are able

to achieve smaller share sizes. The computationally secure threshold scheme goals were

first mentioned by Karnin et al. [58], but it was in Krawczyk’s work in 1994 that the first

computationally secure threshold scheme, HK0, defined in Figure 2.3, was proposed [58].

Since Krawczyk’s work, computationally secure threshold schemes have found many appli-

cations, but there were no new constructions proposed until 2010, when Resch and Plank

proposed a computationally secure (t, n)-threshold scheme in the form of a dispersed stor-

age system. The scheme is called AONT-RS [85] and blends an all-or-nothing transform

(AONT) [86] with Reed-Solomon (RS) coding [84]. The scheme aims to achieve computa-

tional security whilst being more efficient than other schemes, including Krawczyk’s HK0

scheme.

AONT-RS is a feature in the object storage system sold by Cleversafe, a company recently

acquired by IBM [48], who renamed the product to IBM Cloud Object Storage. In 2016,

the system was rated the overall leader in the Gartner critical capabilities for object storage

report [23].

Going back to 1994, after considering computationally secure threshold schemes, Krawczyk

extended HK0 and proposed goals for a robust, computationally secure threshold scheme,

defined in Definition 2.3.15, along with a candidate solution, called HK1 [58]. Prior to

Krawczyk’s work, robustness had only be studied in the information theoretic setting

in [73] and [98]. Krawczyk’s work was revisited in 2007 by Bellare and Rogaway [8], in

which they proposed formal definitions for a computationally secure threshold scheme and

proved Krawczyk’s robust HK1 scheme to be secure, but only after assuming the hash

function is indistinguishable from a random oracle. They then proposed a refined version

of Krawczyk’s scheme, called HK2, which achieves the robust computationally secure goals

under standard assumptions. The HK1 and HK2 schemes are introduced in Section 4.4.1.

In this chapter, we revisit the AONT-RS scheme presented in [85]. We present the original

scheme, then define a generalised version, called AONT-RS0, and clearly state each previ-

ously undefined assumption. We then formally prove AONT-RS0 achieves computational

84

4.2 Preliminaries

security, assuming the hash function is indistinguishable from a random oracle. Previ-

ously, no thorough security analysis had been conducted on AONT-RS. We then compare

AONT-RS0 to Krawczyk’s HK0, considering the security, share size and efficiency of both

the share and recover algorithms. We show AONT-RS0 is more efficient than HK0, but is

considered less secure due to assumptions made in the security proof. Thus, AONT-RS0

achieves a more efficient scheme by compromising, but still maintaining a sufficient level

of, security.

We then discuss two methods of extending AONT-RS0 to be robust. The two techniques

discussed, which utilise hash functions and commitment schemes, are used in HK1 and

HK2 respectively to extend HK0 to be robust. In both cases, we discuss the resulting

security and compare the two techniques.

4.2 Preliminaries

Here, we introduce block cipher modes of operations for symmetric-key encryption schemes

and cryptographic hash functions. Both will be used when defining AONT-RS.

4.2.1 Block cipher modes of operation

Recall from Section 2.2 a symmetric-key encryption scheme can either be a stream cipher,

in which the plaintext is processed one bit at a time, or a block cipher, which operates on

blocks of bits. The number of bits in a block is generally a number fixed by the encryption

scheme. An example of a block cipher is the AES algorithm [30], which has a block size

of 128 bits.

Block ciphers can be used in different modes of operation [74]. These modes are operational

rules for a generic block cipher that each result in different properties being achieved when

they are applied to a plaintext consisting of more than one block. Each mode of operation

supplies the encryption scheme with additional properties and the mode used will depend

on the application and desired properties. Here, we introduce three modes of operation:

Electronic Code Book (ECB) mode, Cipher Feedback (CFB) and Counter (CTR) mode.

85

4.2 Preliminaries

Other examples of modes of operation include Cipher Block Chaining (CBC) mode and

Cipher Feedback (CFB) mode. All these modes of operation are discussed in NIST Special

Publication 800-38A [74] and ISO/IEC 10116 [50].

4.2.1.1 Electronic Code Book (ECB) mode

Electronic Code Book (ECB) mode is the intuitive way that a block cipher would be imple-

mented and works as follows. The plaintext M is split into blocks of a defined size. These

are labelled M0, . . . ,Mb−1. The first block M0 is encrypted under the symmetric key k,

resulting in the ciphertext block C0. The second plaintext block M1 is then independently

encrypted, also under k, to get C1. This continues block by block, until all the blocks have

been encrypted. ECB encryption is illustrated in Figure 4.1. The encryption process can

be expressed as:

Ci = Enck(Mi).

Enck

M0

C0

Enck

M1

C1

Enck

M2

C2

· · · · · · Enck

Mb−1

Cb−1

Figure 4.1: Encryption using ECB mode

Decryption in ECB is also intuitive: block by block, each ciphertext is decrypted under

the symmetric key k and the plaintext blocks are recovered. The decryption process can

be expressed as:

Mi = Deck(Ci).

ECB mode is rarely used in practice, because it has a number of drawbacks. Importantly,

if we encrypt the same plaintext block twice in ECB mode, it will always result in the same

ciphertext block. This makes the scheme vulnerable to statistical analysis, especially if

the number of potential plaintexts is small, and to dictionary attacks, where an adversary

compiles a dictionary of known plaintext and ciphertext pairs generated under a given key

and compares received ciphertexts with the list of ciphertexts in the dictionary.

86

4.2 Preliminaries

Alternate modes of encryption are able to combat this weakness.

4.2.1.2 Cipher Feedback (CFB) mode

Cipher Feedback (CFB) involves the use of an initialisation vector (IV) which must be

known to both the sender and receiver. The IV is encrypted under the symmetric key

k, which is XORed with the first block of the plaintext, M0. This results in the first

ciphertext block, C0. The ciphertext block C0 is then ‘fed back’ and used as input to the

encryption algorithm, which is then XORed with the second block of plaintext, M1, to

give the second ciphertext C1. This continues until the final ciphertext, Mb−1 is XORed

with Enck(Cb−2) to output the final ciphertext, Cb−1.

Encryption using CFB mode is illustrated in Figure 4.2, and can be expressed as:

Ci = Mi ⊕ Enck(Ci−1).

Enck

C0

M0

Enck

C1

M1

Enck

C2

M2

IV

· · · · · · Enck

Cb−1

Mb−1

Figure 4.2: Encryption using CFB mode

Decryption in CFB mode is very similar to encryption. To begin, the IV is encrypted and

the result of this is XORed with the first ciphertext, C0, to give the first plaintext, M0.

Then, encrypt C0 and XOR the result of this with C1. This will recover M1. Continue

until Mb−1 is recovered. This process is summarised as

Mi = Ci ⊕ Enck(Ci−1).

CFB mode offers a number of advantages over ECB mode. It incorporates message depen-

dency, meaning each ciphertext block depends on the current plaintext block and previous

87

4.2 Preliminaries

ciphertext blocks, which in turn rely on previous plaintext blocks. This helps to overcome

the weaknesses of ECB. One advantage CFB gains in doing this is that identical plaintext

blocks do not encrypt to the same ciphertext block. This is because the previous cipher-

text block influences the next block, rather than each ciphertext block being independently

influenced by only the plaintext message and the symmetric key.

In CFB mode, if there is an error in the transmission of a ciphertext block Ci, then only

plaintext blocks Mi and Mi+1 will be affected. This is more than would be affected in

ECB mode, where if Ci is corrupted only Mi would be affected, but is still fairly limited.

4.2.1.3 Counter (CTR) mode

Counter (CTR) mode is the final block cipher mode we introduce. CTR mode is a counter-

based version of CFB mode without the feedback. As in CFB mode, a shared IV is

encrypted and the output is XORed with the first plaintext, M0 to calculate the ciphertext

C0. Then, rather than C0 being fed back into the encryption algorithm, IV + 1 is input.

Encryption using CFB mode is illustrated in Figure 4.3 and can be summarised as

Ci = Mi ⊕ Enck(IV + i),

whilst decryption is

Mi = Ci ⊕ Enck(IV + i).

Enck

IV

C0

M0

Enck

IV + 1

C1

M1

Enck

IV + 2

C2

M2

· · · · · · Enck

IV + (b− 1)

Cb−1

Mb−1

Figure 4.3: Encryption using CTR mode

As with CFB mode, CTR mode has the advantage that two identical plaintext blocks will

be encrypted to distinct ciphertext blocks. An additional advantage of CTR mode is that

if one error occurs in a ciphertext block, only the corresponding bits in the plaintext blocks

88

4.2 Preliminaries

will be affected; because of this, we say CTR mode has no error propagation. This is in

contrast to both ECB and CFB mode. If an error occurs in ECB mode, the corresponding

plaintext block is corrupted, whilst in CFB mode two blocks are corrupted.

CTR mode does not have message dependency, but it does have positional dependency

since the ciphertext block depends on the position of the current plaintext block within the

message. Because of this, an obvious disadvantage of CTR is that a synchronous counter

is mandatory.

4.2.2 Cryptographic hash functions

Hash functions are a cryptographic primitive commonly used as a one way function. A

hash function is a mathematical function, Hash(·), that compresses inputs into a fixed

length output: they take as input some numerical value of arbitrary length and output a

numerical value of fixed length, called the digest. Hash functions do not have a key and

are publicly computable, meaning that anyone (including adversaries) can compute the

hash of any value. Hash functions should also be ‘easy’ to compute. That is, the digest of

an input should be computable in polynomial time.

We require hash functions to have following three security properties.

• Pre-image resistance. It should be hard (in terms of efficiency and speed) to reverse

a hash function. That is, given a digest h, it should be a difficult operation to find

any input value x such that Hash(x) = h.

• Second pre-image resistance. Given an input x and its digest h, it should be hard to

find a distinct input x′ 6= x such that Hash(x′) = h.

• Collision resistance. It should be hard to find two distinct inputs that produce the

same digest. That is, it is hard to find two values, x and x′, such that Hash(x) =

Hash(x′).

Intuitively, pre-image resistance protects against an adversary who has only a digest and

is trying to reverse the function and learn the input. Whereas second pre-image resistance

89

4.3 The AONT-RS scheme

protects against an adversary who has an input value and its digest, and wants to find a

different input value that results in the same hash.

Hash functions cannot be collision free, as the domain of the function is much larger than

the range and thus collisions are inevitable. In order for the hash function to be collision

resistant, we require that these existing collisions are hard to find.

Examples of hash functions include the SHA-2 and SHA-3 families [37] and Whirlpool [51].

4.3 The AONT-RS scheme

In [85], Plank and Resch describe a new dispersal scheme, which is equivalent to a com-

putationally secure threshold scheme. They call their construction AONT-RS as it blends

an all-or-nothing transform (AONT) [86] with Reed-Solomon (RS) coding [84].

In this section, we introduce AONT-RS as defined in [85]. We then discuss generalising

the scheme and state all necessary assumptions on the cryptographic primitives involved.

4.3.1 The original AONT-RS definition

Let E be a symmetric-key encryption scheme, as in Definition 2.2.1, with algorithms

KeyGen, Enc and Dec and key space K = {0, 1}λ. Let Hash be a cryptographic hash

function, as in Section 4.2.2, that outputs a digest of length λ. Finally, assume ShareRIDA

and RecoverRIDA are the algorithms for the efficient version of Rabin’s IDA, discussed in

Section 2.4.3.2.

In [85], they do not explicitly define what security properties E or Hash must have.

Because of this, we present the AONT-RS construction and then discuss the required

assumptions when considering the scheme’s generalisation, which we call AONT-RS0.

The share and recover algorithms of AONT-RS, as presented in [85], are given in Figure 4.5.

The share algorithm inputs the plaintext message M . The algorithm generates a sym-

90

4.3 The AONT-RS scheme

Algorithm 4.1: Share(M).

1 k
$←− KeyGen({0, 1}λ);

2 (M0|| . . . ||Mb−1)←M ;

3 Mb
$←− {0, 1}λ;

4 for i← 0 to b do
Ci ←Mi ⊕ Enck(i);

5 C ← (C0||C1|| . . . ||Cb−1||Cb);
6 h = Hash(C);
7 cd = h⊕ k;
8 V ← ShareRIDA(C||cd);
9 return V .

Algorithm 4.2: Recover(V).

1 j = 0;
2 for i← 0 to n do
3 if V [i] 6= ⊥ then

V ′[j]← [j];
j = j + 1;

4 if j < t− 1 then
return ⊥;

5 (C||cd)←
RecoverRIDA(V ′[0], . . . ,V ′[t− 1]);

6 h = Hash(C);
7 k = h⊕ cd;
8 for i← 0 to b do

M ′i = Ci ⊕ Enck(i)
9 if M ′b 6= Mb then

return ⊥;

10 M ← (M ′0|| . . . ||M ′b−1);

11 return M .

Figure 4.4: The share and recover algorithms defining AONT-RS, as proposed in [85].

metric key k using the KeyGen algorithm of E . The plaintext M is then parsed into b

blocks, M0, . . . ,Mb−1, where the size of each block is defined by E and the number of

blocks is dependent on the size of M . A new, publicly known block Mb, called the canary,

is then randomly generated. The scheme then encrypts all plaintext blocks in what we

recognise to be CTR mode, as defined in Section 4.2.1.3. Following this, the ciphertext

blocks are concatenated to give the full ciphertext C. This ciphertext is then input to the

hash function, which outputs the digest, h, which is then XORed with the key k to give

what we call the difference value, cd. Finally, the ciphertext C and the difference value

cd are concatenated and distributed via the efficient version of Rabin’s IDA, ShareRIDA.

This returns an n-dimensional vector V . Each player Pi, for 1 ≤ i ≤ n, is given the ith

element of V , V [i], as their share.

The recover algorithm takes as input an n-vector V , where the ith element of this vector,

V [i] is either the purported share of player Pi, V [i] ∈ {0, 1}∗, or the value ♦, indicating

a missing share. A new t-vector V ′ is then created from the non empty elements of the

vector V . If there are fewer than t non-empty elements, the algorithm halts. Otherwise,

V ′ is input to RecoverRIDA, which returns (C||cd). These values are then parsed and the

ciphertext C is input to the hash function in order to calculate the digest h. Now that h

and cd are known, they can be XORed in order to recover the key k. The ciphertext C is

91

4.3 The AONT-RS scheme

then separated into the b+ 1 ciphertext blocks and, using the key k, the plaintext blocks

M0, . . . ,Mb are recovered via decryption using CTR mode. The final recovered plaintext,

Mb, is compared to the canary; if they are distinct, the algorithm terminates. Else, if they

are equal, the plaintext blocks are concatenated and M is output.

4.3.2 Generalising AONT-RS to AONT-RS0

In [85] the authors do not define any restrictions on the size of the ciphertext or any

assumptions on the hash function Hash or the symmetric-key encryption scheme E . Also,

both the encryption mode of operation for E and the construction of the IDA are specified.

Here, we show that small ciphertexts can lead to information leakage and discuss what

size the ciphertext must be to prevent this. We specify required assumptions on the

symmetric-key encryption scheme and the hash function. We then generalise AONT-RS

for other encryption modes and IDAs.

For now, we ignore the concept of the canary Mb. This is because the canary does not

contribute to either the privacy or the recoverability of the scheme. Instead, the canary

extends the scheme to have integrity. Because of this, we delay further discussion of the

canary until Section 4.4.

4.3.2.1 The ciphertext size

Resch and Plank claim their system is secure because t− 1 players are unable to recover

all of (C||cd) due to the security of the IDA.

More specifically, without enough shares, fewer than t players cannot learn both C (which

enables them to learn h = Hash(C)) and cd fully, and so cannot learn k or M fully.

Learning either C or cd in isolation does not help the adversary; full knowledge of both C

and cd are required in order to learn M .

The authors assume an unauthorised set of players can learn at most:

• some or all of cd and some (but not all) of C, or

92

4.3 The AONT-RS scheme

• none of cd and all of C,

and therefore, they say the scheme is secure.

We show here that this is not true. When C is a short ciphertext (in relation to the security

parameter λ and the threshold value t), the adversary may be able to learn enough to learn

some information about k. We show that, with a small ciphertext, an adversary can learn

either

• C completely and partial information about cd, which leaks information about k, or

• all of cd and some of C, allowing them to guess the remainder of C.

Learning C completely and cd partially. Consider the following example. Let C, k ∈

{0, 1}128. Let there be n = 5 players P1, . . . , P5 and let t = 4. The string C||cd would be

parsed into four words to make the t-dimensional vector M , where each element of M is

64 bits. Let c0 and c1 be the two elements that comprise C and let cd,0 and cd,1 be the two

halves of cd, each 64 bits. The vector M is then multiplied on the left by the generator

matrix, which gives

G ·M =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G4,0 G4,1 G4,2 G4,3




C0

C1

cd,0

cd,1

 =



C0

C1

cd,0

cd,1

x


,

where Gi,0, for i = {0, . . . , 3} are chosen such that any four rows of G are linearly inde-

pendent and x = G4,0 · C0 +G4,1 · C1 +G4,2 · cd,0 +G4,3 · cd,1.

Players P1, P2 and P3 are an unauthorised set, yet they could learn all of C and cd,0. They

could then compute Hash(C) = h and XOR the first half of h with cd,0 to recover the

first half of k. This reduces the security from 128 to 64 bits.

93

4.3 The AONT-RS scheme

This attack can be prevented if cd is contained entirely in one share. So if cd ∈ {0, 1}λ,

then C should be such that C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

Learning C partially and cd completely. An alternative version of this attack utilises

the fact that the hash function H is deterministic.

Consider the following example. Assume an adversary knows all of cd and all but one bit

of C. They can construct two possibilities for C, one where they guess the unknown bit

is a ‘0’, which we label C0, and the other where the unknown bit is a ‘1’, labelled C1. The

adversary then computes the corresponding hashes, h0 = Hash(C0) and h1 = Hash(C1),

then computes two key candidates k0 = cd ⊕ h0 and k1 = cd ⊕ h1 and decrypts both

ciphertexts C0 and C1 with their corresponding candidate keys to reveal two plaintext

messages M0 and M1. From these, the adversary can guess which plaintext message is

likely to be the true message and has thus learnt k completely.

In general, if the adversary knows cd and all but j bits of C, if j < λ this attack is quicker

than a brute force approach, in which the adversary tries every possible key. In order to

prevent this attack, we must ensure an adversary is unable to learn at least λ bits of C if

cd is known. This is assured if each element of M , is at least λ bits, so M [i] ∈ {0, 1}λ,

meaning that C must be such that C ∈ {0, 1}ω, ω ≥ (t− 1)λ.

In summary, both attacks can be prevented if C ∈ {0, 1}ω, where ω ≥ (t − 1)λ. Thus

any plaintext should be encrypted to give a ciphertext C ∈ {0, 1}ω: if we assume the

encryption scheme is length preserving and does not have a large ciphertext expansion,

meaning C is not much larger than M , then we can assume that M is not much smaller.

If M encrypts to be a ciphertext C that is smaller than this, C should be extended via

padding.

It is worth highlighting that a computationally secure threshold scheme, such as AONT-

RS, will be used in practice to distribute large ciphertexts, given the lower bound on share

sizes in perfect threshold schemes. Thus it is unlikely the ciphertext will be smaller than

λ(t − 1) bits. However, a threshold scheme should be able to distribute files of any size,

so this may be one disadvantage of AONT-RS.

94

4.3 The AONT-RS scheme

4.3.2.2 Assumptions on the encryption scheme

We observe the symmetric-key encryption scheme E need not operate in CTR mode, but

must have ind-1 and key-1 security.

To demonstrate why ind-1 security is necessary, consider an adversary with a non-negligible

ind-1 advantage who is playing both the privacy game, Priv, defined in Game 2.3, against

a privacy challenger (this game defines the security of AONT-RS), and the indistinguisha-

bility game, Ind, defined in Game 2.1, against an ind-1 challenger (this defines the security

of E). For simplicity, assume the IDA is systematic, meaning that corrupted shares will

directly reveal segments of the ciphertext, and that the privacy challenger shares their

generated key with the ind-1 challenger. The adversary submits two messages, M0 and

M1, to both the privacy challenger and the ind-1 challenger. The ind-1 challenger would

return a ciphertext Cb corresponding to one of the two messages; the adversary has a non-

negligible advantage at guessing which was chosen (as we have assumed E does not have

ind-1 security). Assume the adversary then uses this advantage to guess which plaintext

was encrypted by the privacy challenger. They corrupt up to t− 1 shares during the cor-

rupt procedure of the privacy game against AONT-RS, then, from the information learnt,

the adversary can determine whether or not the privacy challenger is revealing parts of the

known ciphertext, or a different ciphertext. If the shares match the ciphertext received

from the ind-1 challenger, the adversary guesses the same value b was chosen. Else, the

adversary guesses a different b. Thus ind-1 security for E is necessary.

In order to show why key-1 security is also necessary for the symmetric-key encryption

scheme, consider a similar scenario in which an adversary with a non-negligible advantage

against a key-1 challenger plays both the privacy game against AONT-RS and the key-1

game against E . The adversary submits two messagesM0 andM1 to the privacy challenger,

who randomly chooses which message to distribute. The privacy challenger then shares the

key k with the key-1 challenger, to whom the adversary submits one of the two messages,

say M0 (without loss of generality). The key-1 challenger then returns the ciphertext,

C0, and the adversary, who it is assumed has a non-negligible advantage, guesses k. The

adversary can then run the corrupt procedure with the privacy adversary, who will return

elements of the ciphertext. If the shares match the ciphertext returned by the key-1

challenger, the adversary guesses b = 0. Otherwise, the adversary guesses b = 1.

95

4.3 The AONT-RS scheme

Thus, the symmetric-key encryption scheme must have both ind-1 and key-1 security. As a

side note, we refer to the discussion in Section 2.2.3 where we mentioned that in encryption

schemes with a large ratio between message length and key length, it may be the case that

ind-1 security implies key-1 security, but that neither a counterexample nor a proof of this

has yet been found. We highlight that, given the condition on the size of the ciphertext,

that is C = {0, 1}ω, where ω ≥ (t − 1)λ and k ∈ {0, 1}λ, then, if the encryption scheme

does not have a large message expansion, the ratio between the size of the plaintext and

the size of the key length is likely to be large. So, in this encryption scheme, it may be

true that ind-1 security implies key-1 security, but this is not proven.

We make one further comment on the security of the symmetric-key encryption scheme, E .

Ind-1 security, and not general indistinguishability, is required for the E because each time

a new M is submitted, a new key k is generated. So, each key is only used to encrypt one

plaintext and thus ind-1 security is sufficient. Similarly, key-1 security and not general

key-unrecoverability is required. It is noted that, if AONT-RS were to maintain a key

and use it to distribute multiple plaintexts, rather than generating a new key after each

submission, the security requirements on the encryption scheme will need to be revisited.

In particular, indistinguishability and key-unrecoverability will be necessary for E . We do

not, however, consider a key being used multiple times and instead assume a new key is

generated with each submission, as suggested in [85].

Finally, we discuss the use of CTR mode. If we assume the encryption scheme is im-

plemented in ECB mode, two submissions of the same plaintext to AONT-RS will be

encrypted differently as each time a message is submitted, AONT-RS generates a new

key. However, if two plaintext blocks within the plaintext are identical, they will be en-

crypted to the same ciphertext block; the use of CTR mode (or other modes) will prevent

this. Therefore, which mode of operation used relies on the application and the necessary

properties: if ECB mode is used, identical plaintext blocks will be encrypted to identical

ciphertext blocks, but a synchronous counter is not required. If CTR mode is used, iden-

tical plaintext blocks will be encryption to distinct ciphertext blocks, but a synchronous

counter is required.

96

4.3 The AONT-RS scheme

4.3.2.3 Assumptions on the hash function

In order for AONT-RS to be secure, the hash function must be indistinguishable from a

random oracle.

Let {0, 1}∗ denote the space of finite binary strings and assume Hash : {0, 1}∗ → {0, 1}λ.

In order for Hash to be indistinguishable from a random oracle, we must assume that

each bit of the digest, h = Hash(x), is chosen uniformly and independently at random.

This means that the entropy of h = Hash(x) is maximal, so H(h) = 2λ. A security proof

under this assumption is said to be in the random oracle (RO) model.

From a theoretical point of view, assuming the hash function is indistinguishable from

a random oracle is a very strong assumption as no actual hash function can have this

property. However, authors, such as Bellare and Rogway in [6], have argued that such a

model is valuable and can capture the properties practical primitives really seem to possess

and provide provable security without losing efficiency.

The idea of the random oracle model builds on work by Goldreich, Goldwasser and Mi-

cali [39, 40] and Fiat-Shamir [36]. A discussion of instantiating random oracles with

primitives, such as a hash function, is given in [6].

4.3.2.4 Requirements of the IDA

In the AONT-RS definition, it is assumed the internal IDA is the efficient version of

Rabin’s IDA, described in Section 2.4.3.2. We wish to generalise this so other IDAs can

be used.

In particular, any IDA that is equivalent to, or has stronger security properties than, a

linear (0, t;n)-ramp scheme can be used; the efficient version of Rabin’s IDA meets this

security requirement. This security requirement is necessary as an unauthorised coalition

of at most t−1 players must learn no information about at least λ elements of the input to

the IDA, C||cd. As previously shown, if the unauthorised coalition learns more than this,

they will learn information about the key k or the plaintext M . If a linear (0, t;n)-ramp

scheme is used with an input of at least tλ bits, it is guaranteed a coalition of t−1 players

97

4.3 The AONT-RS scheme

Algorithm 4.3: ShareA0(M).

1 k
$←− KeyGen({0, 1}λ);

2 C
$←− Enck(M);

3 h = Hash(C);
4 cd = h⊕ k;
5 V ← ShareECC(C||cd);
6 return V .

Algorithm 4.4: RecoverA0(V).

1 j = 0;
2 for i← 0 to n do
3 if V [i] 6= ⊥ then

V ′[j]← [j];
j = j + 1;

4 if j < t− 1 then
return ⊥;

5 (C||cd)←
RecoverECC(V ′[0], . . . ,V ′[t− 1]);

6 h = Hash(C);
7 k = h⊕ cd;
8 M ← Deck(C);
9 return M .

Figure 4.5: The share and recover algorithms defining AONT-RS0.

will always be missing at least λ bits.

Other information dispersal algorithms with stronger properties can also be used, such

as a perfect threshold scheme, but one equivalent to a linear (0, t;n)-ramp scheme will

achieve optimal storage and sufficient security.

Rather than using ShareRIDA and RecoverIDA to denote the efficient version of Rabin’s

IDA, we will use ShareECC and RecoverECC to denote a more general IDA with the

required security properties, as discussed in Section 2.4.2.

4.3.2.5 Generalised definition of AONT-RS

We now combine the aforementioned assumptions and security requirements to re-define

AONT-RS.

Fix integers t, n ∈ N such that 1 ≤ t ≤ n. Assume there exists an ind-1 and key-1

secure symmetric-key encryption scheme E with key space K = {0, 1}λ, message space

M = {0, 1}∗ and ciphertext space C = {0, 1}ω, where ω ≥ (t − 1)λ. Assume there exists

a hash function Hash(·) that outputs a digest of λ bits and is indistinguishable from a

random oracle. Assume there is an IDA equivalent to a linear (0, t;n)-ramp scheme with

algorithms ShareECC and RecoverECC .

98

4.3 The AONT-RS scheme

Procedure Initialise G0

1 k
$←− KeyGen{0, 1}λ;

2 k′ = k;

3 b
$←− {0, 1};

Procedure Initialise G5

1 k
$←− KeyGen{0, 1}λ;

2 k′
$←− KeyGen{0, 1}λ;

3 b
$←− {0, 1};

Procedure Deal(x0, x1) G0, G5

1 C ← Enck(xb);
2 h← Hash(C);
3 h⊕ k′ = cd;
4 X ← ShareECC(C||cd);

Procedure Corrupt(i) G0, G5

1 V [i]← (X[i]||S1[i]|| . . . ||Sn[i]);
2 return V [i]

Procedure Finalise(b′) G0, G5

1 if b′ = b then
return true;

2 else return false;

Figure 4.6: Procedures used to construct games G0 and G5, used to prove the privacy of
AONT-RS0 in Theorem 4.3.1.

From now on, we call the generalised AONT-RS scheme under the above assumptions

with algorithms as in Figure 4.5, the AONT-RS0 scheme. Denote AONT-RS0 by Π0 with

algorithms ShareA0 and RecoverA0.

4.3.3 Security analysis of AONT-RS0

We now prove AONT-RS0 achieves computational privacy in the RO model.

Theorem 4.3.1 (Privacy of AONT-RS0). Let A be a privacy adversary against the

AONT-RS0 scheme Π0 and let the internal hash function Hash be indistinguishable from

a random oracle. Let the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t− 1)λ. Then there is an

ind-1 adversary B attacking the indistinguishability of E such that

AdvPrivΠ0
(A) ≤ AdvIndE (B),

where B makes only one query during the deal procedure of the indistinguishability game

99

4.3 The AONT-RS scheme

Ind and the running time of B is that of A plus one execution of the AONT-RS0 share

algorithm, ShareA0.

Proof. The proof relies on gamesG0 andG5, as in Figure 4.6, where bothG0 andG5 consist

of four procedures: Initialise, Deal, Corrupt and Finalise. We define the procedures

individually and put next to the procedure the games in which it appears. Games G0 and

G5 only differ in the initialise procedure.

The advantage of the AONT-RS0 privacy adversary A can be defined as

AdvPrivΠ0
(A) = 2 · Pr[GA0]− 1. (4.3.1)

To justify this, we explain that G0 is just like the game defining the privacy of a threshold

scheme, as in Game 2.3, but with the AONT-RS0 share algorithm.

Game G5 differs from G0 only because the key k used to encrypt the message M is different

to the value k′ used to compute cd = h⊕ k′. We claim that

Pr[GA0] = Pr[GA5], (4.3.2)

as the hash function Hash behaves as a random oracle. Due to the properties of the IDA

and the size of the ciphertext C = {0, 1}ω, where ω ≥ λ(t − 1), the adversary is always

missing either at least λ bits of C or all of cd. Thus, the adversary can learn either h or

cd. If A learns h, h = c′d ⊕ k′ for some c′d 6= cd. If A learns cd, then cd = h′ ⊕ k′ for some

h′ 6= h. Thus, (4.3.2) holds true.

Construct an adversary B attacking the indistinguishability of E such that

2 · Pr[GA5]− 1 ≤ AdvIndE (B). (4.3.3)

Adversary B will run A, who will be playing G5, as a subroutine, and will act as their

challenger. Adversary B will use the advantage of A to gain an advantage in the indistin-

guishability game, as follows.

Adversary B picks k′
$←− {0, 1}λ and runs A. Adversary A submits (x0, x1) to B during the

deal procedure, and B will query x0, x1 to its indistinguishability challenger and receive

100

4.3 The AONT-RS scheme

C
$←− Enck(xb) in return, where k is the key generated by the challenger. Now, B executes

the rest of the deal procedure of G5 using k′; so B computes Hash(C) = h, h ⊕ k′ = cd

and X ← ShareECC(C||cd). When A submits Corrupt(i) queries, B responds with V [i],

where V [i]← (X[i]||S1[i]|| . . . ||Sn[i]). When A outputs a bit b′ and submits this to B, B

passes this onto their indistinguishability challenger. The advantage of B is 2·Pr[b′ = b]−1.

By combining (4.3.1), (4.3.2) and (4.3.3), we see that

AdvPrivΠ0
(A) ≤ AdvIndE (B),

as required.

4.3.4 Efficiency analysis of AONT-RS0 and comparison with HK0

In [85], Resch and Plank briefly compare AONT-RS to Krawczyk’s HK0 [60]. They then

conduct a performance comparison of AONT-RS against Rabin’s IDA [80] (defined in

Section 2.4.3.1) and Shamir’s threshold scheme [91] (introduced in Construction 2.3.3).

However, neither Rabin’s IDA nor Shamir’s threshold scheme have similar security goals

to AONT-RS. Rabin’s IDA has security equivalent to a linear (0, t;n)-ramp scheme and

would not be used to distribute data if there were privacy concerns, whereas Shamir’s

threshold scheme achieves perfect security, which would not be used to share large data

due to the bounds on the share sizes. The authors do not conduct a thorough comparison

of AONT-RS with Krawczyk’s HK0, which achieves computational security.

Here, we conduct a thorough comparison between AONT-RS0 and Krawczyk’s HK0 in

which we consider the security achieved, the share sizes for each scheme and the efficiency

of the share and recover algorithms.

To allow for a fair comparison, we assume both AONT-RS0 and HK0 use the systematic

version of Rabin’s IDA, as in Section 2.4.3.2, and that HK0 uses Shamir’s threshold scheme.

We also assume both AONT-RS0 and HK0 use the same symmetric-key encryption scheme

E with the same security parameter λ.

We also assume C ∈ {0, 1}ω with ω ≥ λ(t − 1). This is for the benefit of AONT-RS0 as,

otherwise, the scheme would be vulnerable to attacks described in Section 4.3.2.1. We

101

4.3 The AONT-RS scheme

assume C is as described in both schemes in order to allow for a fair comparison.

It is noted that if ω < λ(t − 1), AONT-RS0 will need to pad the message to lengthen

C, whereas HK0 can distribute C as is. This is a limitation of AONT-RS0. However, as

mentioned previously, a computationally secure threshold scheme is often used instead of

a perfect threshold scheme when M is large. Therefore it may be reasonable to assume

that ω ≥ λ(t− 1) in general.

To illustrate the kinds of parameters that may be used, we highlight an example presented

in [85]. They consider a scenario with n = 16 players and a threshold of t = 10. They

choose the security parameter to be λ = 128 bits. The smallest ciphertext that could be

securely distributed via AONT-RS0 in this scenario is λ(t − 1) = 128 × 9 = 1152 bits.

In their scenario, the authors of [85] consider distributing a 4KB block of data, which

is 32000 bits of information. This is much larger than the minimum size required to

guarantee security and, in many real-life scenarios, this is likely to be the case. If less than

1152 bits were to be distributed via AONT-RS0, assuming these parameters for λ, n and

t, padding would be required. If less than 1152 bits were to be distributed in the HK0

scheme under the same parameters, no padding would be required.

Under these assumptions, we now compare AONT-RS0 with HK0.

4.3.4.1 Security

AONT-RS0 achieves computational privacy, assuming E is ind-1 and key-1 secure, that

Hash is indistinguishable from a RO and the IDA is equivalent to a (0, t;n)-linear ramp

scheme.

Likewise, HK0 achieves computational privacy, also assuming E is ind-1 and key-1 secure

and with the additional assumption of the existence of a perfect (t, n)-threshold scheme

and an IDA (with no privacy requirements).

As HK0 is computationally secure under standard assumptions, whereas AONT-RS0 is

only computationally secure in the RO model, HK0 is considered to be more secure.

However, being secure in the RO model is considered to be sufficient for the majority of

applications [6].

102

4.3 The AONT-RS scheme

4.3.4.2 Share size

In AONT-RS0, each player’s share consists of

⌈
ω + λ

t

⌉

bits. This is because (C||cd), a total of ω+λ bits, would be input to the IDA, which would

output n shares, each consisting of
⌈
ω+λ
t

⌉
bits.

In HK0, each player’s share would consist of

⌈ω
t

⌉
+ λ

bits. This is because each player’s share consists of a ciphertext share C[i] and a key share

output from Shamir’s threshold scheme, K[i]. The ciphertext is distributed via the IDA

and so each ciphertext share would consist of
⌈
ω
t

⌉
bits. Assuming the key is distributed

by an ideal, perfect threshold scheme (which Shamir’s is), each key share would consist of

λ bits. Thus the total size of the share is the sum of the two parts.

(Alternatively, because there are no security requirements on the IDA used in HK0, repli-

cation, as in Section 2.4.1, could be used as the IDA. This would make the share size

larger, as it would total ω + λ bits.)

We can compare the share sizes achieved and see that

⌈
ω + λ

t

⌉
=

⌈
ω

t
+
λ

t

⌉
≤
⌈ω
t

⌉
+

⌈
λ

t

⌉
<
⌈ω
t

⌉
+ λ,

for all t > 1. Therefore AONT-RS0 achieves smaller share sizes than HK0 for all param-

eters λ, n and t. In particular, the ratio between the share sizes achieved is larger if t is

larger. So, if t is chosen to be close to n, the ratio between the two share sizes will be

larger than if t is chosen to be small (i.e., if t = 2).

103

4.3 The AONT-RS scheme

4.3.4.3 Efficiency of share algorithms

When computing the efficiency of the share algorithms for both AONT-RS0 and HK0,

the computations required for the encryption algorithm will not be taken into account, as

both schemes will use the same encryption algorithm to encrypt the same size message M

under the same size key.

After encrypting M , the AONT-RS0 share algorithm requires one hash function compu-

tation, Hash : {0, 1}ω → {0, 1}λ, and one XOR of λ bits (XORing h and k to calculate

cd). Then, (C||cd) is distributed via the IDA. Assuming the efficient version of Rabin’s

IDA is used, this requires (n− t)t multiplications and (n− t)(t− 1) additions in the field

GF (2d
ω+λ
t e).

The HK0 share algorithm, after encrypting M , requires the distribution of the key k via

a perfect threshold scheme. We have assumed Shamir’s threshold scheme is used, which

will require n(t − 1) multiplications and n(t − 1) additions in GF (2λ) to run the share

algorithm, as in Section 3.3.2.2. Other perfect threshold schemes can be used; a discussion

of efficient, perfect threshold schemes is held in Section 3.3. After the key is shared, the

ciphertext is distributed via the IDA. As the efficient version of Rabin’s IDA is used, this

requires (n− t)t multiplications and (n− t)(t− 1) additions in the field GF (2d
ω
t e).

(Alternatively, as before, because there are no security requirements on the IDA used in

HK0, replication could be used. This would require no computation).

In general, if HK0 uses an optimal IDA (such as Rabin’s IDA), AONT-RS0 requires

fewer bitwise XORs than HK0. If, however, HK0 uses replication rather than an optimal

IDA, HK0 has a much more efficient share algorithm as (excluding encryption) the only

computation required is for the sharing of k via the perfect threshold scheme. However, in

achieving a more efficient share algorithm, HK0 with replication compromises considerably

on the share size.

We briefly note the effect of pre-computation in these schemes. If pre-computation is

possible, AONT-RS0 will be unable to benefit as nothing can be computed prior toM being

submitted. On the other hand, the HK0 scheme can only conduct the pre-computation

possible in the perfect threshold scheme (a discussion of which is included in Section 3.3).

104

4.3 The AONT-RS scheme

4.3.4.4 Efficiency of recover algorithms

In the AONT-RS0 recover algorithm, the players submit shares of size
⌈
ω+λ
t

⌉
. When t

players submit their shares, they are input to the IDA recover algorithm. This requires t2

multiplications and t(t− 1) additions in GF (2d
ω+λ
t e) in order to recover C||cd. Following

this, one hash computation Hash : {0, 1}ω → {0, 1}λ is required. Finally, one XOR of λ

bits is necessary to recover k, then C is decrypted.

For the HK0 recover algorithm, the players all have shares of size
⌈
ω
t

⌉
+ λ. After t

players submit their shares, the ciphertext share is separated from the key share. The

IDA is then used to recover the ciphertext from the ciphertext shares. If Rabin’s IDA

is used, this requires t2 multiplications and t(t − 1) additions in GF (2d
ω
t e). (As before,

if replication is used instead, no computation is required in this step.) Then, the key is

recovered via the perfect threshold scheme recover algorithm, which, if Shamir’s threshold

scheme is used, requires either t(t− 1) multiplications and t2 − 1 additions, or O(t log2 t)

operations, dependent on the method of recovery. A discussion on the efficiency of the

recover algorithm of Shamir’s scheme, as well as other threshold schemes, is available in

Section 3.3. Finally, the ciphertext is decrypted to recover M .

In general, if HK0 uses an optimal IDA (such as Rabin’s IDA), AONT-RS0 requires fewer

bitwise XORs than HK0. As before, if HK0 uses replication rather than an optimal

IDA, HK0 has a much more efficient recover algorithm as (excluding encryption) the only

computation required is the recovery of k.

4.3.4.5 Conclusion of comparison

This analysis shows that, in assuming the random oracle model, AONT-RS0 is able to

achieve a more efficient scheme than HK0, in terms of memory size and efficiency of the

share and recover algorithms.

However, if the number of bitwise operations is prioritised above memory, HK0 could use

replication rather than Rabin’s IDA. This would result in HK0 having much larger share

sizes than AONT-RS0, but requiring fewer bitwise operations to run the share algorithm.

105

4.4 Extending AONT-RS0 to be robust

4.4 Extending AONT-RS0 to be robust

In this section, we extend AONT-RS0 to be a robust, computationally secure threshold

scheme, as in Definition 2.3.15.

We begin by discussing the use of a canary in the original AONT-RS definition and show

how the canary does not extend the scheme to be robust, but does provide integrity.

We then discuss two techniques that provide robustness and consider applying them to

AONT-RS0. The first technique utilises hash functions, as used by Krawczyk to extend

HK0 to be robust, resulting in HK1. The second relies on commitment schemes, which

were used by Bellare and Rogaway to provide an alternative robust extension to HK0,

called HK2 [8]. We briefly introduce both HK1 and HK2 before adopting the techniques

to extend AONT-RS0 to be robust.

4.4.1 Data integrity using a canary

In the original definition of AONT-RS, the authors use a canary [85]. The canary, denoted

Mb in Figure 4.5, is a publicly known value that is appended to the plaintext before

encryption. When the ciphertext is decrypted, the recovered value can be compared to

the publicly known value and, if they are equal, the plaintext is accepted to be correct. If

they are not equal, the recover algorithm halts, concluding there has been an error.

The canary provides the user with some guarantee that the recovered plaintext is correct.

That is, the canary provides data integrity, one of the security goals introduced in Sec-

tion 2.1.2, as it provides a means of detecting whether the data has been manipulated in

an unauthorised manner.

However, the canary does not extend AONT-RS to be robust, as in Definition 2.3.15, as

the scheme is unable to recover the correct plaintext, even if only one submitted share is

corrupt. Although the canary is able to flag an incorrect plaintext, it cannot recover the

correct plaintext. It recognises data has been altered in an unauthorised manner, but is

not able to recover the original plaintext in these settings.

106

4.4 Extending AONT-RS0 to be robust

In summary, the use of a canary extends a threshold scheme to provide data integrity, but

does not extend the scheme to be robust. A canary could be used to provide integrity in

AONT-RS0, as is done in AONT-RS, but it would not make the scheme robust.

The techniques we consider next to extend AONT-RS0 to be robust (using hash functions

and commitment schemes) allow recovery of M even if false shares are submitted. In addi-

tion to this, they highlight which share (or shares) are corrupt and thus allow the user to

take any necessary action. However, it is noted that both hash functions and commitment

schemes require more computation than the use of a canary, so which technique (either

a robust extension or a canary) is used depends on the application. In practice, both

techniques could be combined; the canary could first be verified and, only if the canary is

incorrect, will the shares be individually verified.

4.4.2 Robust extension using hash functions

After Krawczyk proposed HK0 in [60], he proposed a robust extension that utilised hash

functions. Thirteen years later, Bellare and Rogaway proved this robust extension, which

they call HK1, to be computationally secure and robust, both in the RO model.

We begin by briefly introducing HK1, then apply hash functions in the same manner in

order to extend AONT-RS0 to be robust.

4.4.2.1 HK1

Let E be a symmetric-key encryption scheme with ind-1 and key-1 security. Assume

there is a perfect (t, n)-threshold scheme with share and recover algorithms SharePTS

and RecoverPTS , and a (t, n)-IDA with algorithms ShareIDA and RecoverIDA (there

are no security requirements for this IDA). Finally, let Hash be a hash function that

is indistinguishable from a RO, and let ShareECC and RecoverECC be algorithms for a

(t, n)-ECC (that is, an IDA equivalent to a linear (0, t;n)-ramp scheme).

The HK1 share and recover algorithms are denoted by ShareHK1 and RecoverHK1 and

defined in Figure 4.7.

107

4.4 Extending AONT-RS0 to be robust

Algorithm 4.5: ShareHK1(M).

1 k
$←− KeyGen({0, 1}λ);

2 C
$←− Enck(M);

3 K
$←− SharePTS(k);

4 C
$←− ShareIDA(C);

5 for i← 1 to n do
hi ← Hash(K[i]||C[i]);

Si
$←− ShareECC(hi);

6 for i← 1 to n do
V [i]←
(K[i]||C[i]||S1[i]|| . . . ||Sn[i]);

7 return V .

Algorithm 4.6: RecoverHK1(V).

1 for i← 1 to n do
(K[i]||C[i]||S1[i]|| . . . ||Sn[i])←
V [i];

2 for i← 1 to n do
hi ← RecoverECC(Si);

3 for i← 1 to n do
if V [i] 6= ♦ and
Hash(K[i]||C[i]) 6= hi then
K[i]← ♦ ;C ← ♦;

4 k ← RecoverPTS(K);
5 C ← RecoverIDA(C);
6 M ← Deck(C);
7 return M .

Figure 4.7: The share and recover algorithms defining HK1, a robust, computationally
secure threshold scheme by Krawczyk [60].

The HK1 share algorithm, defined in Algorithm 4.5, begins the same as the HK0 share

algorithm, as in Algorithm 2.5. The HK1 share algorithm inputs the data M to be

distributed, generates a λ bit key k, and encrypts M under k to calculate the ciphertext

C. The key k is shared via a (t, n)-perfect threshold scheme, which returns an n-vector K.

The ciphertext C is shared via a (t, n)-IDA (with no security requirements), which returns

an n-vector C. Now, rather than giving player Pi a share consisting of a ciphertext share

and a key share, as is done in HK0, HK1 hashes each pair (K[i]||C[i]), for 1 ≤ i ≤ n, to

calculate the digests hi. Each digest is then distributed via a (t, n)-ECC, which outputs

an n-vector Si. As their share, player Pi is given a key share K[i], a ciphertext share

C[i], and the ith element from each of the vectors Si. We can recognise that this share is

equivalent to a share from HK0, with an additional n other elements, where each element

is a codeword of the digest of every player’s ciphertext share and key share.

The recover algorithm, defined in Algorithm 4.6, inputs an n-vector V , where the ith

element V [i] is either a string V [i] ∈ {0, 1}∗, or the value ♦. Each share is parsed into its

components. The elements Si[1], . . . ,Si[n] are then used as the vector Si to reconstruct

the values hi via the ECC recover algorithm. The digest of each pair (K[i]||C[i]) is then

computed. If Hash(K[i]||C[i]) does not equal the reconstructed value hi, the ciphertext

share and key share are replaced with ♦, meaning they are corrupt. Finally, the key k

and the ciphertext C are recovered via the threshold scheme and IDA recover algorithms,

then C is decrypted under k to recover the data, M .

108

4.4 Extending AONT-RS0 to be robust

Algorithm 4.7: ShareA1(M).

1 k
$←− KeyGen({0, 1}λ);

2 C
$←− Enck(M);

3 h = H(C);
4 cd = h⊕ k;
5 X ← ShareIDA(C||cd);
6 for i← 1 to n do

hi ← Hash(X[i]);

Si
$←− ShareECC(hi);

7 for i← 1 to n do
V [i]← (X[i]||S1[i]|| . . . ||Sn[i]);

8 return V .

Algorithm 4.8: RecoverA1(V).

1 for i← 1 to n do
(X[i]||S1[i]|| . . . ||Sn[i])← V [i];

2 for i← 1 to n do
hi ← RecoverECC(Si);

3 for i← 1 to n do
if V [i] 6= ♦ and
Hash(X[i]) 6= hi then
X[i]← ♦;

4 C||cd ← RecoverIDA(X);
5 h = H(C);
6 k = h⊕ cd;
7 M ← Deck(C);
8 return M .

Figure 4.8: The share and recover algorithms defining AONT-RS1, the robust extension
of AONT-RS0 via hash functions.

4.4.2.2 AONT-RS1

Let E be an ind-1 and key-1 secure symmetric-key encryption scheme. Assume the exis-

tence of a (t, n)-IDA (with no security requirements), a (t, n)-ECC (that is, an IDA with

security equivalent to a linear (0, t;n)-ramp scheme) and a hash function Hash that is in-

distinguishable from a RO. Let Π1 denote AONT-RS1, with share and recover algorithms

as in Figure 4.8. Let the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

We believe AONT-RS1 to be both private and recoverable in the RO model. We have not

formally proved this, but the proof is likely to require minor adaptations to the somewhat

cumbersome proofs of Theorem 1 in [8] (to show the scheme is private) and Theorem 3

in [8] (to show the scheme is recoverable). These adaptations are expected to be similar to

those made to the proof of HK2 in order to prove AONT-RS2 is private and recoverable,

which follows in Section 4.4.3.3.

4.4.3 Robust extension using commitment schemes

After proving HK1 is private and recoverable in the RO model, Bellare and Rogaway

looked to construct a robust scheme that was recoverable under standard assumptions.

They achieved their goal by using commitment schemes, rather than hash functions [8].

109

4.4 Extending AONT-RS0 to be robust

The resulting robust scheme is called HK2.

In this section, we briefly introduce commitment schemes and HK2, then apply the tech-

nique to extend AONT-RS0 to be recoverable under standard assumptions.

4.4.3.1 Committment schemes

Intuitively, a commitment scheme allows player Pi to commit to a message M without

revealing any information about M to a different player, Pj . When Pi does want to reveal

M to Pj , Pj is assured the plaintext revealed by Pi was the plaintext originally committed

to.

Definition 4.4.1. A commitment scheme, denoted by CS, is a set of three algorithms,

ParGen, Ct and V fy, as follows.

• The parameter generation algorithm ParGen outputs the parameters of the scheme,

denoted by π.

• The commitment algorithm Ct takes as input the parameters of the scheme, π, and

the message to be committed to, M . It outputs two values: a committal H, which is

given to player Pj, and a decommittal R which is kept by Pi.

• The verification algorithm V fy is run when the message M is being revealed. It

takes as input the triple (H,M,R) and outputs a ‘1’ if the inputs are valid, or a ‘0’

otherwise.

A commitment scheme should satisfy both the hiding and binding properties, defined

in Figure 4.9 and attributed to [8]. Intuitively, if the commitment scheme has the hiding

property, Pi is assured Pj learns no information about M prior to the reveal. If the scheme

has the binding property, Pj is assured Pi has revealed the message that was originally

committed to.

In the hiding game, defined in Game 4.9, the challenger begins by generating the pa-

rameters and randomly choosing a bit b ∈ {0, 1}. The adversary must submit two valid

messages M0 and M1 during the deal procedure and the challenger will use Mb as an input

to the Ct algorithm. The adversary will receive a committal H back. The adversary is

110

4.4 Extending AONT-RS0 to be robust

Game 4.9: Hide

Procedure Initialise

1 π
$←− ParGen;

2 b
$←− {0, 1};

Procedure Deal(M0,M1)
1 if M0,M1 /∈M then

return ⊥;

2 else (H,R0)
$←− Ct(π,Mb);

3 return (H);

Procedure Finalise(b′)
1 if b′ = b then

return true;
2 else return false;

Game 4.10: Bind

Procedure Initialise

1 π
$←− ParGen;

Procedure Commit(M0)
1 if M0 /∈M then

return ⊥;

2 else (H,R0)
$←− Ct(π,M0);

3 return (H,R0);

Procedure Finalise(M1, R1)
1 if M1 /∈M then

return ⊥;

2 if M0 = M1 then
return ⊥;

3 if V fy(H,M0, R0) =
V fy(H,M1, R1) = 1 then

return true;
4 else return false;

Figure 4.9: Hiding and binding games used to define security notions in a commitment
scheme.

allowed to make up to q queries during the deal procedure. After this, the adversary must

submit a guess b′ for b. The adversary wins if they guess b correctly.

Call adversary A playing the hiding game against CS a hiding adversary. Let Pr[HideA]

be the probability A correctly guesses b′ = b. The advantage of A is

AdvHideCS (A) = 2 · Pr[HideA]− 1.

Say CS is ε(·)-hiding if AdvHideCS (A) ≤ ε(q) for any adversary that makes at most q queries

during the deal procedure.

In the binding game, defined in Game 4.10, the challenger generates the parameters, then

the adversary submits a valid message M0. The challenger uses M0 as an input to Ct

and returns both the committal H and the decommittal R0 to the adversary. Once the

adversary has received the pair (H,R0), they must submit a distinct message M1 along

with a decommittal R1. The adversary wins if the triple (H,M1, R1) verifies successfully.

111

4.4 Extending AONT-RS0 to be robust

Algorithm 4.11: ShareHK2(M).

1 k
$←− KeyGen({0, 1}λ);

2 C
$←− Enck(M);

3 K
$←− SharePTS(k);

4 C
$←− ShareIDA(C);

5 for i← 1 to n do

(Hi, Ri)
$←− Ct(K[i]||C[i]);

Si
$←− ShareECC(Hi);

6 for i← 1 to n do
V [i]←
(Ri||K[i]||C[i]||S1[i]|| . . . ||Sn[i]);

7 return V .

Algorithm 4.12: RecoverHK2(V).

1 for i← 1 to n do
(Ri||K[i]||C[i]||S1[i]|| . . . ||Sn[i])←
V [i];

2 for i← 1 to n do
Hi ← RecoverECC(Si);

3 for i← 1 to n do
if V [i] 6= ♦ and
V fy(Hi,K[i]C[i], Ri) = 0 then
K[i]← ♦;
C ← ♦;

4 k ← RecoverPTS(K);
5 C ← RecoverIDA(C);
6 M ← Deck(C);
7 return M .

Figure 4.10: The share and recover algorithms defining HK2, a robust, computationally
secure threshold scheme by Bellare and Rogaway [8].

We call an adversary A playing Bind a binding adversary. The advantage of A is

AdvBindCS (A) = Pr[BindA].

There exist a number of commitment scheme that meet these security requirements. These

include [19], which is based on discrete logarithms, and [31] [45], which both rely on a

collision-resistant hash function.

4.4.3.2 HK2

The HK2 scheme consists of two algorithms ShareHK2 and RecoverHK2, defined in Fig-

ure 4.10. HK2 is similar to HK1 but, where HK1 uses a hash function and message digests,

HK2 uses a commitment scheme and committals.

Similar to the HK1 share algorithm, HK2 begins the same as HK0. However, rather than

computing the hash of (K[i]||C[i]), HK2 uses each pair as the message to be committed to

in a commitment scheme. So, for each i, (K[i]||C[i]) is input to the committal algorithm

Ct, which returns a committal Hi and a decommittal Ri. Each committal Hi is then

shared via a (t, n)-ECC, which returns a vector Si. Each player’s share then consists of

112

4.4 Extending AONT-RS0 to be robust

Algorithm 4.13: ShareA2(M).

1 k
$←− KeyGen({0, 1}λ);

2 C
$←− Enck(M);

3 h = H(C);
4 cd = h⊕ k;
5 X ← ShareIDA(C||cd);
6 for i← 1 to n do

(Hi, Ri)
$←− Ct(X[i]);

Si
$←− ShareECC(Hi);

7 for i← 1 to n do
V [i]←
(Ri||X[i]||S1[i]|| . . . ||Sn[i]);

8 return V .

Algorithm 4.14: RecoverA2(V).

1 for i← 1 to n do
(Ri||X[i]||S1[i]|| . . . ||Sn[i])←
V [i] ;

2 for i← 1 to n do
Hi ← RecoverECC(Si) ;

3 for i← 1 to n do
if V [i] 6= ♦ and
V fy(Hi,X[i], Ri) = 0 then
X[i]← ♦;

4 C||cd ← RecoverIDA(X);
5 h = H(C); k = h⊕ cd;
6 M ← Deck(C);
7 return M .

Figure 4.11: The share and recover algorithms defining AONT-RS2, the robust extension
of AONT-RS0 via commitment schemes.

the key and ciphertext share (K[i]||C[i]), the decommittal for their shares Ri and an ECC

contribution from each of the n committals.

As with HK1, the recover algorithm takes as input an n-vector V , where the ith element

V [i] is either a string V [i] ∈ {0, 1}∗, or the value ♦. Each share is parsed into its com-

ponents and each vector Si is used to reconstruct the committal values Hi via the ECC

recover algorithm. Then, for each share, the reconstructed committal Hi, the ciphertext

and key share (K[i]||C[i]) and the decommittal Ri are input to the commitment scheme’s

verify algorithm, V fy. If the triple successfully verify, (K[i]||C[i]) is accepted as correct.

If the triple do not verify successfully, each value is replaced with a ♦ to denote a corrupted

share. Then, as before, k, C and finally M are recovered.

4.4.3.3 AONT-RS2

We can use commitment schemes, as in HK2, to extend AONT-RS0 to be robust.

Let E be an ind-1 and key-1 secure symmetric-key encryption scheme. Assume the exis-

tence of a (t, n)-ECC, an IDA equivalent to a linear (0, t;n)-ramp scheme, an ε(·)-hiding

commitment scheme CS and a hash function Hash that is indistinguishable from a RO.

Let Π2 denote the AONT-RS2 scheme, with share and recover algorithms as in Figure 4.11.

Let the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

113

4.4 Extending AONT-RS0 to be robust

4.4.3.4 Proof of privacy

The AONT-RS2 scheme Π2 can be proven to achieve computational privacy in the RO

model by adapting the proof of privacy for the HK2 scheme by Bellare and Rogaway [8].

Theorem 4.4.2 (Privacy of AONT-RS2). Let A be a privacy adversary against the

AONT-RS2 scheme Π2 and let the hash function Hash be indistinguishable from a random

oracle. Then there is an ind-1 adversary B attacking the indistinguishability of E such that

AdvPrivΠ2
(A) ≤ AdvIndE (B) · 4ε(n),

where B makes only one query during the deal procedure of Game Ind and the running

time of B is that of A plus one execution of ShareA2.

Proof. As in [8], this proof relies on code-based game playing, a framework for which is

available in [7]. A game in this case will consist of an Initialise procedure, and then four

procedures that respond to adversary oracle queries, Deal, Corrupt, Hash and Finalise.

This proof will rely on five games and, as many of the games have procedures in common,

we define the procedures individually in Figure 4.12, and put next to the procedure the

games in which it appears. There are six games in total, denoted G0, . . . , G5. As an

example of how to read Figure 4.12, G0 consists of the Initialise, Deal and Corrupt

procedures on the left-hand side and the only Finalise procedure (at the bottom), whilst

G3 consists of the Initialise, Deal and Corrupt procedures on the right-hand side, and

the Finalise procedure.

The corrupt procedure in games G1, G2, G3, G4 refers to a probabilistic algorithm DCt

that works as follows. On input message X[i] and committal Hi, it lets Ω(X[i], Hi)

denote the set of all coins ω such that Ct, on input X[i] and coins ω, returns a pair whose

first component is Hi. If Ω(X[i], Hi) = ∅, then DCt returns ⊥. Else, it picks ω at random

from Ω(X[i], Hi), runs Ct on input X[i] and coins ω to get a pair (Hi, Ri) and returns

Ri. This algorithm is not necessarily efficiently implementable.

The advantage of the AONT-RS2 privacy adversary A can be defined as

AdvPrivΠ2
(A) = 2 · Pr[GA0]− 1.

114

4.4 Extending AONT-RS0 to be robust

Procedure Initialise G0, G1, G2

1 k
$←− KeyGen{0, 1}λ;

2 k′ = k;

3 b
$←− {0, 1};

Procedure Initialise G3, G4, G5

1 k
$←− KeyGen{0, 1}λ;

2 k′
$←− KeyGen{0, 1}λ;

3 b
$←− {0, 1};

Procedure Deal(x0, x1) G0, G1, G4, G5

1 C ← Enck(xb);
2 h← Hash(C);
3 h⊕ k′ = cd;
4 X ← ShareECC(C||cd);
5 for i← 1 to n do

(Hi, Ri)
$←− Ct(X[i]);

Si ← ShareECC(Hi)

Procedure Deal(x0, x1) G2, G3

1 C ← Enck(xb);
2 h← Hash(C);
3 h⊕ k′ = cd;
4 X ← ShareECC(C||cd);
5 C ← ShareECC(C||0);
6 for i← 1 to n do

(Hi, Ri)
$←− Ct(C[i]);

Si ← ShareECC(Hi)

Procedure Corrupt(i) G0, G5

1 V [i]← (Ri||X[i]||S1[i]|| . . . ||Sn[i]);
2 return V [i];

Procedure Corrupt(i) G1, G2, G3, G4

1 Ri
$←− DCt(Hi,X[i]);

2 V [i]← (Ri||X[i]||S1[i]|| . . . ||Sn[i]);
3 return V [i];

Procedure Finalise(b′) G0, G1, G2, G3, G4, G5

1 if b′ = b then
return true;

2 else return false;

Figure 4.12: Procedures used to construct games G0, G1, G2, G3, G4 and G5, which are
used to prove Theorem 4.4.2, the privacy of AONT-RS2.

115

4.4 Extending AONT-RS0 to be robust

Game G1 differs from G0 only in the corrupt procedure, which re-samples Ri using DCt.

Clearly,

Pr[GA0] = Pr[GA1] = Pr[GA2] + (Pr[GA1]− Pr[GA2]).

We construct an adversary D1 attacking the hiding property of CS such that

Pr[GA1]− Pr[GA2] = AdvHideCS (D1). (4.4.1)

Adversary D1 acts as the challenger to A and wishes to use A’s advantage to gain an

advantage against the hiding property of CS. Adversary D1 picks b
$←− {0, 1} and runs A.

When A submits x0, x1 to D1, D1 generates k
$←− {0, 1}λ and calculates C

$←− Enck(xb). D1

then computes H(C) = h and h⊕k = cd, then calculates both X ← ShareIDA(C||cd) and

C ← ShareIDA(C||0). For i, 1 ≤ i ≤ n, D1 submits C[i],X[i] (for X[i] 6= C[i]) during

the deal procedure of the hiding game to its challenger. Let Hi denote the commitment

value returned. Let Si ← ShareECC(Hi). When A makes a Corrupt(i) query to D1,

D1 computes its reply according to the case of the corrupt procedure of games G1 and

G2; that is, D1 generates a decommittal value Ri for X[i] and the given Hi and passes

V [i]← (Ri||X[i]||S1[i]|| . . . ||Sn[i]) toA. WhenA halts the corrupt procedure and finalises

with output b′, if b′ = b, adversary D1 passes ‘1’ to its challenger, guessing the commitment

value Hi was computed on X[i], rather than C[i]. Otherwise, D1 submits ‘0’.

Next, we have that

Pr[GA2] = Pr[GA3] +
(
Pr[GA2]− Pr[GA3]

)
,

where G3 differs from G2 only in the initialise procedure which XORs the digest h not

with the key k, but with a string k′. We claim that Pr[GA2] = Pr[GA3] because the hash

function is indistinguishable from a RO. After A has corrupted at most t− 1 shares, they

learn at most either

• no information about cd and all of C, and so can learn h = H(C); in which case

h = k ⊕ cd = k′ ⊕ c′d, where c′d 6= cd is some unknown string; or

• all of cd, but is missing at least λ bits of C; then cd = k′ ⊕ h′, where h′ 6= h is

unknown to A.

116

4.4 Extending AONT-RS0 to be robust

In either case, the adversary learns either h or cd and no information about k. Thus the

known value is the XOR of two unknown strings: changing one of these strings does not

affect the chances of A winning, thus Pr[GA2] = Pr[GA3].

Next, we have

Pr[GA3] = Pr[GA4] +
(
Pr[GA3]− Pr[GA4]

)
.

Construct adversary D2, also attacking the hiding property of CS, such that

Pr[GA3]− Pr[GA4] = AdvHideCS (D2). (4.4.2)

The construction of D2 is similar to D1, but D2 generates k, k′
$←− {0, 1}λ, encrypts xb

under k as before and now calculates cd = h⊕ k′.

Games G5 and G4 differ only during the corrupt procedure. Clearly Pr[GA4] = Pr[GA5].

Let B be an ind-1 adversary attacking E , as in the proof of Theorem 4.3.1. The advantage

of B is as in (4.3.3).

Now, let D be the hiding adversary that flips a fair coin and, if it lands heads, runs D1,

otherwise D2. Clearly,

AdvHideCS (D) =
1

2

(
AdvHideCS (D1) + AdvHideCS (D2)

)
. (4.4.3)

Since Ct is assumed to be ε(·)-hiding and D makes at most n queries, we have that

AdvHideCS (D) ≤ ε(n). Combining this and (4.4.1), (4.4.2), (4.4.3) gives us

(
Pr[GA1]− Pr[GA2]

)
+
(
Pr[GA3]− Pr[GA4]

)
≤ 2ε(n).

As we know that Pr[GA2] = Pr[GA3] and Pr[GA4] = Pr[GA5], and by substituting in the

advantages of adversaries A and B, we can simplify and rearrange to give

AdvPrivΠ2
(A) ≤ AdvIndE (B) · 4ε(n),

117

4.4 Extending AONT-RS0 to be robust

Procedure Deal(x)

1 `
$←− [1, n]; k

$←− {0, 1}λ;

2 C
$←− Enck(x);

3 H(C) = h;
4 h⊕ k = cd;
5 X ← ShareECC(C||cd);
6 for i← 1 to n do

if i = ` then

(H`, R`)
$←− Commit(X[i]);

7 else (Hi, Ri)
$←− Ct(X[i]);

Si
$←− ShareECC(Hi);

8 for i← 1 to n do
V [i]←
(Ri||X[i]||S1[i]|| . . . ||Sn[i])

Procedure Corrupt(i)
1 return V [i];

Procedure Finalise(x′, j)
1 for i← 1 to n do

(Ri||X[i]||S1[i]|| . . . ||Sn[i])←
V ′[i];

2 return (X[`], R`)

Figure 4.13: Procedures used by adversary B to respond to adversary A in the proof of
Theorem 4.4.3, the robustness of AONT-RS2.

thus completing the proof.

4.4.3.5 Proof of robustness

AONT-RS2 can be proven to be computationally robust by adapting the proof of robust-

ness of HK2 by Bellare and Rogaway [85].

Theorem 4.4.3 (Robustness of AONT-RS2). Let A be a recoverability adversary against

the AONT-RS2 scheme Π2. Then there is an adversary B attacking the binding property

of the commitment scheme CS such that

AdvRecΠ2
(A) ≤ n ·AdvBindCS (B),

where the running time of B is that of A plus overhead consisting of an execution of the

ShareA2 and RecoverA2 algorithms of Π2.

Proof. Let A be a recoverability adversary against Π2. During the deal procedure, A

submits x to B. Let k, C, h, cd, X, H1, . . . ,Hn, S1, . . . ,Sn, V denote the quantities

generated by ShareA2(x). Let A corrupt at most t−1 shares. Let (VT) denote the output

of A. Let k′, C ′, h′, c′d, X
′, H ′1, . . . ,Hn, S′1, . . . ,S

′
n, V ′ denote the quantities recovered

by RecoverA2 with input V ′T ∪ VT . Consider the following events:

118

4.4 Extending AONT-RS0 to be robust

E1: ∃ ` ∈ [n] such that H` 6= H ′`

E2: ∃ ` ∈ T such that X ′[i] /∈ {♦,X[i]}

E3: cd 6= c′d

E4: C 6= C ′

If C ′ = C and c′d = cd, then the recovered secret x′ equals x. This is because h′ = H(C ′) =

H(C) = h and so c′d ⊕ h′ = cd ⊕ h = k. Therefore

AdvRecΠ2
(A) ≤ Pr[E3 ∪ E4]

≤ Pr[E1 ∪ E2 ∪ E3 ∪ E4]

= Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4].

We bound each term in turn. Let E1,` be the event that H ′` = H`. Let T be the set

of indexes of the shares corrupted by A. If i /∈ T , then the submission is V ′[i] and the

other uncorrupted shares returns V [i]. Hence S′`[i] = S`[i]. Note that S` is an output

of ShareECC(H`). Lemma 10 in [8] discusses perfect recoverability and, when applied to

ECCs, RecoverECC(S`) = H`, meaning that H ′` = H`. So Pr[E1,`] = 0. By the well-known

union bound [18],

Pr[E1] ≤
n∑
`=1

Pr[E1,`] = 0.

Now we construct adversary B such that

Pr[E1 ∩ E2] ≤ n ·AdvBindCS (B).

Adversary B runs A, responding to its deal and corrupt calls via the procedures in Fig-

ure 4.13, where Ct is the committal algorithm of CS run by B and Commit is a procedure

of the Bind game that B plays with its challenger. When A halts with output X, B runs

the finalise procedure.

Next, we claim both Pr[E2 ∩ E3] = 0 and Pr[E2 ∩ E4] = 0. As, if X ′[i] = X[i] for all i,

then C = C ′ and c′d = cd. So now

AdvRecΠ2
(A) = Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4]

≤ n ·AdvBindCS (B),

119

4.4 Extending AONT-RS0 to be robust

thus completing the proof.

4.4.4 Comparing robust extensions

The comparison between AONT-RS0 and HK0, as in Section 4.3.4, can mostly apply to

the comparison of AONT-RS1 with HK1, and AONT-RS2 with HK2.

AONT-RS1 and HK1 both achieve privacy and recoverability in the RO model. The

share sizes of both AONT-RS1 and HK1 remain the same as in AONT-RS0 and HK0,

plus an equivalent contribution to the shares in both schemes from the digests. Similarly,

the share and recover algorithms have the same complexity, with the addition of the

complexity contributed from the hash functions, which is equivalent for both AONT-RS1

and HK1. So, HK1 is more efficient than AONT-RS1 (in terms of share size and the

number of operations required to run the share and recover algorithms), and, unlike HK0

and AONT-RS0, achieves equivalent security, as both are private and recoverable only in

the RO model. Therefore, according to the metrics considered here, AONT-RS1 is more

efficient than, whilst achieving equivalent security to, HK1.

AONT-RS2 achieves privacy in the RO model and recoverability under standard assump-

tions, whereas HK2 achieves both privacy and recoverability under standard assumptions.

The share sizes of both AONT-RS2 and HK2 remain the same as in AONT-RS0 and

HK0, plus an equivalent contribution to the shares in both schemes from the commitment

scheme. Similarly, the share and recover algorithms have the same complexity, with the

addition of the complexity contributed from the commitment scheme, which is equivalent

for both AONT-RS2 and HK2.

Of the four robust, computationally secure threshold schemes (HK1, HK2, AONT-RS1

and AONT-RS2), AONT-RS1 is the most efficient (with respect to share size and the

number of operations in the share and recover algorithms). This is because both AONT-

RS0 is more efficient than HK0 (implying AONT-RS1 is more efficient than HK1) and

because hash functions are more efficient than commitment schemes (and so AONT-RS1

is more efficient than AONT-RS2). However, AONT-RS1 is less secure than both HK2

and AONT-RS2 (but achieves an equivalent security to HK1). In contrast, HK2 is the

least efficient, but the most secure, as it is both private and recoverable under standard

120

4.5 Conclusion

assumptions.

4.5 Conclusion

We generalised AONT-RS and showed information is leaked when ciphertexts are smaller

than λ(t−1) bits. We proved the generalised version of AONT-RS, called AONT-RS0, has

computational privacy in the RO model. We then extended AONT-RS to be robust using

two techniques: hash functions (which resulted in AONT-RS1), and commitment schemes

(resulting in AONT-RS2). We suggested AONT-RS1 achieves computational privacy and

recoverability, both in the RO model, with the proof being similar to the proof of HK1,

as in [8]. We proved AONT-RS2 achieves computational privacy in the RO model and

recoverability under standard assumptions by adapting the proof of HK2, also as in [8].

Finally, we compared AONT-R0S with HK0, considering the security, share size, and

efficiency of the share and recover algorithms. We used this comparison to compare AONT-

RS1 with HK1 and AONT-RS2 with HK2. We concluded that AONT-RS1 is the most

efficient robust extension but is the least secure (with a security equivalent to that of

HK1) whilst HK2 is the most secure, but the least efficient of the four robust schemes

considered.

121

Chapter 5

Repairable threshold schemes

Contents

5.1 Introduction . 123

5.1.1 Problem statement . 123

5.1.2 Näıve solution . 124

5.1.3 Efficiency metrics . 125

5.2 Preliminaries . 127

5.2.1 Combinatorial design theory . 127

5.2.2 Regenerating codes . 130

5.3 Existing solutions . 136

5.3.1 The enrolment RTS . 136

5.3.2 Combinatorial repairability . 146

5.3.3 GLF scheme . 151

5.4 Solutions using regenerating codes . 151

5.4.1 Applying regenerating codes to RTSs 152

5.4.2 Constructions of secure regenerating codes for RTSs 154

5.5 Comparison of techniques . 158

5.5.1 Comparing MBR and MSR codes 158

5.5.2 Comparison of techniques prioritising communication complexity 160

5.5.3 Comparison of techniques prioritising information rate 161

This chapter, which has been accepted as a paper by the Journal of Mathematical Cryptology

[64], is joint work with Doug Stinson and considers the problem of repairable threshold

122

5.1 Introduction

schemes, which allow players to securely repair a lost or corrupted share without the help

of the dealer.

5.1 Introduction

In this section, we motivate and define repairable threshold schemes and the efficiency

metrics that will be used to analyse them.

5.1.1 Problem statement

Consider a scenario in which a player in a (t, n)-threshold scheme loses or corrupts their

share and must repair it. In some settings, the player wishing to repair their share, called

the repairing player, could communicate with the dealer and request, then receive, a copy

of their share. However, the dealer may not always be accessible when a player needs to

repair their share. Ideally, in this dealer-less setting, the repairing player could ask for

help from its cohort of players to repair its share. A scheme in which this is possible is

called a repairable threshold scheme (RTS).

Now, in a repairable threshold scheme, we wish to maintain the security of the underlying

threshold scheme and not leak any information during a repair, and thus we must define

what it means for the repair algorithm to be secure. Assume a setting in which all players

execute the repair algorithm correctly. Inherited from the security definition of a (t, n)-

threshold scheme, consider an adversary with access to a coalition of at most t−1 players,

which may or may not include the repairing player. Each time the repair algorithm is

executed, the coalition of at most t − 1 players will pool their information; this includes

the information stored prior to the algorithm being executed, as well as all messages sent

and received during. In order to be secure, the accumulated information should yield no

information about the secret distributed by the RTS.

Definition 5.1.1. Let d ∈ N be such that t ≤ d ≤ n−1 and call d the repairing degree. A

(t, n, d)-repairable threshold scheme, or a (t, n, d)-RTS, is a perfect (t, n)-threshold scheme,

as in Definition 2.3.2, which, in addition to the Share and Recover algorithms, has a

Repair algorithm that allows a repairing player Pr to construct their original share with

123

5.1 Introduction

help from some set of d other players, called the helping players. The Repair algorithm

must be secure; that is, no player learns any new information (about either the secret or

other player’s shares) after the repair than was known before.

We briefly note the bounds on the repairing degree d. First, consider the lower bound

t ≤ d. This is a necessary condition since, if a coalition of fewer than t players were able

to construct a share for a player not in the coalition, then a coalition of t−1 players would

be able to construct a tth share and thus have enough shares to recover the secret s via

the recover algorithm. This would contradict the privacy of the RTS, inherited from the

threshold scheme, and would thus be insecure. The upper bound on the repairing degree

is d ≤ n − 1. This is also obvious since, if one of the n players lost their share, there are

at most n − 1 players that could possibly help. We remark that it is desirable to have

a small d, as this allows repairability to be more robust. For example, if d = n − 1 and

if two players are unavailable (they may be offline or corrupted), no players will be able

to repair their shares. In contrast, if d is small, repairability would be possible even in a

setting where a number of players are unavailable.

Finally, we introduce a notion, defined in [97], regarding the repairability of an RTS. As

motivation for this definition, we note that in Definition 5.1.1 not every d-subset of the n−1

players is required to be able to help the repairing player Pr repair their share. Instead,

it is necessary that at least one d-subset can help Pr. In order to distinguish between

schemes in which all d-subsets, or some d-subsets, are able to help Pr, we introduce the

following definition.

Definition 5.1.2. a A (t, n, d)-RTS has universal repairability if all d-subsets of the

potential n − 1 helper players are able to securely repair Pr’s share. A (t, n, d)-RTS has

restricted repairability if some, but not every, d-subset of the potential helper players are

able to securely repair Pr’s share.

5.1.2 Näıve solution

Consider Construction 5.1.3, which presents a näıve construction for a universally re-

pairable (t, n, d)-RTS.

Construction 5.1.3. Let s be the secret to be distributed. A (t, n, d)-RTS is defined by

124

5.1 Introduction

three algorithms, Share, Recover and Repair, as follows.

• Share: Distribute the secret s via a perfect (t, n)-threshold scheme, to give an n-

vector V . Distribute each element of V via a (d, n − 1)-threshold scheme to give

Ti
$←− Shared(V [i]), for 1 ≤ i ≤ n, where Ti is an n-vector with Ti[i] = ⊥. As their

share, player Pi receives (V [i],T1[i],T2[i], . . . ,Tn[i])

• Recover: A set of players pool their shares. The elements V [i] are input to the

recover algorithm of the (t, n)-threshold scheme. If at least t players input valid

shares, s will be recovered.

• Repair: If player Pr needs to repair their share, they request help from a set A of

at least d players, who will each send Pr the element Tr[i], for i such that Pi ∈ A.

Player Pr will recover their share via the recover algorithm of the (d, n−1)-threshold

scheme.

Intuitively, Construction 5.1.3 shares a secret s via a (t, n)-threshold scheme to give player

Pi their share of the secret V [i]. In order to enable repairability, each share is then shared

via a (d, n − 1)-threshold scheme to ensure d players can act as helping players. The

scheme is secure as any t− 1 players are unable to learn the secret due to the security of

the (t, n)-threshold scheme, and each repair is secure due to the security of each of the

(d, n− 1)-threshold schemes.

5.1.3 Efficiency metrics

We are interested in the efficiency of an RTS and will consider the following metrics when

analysing each scheme.

1. Information Rate. The first metric we consider is the information rate of the scheme,

denoted by ρ. This is as defined previously in Definition 2.3.10 and measures the

amount of information each player is required to store compared to the size of the

secret. The information rate is such that 0 ≤ ρ ≤ 1, where an RTS with ρ = 1 is

called ideal.

125

5.1 Introduction

2. Communication Complexity. As defined in [97], the communication complexity is the

sum of the sizes (i.e. the bit lengths) of all messages transmitted during the repair

algorithm, divided by the size of the secret. The communication complexity measures

the amount of bandwidth required for each execution of the repair algorithm. We

denote the communication complexity by γ.

3. Repairability. We define the repairability of an RTS, denoted by κ, to be the number

of d-subsets (of the n− 1 players) that are able to help a repairing player Pr repair

their share, divided by the number of possible d-subsets (of the n− 1 players). Note

that 0 ≤ κ ≤ 1, where κ = 1 if and only if the RTS has universal repairability, as in

Definition 5.1.2.

4. Computational complexity. We consider the computational complexity of the share,

recover and repair algorithms of the RTS.

We will see that (t, n, d)-RTSs find a compromise between these metrics and may prioritise

one at the cost of the others. In particular, there appears to be an inverse relation between

the information rate and communication complexity of many schemes we consider.

We now revisit Construction 5.1.3 and consider how efficient the scheme is using these

metrics.

Example 5.1.1. Consider the share, recover and repair algorithms defining a (t, n, d)-

RTS as in Construction 5.1.3. Assuming both underlying threshold schemes are ideal,

each player is required to store n shares from a the threshold scheme as their RTS share.

Therefore, the information rate of the RTS is ρ = 1/n. An execution of the repair algorithm

requires each of the d players to send one of their shares from the (d, n − 1)-threshold

scheme, so γ = d. Finally, the scheme has universal repairability, since any d-subset of

players can help a repairing player repair their scheme, hence κ = 1.

Finally, we note the share algorithm of the RTS requires the dealer to run the share

algorithm of the underlying (t, n)-threshold scheme once and the share algorithm of the

(d, n− 1)-threshold scheme n times. The repair algorithm requires Pr to run the recover

algorithm of the underlying (d, n−1)-threshold scheme once, whilst the recover algorithm

requires one run of the recover algorithm for the (t, n)-threshold scheme.

126

5.2 Preliminaries

5.2 Preliminaries

In this section, we will present some core ideas in combinatorial design theory and regen-

erating codes that we will need later.

5.2.1 Combinatorial design theory

Combinatorial design theory deals with arranging elements into finite sets with certain

properties.

Definition 5.2.1. [96]. A design is a pair (X,D) such that X is a set of elements, called

points, and D is a collection of non-empty subsets, called blocks, of X.

There is no restriction on the collection D to have distinct blocks; this is why D is called

a collection, rather than a set. If all the blocks are distinct, the design is called simple.

The degree of a point x ∈ X is the number of blocks the point x occurs in. The design

is called regular if all points have the same degree. The rank, k, of a design is the largest

block in the collection D. If all blocks are the same size, the design is said to be uniform.

Balanced incomplete block designs are a widely studied type of design and are defined as

follows:

Definition 5.2.2. A (m, k, λ)-balanced incomplete block design, (m, k, λ)-BIBD, is a

design such that

1. |X| = m,

2. each block in D contains exactly k points, and,

3. every pair of distinct points is contained in exactly λ blocks.

For convenience, blocks will be written in the form abc, rather than {a, b, c}.

Note that a BIBD is a regular, uniform, simple design.

127

5.2 Preliminaries

Example 5.2.1. The pair (X,D) is a (9, 3, 1)-BIBD, where

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

D = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

The following theorem, presented in [96] and given here without proof, shows the degree

of every point x in a BIBD.

Theorem 5.2.3. In an (m, k, λ)-BIBD, every point occurs in exactly

τ =
λ(m− 1)

k − 1

blocks.

The value τ in Theorem 5.2.3 is called the replication number of the design. The following

result, also from [96] and also given without proof, provides more information about the

structure of a BIBD and defines how many blocks a BIBD must have.

Theorem 5.2.4. An (m, k, λ)-BIBD has exactly

b =
mr

k
=
mλ(m− 1)

k(k − 1)

blocks.

Continuing from Example 5.2.1, we compute the replication number τ and the number of

blocks b for the BIBD.

Example 5.2.2. Consider the (9, 3, 1)-BIBD in Example 5.2.1. The replication number

of the design is τ = 4 and D contains b = 12 blocks.

In [97], the concept of a repairable distribution design is introduced, which will be used

later in this chapter to construct RTSs. We define the concept here and continue our

example.

Definition 5.2.5. A (t, `1, `2)-distribution design is a design that satisfies the following

two properties:

128

5.2 Preliminaries

1. the union of any t blocks contain at least `2 points, and

2. the union of any t− 1 blocks contains at most `1 points,

where `2 − `1 ≥ 1. The distribution design is repairable if every point in the distribution

design occurs in at least two blocks.

Example 5.2.3. The (9, 3, 1)-BIBD in Example 5.2.1 is a (2, 3, 5)-distribution design, as

the union of any two blocks contains at least five points, and an individual block contains

at most three points. As every point occurs in τ = 4 blocks, the distribution design is

repairable.

Finally, we consider the definition of a basic repairing set, also defined in [97].

Definition 5.2.6. A subset of y blocks contained in a (t, `1, `2)-distribution design is a

basic repairing set of size y if every point in the design is contained in at least two blocks

of the subset.

Obviously, y ≤ b. The following theorem lower bounds y; the proof is very similar to the

the proof of Theorem 5.2.4 given in [96].

Theorem 5.2.7. A basic repairing set of a (t, `1, `2)-distribution design, constructed from

an (m, k, λ)-BIBD, has at least 2m/k blocks.

Proof. Let (X,D) be a basic repairing set of an (m, k, λ)-BIBD. Define a set

I = {(y,A) : y ∈ X,A ∈ D, y ∈ A}.

We will compute |I| in two different ways. First, there are m ways to choose y ∈ X. For

each y, there are at least two blocks A such that y ∈ A. Hence, |I| ≥ 2m. On the other

hand, there are y ways to choose a block A ∈ D. For each choice of A, there are k ways

to choose y ∈ A. Hence, |I| = yk. Combining these two equations, we see that

y ≥ 2m

k
, (5.2.1)

as required.

129

5.2 Preliminaries

We illustrate the concept of basic repairing sets for our ongoing example.

Example 5.2.4. For the (9, 3, 1)-BIBD in Example 5.2.1, we can calculate the lower

bound on the basic repairing set to be 6 ≤ y. The set {123, 456, 789, 147, 258, 369} is a

basic repairing set of minimal size.

5.2.2 Regenerating codes

Regenerating codes are a class of distributed storage codes introduced in 2010 by Dimakis

et al. [33]. Regenerating codes distribute data between nodes and guarantee recoverability

of the data with the cooperation of a sufficient number of nodes, and regeneration of lost

or corrupted shares. Regenerating codes optimally trade the bandwidth needed for the

regeneration of a failed node with the amount of data stored per node in the network.

There are no security requirements for regenerating codes. However, there exists literature

exploring how to secure them. Here, we present an introduction to regenerating codes

followed by a system model for securing them.

5.2.2.1 Introduction to Regenerating Codes

Regenerating codes, and the notation used to describe them, is as follows.

Definition 5.2.8. Let Fq be a finite field, and let D denote the data to be distributed,

where D ∈ (Fq)B. Say B is the number of data symbols. Let n ∈ N. Consider a distributed

storage system consisting of n nodes, each with the capacity to store α symbols in Fq. Let

t, d ∈ N, such that t ≤ d < n. An (n, t, d)-regenerating code distributes D amongst n nodes

such that each node stores a share of the data, where each share consists of α elements in

Fq. The distribution should be recoverable, meaning that D is recoverable by any t of the

n nodes, and repairable, meaning that any node in the network can repair their share of

the data by downloading β elements in Fq from each of the d repairing nodes.

In [33], the following bound on the number of data symbols distributed by an (n, t, d)-

130

5.2 Preliminaries

regenerating code is established:

B ≤
t−1∑
i=0

min{α, (d− i)β}. (5.2.2)

Using this bound, it can be deduced that, when B, t and d are fixed, there is a trade-

off between the size of the shares, α, and the bandwidth β required for repair. At one

extreme of this trade-off we minimise β first and then α; this is called the minimum

bandwidth regenerating (MBR) point. At the other extreme we minimise α first and then

β to get the minimum storage regenerating (MSR) point.

This gives us the following parameters for the MBR point:

β =
2B

t(2d− t+ 1)
(5.2.3)

α =
2dB

t(2d− t+ 1)
. (5.2.4)

At the MSR point, the parameters are:

α =
B

t
(5.2.5)

β =
B

t(d− t+ 1)
. (5.2.6)

Using these extreme points, we can define MBR and MSR codes.

Definition 5.2.9. A minimum bandwidth regenerating (MBR) code is an (n, t, d)-regen-

erating code with parameters (α, β,B) satisfying the MBR points in (5.2.3) and (5.2.4).

A minimum storage regenerating (MSR) code is an (n, t, d)-regenerating code with param-

eters (α, β,B) satisfying the MSR points in (5.2.5) and (5.2.6).

Since MBR codes achieve the minimum possible repair bandwidth, a replacement node

downloads only what it stores, so α = dβ. By substituting this into (5.2.2), we can see

that an MBR code must satisfy

B =

(
td−

(
t

2

))
β. (5.2.7)

131

5.2 Preliminaries

Similarly, MSR codes must satisfy B = tα and dβ = α+ (t− 1)β.

There exist a number of constructions in the literature for both MBR and MSR codes. A

construction of MBR codes for all possible parameters n, t and d is given in [82]. Examples

of constructions of MSR codes can be found for all parameters n, t and d in [43, 100], and

for d = 2t− 2 in [82].

Example 5.2.5 shows a (5, 2, 3)-MBR code, constructed according to the method in [90].

Example 5.2.5. Let n = 5, t = 2 and d = 3, meaning that any two of the five nodes

can recover the data, and any node can regenerate their share with help from three other

nodes. If we let β = 1, then (5.2.7) tells us the number of message symbols that can be

distributed is B = 5. Let all computations be in the field with eleven elements, Z11, and

let

u1 = 7; u2 = 3; u3 = 10; u4 = 6; u5 = 2.

be the five message symbols to be distributed.

Dispersal: Use a (public) generator matrix Ψ, with properties discussed in [82], and a

message matrix M to generate the code C = ΨM as follows:

C = ΨM =



1 1 1

2 4 1

3 2 6

4 2 1

5 4 6




u1 u2 u4

u2 u3 u5

u4 u5 0

 =



5 4 8

10 4 9

8 8 0

7 1 6

6 1 5


.

Each node Pi is then given row i, for 1 ≤ i ≤ n, of C. Note that each row, and therefore

each share, consists of α = 3 elements in F11, which satisfies the MBR points in (5.2.3)

and (5.2.4).

Regeneration: Say node P4 needs to regenerate their share. This can be done with

help from any d = 3 other nodes as follows. Assume nodes P1, P2 and P5 are the helper

nodes. Let Ψi denote row i of Ψ. Each helper node Pi must calculate the inner product

(ΨiM)ΨT
4 : note that node Pi knows (ΨiM) as their share, and Ψ is a public matrix, so

Ψ4 is also known. Therefore, the three helper nodes P1, P2 and P5 each calculate the

132

5.2 Preliminaries

following, respectively:

(Ψ1M)ΨT
4 =

(
5 4 8

)
4

2

1

 = 3 mod 11

(Ψ2M)ΨT
4 =

(
10 4 9

)
4

2

1

 = 2 mod 11

(Ψ5M)ΨT
4 =

(
6 1 5

)
4

2

1

 = 9 mod 11.

Each helper node then sends this value to P4. So P4 receives the triple (3, 2, 9). The

regenerating node P4 then calculates the repair matrix Ψrepair, consisting of the rows of Ψ

related to the helper nodes, and calculates the inverse of Ψrepair. So, here, as P1, P2 and

P5 are helper nodes, Ψrepair consists of rows 1, 2 and 5 of Ψ, as follows:

Ψrepair =


1 1 1

2 4 1

5 4 6

 , and (Ψrepair)
−1


3

2

9

 . (5.2.8)

Node P4 then multiples (Ψrepair)
−1 with the triple (3, 2, 9) received from the helper nodes:

(Ψrepair)
−1


3

2

9

 =


9 9 8

4 1 1

10 1 2




3

2

9

 =


7

1

6

 , (5.2.9)

and thus recovers their lost share.

Recover: Any t = 2 players are able to recover the data u1, . . . , u5. Assume nodes P2

and P3 collaborate to recover the data.

Let ΨDC be the data collector matrix, constructed from rows corresponding to player P2

133

5.2 Preliminaries

and P3. So:

ΨDC =

 2 4 1

3 2 6

 , (5.2.10)

where the shares belonging to P2 and P3 are:

ΨDCM =

 10 4 9

8 8 0

 . (5.2.11)

We can use the properties of the message matrix M to observe that

 2 4

3 2

 u4

u5

 =

 9

0

 , (5.2.12)

which can be solved to give u4 = 6 and u5 = 2. These can then be substituted into ΨDCM

to give:

ΨDCM =

 2 4 1

3 2 6




u1 u2 6

u2 u3 2

6 2 0


=

 2u1 + 4u2 + 6 2u2 + 4u3 + 2 9

3u1 + 2u3 + 3 3u2 + 2u3 + 1 0

 =

 10 4 9

8 8 0

 ,

which gives us four equations in three variables:

2u1 + 4u2 = 4

2u2 + 4u3 = 2

3u1 + 2u2 = 5

3u2 + 2u3 = 7,

which can be solved to find u1 = 7, u2 = 3 and u3 = 10. Thus, all five data symbols have

been recovered by the two nodes, P2 and P3.

5.2.2.2 Securing regenerating codes

A system model for securing regenerating codes was first presented in [78] and will be

introduced here.

134

5.2 Preliminaries

Consider an adversary who has access to (only) the data stored on `1 nodes. In addition to

these `1 nodes, the adversary also has access to the data stored on, and all data downloaded

during the regeneration of, `2 nodes. Suppose `1 and `2 are such that `1 + `2 < t. Call

such an adversary an (`1, `2)-adversary.

It is important to establish how many regenerations an adversary can witness because

regenerating codes do not have any security requirements, so each regeneration may reveal

information about the data stored.

In fact, each regeneration of an MBR code is secure. This is because α = dβ, which

means a regenerating node stores all data downloaded during a regeneration. Therefore,

an eavesdropper does not obtain any extra information by having access to the data

downloaded during a regeneration, as well as the data stored. Hence, when considering

MBR codes, we can assume an (`1, `2)-adversary is an (`1 + `2, 0)-adversary.

In contrast, MSR codes have insecure regenerations. This is because α < βd, which means

each regenerating node downloads more data during a regeneration than it ultimately

stores, and thus an adversary would learn more information witnessing a regeneration

than they would if they only had access to the data stored. So, when discussing secure

MSR codes, it is important to define how many regenerations an adversary can witness.

As a side note, a node for which an adversary has access to the data on, but cannot witness

regenerate, could model the adversary gaining only momentary access. Whereas a node

for which an adversary has access to both the data on and the data downloaded during a

regeneration, could model an adversary with long term access to the node.

Recall the data to be distributed in a regenerating code was denoted D, such that D ∈

(Fq)B. Let D(s) denote the data to be securely distributed via a regenerating code, and

let D(s) ∈ (Fq)B
(s)

. Say B(s) is the number of data symbols that can be (information

theoretically) securely distributed. Note that B(s) ≤ B and, in particular, B −B(s) is the

cost of securing the data.

Definition 5.2.10. A secure (n, t, d)-regenerating code is an (n, t, d)-regenerating code

that distributes B(s) secure data symbols such that an (`1, `2)-adversary, for `1 + `2 < t,

learns no information about the B(s) secure data symbols.

135

5.3 Existing solutions

We conclude this introduction to regenerating codes by stating two theorems, each pro-

viding tighter upper bounds on B(s).

In [78] the authors consider a regenerating code where an adversary could witness the

regeneration of every node they had access to, so `1 = 0.

Theorem 5.2.11. Consider an (n, t, d)-regenerating code with parameters α and β and a

(0, `2)-adversary. The number of data symbols that can be information theoretically secured

is

B(s) ≤
t−1∑
i=`2

min(α, (d− i)β).

In [42], the authors consider the number of data symbols that can be securely distributed

by an MSR code.

Theorem 5.2.12. Consider an (n, t, d)-MSR code with an (`1, `2)-adversary. The number

of data symbols that can be information theoretically secured is

B(s) ≤ (t− `1 − `2)

(
1− 1

d− t+ 1

)`2
α.

5.3 Existing solutions

In this section, we consider three (t, n, d)-RTSs presented in the literature. The first two

schemes, outlined in Section 5.3.1.1 and 5.3.2, were presented in [97] by Stinson and Wei.

The third scheme was presented in [44] and is introduced in Section 5.3.3.

5.3.1 The enrolment RTS

We introduce the enrolment RTS, which was originally proposed in [97]. We then refine

this scheme to achieve a lower communication and computational complexity. Finally, we

show that the refined scheme achieves the optimal communication complexity for an ideal

RTS.

136

5.3 Existing solutions

5.3.1.1 Definition of the enrolment RTS

A (t, n, d)-RTS with d = t constructed from the NSG enrolment protocol [75, 76] is pre-

sented in [97]. (In fact, a scheme equivalent to the NSG enrolment protocol was presented

much earlier by Benaloh in [9].) We refer to the (t, n, d)-RTS as the enrolment RTS.

Assume there exists a Shamir (t, n)-threshold scheme defined over Fq, with shares dis-

tributed amongst n players. The share and recover algorithms of the enrolment RTS are

identical to the share and recover algorithms in Shamir’s threshold scheme, as in Con-

struction 2.3.3. The repair algorithm of the enrolment RTS is as follows.

Suppose player Pr wishes to repair their share. Without loss of generality, assume the

d = t helping players are players P1, . . . , Pt, with r ≥ t. Suppose the share for Pr is

ϕr = f(r), where f(x) ∈ Fq[x] is a random polynomial of degree at most t − 1 whose

constant term is the secret s. The share ϕr can be expressed as

ϕr =
t∑
i=1

ζiϕi, (5.3.1)

where ζi is the public Lagrange coefficients of Pi. In order to repair Pr’s share, the protocol

proceeds as follows.

1. For all 1 ≤ i ≤ t, player Pi computes random values δj,i for 1 ≤ j ≤ t, such that

ζiϕi =
t∑

j=1

δj,i. (5.3.2)

2. For all 1 ≤ i ≤ t, 1 ≤ j ≤ t, player Pi transmits δj,i to Pj using a secure channel.

3. For all 1 ≤ j ≤ t, player Pj computes

σj =
t∑
i=1

δj,i. (5.3.3)

4. For all 1 ≤ j ≤ t, player Pj transmits σj to player Pr using a secure channel.

137

5.3 Existing solutions

5. Player Pr computes their share ϕr using the formula

ϕr =
t∑

j=1

σj . (5.3.4)

It is straightforward to verify that player Pr constructs their share correctly; that is that

the value computed using (5.3.2), (5.3.3) and (5.3.4) is the same value as in (5.3.1). This

is demonstrated in [97].

The enrolment protocol is proven to be secure in [97]. The proof highlights two cases: the

first considers a coalition of t−1 players in which the players are contained in {P1, . . . , Pt}

and excludes Pr. The second case considers a coalition of t− 1 players which includes Pr

and t−2 players from {P1, . . . , Pt}. In either case, the coalition is unable to learn anything

about a tth share and thus learns no information about the secret.

In the proof, for convenience, they consider a share-exchange matrix, E, originally de-

fined in [75]. We note this matrix here as it will be used to define a refined scheme in

Section 5.3.1.3:

E =


δ1,1 δ2,1 . . . δt,1

δ1,2 δ2,2 . . . δt,2
...

...
. . .

...

δ1,t δ2,t . . . δt,t

 . (5.3.5)

There are a number of observations to be made about the matrix E. The (j, i)th entry δj,i

of E is the message player Pi sends Pj . From (5.3.2), we learn that the sum of the entries

in the ith row of E is equal to ζiϕi. Also, from (5.3.3), the sum of the entries in the jth

column is equal to σj . Finally, from (5.3.2), (5.3.3) and (5.3.4), the sum of all entries in E

is equal to ϕr. Intuitively, player Pi computes and sends all values in row i and receives

all the values in column i.

5.3.1.2 Analysis of the enrolment RTS

We evaluate the efficiency of the enrolment RTS by considering the efficiency metrics

presented in Section 5.1.3.

138

5.3 Existing solutions

Each player is required to store only one share from Shamir’s threshold scheme. As

Shamir’s scheme is an ideal threshold scheme, the enrolment RTS is ideal, and so ρ = 1.

With respect to the information rate, the enrolment RTS is optimal.

Next, we consider the communication complexity of the scheme. Messages are only ex-

changed in Steps 2 and 4. In Step 4, each of the t helping players are required to send one

message to each of the other t − 1 helping players, which is a total of t(t − 1) messages.

During Step 4, each of the t helping players must send one message to the repairing player

Pr, which is an additional t messages. So, in total, the repair algorithm requires t(t−1)+t

messages to be sent. As each message is the size of the share and therefore the size of

the secret (as Shamir’s scheme is ideal), the communication complexity of the scheme is

γ = t2.

Inherited from Shamir’s threshold scheme, the enrolment RTS has universal repairability

and thus κ = 1.

Finally, we consider the computation required for the enrolment RTS. The share and

recover algorithms of the enrolment RTS are identical to the share and recover algorithms

of Shamir’s threshold scheme and therefore have the same complexity; the complexity of

Shamir’s threshold scheme is analysed in Section 3.3.2. In Step 1, the repair algorithm

requires each of the t helping players to generate t random values and compute t − 1

modular additions over Fq. In Step 3, each player must again compute t − 1 modular

additions, and Step 5 requires the repairing player to compute t − 1 modular additions.

So, in total, each helping player must compute 2(t−1) modular additions and the repairing

player must compute t− 1 additions. This is a total of 2t2 − t− 1 modular additions.

5.3.1.3 Refining the enrolment RTS: the reduced enrolment RTS

We observe that not all messages in the share-exchange matrix E are necessary to enable Pr

to securely repair their share. The enrolment RTS can be refined to require fewer messages

being sent, and therefore achieve a lower communication complexity, whilst maintaining

the optimal information rate and the security of the enrolment RTS. In fact, we can reduce

the number of messages sent so that player Pi does not send Pj a message if j > i. We

call the resulting scheme the reduced enrolment RTS. After presenting the refined scheme,

139

5.3 Existing solutions

the primary task is to prove it maintains the security of the enrolment RTS. The reduced

enrolment RTS is as follows.

As before, let Pr be the repairing player, and let P1, . . . , Pt be the helping players. Let

ϕr = f(r) be the share belonging to player Pr, where f(x) ∈ Fq[x] is a random polynomial

of degree at most t−1 whose constant term is the secret s. The share ϕr can be expressed

as in (5.3.1). The reduced enrolment RTS can be executed as follows:

1. For all 1 ≤ i ≤ t, player Pi computes random values δj,i for i ≤ j ≤ t, such that

ζiϕi =
t∑
j=i

δj,i.

2. For all 1 ≤ i ≤ t, i < j ≤ t, player Pi transmits δj,i to Pj using a secure channel.

3. For all 1 ≤ j ≤ t, player Pj computes

σj =
t∑
i=j

δj,i.

4. For all 1 ≤ j ≤ t, player Pj transmits σj to player Pr using a secure channel.

5. Player Pr computes their share ϕr using the formula

ϕr =

t∑
j=1

σj .

Verifying that player Pr computes their share correctly is similar to the verification for

the enrolment RTS, as in [97].

We show the reduced enrolment RTS is secure in Theorem 5.3.1. The proof is similar to

the proof of the security of the enrolment RTS in [97].

Theorem 5.3.1. The reduced enrolment RTS is information theoretically secure against

a coalition A of strictly fewer than t players.

Proof. Assume all players act honestly during the protocol.

140

5.3 Existing solutions

First, we note that computing the secret, given t−1 shares, is equivalent to computing any

additional share. This is easy to see, because any t shares allow the secret to be computed,

and any t − 1 shares along with the secret allow any other share to be computed (this is

a well-known property of Shamir’s threshold scheme).

As in the proof of the security of the enrolment RTS, there are two cases to consider:

Case 1: The coalition A consists of a subset of t− 1 players in {P1, . . . , Pt}.

Case 2: The coalition A consists of Pr along with a subset of t − 2 players in

{P1, . . . , Pt}.

We consider the share-exchange matrix of the reduced enrolment RTS. The matrix here is

different to the share-exchange matrix of the enrolment RTS in (5.3.5), as player Pi does

not send player Pj a message if j > i. We can adapt E and enter a ‘0’ into the matrix

to denote no message being sent. This means values dj,i = 0, if j > i. This gives us the

following message-exchange matrix:

E′ =


δ1,1 0 0 . . . 0

δ1,2 δ2,2 0 . . . 0

.
.

δ1,t δ2,t δ3,t . . . δt,t

 . (5.3.6)

As before, the sum of the entries in the ith row of E′ is equal to ζiϕi, the sum of the entries

of the jth column is equal to σj , and the sum of all the entries in E′ is equal to ϕr.

Consider Case 1, where A consists of a subset of t − 1 players in {P1, . . . , Pt}. Assume

player Pi is excluded from the coalition. Now, the coalition possess all entries in E′ except

for δi,i. The value δi,i is completely random, and knowing this value is equivalent to

knowing ζiϕi, σi or the secret. In fact, in order for any information to be learnt, we can

use the properties of E′ to deduce the following equations that would need to be solved in

141

5.3 Existing solutions

order to learn anything about δi,i.

δi,i − ζiϕi = w

δi,i − σi = x

ζiϕi − ϕr = y

σi − ϕr = z,

where

w =
i−1∑
k=1

δk,i x =
t∑

k=i+1

δi,k

y =
t∑

k=1, k 6=i
ζkϕk, z =

t∑
k=1, k 6=i

σk

are all values known to the coalition.

This leads to the following system of equations:


1 0 −1 0

1 −1 0 0

0 0 1 −1

0 1 0 −1




δi,i

σi

ζiϕi

ϕr

 =


w

x

y

z

 .

However, the columns of the matrix on the left are linearly dependent, and thus it is

possible to choose any arbitrary value for δi,i, which will then determine both σi and ζiϕi,

and then ϕr. Therefore, in Case 1, the coalition learns no information about the individual

shares ζiϕi or ϕr, and therefore learns no information about the secret being distributed.

Now, consider Case 2, where A consists of Pr and a subset of t− 2 players in {P1, . . . , Pt}.

Assume players Pi and Pj are omitted from the coalition, where i < j. In this case, the

coalition knows all entries in E′ except δi,i, δi,j and δj,j . Note that player Pi does not send

a message to Pj ; this is known by the coalition and so they know that δj,i = 0. For the

coalition, learning δi,i, δi,j and δj,j is equivalent to learning ζiϕi or ζjϕj .

As Pr ∈ A the values σi, σj and ϕr are known. This knowledge allows the coalition to

142

5.3 Existing solutions

compute δj,j , as

t∑
k=j

δj,k = σj

⇒ δj,j = σj −
t∑

k=j+1

δj,k.

Now, the coalition are left to try to compute δi,i and δi,j . Note that the sum of the these

two values are known, but neither value is individually known. The following equations

can be formed

δi,i − ζiϕi = w′

δi,j − ζjϕj = x′

δi,i + δi,j = σi − y′

ζiϕi + ζjϕj = ϕr − z,

where

w′ =

i−1∑
k=1

δk,i x′ =

j−1∑
k=1, k 6=j

δk,j

y′ =
t∑

k=i+1, k 6=j
δi,k, z′ =

t∑
k=i, k 6=i,j

ζkϕk

are all known. This leads to the following system of equations, where all values in the

right-hand side vector are known:


1 0 −1 0

0 1 0 −1

1 1 0 0

0 0 1 1




δi,i

δi,j

ζiϕi

ζjϕj

 =


w′

x′

σi − y′

ϕr − z′

 .

As before, the columns in the matrix on the left are linearly dependent, and thus it is

possible to choose an arbitrary value for one of δi,i or δi,j , which will determine the other

(as the sum of δi,i or δi,j is known), which will then, in turn, determine values for ζiϕi and

ζjϕj . Similarly, we could choose arbitrary values for ζiϕi and ζjϕj which would determine

δi,i and δi,j .

143

5.3 Existing solutions

In either Case 1 or 2, the coalition A of t − 1 players would be unable to learn any

information about any additional share, and thus would learn no information about the

secret.

The reduced enrolment RTS maintains the information rate of the enrolment RTS, ρ = 1,

yet manages to achieve a lower communication complexity, γ = t(t + 1)/2. The reduced

enrolment RTS is also universally repairable, so, as with the enrolment RTS, κ = 1.

Finally, the reduced enrolment RTS has the same share and recover algorithms as the

enrolment RTS, and thus has the same computational complexity for these algorithms.

However, due to the reduced number of random messages generated by the helping players

and the reduced number of messages sent, the repair algorithm is more efficient. Player

Pi, for 1 ≤ i ≤ t must generate i random values, rather than t, and must compute i − 1

modular additions, rather than t − 1. As in the enrolment RTS, Pr must still compute

t − 1 additions. Therefore, the reduced enrolment protocol requires a total of t(t + 1)/2

modular additions, rather than the 2t2 − t− 1 additions required in the enrolment RTS.

From the analysis, we can observe that the reduced enrolment RTS maintains or improves

on all the efficiency metrics and is thus a more efficient RTS than the enrolment RTS

presented in [97] and here in Section 5.3.1.1.

5.3.1.4 Optimal communication complexity of the reduced enrolment RTS

As we have reduced the communication complexity of the enrolment RTS, it is a natural

question to ask whether it could be reduced any further. We show here that the communi-

cation complexity for not only the enrolment RTS, but for any scheme securely computing

the sum of shares, is in fact lower bounded by γ = t(t + 1)/2. Thus, in this respect, the

reduced enrolment RTS is optimal.

The reduced enrolment RTS is in the setting in which t players wish for an external player

to (privately) compute the sum of their t shares. Any set of at most t − 1 of the t + 1

players (including the external player Pr) must learn no information about either one

of the player’s values, or the sum of the shares. In other words, the coalition must be

prevented from learning all the inputs to the sum and the output.

144

5.3 Existing solutions

All known private protocols, including the reduced enrolment RTS, are oblivious protocols.

That is, the decision whether player Pi sends a message to Pj in round h is determined by

i, j and h, and does not depend on the input and random coins. By assuming a private

protocol, we are able to prove the lower bound on the communication complexity whilst

making fewer assumptions on the protocol, such as the number of rounds required and the

exact number of messages each player either sends or receives.

We prove a lower bound on the number of messages required by any oblivious protocol

allowing a t + 1th player to compute the sum of t player’s values, such that the protocol

is t-private, meaning any subset of at most t− 1 players is unable to learn all inputs and

the output.

Note that the proof of Theorem 5.3.2 proves the same result as in [27]. However, the

proof in [27] considers a setting where the sum of the shares is computed by a player

who also contributes an input and all players learn the output. Their proof does not

immediately apply to our slightly different setting, where an external player with no input

is must compute the sum and the output is known only to this external player. As well as

achieving slightly different goals, the protocol presented here is executed in two rounds,

rather than t rounds (as is achieved in [27]).

Theorem 5.3.2. The lower bound on the number of messages required to be sent by any

oblivious protocol that allows a t+ 1th player to compute the sum of t player’s values, such

that the protocol is t-private, is

(
t+ 1

2

)
=
t(t+ 1)

2
.

Proof. Consider a graph with t+ 1 vertices. Let each vertex vi, for 1 ≤ i ≤ t, correspond

to a share ζiϕi, and let the t + 1th vertex correspond to the sum of the shares. Let the

(undirected) edges of the graph correspond to inputs and outputs to the vertices. That

is, an edge between vertices i and j means that either player Pi sends player Pj a value,

or player Pj sends Pi a value, or both players send values. We claim that knowledge of

all inputs and outputs to a vertex will uniquely define the share relating to this vertex.

For the t + 1th vertex computing the sum of the inputs, this is obvious. For the other t

vertices, we observe that each of these vertices must communicate their share to the t+1th

player, and by learning all inputs and outputs to the vertex, the share must be calculable,

otherwise the t+ 1th player will not be able to use it as an input to the sum.

145

5.3 Existing solutions

We will show that, in order to be secure, the graph must be complete. That is, there must

be a total of
(
t+1

2

)
= t(t+ 1)/2 edges.

For the graph to be complete, there must be t edges connected to every vertex, meaning

the degree of any vertex v in the graph is t. We show that, if there exists a vertex with

degree less than t, a coalition of t− 1 vertices will be able to learn more information than

they should.

To show this, consider a vertex of the graph, vx which has a degree of less than t. Specifi-

cally, let vx have degree t− 1. This means there exists no edge between vx and one other

node, which we denote as vy. We do not need to specify whether either vx or vy are

players with shares, or the player computing the sum; it does not matter. Now, consider a

coalition of t− 1 vertices A, which consists of all vertices excluding vx and vy. As there is

no edge between vx and vy, all edges connected to these two vertices are also connected to

vertices in A. Therefore A knows all inputs and outputs to both vx and vy and can thus

determine the two vertices vx and vy (corresponding to either the shares or the sum). As

A already knew the t− 1 vertices included in the coalition, the additional information of

vx and vy gives A knowledge of all t shares and the sum of all the shares.

Hence, if there exists a node with degree less than t, the scheme is insecure. Therefore,

each node must have degree equal to at least t, meaning the minimum number of edges

in the graph, and therefore the minimum number of messages sent during the protocol, is(
t+1

2

)
= t(t+ 1)/2, as required.

We have previously defined the reduced enrolment RTS which has a total of
(
t+1

2

)
messages

sent throughout. Thus the reduced enrolment RTS is one construction that meets the lower

bound for the communication complexity, and is thus optimal in this respect.

5.3.2 Combinatorial repairability

Also in [97], Stinson and Wei propose a way to construct (t, n, d)-RTSs based on combi-

natorial designs. These schemes achieve a reasonably high (but not optimal) information

rate, and a low communication complexity. However, these schemes only achieve restricted

repairability, as in Definition 5.1.2.

146

5.3 Existing solutions

We first present the construction of these schemes, then provide an example construction

as an illustration. We then analyse the efficiency of these schemes; in particular, we apply

our new metric measuring the repairability to these schemes.

5.3.2.1 Definition of scheme

The share algorithm is as follows. Suppose there exists an (m, d, λ)-BIBD with b blocks,

as in Definition 5.2.2, which is also a repairable (t, `1, `2)-distribution design, as in Defini-

ton 5.2.5. Now, use an (`1, `2,m)-ramp scheme defined over Fq (for q ≥ m+1) and call the

shares output by the ramp scheme sub-shares. Let 2m/d ≤ n ≤ b, where the lower bound

originates from the minimal size of the basic repairing set in (5.2.7) and b is the number

of blocks in the BIBD. In [97], they construct a (t, n, d)-RTS with restricted repairability

by allocating sub-shares from the ramp scheme to n players, as defined in the distribution

design. Each block in the the design represents a player, and each point represents a sub-

share. The recover algorithm requires t players to pool their shares and recover the shared

secret via the recover algorithm of the (`1, `2,m)-ramp scheme. For the repair algorithm,

a repairing player Pr must be sent d sub-shares from d players who each store one of Pr’s

sub-shares.

We will refer to schemes constructed in this manner as combinatorial RTSs. We illustrate

this construction via an example.

Example 5.3.1. The share algorithm of a (2, 12, 3)-RTS is as follows. Consider the

(9, 3, 1)-BIBD, which is a repairable (2, 3, 5)-distribution design, used throughout the ex-

amples in Section 5.2.1. This design consists of 12 blocks; note that n = 12 and so n

has been chosen to be maximal. Also consider a (3, 5, 9)-ramp scheme over Fq and, for

convenience, label the nine shares output from the ramp scheme 1, 2, . . . , 9. Using the

(2, 3, 5)-repairable distribution design and the (3, 5, 9)-ramp scheme, construct a (2, 12, 3)-

RTS with restricted repairability by allocating sub-shares from the ramp scheme to the

12 players defined by the design, as follows:

P1 ← {1, 2, 3} P2 ← {4, 5, 6} P3 ← {7, 8, 9} P4 ← {1, 4, 7}

P5 ← {2, 5, 8} P6 ← {3, 6, 9} P7 ← {1, 5, 9} P8 ← {2, 6, 7}

P9 ← {3, 4, 8} P10 ← {1, 6, 8} P11 ← {2, 4, 9} P12 ← {3, 5, 7}

147

5.3 Existing solutions

To recover the secret, any two players can pool their shares, which will consist of at least

five distinct sub-shares from the (3, 5, 9)-ramp scheme, and recover the distributed secret

via the recover algorithm of the ramp scheme. Say player P5 needs to repair their share.

They can have assistance from players P1, P2 and P3, who would each send the sub-shares

2, 5 and 8, respectively.

In their paper, Stinson and Wei propose a number of combinatorial RTSs relying on a

range of designs. They give some specific parameters for the underlying designs and the

resulting RTS.

Note that these RTS schemes are secure due to the underlying properties on the (`1, `2,m)-

ramp scheme and the (t, `1, `2)-distribution design: a coalition of t players will learn at

most `1 sub-shares output by the ramp scheme and will therefore learn no information

about the secret.

5.3.2.2 Analysis of combinatorial RTSs

A theorem in [97] states the information rate and communication complexity of combi-

natorial RTSs. Assume there exists an (m, d, λ)-BIBD, which is a repairable (t, `1, `2)-

distribution design with b blocks that contains a basic repairing set of size y, and suppose

that q ≥ m + 1. Let y ≤ n ≤ b. Then there exists a (t, n, d)-RTS with restricted re-

pairability that has information rate ρ = (`2 − `1)/d, and communication complexity

γ = d/(`2 − `1), where every share is in (Fq)d.

Before calculating the repairability of the scheme, we note one disadvantage of the com-

binatorial RTSs that arises from the necessary condition in the aforementioned theorem:

a (t, d, n)-RTS can only be constructed if there exists an (m, d, λ)-BIBD which is also a

repairable (t, `1, `2)-distribution design on m points with n blocks of size d. This is not

true for all possible parameters t, d and n, and so this construction may not be able to

build an RTS with the desired parameters.

So, we are left to calculate the repairability κ of the combinatorial RTSs and analyse the

computational complexity.

148

5.3 Existing solutions

Combinatorial RTSs only have restricted repairability, so not all d-subsets of players will

have the information required to help a repairing player reconstruct their share. The

probability that a randomly chosen set of d players can help a repairing player repair their

share is described in Theorem 5.3.3.

Theorem 5.3.3. A randomly chosen subset of d players in a (t, n, d)-RTS, constructed

using an underlying (m, d, 1)-BIBD with n = b players, has probability

κ =
(τ − 1)d(

n−1
d

)
of successfully repairing the share of a player Pr, where τ is the replication number of the

BIBD, as defined in Theorem 5.2.3.

Proof. Assume an (m, d, λ)-BIBD which is also a repairable (t, `1, `2)-distribution design

on m points with n blocks of size d. Say player Pr wishes to repair their share, which

consists of d sub-shares. There are a potential n − 1 players that could play the role

of helping nodes and assist Pr in reconstructing their share. As d of these players are

required to repair Pr’s share, there are a total of
(
n−1
d

)
d-subsets that could collaborate to

help Pr. Now, we have to calculate how many of the
(
n−1
d

)
d-subsets have the information

required to repair Pr’s share. Because of the properties of the underlying (m, d, λ)-BIBD,

each sub-share occurs in exactly τ blocks, where τ is the replication number of the BIBD,

calculated here as τ = (m − 1)/(t − 1). Therefore, excluding Pr’s share, each sub-share

is contained in τ − 1 of the n− 1 players’ shares. Now, as each pair of sub-shares occurs

in one player’s share, each of the d helping players must send Pr exactly one sub-share.

There are τ − 1 players who could contribute to recovering Pr’s first sub-share, then a

distinct group of τ − 1 players who could contribute to recovering Pr’s second sub-share,

and so on, until the dth sub-share. Therefore, there are (τ −1)d d-subsets that collectively

hold the information required to help Pr recover their share. Therefore, κ is given by

dividing the number of d-subsets that could successfully act as helping players, (τ − 1)d,

by the total number of possible d-subsets,
(
n−1
d

)
, as required.

We illustrate this proof by continuing Example 5.3.1.

Example 5.3.2. Consider the (2, 12, 3)-RTS in Example 5.3.1, constructed from an un-

derlying (9, 3, 1)-BIBD. The replication number of the BIBD is τ = 4. Each player has

d = 3 sub-shares and each sub-share is stored by τ −1 = 3 players, excluding the repairing

149

5.3 Existing solutions

player. So, there are three players that can send the repairing player the first sub-share,

three other players that can send the second sub-share and three other players that can

send the final sub-share. This means there are 33 = 27 sets of three players, out of the

possible
(
n−1
d

)
=
(

11
3

)
= 165 3-subsets, that have the information required to repair Pr’s

share. So

κ =
(r − 1)d(
n−1
d

) =
27

165
= 0.163636.

So, any randomly chosen set of d = 3 players will have a 16.3636% chance of having the

information required to help the repairing player. To further illustrate this, assume P5 is

the repairing player. There are 27 sets of players that can help repair P5’s share, including

{P1, P2, P3}, {P7, P8, P9} and {P2, P10, P11}. There are now 165 − 27 = 138 sets of three

players that do not have the information required to help repair P5’s share, including

{P4, P6, P7}, who do not know and so cannot send sub-shares 5 and 8, and {P1, P8, P12},

who do not know sub-share 8.

We make one final comment on the reparability of the combinatorial RTSs. In [97], it is

not necessary to have the number of players in the scheme n to be equal to the number of

blocks b. Instead, they bound n to be y ≤ n ≤ b, where y is the size of the basic repairing

set and b is the number of blocks in the design. If n < b, the repairability of the scheme

will vary depending on the number of players, and which players, are in the RTS.

Example 5.3.3. Consider a (2, 6, 3)-RTS constructed from the basic repairing set in

Example 5.2.4. Assume Pr wishes to repair their share. There are a possible
(

5
3

)
= 10

subsets of the remaining five players that could act as helping players. Of these 10 subsets,

only one set has the information required to repair Pr’s share. Therefore, κ = 0.1. So, a

randomly chosen set of three players will have a 10% probability of being able to recover

the repairing player’s share.

From now on, when computing the reparability of a combinatorial RTS, we assume the

number of players is maximal, so n = b. In Section 5.5.2, Table 5.2 shows the reparability

(as well as the information rate and communication complexity) of each of the (t, n, d)-

RTSs proposed in [97].

We complete the analysis of the combinatorial RTSs by commenting on the complexity

of each of the RTS algorithms. Once a (t, `1, `2)-distribution design has been chosen, the

RTS share algorithm requires one execution of the share algorithm of the ramp scheme.

150

5.4 Solutions using regenerating codes

Similarly, the RTS recover algorithm requires one execution of the recover algorithm of

the ramp scheme. The RTS repair algorithm requires no computation: helping players

must send sub-shares to the repairing player, but no players are required to conduct any

computation. In this respect, the repair algorithm is optimal.

5.3.3 GLF scheme

In [90], the authors (Guang, Lu and Fu) present an information theoretically secure

(t, n, d)-RTS which utilises MBR codes and linearised polynomials. Intuitively, they dis-

tribute a secret via a (t, t)-threshold scheme using a random, linearised polynomial with

the constant term equal to the secret, then the shares are treated as the message symbols

in a (t, n, d)-MBR code. Their scheme works for all parameters n, t and d.

The GLF construction achieves an information rate of ρ = 1/dβ and a communication

complexity of γ = dβ, where β is as defined by the MBR code. The GLF RTS is universally

repairable and so κ = 1.

The share algorithm of the GLF RTS requires the generation of a linearised polynomial

and the evaluation of t points on this polynomial; this is followed by the computation of the

necessary MBR code, where the shares are treated as message symbols. The GLF recover

algorithm requires recovery of the message symbols via the MBR code, then recovering

the linearised polynomial from the message symbols. The repair algorithm is identical to

the regeneration of a node in the underlying MBR code.

We will see how, when considering secure regeneration codes in Section 5.4, MBR codes can

be used to achieve schemes with a better information rate and communication complexity

than is achieved by the GLF RTS.

5.4 Solutions using regenerating codes

Secure regenerating codes, defined in Definition 5.2.10, can be directly used to construct

(t, n, d)-RTSs. However, the work discussing secure regenerating codes has not been pre-

sented in the framework of threshold schemes and RTSs. In this section, we briefly explore

151

5.4 Solutions using regenerating codes

the application of secure regenerating codes to RTSs and discuss relevant parameters. Fol-

lowing this, we present a number of constructions for secure regenerating codes.

5.4.1 Applying regenerating codes to RTSs

Now, we translate the language used in regenerating codes into that used by repairable

threshold schemes. Each node is equivalent to a player, and the data stored by the node is

the player’s share. A regenerating node is equivalent to a repairing player. The strongest

adversary considered in an RTS is equivalent to an (`1, `2)-adversary against a secure

regenerating code, where `1 = 0 and `2 = t− 1. So, if we wish to build a (t, n, d)-RTS, we

can trivially use an information theoretically secure (n, t, d)-regenerating code.

In general, the information rate of a (t, n, d)-RTS based on a regenerating code is

ρ =
B(s)

α
,

and the communication complexity is

γ =
dβ

B(s)
.

As all regenerating codes have universal repairability, all (t, n, d)-RTSs based on MBR

codes have κ = 1.

Note that, because α = dβ for all MBR codes, the communication complexity and in-

formation rate of these schemes are reciprocals, as was noted in [97] when discussing the

combinatorial RTSs.

Prior to considering constructions of secure regenerating codes, we consider implications

of the bounds given in Theorems 5.2.11 and 5.2.12 when considered in the setting of RTSs.

5.4.1.1 Using MBR codes as RTSs

The first corollary considers the information rate of an RTS based on an MBR code.

Corollary 5.4.1. A (t, n, d)-RTS based on a secure (n, t, d)-MBR code with a (0, t − 1)-

152

5.4 Solutions using regenerating codes

adversary cannot be ideal.

Proof. The information rate of the RTS is calculated as ρ = B(s)/α. The scheme is ideal

if ρ = 1, which is true if and only if B(s) = α. Now, substitute the MBR point from (5.2.3)

and (5.2.4) into the bound given in Theorem 5.2.11. This gives the maximum number of

messages symbols that can be securely distributed by an MBR code (as in [90]) to be

B(s) =

(
td−

(
t

2

))
β −

(
`2d−

(
`2
2

))
β. (5.4.1)

By substituting in `2 = t− 1, we learn that B(s) = β(d− t+ 1). So, B(s) = α if and only

if β(d − t + 1) = α. But in all MBR codes, α = dβ, and so d − t + 1 = d. This is only

true if t = 1. However, in the definition of threshold schemes, given in Definition 2.3.2,

t is defined to be such that t ≥ 2 as, if t = 1, any individual player could recover the

secret. Therefore, a (t, n, d)-RTS constructed from a secure (n, t, d)-MBR code cannot be

ideal.

5.4.1.2 Using MSR codes as RTSs

The following two corollaries consider the limitations of RTSs based on MSR codes.

Corollary 5.4.2. A (t, n, d)-RTS based on an (n, t, d)-MSR code cannot securely distribute

any messages if d = t.

Proof. Consider the bound given in Theorem 5.2.12. By setting d = t, we can see imme-

diately that B(s) ≤ 0.

Corollary 5.4.3. A (t, n, d)-RTS based on an (n, t, d)-MSR code with a (0, t−1)-adversary

cannot be ideal. In fact, if `1 + `2 = t− 1, the RTS can only be ideal against a (t− 1, 0)-

adversary.

Proof. Assume we have an optimal (in terms of B(s)), secure (n, t, d)-MSR code. The

153

5.4 Solutions using regenerating codes

information rate of the (t, n, d)-RTS based on this MSR code is

ρ =
B(s)

α

= (t− `1 − `2)

(
1− 1

d− t+ 1

)`2
. (5.4.2)

As we have assumed `1 + `2 = t− 1, we can substitute this into (5.4.2), so

ρ =

(
1− 1

d− t+ 1

)`2
. (5.4.3)

For the (t, n, d)-RTS to be ideal, ρ must equal 1. This is true if and only if `2 = 0, as

required.

In fact, (5.4.3) illustrates how the information rate of a (t, n, d)-RTS based on an MSR

code with an (`1, `2)- adversary, such that `1 + `2 = t− 1, decreases as `2 increases. This

is because, as previously explained, the repair algorithm for MSR codes leaks information

as α < βd. Because of this, MSR codes may not be the best way to construct RTSs as

they achieve a small information rate when considering a maximal adversary with `1 = 0

and `2 = t− 1.

Now, we consider secure regenerating codes as RTSs and analyse results.

5.4.2 Constructions of secure regenerating codes for RTSs

We consider three constructions for secure regenerating codes. The first of the three, [90],

is a secure MBR code and can be constructed for all parameters t, n, d such that t ≤ d < n.

The next two constructions we consider, from [83] and [90], are secure MSR constructions

and are for specified values of d.

5.4.2.1 SRK’s secure MBR construction [90]

In [90], the authors (Shah, Rashmi and Kumar) present an information theoretically secure

(n, t, d)-MBR code based on a matrix product construction for MBR codes, presented

in [82] and used in Example 5.2.5. Without loss of generality, they construct codes for

154

5.4 Solutions using regenerating codes

the case where β = 1, and codes for any higher value of β can be obtained by a simple

concatenation of the code with β = 1 (this technique is called striping and is detailed

in [82]). We call this construction the SRK-MBR construction.

The SRK-MBR construction achieves a secure code by replacing a carefully chosen set of

B−B(s) message symbols with symbols which are chosen uniformly and independently at

random from Fq. If these random values are treated as message symbols, the secure regen-

erating code is identical to the standard regenerating code, and so distribution, recovery

and repair are as in the regeneration code defined in [82]. They prove the secure construc-

tion is information theoretically secure. The SRK-MBR scheme achieves the maximum

bound for B(s), as in Theorem 5.2.11, with β = 1.

Consider this secure (n, t, d)-regenerating code as a (t, n, d)-RTS, and consider a (0, t−1)-

adversary. As the repair algorithm of an MBR code is inherently secure, a (0, t − 1)-

adversary is equivalent to a (t− 1, 0)-adversary. We can substitute `2 = 0 and β = 1 into

(5.4.1) to calculate

B(s) =

(
td−

(
t

2

))
−
(

(t− 1)d−
(
t− 1

2

))
= d− t+ 1.

Now, as each player stores α elements in Fq, where α = dβ is as in (5.2.4), and as β = 1,

the information rate and communication complexity metrics can be computed as follows:

ρ =
d− t+ 1

d
,

γ =
d

d− t+ 1
.

As regenerating codes have universal repairability, κ = 1 for all secure regenerating codes

treated as an RTS.

We present a brief example of this secure construction, which is a continuation from

Example 5.2.5.

Example 5.4.1. Consider the code in Example 5.2.5. The number of symbols that can

be securely distributed via this (5, 2, 3)-MBR code is B(s) = 2. Replace u1, u2 and u4

with random elements in the field, and let u3 and u4 be the secure message symbols

155

5.4 Solutions using regenerating codes

to be distributed. This is then a secure (5, 2, 3)-RTS against a (1, 0)-adversary and has

information rate ρ = 2/3, communication complexity γ = 3/2 and repairability κ = 1.

Finally, we briefly comment on the complexity of the scheme. All three algorithms, share,

repair and recover, require all players to compute linear computations.

5.4.2.2 Rawat’s MSR construction [83]

In [83], Rawat proposes an information theoretically secure (n, t, d)-MSR code for d = n−1.

The secure code is based on a construction for general MSR codes proposed in [100] which

is valid for all parameters n, t and d. Rawat’s MSR construction can be treated as a

(t, n, n− 1)-RTS with a (0, t− 1)-adversary.

Rawat’s construction is optimal with respect to B(s), as given in Theorem 5.2.12. Thus,

by substituting in d = n− 1, the information rate of the scheme can be calculated as

ρ =
B(s)

α
=

(
1− 1

n− t

)t−1

.

To calculate the communication complexity, it is useful to calculate dβ using the value for

β and B = αt, given in the MSR trade-off point. This gives that

dβ =
dB

t(d− t+ 1)
=
αt(n− 1)

t(n− t)
=
α(n− 1)

(n− t)
,

where α is defined to be α = (n− t)n−1 in the scheme. Then,

dβ =
(n− t)n−1(n− 1)

n− t
= (n− t)n−2(n− 1).

Then the communication complexity of the scheme is

γ =
dβ

B(s)
=

(n− t)n−2(n− 1)(
1− 1

n−t

)t−1
(n− t)n−1

=
(n− 1)(

1− 1
n−t

)t−1
(n− t)

.

As before, κ = 1. Also, as with other schemes based on regenerating codes, all three

algorithms, share, repair and recover, require computations of linear combinations.

156

5.4 Solutions using regenerating codes

5.4.2.3 SRK’s secure MSR construction [90]

In [90], the authors present a secure (t, n, d)-RTS based on MSR codes, for d = 2t−2. We

call this the SRK-MSR construction. SRK-MSR is similar to SRK-MBR and is also based

on the constructions given in [82], which are suitable for when d = 2t − 2 (they say the

schemes can be extended so d > 2k − 2 via shortening), and thus the SRK-MBR is also

for parameters d = 2t − 2. As in SRK-MBR, SRK-MSR consists of replacing a carefully

selected subset of the message symbols with random values.

The SRK-MSR scheme is able to distribute B(s) = (t−`1−`2)(α−`2β) messages securely.

The authors claim their scheme is optimal when `2 = 0, but say it is unknown whether it

is optimal when `2 > 0. We answer here that the MSR scheme is optimal if `2 = 0 or 1,

but is not optimal for `2 > 1.

Corollary 5.4.4. The (t, n, d)-RTS constructed from the SRK-MSR construction pre-

sented in [90] is optimal with respect to the number of messages that can be securely

distributed, B(s), if `2 ≤ 1. If `2 > 1, the construction is not optimal with respect to B(s).

Proof. Denote the number of message symbols the SRK-MSR construction in [90] can

securely distribute as

B
(s)
SRK = (t− `1 − `2)(α− `2β).

We can substitute in the values for β = B/t(d − t + 1) and B = αt, given at the MSR

trade-off point in (5.2.5) and (5.2.6), to get

B
(s)
SRK = (t− `1 − `2)

(
α− `2αt

t(d− t+ 1)

)
= (t− `1 − `2)α

(
1− `2

(d− t+ 1)

)
.

Then we can compare this to the bound B(s) for all MSR codes given in Theorem 5.2.12.

If we divide both values by α(t− `1 − `2), we can see that

B
(s)
SRK

α(t− `1 − `2)
= 1− `2

d− t+ 1

≤
(

1− 1

d− t+ 1

)`2
=

B(s)

α(t− `1 − `2)
,

with an equality when `2 equals either zero or one, but strictly greater than when `2 > 1,

157

5.5 Comparison of techniques

as required.

Consider the SRK-MSR construction as a (t, n, 2t − 2)-RTS with a (0, t − 1)-adversary.

We can substitute β = 1 and d = 2t − 2 into the MSR point to give that B = α(α + 1)

and α = t−1, so d = 2α. Now, we can calculate, B(s) = α− (t−1) = (t−1)− (t−1) = 0.

Therefore the SRK-MSR construction cannot be used to securely distribute any symbols

when a (0, t− 1)-adversary is considered.

5.5 Comparison of techniques

In this section, we compare the RTS constructions introduced throughout this chapter.

We begin by comparing MBR and MSR based schemes. Then, we compare schemes that

prioritise communication complexity above information rate, then schemes prioritising

information rate.

5.5.1 Comparing MBR and MSR codes

Here, we highlight some similarities and differences between (t, n, d)-RTSs that are con-

structions of secure MBR and MSR codes.

Firstly, all (t, n, d)-RTSs based on either MBR or MSR codes have universal repairability,

so κ = 1, always.

However, there are a number of major differences. MBR codes prioritise bandwidth and

thus the (t, n, d)-RTSs based on them achieve a lower communication complexity than

schemes based on MSR codes. In contrast, MSR codes prioritise storage and thus the

(t, n, d)-RTSs based on MSR codes generally achieve higher information rates. However,

secure MSR codes cannot be ideal RTSs unless `2 = 0, meaning the adversary witnesses

no regenerations, which may be unrealistic in the RTS setting.

Importantly, the repair algorithm for RTSs based on MBR codes is secure: the adversary

is able to witness any number of regenerations and no information will be learnt. However,

crucially, the repair algorithm for RTSs based on MSR codes is insecure: with each distinct

158

5.5 Comparison of techniques

regeneration, the adversary learns more information. Thus, the number of regenerations

the adversary can witness affects the number of message symbols that can be securely

distributed; the more regenerations witnessed, the fewer message symbols can be secured.

In settings where `2 = t−1, which is what is considered here for an RTS, MSR codes may

not be very useful.

Finally, secure MBR based (t, n, d)-RTSs exist for all valid parameters n, t and d. In the

current literature, there does not appear to be any secure construction based on MSR

codes for all valid parameters, and a secure construction for d = t is impossible.

Thus, between MBR based and MSR based RTSs, MBR based schemes appear to be the

most applicable to RTSs, mainly because of the secure repair algorithm. In particular, the

secure MBR construction presented in [90] appears to be the most applicable construction

from the field of regenerating codes. This is because it achieves the upper bound for the

value of B(s) and is therefore optimal and the repair algorithm is secure, meaning the

adversary can witness multiple repairs.

Table 5.1 compares the information rate and communication complexity for all universally

repairable schemes considered for an example set of parameters. Due to the restrictions of

the repairing degree d for the secure MSR constructions, the table considers the metrics

for a (4, 6, 6)-RTS using the SRK-MBR [90], Rawat [83], SRK-MSR [90] and GLF [44]

constructions. The metrics for a (4, 7, 4)-RTS from the enrolment and reduced enrolment

RTSs are also included. It is possible to see from Table 5.1 that, out of all RTSs based

on regenerating codes, the SRK-MBR construction achieves the best information rate and

the best communication complexity for the given parameters.

(t, n, d)-RTS Construction ρ γ κ

(4, 7, 6)−RTS SRK-MBR [90] 1/2 2 1

Rawat [83] 8/27 27/4 1

SRK-MSR [90] Not possible

GLF [44] 1/6 6 1

(4, 7, 4)−RTS
Enrolment [97] 1 16 1

Reduced Enrolment 1 10 1

Table 5.1: Comparing metrics for universally repairable RTS constructions.

159

5.5 Comparison of techniques

Combinatorial Schemes
[97]

MBR Schemes
[90]

(t, n, d)-
RTS

(m, d, 1)-
BIBDs

n ρ γ κ ρ γ κ

(2, n, 3) (9, 3, 1) 6 ≤ n ≤ 12 2/3 3/2 0.1636 2/3 3/2 1
(2, n, 3) (15, 3, 1) 10 ≤ n ≤ 35 2/3 3/2 0.0361 2/3 3/2 1
(2, n, 3) (21, 3, 1) 14 ≤ n ≤ 70 2/3 3/2 0.0139 2/3 3/2 1
(2, n, 4) (16, 4, 1) 8 ≤ n ≤ 20 3/4 4/3 0.0060 3/4 4/3 1
(2, n, 4) (28, 4, 1) 14 ≤ n ≤ 63 3/4 4/3 0.0073 3/4 4/3 1
(2, n, 4) (40, 4, 1) 20 ≤ n ≤ 130 3/4 4/3 0.0019 3/4 4/3 1
(2, n, 5) (25, 5, 1) 10 ≤ n ≤ 30 4/5 5/4 0.0263 4/5 5/4 1
(3, n, 5) (25, 5, 1) 10 ≤ n ≤ 30 2/5 5/2 0.0263 3/5 5/3 1
(2, n, 5) (65, 5, 1) 26 ≤ n ≤ 208 4/5 5/4 0.0003 4/5 5/4 1
(3, n, 5) (65, 5, 1) 26 ≤ n ≤ 208 2/5 5/2 0.0003 3/5 5/3 1
(2, n, 8) (64, 8, 1) 16 ≤ n ≤ 72 7/8 8/7 0.0016 7/8 8/7 1
(3, n, 8) (64, 8, 1) 16 ≤ n ≤ 72 5/8 8/5 0.0016 3/4 4/3 1
(4, n, 8) (64, 8, 1) 16 ≤ n ≤ 72 1/4 4 0.0016 5/8 8/5 1
(2, n, 4) (13, 4, 1) 9 ≤ n ≤ 13 3/4 4/3 0.0136 3/4 4/3 1
(3, n, 4) (13, 4, 1) 9 ≤ n ≤ 13 1/2 2 0.0136 1/2 2 1
(2, n, 5) (21, 5, 1) 12 ≤ n ≤ 21 4/5 5/4 0.0660 4/5 5/4 1
(3, n, 5) (21, 5, 1) 12 ≤ n ≤ 21 3/5 5/3 0.0660 3/5 5/3 1
(4, n, 5) (21, 5, 1) 12 ≤ n ≤ 21 1/5 5 0.0660 2/5 5/2 1
(2, n, 6) (31, 6, 1) 15 ≤ n ≤ 31 5/6 6/5 0.0263 5/6 6/5 1
(3, n, 6) (31, 6, 1) 15 ≤ n ≤ 31 2/3 3/2 0.0263 2/3 3/2 1
(4, n, 6) (31, 6, 1) 15 ≤ n ≤ 31 1/3 3 0.0263 1/2 2 1

Table 5.2: Comparison of (t, n, d)−RTSs based on (m, d, 1)−BIBDs, as in [97], and secure
MBR codes, as in [90].

5.5.2 Comparison of techniques prioritising communication complexity

Both secure MBR schemes and combinatorial RTSs prioritise communication complexity

over information rate. Here, we compare the SRK-MBR construction with the combina-

torial RTSs given in [97].

Table 5.2 shows how the combinatorial RTSs in [97] compare to those based on secure

MBR codes in [90] for certain parameters. The comparison shows the information rate ρ,

communication complexity γ and repairability κ (assuming n is maximal for the combi-

natorial schemes), with highlighted rows showing the RTSs with different ρ and γ. The

chosen parameters relate to proposed combinatorial RTSs in [97]; note that MBR schemes

exist for all valid parameters of n, t and d, but the combinatorial RTSs rely on the existence

of an underlying design with relevant parameters.

From Table 5.2, we can see the schemes achieve equal information rate and communication

160

5.5 Comparison of techniques

complexities in most cases. In some cases, which have been highlighted, the SRK-MBR

scheme achieves a better information rate and a better communication complexity than

the combinatorial RTSs. In no case do the combinatorial RTSs achieve better results

than the SRK-MBR construction. In fact, when the concept of restricted repairability

was introduced in [97], it was suggested that compromising repairability may enable more

efficient schemes. However, this is not the case.

As well as achieving similar or better values for ρ and γ in all defined parameters for t and

d in [97], the SRK-MBR construction has two advantages over the combinatorial RTSs:

1. The MBR schemes in [90] achieve universal, rather than restricted, repairability.

2. The combinatorial RTSs in [97] depend on the existence of certain combinatorial

constructions. This is in contrast to MBR schemes, which can be constructed for all

valid parameters n, t and d.

However, one advantage of the combinatorial RTSs in [97] is the computational complexity

of repairing a share. In schemes based on either MBR or MSR codes, every repair requires

helping nodes and the repairing node to execute linear computations. The combinatorial

RTSs, in contrast to this, just require the helping nodes to send the repairing node a

sub-share, with no computation being required for any of the players.

5.5.3 Comparison of techniques prioritising information rate

Both schemes based on MSR codes and the enrolment and reduced enrolment RTS priori-

tise information rate and offer universal repairability.

However, because of the insecure repair protocol, secure MSR codes are unable to achieve

an information rate as good as the reduced enrolment RTS. Even though the communi-

cation complexity of the enrolment RTS was reduced in the reduced enrolment RTS, the

communication complexity remains much higher than any of the other schemes.

161

Chapter 6

Localised multi-secret sharing

schemes

Contents

6.1 Introduction . 163

6.2 Localised threshold multi-secret sharing schemes 164

6.2.1 Multi-secret sharing . 164

6.2.2 Localised threshold multi-secret sharing schemes 165

6.3 Bounds and constructions for LMSSs 166

6.3.1 Optimal constructions . 166

6.3.2 Time dependent schemes . 171

6.4 Relaxing security requirements to construct more efficient schemes . . . 172

6.4.1 Shifting to a non-perfect model of secret sharing 173

6.4.2 Changing the access structures 173

6.4.3 Staggering key windows . 176

6.4.4 Combining techniques . 177

6.5 Application to key distribution in RFID enabled supply chains 178

6.5.1 RFID enabled supply chains . 180

6.5.2 Existing solutions . 182

6.6 Conclusion . 187

This chapter is based on joint work with Keith Martin, Maura Paterson and Doug Stinson

and is published in [63].

162

6.1 Introduction

6.1 Introduction

A multi-secret sharing scheme is a generalisation of a secret sharing scheme in which

several secrets are shared according to different access structures on the same set of play-

ers [13, 14, 47, 55, 72]. In this chapter, we consider a specific class of multi-secret sharing

schemes, which we call localised threshold multi-secret sharing schemes, that are suited to

an application in RFID security proposed by Juels, Pappu and Parno in USENIX 2008 [56].

We motivate the definition of localised threshold multi-secret sharing schemes initially

through the following toy example:

Example 6.1.1. A learned society is lead by a committee with seven members. The

members each serve a seven year term on the committee. Each year one member leaves

the committee and a new member is elected to replace them. Every year the society holds

a conference in a different city and committee meetings occur at these conferences. A

meeting is deemed quorate as long as at least three committee members are present.

The society wishes to distribute a signing key among the committee members that allows

them to sign the reports of their meetings at which at least three members are present. The

key will need to change each year to reflect the changed membership of the committee.

However, they wish to avoid the need to change the members’ shares, since the shares

are handed out at the committee meetings, but not every member attends each meeting.

Furthermore, the shares belonging to any members who have left the committee should

not reveal any information about the current value of the committee’s signing key.

With this example as our initial motivation, we first introduce multi-secret sharing schemes,

then define localised threshold multi-secret sharing schemes (LMSS). In Section 6.3 we

provide theoretical results on the security properties of LMSSs, including bounds on the

share sizes, and give constructions that meet these bounds. Section 6.4 considers how the

security definition of an LMSS can be relaxed in order to permit schemes with smaller

share sizes. Finally, in Section 6.5, we show how these ideas can be applied in a natu-

ral way when designing a scheme suitable for application in RFID enabled supply chain

management, motivated by a proposal of Juels, Pappu and Parno [56].

163

6.2 Localised threshold multi-secret sharing schemes

6.2 Localised threshold multi-secret sharing schemes

6.2.1 Multi-secret sharing

Many authors have studied a generalisation of secret sharing in which several secrets are

shared according to different access structures on the same set of participants [13, 14,

47, 55, 72]. There are various equivalent ways of defining security in such a setting; the

following is due to Herranz, Ruiz and Sáez [47]:

Definition 6.2.1. Let P = {P1, . . . , Pn} be a set of n players. For i = 1, 2, . . . , ` let Γi be

a monotone access structure on P. Let ` secrets s1, s2, . . . , s` be chosen from some secret

space S. A scheme that allocates to each player Pi ∈ P a share vi from some set V of

potential shares is a weak information theoretic secure multi-secret sharing scheme if it

satisfies the following properties:

• (correctness) for i = 1, 2, . . . , ` and for any set A ⊆ P of players we have that if

A ∈ Γj then the shares of the players in A can be used to recover the secret sj. In

terms of entropy, H(Sj | A) = 0 whenever A ∈ Γj.

• (weak information theoretic security) if A /∈ Γj then the shares of the players in A

reveal no information about sj. That is, H(Sj | A) = H(Sj).

If, in addition, any set A /∈ Γj together with a set T of secrets with sj /∈ T reveals no

information about sj that is not already revealed by T alone (i.e. if H(Sj | A,T) =

H(Sj | T)) then the scheme is said to have strong information theoretic security.

We present the following theorem from [47], without proof, which will be used later in our

analysis of LMSSs.

Theorem 6.2.2. Let Γ1, . . . ,Γ` be ` access structures on P and consider player Pi ∈ P.

Assume there exists subsets of players A1 ⊂ A2 ⊂ . . . ⊂ A` ⊂ P \ {Pi} satisfying, for all

j = 1, 2, . . . , `, the following three conditions:

1. Aj ∈ Γj−1 whenever j > 1;

2. Aj /∈ Γj;

164

6.2 Localised threshold multi-secret sharing schemes

3. Aj ∪ {Pi} ∈ Γj .

Then, for any weak information theoretic secure multi-secret sharing scheme for access

structures Γ1,Γ2, . . . ,Γ`, it holds that H(Vi) ≥
∑`

i=1 H(Si).

6.2.2 Localised threshold multi-secret sharing schemes

We now have the necessary notions to proceed. The requirements of Example 6.1.1 lead

us to the following definition:

Definition 6.2.3. Let P = P0, P1, P2, . . . be an ordered set of players. A window of length

n consists of a set of n consecutive players. Denote by Wi the window {Pi, Pi+1, . . . , Pi+n−1}.

To each window Wi we assign a secret si from some finite secret space S. Let V be a finite

set of shares. A scheme that associates a share vi ∈ V to each player Pi is a localised

threshold multi-secret sharing scheme with window length n and threshold t (denoted

(t, n)-LMSS) if it satisfies the following properties:

• for any i = 0, 1, 2, . . . the set of shares associated with the players in a set P ⊆ P

allow the secret si to be recovered whenever |P ∩Wi| ≥ t;

• for any i = 0, 1, 2, . . . if P ⊆ P is a set of players with the property that |P ∩Wi| < t

then the shares associated with the players in P reveal no information about si.

We can see that an LMSS satisfies the requirements of Example 6.1.1.

Example 6.2.1. The use of a (3, 7)-LMSS to distribute their signing keys would allow

the committee in Example 6.1.1 to satisfy their requirements: the first seven committee

members are the players P0, P1, . . . , P6, and the remaining committee members are ordered

by the year in which they join the committee. Each player Pi is given a share vi. As

illustrated in Figure 6.1, window W2 contains players P2, P3, P4, P5, P6, P7 and P8, which

correspond to the members who are in the committee during year two. Any three or more

of these members can combine their shares to recover the signing key s2 for year two. For

example, the set of members {P3, P6, P8} is an authorised set for year two, so shares v3,

v6 and v8 can be used to reconstruct s2. On the other hand, the set {P7, P8, P9, P10} only

contains two members from within window W2 and hence the set of shares {v7, v8, v9, v10}

165

6.3 Bounds and constructions for LMSSs

do not reveal any information about s2. (They would, however, allow s3, s4, s5, s6, s7 or

s8 to be recovered.)

s2

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 . . .

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 · · ·

W2

Figure 6.1: Depiction of window W2 in a (3, 7)-LMSS.

A (t, n)-LMSS can be regarded as a weak information theoretic secure multi-secret sharing

scheme, as in Definition 6.2.1, with access structures Γ0,Γ1,Γ2, . . . , where Γi is a (t, n)-

threshold access structure for the set of players within window Wi. In general, we say a

(t, n)-LMSS has weak information theoretic security, or weak security, if it corresponds to

a weak information theoretic secure multi-secret sharing scheme. Similarly, we say a (t, n)-

LMSS is strongly information theoretic secure, or has strong security, if it corresponds to

a strong information theoretic secure multi-secret sharing scheme.

The key feature of an LMSS is that the set of players is ordered and every minimal

authorised set of players is contained within a window of n consecutive players for some n.

That is, authorised subsets are sets of a sufficient number of players that are sufficiently

‘close’ to each other in the underlying ordering.

6.3 Bounds and constructions for LMSSs

6.3.1 Optimal constructions

The most trivial construction for a (t, n)-LMSS with weak security is to deploy a perfect

(t, n)-threshold scheme in each window, as observed in [56] (the same approach has been

mentioned previously in the literature as a way to construct multi-secret sharing schemes

for various other combinations of threshold access structures, e.g. [13]). We present this

trivial approach as the following construction:

Construction 6.3.1. Let P = P0, P1, P2, . . . be an ordered set of players, and denote by

166

6.3 Bounds and constructions for LMSSs

Wi the window {Pi, Pi+1, . . . , Pi+n−1}. Let p be a prime with p > n. For each window Wi

we share a secret si ∈ Zp among the n players in Wi using a perfect (t, n)-threshold scheme

(such as Shamir’s scheme from Construction 2.3.3). This is done independently for each

window; a player Pj is thus assigned shares corresponding to each window that contains

it, i.e. windows Wj−n+1,Wj−n+2, . . . ,Wj. (The secrets may or may not be independent,

but the randomness used in each of the threshold schemes is chosen independently.)

It is straightforward to see that Construction 6.3.1 gives rise to a (t, n)-LMSS in which

the total share size for each player is n log p. In the case where t < n this turns out to be

optimal, as shown by the following theorem:

Theorem 6.3.2. Let P = P0, P1, P2, . . . be an ordered set of players. Suppose t < n and

let Σ be a weakly secure (t, n)-LMSS that associates a share vi ∈ Vi to each player Pi.

Then for any j ≥ n− 1 we have that

H(Vj) ≥
j∑

i=j−n+1

H(Si).

Proof. For ease of notation we prove the result for j = n − 1, but the proof applies

analogously to any j ≥ n− 1. Consider the sequence of players P = {P0, P1, . . . , P2n−2}.

Restricting Σ to these players yields a weakly secure multi-secret sharing scheme on P

where, for i = 0, . . . n − 1, the secret si is shared according to the access structure Γi =

{A ⊂Wi | |A| ≥ t}.

For r = 1, 2, . . . , n, let Br consist of the first t − 2 + r elements of P \ {Pn−1}. Then

the sets Bi satisfy the conditions for Theorem 6.2.2, and so H(Vn−1) ≥
∑n−1

i=0 H(Si), as

required.

If the secrets and shares are all uniformly distributed, we obtain the result that the size of

the share given to Pj , for j ≥ n− 1, in a (t, n)-LMSS with t < n is at least n log |s|, which

implies that Construction 6.3.1 is optimal. (We address the case t = n separately, next).

The fact there do not exist constructions for a (t, n)-LMSS with share sizes shorter than

those of Construction 6.3.1 means these schemes are not suitable for applications requiring

small shares. In Section 6.4 we consider various approaches to relaxing the security defini-

tions for these schemes in a controlled manner so as to allow more efficient constructions.

167

6.3 Bounds and constructions for LMSSs

On the positive side, we observe that if the secrets are generated independently of each

other, then the optimal schemes of Construction 6.3.1 are in fact strongly secure.

Interestingly, the restrictions of Theorem 6.3.2 do not apply in the case where t = n, as

the following construction demonstrates.

Construction 6.3.3. Let P = P0, P1, P2, . . . be an ordered set of players, and denote by

Wi the window {Pi, Pi+1, . . . , Pi+n−1}. Suppose that for i ≥ 0, a secret si is generated

uniformly at random from the set Zλ2 , and that this is done independently for each i. For

i = 0, 1, . . . , n− 2 we assign a share vi to player Pi by generating vi uniformly at random

from Zλ2 . For i ≥ n− 1 we set vi = si−n+1 ⊕ vi−n+1 ⊕ vi−n+2 ⊕ · · · ⊕ vi−1.

To intuitively understand Construction 6.3.3, the last player in a window is given the XOR

of all previous shares in the window XORed with the window key. Specifically, take window

Wi−n+1. The last player in this window is Pi, who is given share vi, which is the XOR

of the window secret si−n+1 with all other shares in the window vi−n+1, vi−n+2, . . . , vi−1.

Then, to recover a window secret, all players in a window need only XOR their shares.

Theorem 6.3.4. Construction 6.3.3 results in an (n, n)-LMSS that has weak security and

optimal share size, but which does not possess strong security.

Proof. In an (n, n)-LMSS, the access structure Γj has a single minimal authorised subset

A, which is the set consisting of all n players in the window Wj :

A = {Pj , Pj+1, ..., Pj+n−1}.

Note that the secret sj can be recovered from the shares belonging to players in A by

XORing all their shares: sj = vj ⊕ vj+1 ⊕ · · · ⊕ vi+n−2 ⊕ vj+n−1.

For the access structure Γj , the largest unauthorised subsets have the form

Bî = {P0, P1, . . . , Pi−1, Pi+1, . . . , Pj+n−1, . . . },

for some i with j ≤ i ≤ j + n − 1. That is, Bî is the set of all players excluding one

player Pi who is contained in the window Wj . The set Bî is unauthorised because not all

n players contained in the window Wi are present in Bî.

168

6.3 Bounds and constructions for LMSSs

Suppose an adversary who wishes to determine sj possesses all the shares in Bî. By the

definition of Construction 6.3.3, the share vj+n−1 is constructed as

vj+n−1 = sj ⊕ vj ⊕ vj+1 ⊕ · · · ⊕ vi−1 ⊕ vi ⊕ vi+1 ⊕ · · · ⊕ vj+n−2,

hence

sj = vj ⊕ vj+1 ⊕ · · · ⊕ vi−1 ⊕ vi ⊕ vi+1 ⊕ · · · ⊕ vj+n−2 ⊕ vj+n−1. (6.3.1)

The adversary knows all terms on the right-hand side of (6.3.1) apart from the share vi

(as vi belongs to Pi, who is not contained in Bî). But the share vi can be expressed as

vi = si−n+1 ⊕ vi−n+1 ⊕ vi−n+2 ⊕ · · · ⊕ vi−1. (6.3.2)

With this is mind, we show that Construction 6.3.3 does not have strong security, but

does have weak security. We also show the construction is optimal.

Strong security. Construction 6.3.3 does not have strong security. In the strong security

setting, in addition to the shares possessed by the players in Bî, we assume the adversary

also knows all secrets other than sj . So the adversary knows all secrets but sj and all

shares but vi.

Consider (6.3.2). The adversary knows all shares vi−n+1, vi−n+2, . . . , vi−1, and all secrets

except sj . If j 6= i−n+ 1, the adversary knows si−n+1 and can immediately use (6.3.2) to

calculate vi. They then know all shares in the window Wj and can recover sj via (6.3.1).

If j = i−n+1, the secret si−n+1 in (6.3.2) is unknown (as sj is unknown and j = i−n+1)

and the adversary cannot proceed as before. Note this is the case where the player excluded

from Bî is the last player in the window Wj . Here, the adversary does not know the share

vi = vj+n−1 or the secret sj = si−n+1. However, we observe that:

vj+n = sj+1 ⊕ vj+1 ⊕ vj+1 ⊕ ...⊕ vj+n−2 ⊕ vj+n−1,

169

6.3 Bounds and constructions for LMSSs

hence

vj+n−1 = sj+1 ⊕ vj+1 ⊕ vj+1 ⊕ ...⊕ vj+n−2 ⊕ vj+n. (6.3.3)

The adversary possesses all terms on the right-hand side of (6.3.3) and so can calculate

vj+n−1 = vi. Once vi has been calculated, the adversary once again knows all the shares

in the window Wj and can use (6.3.1) to calculate sj , as before.

Weak security. In the weak security setting, the adversary does not know any secrets

others than those it is able to compute using the shares in its possession. So, assume

the adversary has only the shares belonging to players in Bî and wants to calculate the

secret sj ; the adversary has all information necessary apart from the share vi. The same

is true for the secrets corresponding to every window containing the share vi. Consider

the following system of equations:

si−n+1 = vi−n+1 ⊕ vi−n+2 ⊕ · · · ⊕ vi−1 ⊕ vi,

si−n+2 = vi−n+2 ⊕ vi−n+3 ⊕ · · · ⊕ vi ⊕ vi+1,

...

si = vi ⊕ vi+1 ⊕ ...⊕ vi+n−2 ⊕ vi+n−1.

This is a system of n linear equations. The adversary knows all the values except for

the n+ 1 values in the set S = {vi, si−n+1, si−n+2, . . . , si} (the n secrets and the share vi

belonging to player Pi /∈ Bî). For every possible choice of sj ∈ Zλ2 there is a choice of the

values in S \ {sj} consistent with the set of shares corresponding to players in Bî. Hence

these shares reveal no new information about the secret sj , meaning this construction has

weak security.

Optimality. To show this scheme is optimal with respect to share size, we note that

restricting this construction to any window gives a perfect (n, n)-threshold scheme for

that window in which the size of each share is the same as the size of the corresponding

secret. Since for a perfect (n, n)-threshold scheme the size of the shares must be at least

as large as the size of the secret, this is optimal.

The scheme of Construction 6.3.3 thus gives an example of a (t, n)-LMSS that is weakly

secure, but not strongly secure. We note that it has independently generated secrets, thus

170

6.3 Bounds and constructions for LMSSs

demonstrating that having independently generated secrets is a necessary but not sufficient

condition to guarantee a scheme with weak security will also have strong security.

6.3.2 Time dependent schemes

In many applications, such as our motivating Example 6.1.1, the secrets s0, s1, . . . of an

LMSS have a natural interpretation as a sequence of secrets that change over time. In

such a setting, it makes sense to consider a security model that is intermediate between

the strong and weak models. Hence, we introduce the following notion of security:

Definition 6.3.5. A weakly secure (t, n)-LMSS is said to have perfect backward secrecy

if the shares possessed by any set A /∈ Γj together with the set of the first j secrets Tj =

{s0, s1, . . . , sj−1} reveals no information about the secret sj other than that already revealed

by Tj. In entropy terms, H(Sj | A,Tj) = H(Sj | Tj).

Perfect backward secrecy ensures that the exposure of past secrets does not affect the

security of future secrets. Note that, by definition, a (t, n)-LMSS with perfect backward

secrecy is also a weakly secure (t, n)-LMSS. Furthermore, a strongly secure (t, n)-LMSS

necessarily has perfect backward secrecy. Thus, perfect backward secrecy can be seen

as an intermediate requirement between weak and strong security. A scheme with strong

security in fact possesses both perfect backward secrecy and perfect forward secrecy, where

compromise of future secrets does not affect the security of past secrets. This is interesting

from the point of view of motivating the strong security model, given that the scenario in

Example 6.1.1 seemed a priori only to require weak security.

It is interesting to consider whether the scheme of Construction 6.3.3 has the property

of perfect backward secrecy. The following result shows that, in fact, it only has quite

limited backward secrecy:

Theorem 6.3.6. Construction 6.3.3 does not have perfect backward secrecy: an adversary

possessing the secrets s0, s1 . . . sj−1 who also has shares of a maximal set of players Bî /∈ Γj

can determine sj except in the case where i = j + n− 1, where no information about sj is

revealed.

Proof. Consider the proof of Theorem 6.3.4. In showing that an adversary who has access

171

6.4 Relaxing security requirements to construct more efficient schemes

to all secrets other than sj can recover sj in the case where i 6= j + n − 1, we in fact

only made use of secrets s` with ` < j. Hence the same argument demonstrates that this

construction does not give a backward secure scheme. Interestingly, when i = j + n − 1

the adversary in fact learns nothing about sj in the backward secure setting. To see this,

we consider the following set of equations:

si−n+1 = vi−n+1 ⊕ vi−n+2 ⊕ · · · ⊕ vi−1 ⊕ vi,

si−n+2 = vi−n+2 ⊕ vi−n+3 ⊕ · · · ⊕ vi ⊕ vi+1,

...

si = vi ⊕ vi+1 ⊕ · · · ⊕ vi+n−2 ⊕ vi+n−1.

This is a set of n linear equations with n+ 1 unknowns, namely si−n+1, si−n+2, . . . , si, vi.

For every possible secret si−n+1 there exists a choice for the remaining elements of this set

that is consistent with the view of the adversary. Therefore, the construction does ensure

that an adversary lacking share vi−n+1 learns no information about si−n+1.

6.4 Relaxing security requirements to construct more effi-

cient schemes

The bounds on share sizes implied by Theorem 6.3.2 mean that in order to construct a

more efficient (t, n)-LMSS it is necessary to relax the security definition. There are various

ways in which this could be done. The SWISS schemes proposed by Juels et al. are one

example [56]; we discuss this scheme and limitations of it in Section 6.5.2.2. In this section,

we systematically consider a range of techniques that can be applied while still working

in the setting of information theoretic security.

Recall the essential aims of a (t, n)-LMSS are to ensure that any t suitably close users are

able to recover a secret, and that each secret should only be accessible to players within a

bounded window. The techniques considered here allow us to maintain these goals, while

relaxing the strict requirements of Definition 6.2.3 in ways that gives a well understood

trade-off between the security compromises and the resulting efficiency gains.

172

6.4 Relaxing security requirements to construct more efficient schemes

6.4.1 Shifting to a non-perfect model of secret sharing

Section 2.3.1 indicated that the shares of a perfect (t, n)-threshold scheme have to be at

least as large as the secret. But in Section 2.3.2 we showed that share sizes could be

reduced by the use of a (t0, t1;n)-ramp scheme, with the increased efficiency being traded

against the relaxation of the security in that sets of players of sizes between t0 and t1 can

now gain partial information about the secret.

The exact same technique can be applied in the context of a (t, n)-LMSS, by replacing the

use of Shamir’s threshold scheme in Construction 6.3.1 with a (t0, t1;n)-ramp scheme, such

as that in Construction 2.3.13. That is, we maintain the same correctness requirement for

the (t, n)-LMSS but relax the security requirement. Reducing the sizes of sets of players

that are excluded from learning any information about the secret from t1 − 1 to t0 in this

manner allows us to decrease the size of the shares by a factor of t1 − t0.

6.4.2 Changing the access structures

One consequence of Definition 6.2.3 is that the functionality (in terms of which keys a given

player can contribute to recovering) is inextricably tied directly to the security (in terms

of the sizes of the windows of players that can contribute to recovering a particular key).

Specifically, if we wish to consider windows of length n, then, according to this definition,

each player is necessarily a participant in n distinct windows. As this connects directly to

the storage overheads for each player, this restriction limits the scope for improving the

efficiency of such schemes.

It would be desirable to have greater flexibility in varying the parameters of a scheme. One

way to achieve this is to decouple the access structure (i.e., the definition of which sets

of players are authorised to access keys) from the pattern of key distribution (i.e., which

keys are able to be accessed by particular authorised sets). In this section, we set up a

framework for analysing this more general setting and explore the resulting consequences

in terms of security and practicality.

Consider the access structure and the key windows as two separate notions.

173

6.4 Relaxing security requirements to construct more efficient schemes

• The access structure in isolation: As previously, we consider an ordered set of players

denoted by P = P0, P1, P2, We define an access structure Γ on P by specifying

that the authorised sets in Γ are all those subsets of P that contain a subset of the

form S = {Pi1 , Pi2 , . . . , Pit} where i1 < i2 < · · · < it and it− i1 ≤ n−1. That is, any

subset of P that contains t or more players from within a window of n consecutive

players is authorised. We think of the authorised sets in Γ as being those that have

the right to reconstruct at least one key.

• Key windows: The defining property of a localised threshold multi-secret sharing

scheme is that we want any given key to be accessible by sufficiently large sets of

players that are suitably close. For a given key s we suppose there is a specific key

window W s consisting of the players Pi, Pi+1, . . . Pi+`−1 that we think of as having

the potential to be involved in recovering s. Note that, unlike in Section 6.3, we no

longer require ` = n but we can also allow ` ≥ n.

We now consider the restriction of the access structure Γ to the window W s. This gives us

an access structure Γs on the players in W s whose authorised sets are all those of the form

A ∈ Γ with A ⊆W s. This is illustrated in Figure 6.2 for the case ` = 4 and n = t = 2.

k

vi vi+1 vi+2 vi+3

Pi Pi+1 Pi+2 Pi+3

W s

Figure 6.2: When ` = 4 and n = t = 2, any pair of adjacent players are authorised to
recover the secret.

For ` > n the access structure Γs is no longer a threshold access structure. It is possible

to construct a secret sharing scheme assigning shares to the players in W s that enable

authorised sets in Γs to recover s while preventing the shares belonging to any set A /∈ Γs

from gaining any information about s [53]. However, this may require the share sizes to

be larger than the size of the secret. For example, in the case where ` = 4 and n = t = 2

(as depicted in Figure 6.2), Capocelli et al. show that it is necessary for the largest share

to be at least 50% larger than the size of the secret [22].

174

6.4 Relaxing security requirements to construct more efficient schemes

One approach to avoiding this issue (as suggested in [56]) is simply to use a (t, `)-threshold

scheme to share s among the players in W s, since this allows shares that are no larger than

the size of the secret (and permits a straightforward trade-off between security and share

size through the use of a suitable ramp scheme if desired). However, in the case where ` is

significantly larger than n (the schemes proposed in [56] have ` ≥ 2n) this results in many

subsets of W s that are not authorised having shares that allow them to recover the secret,

namely any set of t shares {vi1 , vi−2, . . . , vit} with i1 < i2 < · · · < it and it − i1 > n. This

can be substantially mitigated at no extra cost by the use of the following construction:

Construction 6.4.1. Generate shares of the secret s for the players in W s as follows:

• Share s using a perfect (t, n)-threshold scheme and assign the resulting shares v1, v2,

. . . , vn to the first n players in the window.

• Assign v1, v2, . . . , vn in turn to the next n players in turn and so on, cycling through

the shares as necessary throughout the rest of the window.

This construction ensures the shares possessed by any n consecutive players are precisely

those of a (t, n)-threshold scheme, and so the shares of any subset of t or more of those

n consecutive players can recover the secret, as required by Γs. There is potential for

a small saving in the size of the shares relative to using a (t, `)-threshold scheme since

it is possible to use a field of size n rather than `. However the main advantage of this

construction is in reducing the number of sets A /∈ Γs that can recover s. For a (t, `)-

threshold scheme, there are
(
`
t

)
subsets of size t that can recover the secret, whereas

Γk contains only (`− n)
(
n−1
t−1

)
+
(
n
t

)
authorised subsets of size t (as there are

(
n
t

)
ways of

choosing such a subset from among the last n players in the window; for subsets not wholly

contained within the last n players there are ` − n possible choices for the first player in

the subset and
(
n−1
t−1

)
ways to choose the rest of the subset from the n − 1 subsequent

players).

For example, if ` = 4 and n = t = 2, and if a (t = 2, ` = 4)-threshold scheme is used, there

are
(

4
2

)
= 6 pairs of shares that can recover the secret, whereas Γs only has 2

(
1
1

)
+
(

2
2

)
= 3

authorised pairs. This implies that half of the pairs of players enabled by the threshold

scheme to access the secret are not in Γs. For the scheme given in Construction 6.4.1, on

the other hand, if ` = αn there are αt
(
n
t

)
subsets of size t that can recover the secret.

175

6.4 Relaxing security requirements to construct more efficient schemes

For ` = 4 and n = t = 2 this gives 22
(

2
2

)
= 4 pairs that can recover the secret, so only a

quarter of these are not in Γs.

We note that Construction 6.4.1 can also be instantiated with a ramp scheme in place of

the threshold scheme, if desired.

6.4.3 Staggering key windows

If we were to fix ` = n and require a new key window of length n starting with player Pi for

every i = 1, 2, . . . then we would recover Definition 6.2.3. However, by allowing distinct

values of ` and n, and allowing more flexibility in the distribution of the key windows,

we can obtain a family of schemes that have the potential for much greater flexibility in

tailoring their properties to suit our application requirements.

One way to do this is to introduce a parameter d that describes the offset between consecu-

tive key windows, so secret s0 is associated with the window W s0 = {P0, P1, P2, . . . , P`−1},

whilst secret s1 is associated with the window W s1 = {Pd, Pd+1, . . . , Pd+`−1}, and so on.

In general, the secret si is associated with the window W si = {Pid, Pid+1, . . . , Pid+`−1}.

The following lemmas describe basic properties of the scheme that arises from staggering

the key windows in this fashion.

Lemma 6.4.2. An authorised set A = {Pi1 , Pi2 , . . . , Pim} with im − i1 = c for some

c ≤ n− 1 can reconstruct either
⌊
`−c
d

⌋
or
⌈
`−c
d

⌉
secrets.

Proof. The shares corresponding to the players in set A allow them to recover the secret

for any window W with A ⊆W . A window of length ` contains A if it starts with a player

between Pim−` and Pi1 . This is a range of ` − c possible starting points. If the windows

have offset d then for any value of im at least
⌊
`−c
d

⌋
windows, and up to

⌈
`−c
d

⌉
windows

will start in this range.

The share storage requirements for any individual player are given by the following lemma:

Lemma 6.4.3. Any single player is associated with either
⌊
`
d

⌋
or
⌈
`
d

⌉
shares.

176

6.4 Relaxing security requirements to construct more efficient schemes

The proof is a direct analogue of that of Lemma 6.4.2.

Example 6.4.1. Suppose we take ` = 2n and d = n. Then every player is associated with

shares from two distinct key windows, and any authorised set is able to recover either one

or two distinct window keys.

6.4.4 Combining techniques

Combining all the techniques discussed in this section gives us the following construction:

Definition 6.4.4. Let P = P0, P1, P2, . . . be an ordered set of players, and denote by

Wi the window {Pi, Pi+1, . . . , Pi+`−1}. Let p be a prime with p > n. For each window

Wi for i = 0, d, 2d, 3d, . . . we share a secret si ∈ Zp among the ` players in Wi using

Construction 6.4.1 implemented with a (t0, t1;n)-ramp scheme. The resulting construction

is called a flexible localised multi-secret sharing scheme, denoted (t0, t1;n, `, d)-fLMSS.

The following properties of this construction follow directly from the earlier results in this

section.

Theorem 6.4.5. A (t0, t1;n, `, d)-fLMSS has the following properties:

• If the secrets are all independent and identically distributed according to the uniform

random variable S then the size of each share is
⌈
`
d

⌉ log2 |s|
t1−t0 bits.

• Any set of players {Pi1 , Pi2 , . . . , Pim} ⊆ Wi for i = 0, d, 2d, . . . with m ≥ t1 and

im − i1 ≤ n is able to recover the secret si.

Example 6.4.2. Consider secret windows of length ` = 150, with an offset of d = 40

between consecutive window keys. Let n = 100, t1 = 50 and t0 = 30, so any 50 players

Pi1 , Pi2 , . . . , Pi50 with i50 − i1 ≤ 99 are able to fully construct a common secret, whereas

sets of 30 or fewer players learn no information about the secret. Using Lemma 6.4.2,

an authorised set A = {Pi1 , Pi2 , . . . , Pi50} with i50 − i1 = c for some c ≤ 99 is able to

reconstruct
⌊

150−c
40

⌋
or
⌈

150−c
40

⌉
secrets. For example, when c = 50 we have

`− c
d

=
150− 50

40
= 2.5,

so each authorised subset is always able to construct at least two, and potentially up

to three, window secrets. To illustrate this, consider the authorised set of players A0 =

177

6.5 Application to key distribution in RFID enabled supply chains

{P120, P121, . . . , P169} depicted in Figure 6.3. The shares in A0 are capable of recon-

structing the secrets for windows W40,W80 and W120. This is the maximum possible

number of secrets a set of 50 players can recover. Consider a different authorised set

A1 = {P119, P120, . . . , P168}. The players in A1 can reconstruct the secrets for windows

W40 and W80, but no longer have sufficient shares to compute the secret for window W120.

Lemma 6.4.3 implies that any single player is associated with either
⌊

150
40

⌋
or
⌈

150
40

⌉
shares.

In this example,
`

d
=

150

40
= 3.75,

so each individual player is associated with either three or four shares. For example,

consider the player P210. This player must hold shares for the secrets of windowsW80,W120,

W160 and W200 and hence is an example of a player who holds four shares. On the other

hand, player P235 must hold a share for the secret for windows W120,W160 and W200 and

thus holds three shares. Both players are illustrated in Figure 6.3.

Theorem 6.4.5 states that the total size of the shares for each player in a (t0, t1;n, `, d)-

fLMSS is ⌈
`

d

⌉
log2 |s|
t1 − t0

bits. Here, we have a (30, 50; 100, 150, 40)-fLMSS, so if we are wishing to have a uniformly

generated 32 bit secret (for example), we obtain

⌈
`

d

⌉
log2(s)

t1 − t0
=

⌈
150

40

⌉
32

50− 30
= 4× 32

20
< 7,

so we would require each player to store at most 7 bits. For a secret of 64 bits, we would

require at most 13 bits of storage. In comparison, were we to use Construction 6.3.1, each

player would be required to store 100 shares each of size 32 bits, leading to a total storage

of 3200 bits, or 6400 bits in the case of 64 bit secrets.

6.5 Application to key distribution in RFID enabled supply

chains

In this section, we progress from our initial motivation, given in our toy Example 6.1.1, and

define the main motivation for LMSSs, that of RFID enabled supply chains. We explore

178

W0

W40

W80

W120

W160

W200

W240

` = 150

d = 40

A

P210 P235

P0 P40 P80 P120 P160 P200 P240 P280 P320 P360 P400

Figure 6.3: Illustration of properties of the (30, 50; 100, 150, 40)-fLMSS of Example 6.4.2.

6.5 Application to key distribution in RFID enabled supply chains

the problem then highlight a number of ways in which threshold schemes have previously

been used in RFID enabled supply chains. We introduce the SWISS schemes in [56], which

inspired the definition of LMSS, and highlight the similarities and differences between the

SWISS schemes and our fLMSS. Finally, we consider the application of fLMSS to RFID

enabled supply chains.

6.5.1 RFID enabled supply chains

Radio frequency identification (RFID) is a technology that uses radio signals to identify

objects [1]. An RFID system consists of a tag, a reader and a back-end server [1]. RFID

devices are used in transportation, logistics, manufacturing and processing and typical

applications include inventory control, animal tagging, postal tracking, airline baggage

management, access control, and manufacturing processes [88].

RFID tags enable the identification, tracking and verification of products in a supply chain

both automatically and in real time [1], and have the potential to store information such

as batch numbers and date of manufacture, hence their use is becoming more prevalent in

manufacturing. Ultimately, it is expected that items will be tagged on an individual level,

enabling them to be tracked from the factory to the point of sale.

In supply chains, the predominant RFID standard is known as the Electronic Product

Code (EPC) [34] and, in particular, Class-1 Gen-2 EPC, henceforth referred to as Gen2.

Gen2 tags can be regarded as new generation bar-codes that emit some data, called an

EPC code, that contains four elements [56]: a header, which denotes the EPC version

number; a domain manager that details the manufacturer; an object class that specifies

the item type; and a serial number, which is a universal identifier for the item. After a tag

is read by a reader, the unique serial number enables the tag to be linked to a database

containing other vital information related to the product. Storing the EPC code rather

than all the information relevant to the product requires less memory on the tag, which

is ideal as tags have a limited memory of up to 2KB of data [56].

However, the use of these tags in supply chains creates new security and privacy challenges.

For instance, consider a consumer who is in possession of a tagged product. They run

the risk that a passer-by could scan the tag and thereby determine they are carrying

180

6.5 Application to key distribution in RFID enabled supply chains

the product. There are many items, such as medications, for which this is potentially

undesirable. Additionally, if the same EPC tag was read at multiple locations, the passer-

by would be able to track the consumer’s movements. Hence there are privacy concerns

for the consumer with the use of RFID tags.

Another challenge is that of key distribution. In particular, there are two features in the

Gen2 standard that require secret keying material:

• Each tag’s memory can be either permanently or temporarily locked, which prevents

alteration of the tag’s memory. With the use of a write-access key, a user can unlock

the tag and write to its memory. We note that even if a tag is locked, the memory

can still be read, just not written to.

• The kill command is a function that forces the tag to permanently disable itself.

Generally, the tag’s memory may be written and locked at the point of manufacture, then

read at different stages throughout the supply chain. Finally, at the point of sale, the

kill command may be executed in order to address the privacy concerns of the consumer.

However, there may not exist any prior secure channels between the manufacturer and

merchant, who legitimately requires access to the tags’ contents (in order to execute the

kill function, for example). From leaving the factory to arriving on the shelf, the RFID tag

may pass between several different organisations and, at the point in which the RFID’s

memory is written, the factory may not know where the RFID tag is being sent.

A solution that prevents a casual adversary from reading the contents of a tag, whilst

allowing a legitimate user to read and potentially lock or kill the tag, is required. One

popular approach is to exploit differences in the way in which a legitimate user is able to

access the data on a tag, as opposed to the potentially more restricted access available to

a casual adversary.

For example, in [65], the authors assume an adversary only has momentary access to an

RFID tag, whilst a legitimate user has access for an extended period of time. Correspond-

ingly, they suggest distributing the data on a tag via a perfect (n, n)-threshold scheme,

for some value n. All the shares are then stored on the tag and, each time the tag is

queried, it will emit a different share. Thus, a casual adversary with access for a limited

181

6.5 Application to key distribution in RFID enabled supply chains

time period will be unable to read all n shares and so will learn no information about the

data stored on the tag, whereas a legitimate user will be able to query the tag a sufficient

number of times in order to learn all the shares and thus read the tag. However, this

solution requires each tag to store n times the size of the original data which, given the

limited memory available on these tags, may be too much.

We now discuss two solutions, both proposed in [56] by Juels, Pappu and Parno, that

leverage the different behaviours and abilities of an adversary and a legitimate user.

6.5.2 Existing solutions

In [56], Juels, et al. suggest two ways in which threshold schemes can be utilised in RFID

enabled supply chains. They call their techniques secret sharing across space and secret

sharing across time. Both techniques address slightly different scenarios in the RFID

enabled supply chain, with secret sharing across time addressing the same problem as the

LMSS scheme. We begin, however, by introducing the secret sharing across space solution,

and discuss its limitations.

6.5.2.1 Secret sharing across space

In [56], the authors consider the following scenario:

Example 6.5.1. Suppose a manufacturer places tags on items that are shipped in cases

(where one case consists of many items) to a merchant who then sells them individually

to customers. The merchant (who has a legitimate need to read the tags) has access to

multiple tags. On the other hand, after the items are sold, an adversary (who should be

prevented from recovering the tags’ identities) is expected to only have access to a small

number of tags.

In this scenario, Juels et al. suggest using one case-wide key for all items in a case, which

can be combined with each tag’s serial number to compute a unique key for each tag; this

unique key may be a write-access key, or a key that allows execution of, for example, the

kill command. In order to secure the case-wide key, they suggest distributing it across all

the tags in the case using a threshold scheme, with each tag receiving a single share. This

182

6.5 Application to key distribution in RFID enabled supply chains

ensures the merchant who possesses the entire case can gather enough shares to recover

the case-wide key (and therefore the unique key for each tag), but once the items have

been sold they are sufficiently dispersed that the case-wide key, and therefore the unique

key for a given tag, can no longer be recovered.

In order to keep the share sizes of the case-wide key small, Juels et al. propose using a

variation of Krawczyk’s HK0 scheme, defined in Figure 2.3, which they call their tiny secret

sharing scheme (TSS). Like Krawczyk’s scheme, their TSS scheme provides computational

(rather than information theoretic) security [60] but is only secure in the RO model. Recall

that, in Krawczyk’s HK0 scheme, a large secret is encrypted with a (relatively) short key

and the resulting ciphertext is shared using an IDA (with no security requirements), while

the key is shared using a perfect (t, n)-threshold scheme. For the TSS, Juels et al. encrypt

the large secret with a hash of the encryption key, then share both the key and the

ciphertext with an IDA based on an ECC, as discussed in Section 2.4.2. They claim this

enables them to ‘make the size of our shares independent of the secret’. In fact, this is

not correct, nor is their assertion that Krawczyk’s HK0 scheme has ‘shares with lengths

independent of the secret’s size’. Rather, as Krawczyk states in his abstract [60], his

scheme is ‘an m-threshold scheme... in which shares corresponding to a secret s are of

size |s|/m plus a short piece of information whose length does not depend on the secret size

but just on the security parameter’. (The bound of |s|/m is clearly optimal if the secret is

to be recovered from m shares.)

In some cases, the authors say, only a key need be distributed, and not a large secret. In

this case, the key can be directly distributed via an IDA based on an ECC. For example, it

is known (and has already be stated in Section 2.4.2), that a length n code with minimum

distance d and dual distance d∗ gives a (d∗−2, n−d+ 1;n−1)-ramp scheme. Thus, if the

dual distance of the code is small, t0 is also small and the resulting scheme only guarantees

protection of the key against small coalitions of players. In Krawczyk’s HK0 scheme the

computational security is ensured by the fact a perfect threshold scheme is used to share

the key. Replacing the threshold scheme with an information dispersal algorithm based

on an ECC, as is done in the TSS construction, leads to a similar reduction in security

as would be caused by simply using a ramp scheme to share the message directly, does

not reduce the storage relative to this more straightforward approach, and offers only

computational rather than information theoretic security guarantees. As such, this ECC

approach does not appear to offer any clear advantages in this context.

183

6.5 Application to key distribution in RFID enabled supply chains

Thus, we conclude by commenting that the use of a threshold scheme to distribute a case-

wide key across all the tags in a case of items, with each tag receiving a single share, is

a novel and interesting idea, but that the scenario given in Example 6.5.1 may be better

served by the straightforward use of either Krawczyk’s HK0 scheme, or a linear (t0, t1;n)-

ramp scheme, rather than the proposed TSS, dependent on whether a large secret or only

a key is to be distributed.

6.5.2.2 Secret sharing across time

An adversary that gains access to an entire case of items in Example 6.5.1 will be able

to learn the case-wide key, and thus derive the unique key to each tag. This would then

enable the adversary to use the unique keys to write to the tags’ memories, or execute

the kill command, for example. Neither of which are ideal. For this reason, Juels et al.

consider a further scenario, in which a key is distributed across not one case, but across

multiple cases. As before, the distributed key is used for multiple tags and is combined

with each tag’s serial number in order to derive a unique key for each tag. For ease, we

refer to the key begin distributed simply as the key. Given that cases arrive at staggered

times in a supply chain, Juels et al. refer to this method as secret sharing across time, and

give the following example.

Example 6.5.2. Alice is shipping RFID tagged items to Bob and wishes to communicate

the key for the tags to Bob as securely as possible. Alice employs trucks that hold up to

ten cases and is concerned an adversary may gain access to at least one case, if not the

whole truck. She wishes to prevent such an adversary from gaining access to the relevant

keys.

Juels et al. suggest Alice does as follows. She selects a sequence of eleven cases Pj ,

Pj+1, . . . , Pj+10, called a window, designated for delivery to Bob and creates a key s from

which, along with the knowledge of each tag’s unique key, it is possible to derive the

unique key for any tag within the window of cases. She distributes s into eleven shares

v1, v2, . . . , v11 via a perfect (11, 11)-threshold scheme, and writes share vi to case Pj+i−1.

With this solution, an adversary that gains access to the contents of a small collection of

cases, or even an entire truckload, is unable to reconstruct s or obtain the unique keys

for any RFID tag. On the other hand, Bob can reconstruct s once he receives the full

184

6.5 Application to key distribution in RFID enabled supply chains

sequence of eleven constituent cases.

Example 6.5.2 is a very specific example given by Juels et al. We present a generalised

scenario that builds on this motivating example.

Example 6.5.3. Suppose a manufacturer attaches RFID tags to items as they come off

the production line. The items are then packed and shipped to meet orders coming in

from wholesale customers. The manufacturer wishes to distribute keys across items in

an order using a (t, n)-threshold scheme, as in Example 6.5.1. However, the customers

may order differing numbers of items, and at the time when the data is being placed on

the tags the manufacturer does not yet know what these orders are going to be (either in

terms of their sizes or to which customer they will be shipped). The shares on the tags

in a single order must enable the wholesaler to recover a suitable key, yet adversaries who

obtain fewer than t shares from a given order should learn no information about the key.

(In particular, this means that the tags from a certain wholesaler’s orders should not allow

that wholesaler to learn the key corresponding to another wholesale customer’s order.)

As a solution to this problem, Juels et al. propose using multiple overlapping windows

and attaching to each window a key, which can be recovered if a sufficient number of cases

within a window are received and their shares learnt. This is the basis of their sliding

window information secret sharing (SWISS) scheme. Their basic SWISS scheme, which is

a (t, 2n)-SWISS scheme, uses windows of length 2n, that overlap by an offset of d = n, and

distribute each window key via a perfect (t, 2n)-threshold scheme. In their basic SWISS

scheme, each case is included in two windows and is thus given two shares. Any t cases

within n of each other in the underlying order will be able to recover either two or three

window keys.

After defining their basic SWISS scheme, they observe that it can be generalised to a

(t, x)-SWISS scheme by introducing some parameter Ψ. The (t, x)-SWISS scheme has

windows of length (Ψ + 1)x/Ψ which overlap by Ψ cases, and distributes each window key

via a (t, (Ψ + 1)x/Ψ)-threshold scheme. In this generalisation, each case in included in

Ψ + 1 windows and is thus given Ψ + 1 shares. Any t cases within (Ψ + 1)x/Ψ of each

other in the underlying order will be able to recover either Ψ + 1 or Ψ + 2 window keys.

Finally, Juels et al. mention that one could use their TSS scheme in place of a perfect

threshold scheme in order to further reduce share sizes.

185

6.5 Application to key distribution in RFID enabled supply chains

6.5.2.3 Applying the fLMSS

We observe that the requirements of Example 6.5.3 are in fact essentially the same as

those of Example 6.1.1; hence, a (t0, t1;n, `, d)-fLMSS is an appropriate solution for the

manufacturer’s needs in this situation. We relate our previous Example 6.4.2 to RFID

enabled supply chains:

Example 6.5.4. In Example 6.4.2, we saw that the use of a (30, 50; 100, 150, 40)-fLMSS

allowed a 64 bit secret to be distributed while only requiring each player to store a 13 bit

share. This is well within the capacity of a Gen2 tag, and would be suitable, for example,

in a situation where merchants order shipments of at least 100 items at a time.

6.5.2.4 Relating the SWISS scheme and LMSS

In defining their SWISS construction, Juels et al. did not explore any constructions that

provide perfect security, such as is achieved in Construction 6.3.1. This motivated our

LMSS definition and the exploration of constructions and bounds.

We then recognised the overlapping of windows as one technique to make efficiency gains,

and identified a number of other techniques that could be used. In particular, we recognised

the fact that Ψ and d completely determines both n and ` (or alternatively, the choice of Ψ

and n completely determines d and `) as unnecessarily restrictive and hence we decoupled

the access structure from the window size.

Another initiative to make efficiency gains was to use a ramp scheme, rather than a perfect

threshold scheme. This remains in the information theoretic security setting, but leaks a

measurable amount of information in return for smaller share sizes. In a similar vein, Juels

et al. suggest that, instead of a perfect threshold scheme, their TSS scheme could be used.

As is argued in Section 6.5.2.1, either a ramp scheme or Krawczyk’s HK0 would be a more

straightforward approach than the TSS, dependent on whether a large secret or just a key

is being dispersed. If a ramp scheme is used instead of the TSS, this would align with our

fLMSS more tightly. Alternatively, a computationally secure threshold scheme could be

used in place of either the perfect threshold scheme (in our LMSS), or the ramp scheme (in

our fLMSS). We note that the definition of a (t, x)-SWISS scheme with parameter Ψ, used

with a perfect threshold scheme is a (t− 1, t;n, n, x/Ψ)-fLMSS, where n = (Ψ + 1)x/Ψ.

186

6.6 Conclusion

Thus, our fLMSS is a more flexible solution than the SWISS scheme proposed by Juels et

al. in [56].

6.6 Conclusion

In this chapter we introduced the concept of LMSSs, which are a special case of multi-secret

sharing schemes and a natural concept with a range of potential applications. We have

presented a number of constructions, analysed the security and considered their bounds.

We then discussed relaxing the security requirements in order to construct flexible LMSSs.

These schemes provide a flexible and lightweight tool for approximating the ideal behaviour

of a (t, n)-LMSS in a restricted environment, such as for use in RFID enabled supply chains.

We highlight the advantages of using a fLMSS for this application to be:

• The direct use of a ramp scheme rather than an arbitrary ECC (as in the SWISS

scheme [56]), explicitly gives the values of the important parameters, so that the

resulting trade-off between security and efficiency is entirely clear. Furthermore, the

use of Construction 2.3.13 in the fLMSS gives the essential property that both the

sharing and the secret recovery can be efficiently performed.

• The fLMSS provides information theoretic security rather than relying on computa-

tional assumptions (in contrast to the TSS, which is secure only in the RO model).

• The use of Construction 6.4.1 reduces the number of unauthorised sets who can

access a given secret relative to a SWISS scheme of analogous parameters.

• By separating the window length ` from the offset d, we have enabled a more flexible

choice of parameters that allows for the appropriate security/efficiency trade-off to

be chosen to directly suit application requirements.

The systematic analysis of the various components of the fLMSS in Section 6.4 ensures the

trade-offs inherent in the selection of parameters are explicit and well-understood, making

the fLMSS a widely applicable tool for applications of this nature.

187

Chapter 7

Concluding Remarks

Throughout this thesis, we focused on threshold schemes in different security settings.

We have considered enhancements to threshold schemes, including robust extensions,

repairable threshold schemes and localised threshold multi-secret sharing schemes, and

explored their efficiencies, which included analysing the memory and computational re-

quirements and communication bandwidth. We considered a number of ways in which

security can be compromised in order to achieve more efficient schemes and analysed this

trade-off in different settings.

We began with Chapter 2, where the necessary security notions and definitions were pre-

sented. This included defining symmetric-key encryption schemes, secret sharing schemes,

threshold schemes, information dispersal algorithms and all relevant security notions.

In Chapter 3, we presented a perfect, ideal threshold scheme, called the modified HP

scheme, based on an element of a computationally secure threshold scheme from a patent

by HP [21]. We defined the scheme, then analysed both the security and efficiency. We

then evaluated a number of other ideal, perfect threshold schemes in the literature, in-

cluding Shamir’s threshold scheme [91] and a scheme by Kurihara et al. [62]. We showed

the modified HP share algorithm required fewer bitwise operations than Shamir’s share

algorithm, and fewer bitwise operations for the recover algorithm than both the schemes

by Shamir and Kurihara et al., assuming pre-computation is unavailable for recovery.

Going forwards, it would be interesting to implement the different schemes on different

188

hardware and compare the running times for both share and recover algorithms over a

range of parameters. It would also be constructive to widen the range of schemes included

in the comparison. In particular, Chapter 3 focused on perfect threshold schemes and

compared the modified HP scheme to other ideal, perfect threshold schemes. Rather than

considering relaxing the security in order to gain more efficient schemes, as is explored

in other chapters, we could explore the trade-offs between different efficiency metrics.

For example, there may be non-ideal, perfect threshold schemes requiring fewer bitwise

operations than the modified HP scheme, or perfect threshold schemes requiring more than

minimal randomness with fewer bitwise operations. A full survey considering all efficient,

perfect threshold schemes, not just ideal ones, would be worthwhile.

Chapter 4 explored a computationally secure threshold scheme proposed by Plank and

Resch in [85], called AONT-RS. We presented a generalised version of the scheme, called

AONT-RS0, that allowed for flexibility over choice of IDA and the block mode of operation

and specified the necessary assumptions on the symmetric-key encryption scheme, the size

of the ciphertext, the hash function and the IDA in order for the scheme to be secure.

We proved AONT-RS0 to be computationally secure in the RO model. After analysing

the security, we proceeded to analyse the efficiency of AONT-RS0 and compared it to

Krawczyk’s HK0 scheme, presented in [60]. We concluded AONT-RS0 is more efficient,

in terms of memory requirements and computational complexity, than HK0, but not as

secure, due to the assumptions made in the proof of AONT-RS0 (in particular, the as-

sumption that the hash function is indistinguishable from a random oracle) compared to

the standard assumptions made in the proof of HK0.

We then briefly discussed extending AONT-RS0 to be robust by using two techniques: first

hash functions, then commitment schemes. The extension using hash functions is private

and recoverable in the RO model, whereas the technique using commitment schemes is

private in the RO model and recoverable under standard assumptions. As before, the

scheme proven to be secure in the RO model is more efficient, but is less secure than the

scheme proven under standard assumptions.

Again, implementing these schemes, both the non-robust and robust versions, and com-

paring their running times under a range of parameters would be an interesting activity.

Also, we considered two methods of extending AONT-RS0 to be robust. There exist other

methods of robust extensions in the literature; a methodical survey considering a wider

189

range of techniques and comparing their efficiencies would be worthwhile.

Repairable threshold schemes were considered in Chapter 5, which are threshold schemes

that enable a player to securely reconstruct a lost share with help from their peers. We

summarised and refined existing RTSs in the literature and introduced a new parameter

for analysis, called the repair metric. We highlighted the direct trade-off between the

information rate and communication complexity, first noted in [97], then explored using

regenerating codes as RTSs and found them to be immediately applicable. In particular,

MBR codes appeared to present the best candidate solutions for RTSs that prioritised

communication complexity, whilst our refined version of the enrolment RTS from [97] was

the best solution for an RTS that prioritised information rate.

All RTSs proposed achieve perfect security. Defining computationally secure RTSs and

finding constructions in this security model would be interesting. As an example, one

could consider extending computationally secure threshold schemes, such as either HK0

or AONT-RS0 from Chapter 4, to be repairable. To then explore the memory requirements

and communication complexity and define how the trade-off between these two metrics

translates to the computational security model, could be a worthwhile research topic.

The concept of a localised threshold multi-secret sharing scheme (LMSS) was introduced in

Chapter 6. Intuitively, an LMSS allows a sufficient number of players that are sufficiently

close in an underlying order to reconstruct a secret. After presenting a formal definition, we

explored the bounds on such schemes and presented a number of constructions achieving

these bounds. We then methodically scrutinised ways to relax the security definition in

order to beat these bounds. Finally, we combined these techniques to give a flexible LMSS,

which is a a flexible and lightweight tool for approximating the ideal behaviour of an LMSS

in a restricted environment. Inspired by Juela, Pappu and Parno [56], we then introduced

the use of RFID tags in the supply chain and explored a couple of ways threshold schemes

have been used in this setting. We briefly introduced the SWISS schemes suggested by

Juels et al., which were originally suggested for use in RFID enabled supply chains, and

showed how our fLMSS was a more flexible version of the SWISS schemes.

Considering further applications of LMSSs would be interesting; we imagine that, given the

natural interpretation of an LMSS as a sequence of secrets that change over time, there are

a number of interesting applications besides RFID enabled supply chains. Additionally,

190

further considering the use of a computationally secure threshold scheme in our fLMSS,

in place of the ramp scheme, would be interesting as it is yet another way the security of

the LMSS could be relaxed in order to achieve better bounds.

Given the increasing prevalence of constrained devices and the unusual applications they

offer, there has been growing interest in efficient threshold schemes and their applications,

making this a fascinating and worthwhile area of research. However, there is still much

exploration to be done in this field, exploring both threshold schemes and their enhance-

ments (including extensions mentioned, such as robust and repairable schemes, and those

we have not mentioned, such as verifiable and proactive schemes).

191

Bibliography

[1] S. Abughazalah, K. Markantonakis, and K. Mayes. Enhancing the key distribu-

tion model in the RFID-enabled supply chains. In Proceedings of the Interna-

tional Conference on Advanced Information Networking and Applications Workshops

(WAINA), pages 871–878. IEEE, 2014.

[2] A. V. Aho and J. E. Hopcroft. The design and analysis of computer algorithms.

Pearson Education India, 1974.

[3] N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal

recovery. IEEE Transactions on Information Theory, 42(6):1732–1736, 1996.

[4] ARM. Cortex-M3, Revision r2p0: Technical reference manual, 2010.

Available at http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.ddi0337i/CHDDIGAC.html.

[5] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of

symmetric encryption. In Proceedings of the Annual Symposium on Foundations of

Computer Science (FOCS), pages 394–403. IEEE, 1997.

[6] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In Proceedings of the 1st ACM conference on Computer and

Communications Security (CCS), pages 62–73. ACM, 1993.

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for

code-based game-playing proofs. In Proceedings of EUROCRYPT: Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer Berlin,

2006.

192

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/CHDDIGAC.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/CHDDIGAC.html

BIBLIOGRAPHY

[8] M. Bellare and P. Rogaway. Robust computational secret sharing and a unified

account of classical secret-sharing goals. In Proceedings of the ACM conference on

Computer and Communications Security (CCS), pages 172–184. ACM, 2007.

[9] J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In

Proceedings of Advances in Cryptology (CRYPTO): Conference on the Theory and

Application of Cryptographic Techniques, volume 263 of Lecture Notes in Computer

Science, pages 251–260. Springer, 1986.

[10] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National

Computer Conference (AFIPS), volume 48, pages 313–317, 1979.

[11] G. R. Blakley and C. A. Meadows. Security of ramp schemes. In Proceedings of

Advances in Cryptology (CRYPTO): Workshop on the Theory and Application of

Cryptographic Techniques, volume 196 of Lecture Notes in Computer Science, pages

242–268. Springer, 1984.

[12] M. Blaum and R. Roth. New array codes for multiple phased burst correction. IEEE

Transactions on Information Theory, 39(1):66–77, 1993.

[13] C. Blundo, A. De Santis, G. D. Crescenzo, A. G. Gaggia, and U. Vaccaro. Multi-

secret sharing schemes. In Proceedings of Advances in Cryptology (CRYPTO): An-

nual International Cryptology Conference, volume 839 of Lecture Notes in Computer

Science, pages 150–163. Springer, 1994.

[14] C. Blundo, A. De Santis, and U. Vaccaro. Efficient sharing of many secrets. In

Proceedings of the Annual Symposium on Theoretical Aspects of Computer Sci-

ence (STACS), volume 665 of Lecture Notes in Computer Science, pages 692–703.

Springer, 1993.

[15] C. Blundo, A. De Santis, and U. Vaccaro. Randomness in distribution protocols.

Information and Computation, 131(2):111–139, 1996.

[16] A. Bogdanov, S. Guo, and I. Komargodski. Threshold secret sharing requires a linear

size alphabet. In Proceedings of Theory of Cryptography Conference, volume 9986

of Lecture Notes in Computer Science, pages 471–484. Springer, 2016.

[17] A. Bogdanov, Y. Ishai, E. Viola, and C. Williamson. Bounded indistinguishability

and the complexity of recovering secrets. In Proceedings of Advances in Cryptology

193

BIBLIOGRAPHY

(CRYPTO): Annual International Cryptology Conference, volume 9816 of Lecture

Notes in Computer Science, pages 593–618. Springer, 2016.

[18] G. Boole. On the theory of probabilities. Philosophical Transactions of the Royal

Society of London, 152:225–252, 1862.

[19] J. F. Boyar, S. A. Kurtz, and M. W. Krentel. A discrete logarithm implementation

of perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990.

[20] E. F. Brickell. Some ideal secret sharing schemes. In Proceedings of EUROCRYPT:

Workshop on the Theory and Application of Cryptographic Techniques, volume 665

of Lecture Notes in Computer Science, pages 468–475. Springer, 1989.

[21] P. Camble, L. Chen, I. Henry, and M. Watkins. Utilizing error correction (ECC) for

secure secret sharing. Hewlett Packard Enterprise Development LP, 2016. World

Intellectual Property Organisation Patent Number WO2016048297.

[22] R. M. Capocelli, A. D. Santis, L. Gargano, and U. Vaccaro. On the size of shares

for secret sharing schemes. Journal of Cryptology, 6(3):157–167, 1993.

[23] A. Chandrasekara, R. Bala, and G. Landers. Critical Capabilities for Object Stor-

age. Technical report, Gartner, 2016. Available at https://www.gartner.com/doc/

reprints?ct=160413&id=1-33E2S6I&st=sb.

[24] H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure

multi-party computations over small fields. In Proceedings of Advances in Cryptology

(CRYPTO): Annual International Cryptology Conference, volume 4117 of Lecture

Notes in Computer Science, pages 521–536. Springer, 2006.

[25] L. Chen, T. M. Laing, and K. M. Martin. Efficient, “XOR”-based, ideal (t, n)-

threshold schemes. In Proceedings of International Conference on Cryptology and

Network Security (CANS), volume 10052 of Lecture Notes in Computer Science,

pages 467–483. Springer, 2016.

[26] L. Chen, T. M. Laing, and K. M. Martin. Revisiting and extending the AONT-RS

scheme: a robust computationally secure secret sharing scheme. In Proceedings of

AFRICACRYPT: International Conference on Cryptology in Africa, volume 10239

of Lecture Notes in Computer Science, pages 40–57. Springer, 2017.

[27] B. Chor and E. Kushilevitz. A communication-privacy tradeoff for modular addition.

Information Processing Letters, 45(4):205–210, 1993.

194

https://www.gartner.com/doc/reprints?ct=160413&id=1-33E2S6I&st=sb
https://www.gartner.com/doc/reprints?ct=160413&id=1-33E2S6I&st=sb

BIBLIOGRAPHY

[28] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation

from any linear secret-sharing scheme. In Proceedings of EUROCRYPT: Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, vol-

ume 1807 of Lecture Notes in Computer Science, pages 316–334. Springer, 2000.

[29] R. Cramer, I. B. Damg̊ard, N. Döttling, S. Fehr, and G. Spini. Linear secret sharing

schemes from error correcting codes and universal hash functions. In Proceedings of

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pages 313–336. Springer, 2015.

[30] J. Daemen and V. Rijmen. The design of Rijndael: AES - the Advanced Encryption

Standard. Springer Science & Business Media, 2002.

[31] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically

hiding bit commitment schemes and fail-stop signatures. In Proceedings of Advances

in Cryptology (CRYPTO): Annual International Cryptology Conference, volume 773

of Lecture Notes in Computer Science, pages 250–265. Springer, 1993.

[32] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, 1976.

[33] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran.

Network coding for distributed storage systems. IEEE Transactions on Information

Theory, 56(9):4539–4551, 2010.

[34] EPCglobal. EPC radio-frequency identity protocols: Class-1 generation-2 UHF

RFID protocol for communications at 860 MHz–960 MHz, version 1.0.9. Specifi-

cation for RFID Air Interface, 2004.

[35] O. Farràs, T. B. Hansen, T. Kaced, and C. Padró. On the information ratio of

non-perfect secret sharing schemes. Algorithmica, 79(4):987–1013, 2017.

[36] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In Proceedings of Advances in Cryptology CRYPTO: Con-

ference on the Theory and Application of Cryptographic Techniques, volume 263 of

Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[37] FIPS. SHA-3 standard: Permutation-based hash and extendable-output functions.

Federal Information Processing Standard, NIST FIPS 202, 2015. Available at http:

//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

195

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

BIBLIOGRAPHY

[38] E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly

verifiable secret sharing and its applications. In Proceedings of EUROCRYPT: In-

ternational Conference on the Theory and Applications of Cryptographic Techniques,

volume 1403 of Lecture Notes in Computer Science, pages 32–46. Springer, 1998.

[39] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. In

Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS),

pages 464–479. IEEE, 1984.

[40] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of

random functions. In Proceedings of Advances in Cryptology (CRYPTO): Workshop

on the Theory and Application of Cryptographic Techniques, volume 196 of Lecture

Notes in Computer Science, pages 276–288. Springer, 1985.

[41] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins

University Press, 1996.

[42] S. Goparaju, S. El Rouayheb, R. Calderbank, and H. V. Poor. Data secrecy in dis-

tributed storage systems under exact repair. In Proceedings of International Sym-

posium on Network Coding (NetCod), pages 1–6. IEEE, 2013.

[43] S. Goparaju, A. Fazeli, and A. Vardy. Minimum storage regenerating codes for

all parameters. In Proceedings of IEEE International Symposium on Information

Theory (ISIT), pages 76–80, 2016.

[44] X. Guang, J. Lu, and F. W. Fu. Repairable threshold secret sharing schemes.

Computing Research Repository (CoRR): arXiv preprint, arXiv:1410.7190, 2014.

[45] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from

collision-free hashing. In Proceedings of Advances in Cryptology (CRYPTO): Annual

International Cryptology Conference, volume 1109 of Lecture Notes in Computer

Science, pages 201–215. Springer, 1996.

[46] J. Halpern and V. Teague. Rational secret sharing and multiparty computation. In

Proceedings of the annual ACM symposium on Theory of computing (STOC), pages

623–632. ACM, 2004.

[47] J. Herranz, A. Ruiz, and G. Sáez. New results and applications for multi-secret

sharing schemes. Designs, Codes and Cryptography, 73(3):1–24, 2013.

196

BIBLIOGRAPHY

[48] IBM. IBM Cloud Object Storage, 2016. Available at: https://www.cleversafe.

com/platform/why-ibm-cloud-object-storage.

[49] S. Iftene. General secret sharing based on the Chinese remainder theorem with

applications in E-voting. Electronic Notes in Theoretical Computer Science, 186:67–

84, 2007.

[50] ISO/IEC 10116. Information technology – Security techniques – Modes of operation

for an n-bit block cipher algorithm.

[51] ISO/IEC 10118-3. Information technology – Security techniques – Hash-functions –

Part 3: Dedicated hash-functions.

[52] ISO/IEC 19592-2. Information technology – Security techniques – Secret sharing,

2017.

[53] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access

structure. In Proceedings of IEEE Globecom, pages 99–102, 1987.

[54] W. A. Jackson and K. M. Martin. A combinatorial interpretation of ramp schemes.

Australasian Journal of Combinatorics, 14:51–60, 1996.

[55] W. A. Jackson, K. M. Martin, and C. M. O’Keefe. Multisecret threshold schemes. In

Proceedings of Advances in Cryptology CRYPTO: Annual International Cryptology

Conference, volume 773 of Lecture Notes in Computer Science, pages 126–135, 1993.

[56] A. Juels, R. Pappu, and B. Parno. Unidirectional key distribution across time

and space with applications to RFID security. In Proceedings of USENIX Security

Symposium, pages 75–90, 2008.

[57] A. A. Karatsuba. The complexity of computations. Proceedings of the Steklov In-

stitute of Mathematics, 211:169–183, 1995.

[58] E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems. IEEE

Transactions on Information Theory, 29(1):35–41, 1983.

[59] D. Knuth. The Art of Computer Programming vol. 2: Seminumerical Algorithms,

3/E. Pearson Education, 1998.

[60] H. Krawczyk. Secret sharing made short. In Proceedings of Advances in Cryptology

CRYPTO: Annual International Cryptology Conference, volume 773 of Lecture Notes

in Computer Science, pages 136–146. Springer, 1993.

197

https://www.cleversafe.com/platform/why-ibm-cloud-object-storage
https://www.cleversafe.com/platform/why-ibm-cloud-object-storage

BIBLIOGRAPHY

[61] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka. A fast (3, n)-threshold

secret sharing scheme using exclusive-or operations. IEICE transactions on funda-

mentals of electronics, communications and computer sciences, 91(1):127–138, 2008.

[62] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka. A new (k, n)-threshold

secret sharing scheme and its extension. In Proceedings of ISC: International Con-

ference on Information Security, volume 5222 of Lecture Notes in Computer Science,

pages 455–470. Springer, 2008.

[63] T. M. Laing, K. M. Martin, M. B. Paterson, and D. R. Stinson. Localised multisecret

sharing. Cryptography and Communications, 9(5):581–597, 2016.

[64] T. M. Laing and D. R. Stinson. A survey and refinement of repairable threshold

schemes. Journal of Mathematical Cryptology. In press.

[65] M. Langheinrich and R. Marti. Practical minimalist cryptography for RFID privacy.

IEEE Systems Journal, 1(2):115–128, 2007.

[66] S. J. Lin and W. H. Chung. An efficient (n, k) information dispersal algorithm based

on Fermat number transforms. IEEE Transactions on Information Forensics and

Security, 8(8):1371–1383, 2013.

[67] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Efficient

erasure correcting codes. IEEE Transactions on Information Theory, 47(2):569–584,

2001.

[68] C. Lv, X. Jia, J. Lin, J. Jing, L. Tian, and M. Sun. Efficient secret sharing schemes.

In Proceedings of Secure and Trust Computing, Data Management and Applications,

volume 665 of Communications in Computer and Information Science, pages 114–

121. Springer, 2011.

[69] C. Lv, X. Jia, L. Tian, J. Jing, and M. Sun. Efficient ideal threshold secret shar-

ing schemes based on EXCLUSIVE-OR operations. In Proceedings of International

Conference on Network and System Security (NSS), pages 136–143. IEEE, 2010.

[70] F. MacWilliams and N. Sloane. The theory of error correcting codes. Elsevier, 1977.

[71] J. Massey. Minimal codewords and secret sharing. In Proceedings of the Joint

Swedish-Russian International Workshop on Information Theory, pages 276–279,

1993.

198

BIBLIOGRAPHY

[72] B. Masucci. Sharing multiple secrets: Models, schemes and analysis. Designs, Codes

and Cryptography, 39(1):89–111, 2006.

[73] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.

Communications of the ACM, 24(9):583–584, 1981.

[74] NIST. Recommendation for block cipher modes of operation. National Institute of

Standards and Technology Special Publication 800-38A, 2001.

[75] M. Nojoumian. Novel Secret Sharing and Commitment Schemes for Cryptographic

Applications. PhD thesis, University of Waterloo, 2012.

[76] M. Nojoumian, D. R. Stinson, and M. Grainger. Unconditionally secure social secret

sharing scheme. IET Information Security, 4(4):202–211, 2010.

[77] M. B. Paterson and D. R. Stinson. A simple combinatorial treatment of constructions

and threshold gaps of ramp schemes. Cryptography and Communications, 5(4):229–

240, 2013.

[78] S. Pawar, S. El Rouayheb, and K. Ramchandran. On secure distributed data storage

under repair dynamics. In Proceedings of the IEEE Symposium on Information

Theory Proceedings (ISIT), pages 2543–2547. IEEE, 2010.

[79] F. P. Preparata. Holographic dispersal and recovery of information. IEEE Transac-

tions on Information Theory, 35(5):1123–1124, 1989.

[80] M. Rabin. Efficient dispersal of information for security, load balancing, and fault

tolerance. Journal of the ACM, 36(2):335–348, 1989.

[81] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with

honest majority. In Proceedings of the annual ACM symposium on Theory of Com-

puting, pages 73–85. ACM, 1989.

[82] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating codes for

distributed storage at the MSR and MBR points via a product-matrix construction.

IEEE Transactions on Information Theory, 57(8):5227–5239, 2011.

[83] A. S. Rawat. A note on secure minimum storage regenerating codes. Computing

Research Repository (CoRR): arXiv preprint, arXiv:1608.01732, 2016.

[84] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

199

BIBLIOGRAPHY

[85] J. K. Resch and J. S. Plank. AONT-RS: blending security and performance in

dispersed storage systems. In Proceedings of FAST-2011: a USENIX Conference on

File and Storage Technologies.

[86] R. L. Rivest. All-or-nothing encryption and the package transform. In Proceedings

of the International Workshop on Fast Software Encryption (FSE), pages 210–218.

Springer, 1997.

[87] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[88] C. M. Roberts. Radio frequency identification (RFID). Computers & Security,

25(1):18–26, 2006.

[89] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its ap-

plication to electronic voting. In Proceedings of Advances in Cryptology CRYPTO:

Annual International Cryptology Conference, volume 1666 of Lecture Notes in Com-

puter Science, pages 148–164. Springer, 1999.

[90] N. B. Shah, K. Rashmi, and P. V. Kumar. Information-theoretically secure re-

generating codes for distributed storage. In Global Telecommunications Conference

(GLOBECOM 2011), 2011 IEEE, pages 1–5. IEEE, 2011.

[91] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

1979.

[92] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27(3):379–423, 1948.

[93] R. Singleton. Maximum distance q-nary codes. IEEE Transactions on Information

Theory, 10(2):116–118, 1964.

[94] A. Soro and J. Lacan. FNT-based Reed-Solomon erasure codes. In Proceedings of

the IEEE Consumer Communications and Networking Conference (CCNC), pages

1–5. IEEE, 2010.

[95] D. R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryp-

tography, 2(4):357–390, 1992.

[96] D. R. Stinson. Combinatorial Designs: Constructions and Analysis. Springer-Verlag,

New York, Inc., 2004.

200

BIBLIOGRAPHY

[97] D. R. Stinson and R. Wei. Combinatorial repairability for threshold schemes. De-

signs, Codes and Cryptography, 86(1):1–16, 2017.

[98] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology,

1(3):133–138, 1989.

[99] Y. Wang and Y. Desmedt. Efficient secret sharing schemes achieving optimal in-

formation rate. In Proceedings of the IEEE Information Theory Workshop (ITW),

pages 516–520. IEEE, 2014.

[100] M. Ye and A. Barg. Explicit constructions of high-rate MDS array codes with

optimal repair bandwidth. IEEE Transactions on Information Theory, 63(4):2001–

2014, 2017.

201

	Introduction
	Motivation
	Chapter overviews
	Publications

	Preliminaries
	Principles of information security and cryptography
	Basic principles
	Security goals
	Adversaries
	Security games
	Encryption schemes
	Information theory and the entropy function
	Constrained devices

	Symmetric-key encryption schemes
	Perfect secrecy
	Computational security
	Relating security notions

	Threshold schemes
	Perfect threshold schemes
	Ramp schemes
	Computationally secure threshold schemes
	Robust threshold schemes

	Information dispersal algorithms
	General information dispersal algorithms
	Error correcting codes and IDAs
	Secure IDA constructions using ECCs

	An efficient, perfect threshold scheme
	Introduction
	Efficiency of threshold schemes
	Efficiency of Shamir's threshold scheme
	Alternative efficient threshold schemes
	The presented scheme

	The modified HP scheme
	Definition of the scheme
	Security analysis

	Efficiency analysis
	The modified HP scheme
	Shamir's threshold scheme
	The threshold scheme by Kurihara et al.
	Wang and Desmedt's threshold scheme
	Discussion

	An efficient, computationally secure threshold scheme
	Introduction
	Preliminaries
	Block cipher modes of operation
	Cryptographic hash functions

	The AONT-RS scheme
	The original AONT-RS definition
	Generalising AONT-RS to AONT-RS0
	Security analysis of AONT-RS0
	Efficiency analysis of AONT-RS0 and comparison with HK0

	Extending AONT-RS0 to be robust
	Data integrity using a canary
	Robust extension using hash functions
	Robust extension using commitment schemes
	Comparing robust extensions

	Conclusion

	Repairable threshold schemes
	Introduction
	Problem statement
	Naïve solution
	Efficiency metrics

	Preliminaries
	Combinatorial design theory
	Regenerating codes

	Existing solutions
	The enrolment RTS
	Combinatorial repairability
	GLF scheme

	Solutions using regenerating codes
	Applying regenerating codes to RTSs
	Constructions of secure regenerating codes for RTSs

	Comparison of techniques
	Comparing MBR and MSR codes
	Comparison of techniques prioritising communication complexity
	Comparison of techniques prioritising information rate

	Localised multi-secret sharing schemes
	Introduction
	Localised threshold multi-secret sharing schemes
	Multi-secret sharing
	Localised threshold multi-secret sharing schemes

	Bounds and constructions for LMSSs
	Optimal constructions
	Time dependent schemes

	Relaxing security requirements to construct more efficient schemes
	Shifting to a non-perfect model of secret sharing
	Changing the access structures
	Staggering key windows
	Combining techniques

	Application to key distribution in RFID enabled supply chains
	RFID enabled supply chains
	Existing solutions

	Conclusion

	Concluding Remarks
	Bibliography

