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This paper is dedicated to the memory of Michel Las Vergnas in gratitude for not only so much beautiful
mathematics, but also many instances of very kind and insightful correspondence.

Abstract. The Las Vergnas polynomial is an extension of the Tutte polynomial to cellularly em-
bedded graphs. It was introduced by Michel Las Vergnas in 1978 as special case of his Tutte
polynomial of a morphism of matroids. While the general Tutte polynomial of a morphism of ma-
troids has a complete set of deletion-contraction relations, its specialisation to cellularly embedded
graphs does not. Here we extend the Las Vergnas polynomial to graphs in pseudo-surfaces. We
show that in this setting we can define deletion and contraction for embedded graphs consistently
with the deletion and contraction of the underlying matroid perspective, thus yielding a version of
the Las Vergnas polynomial with complete recursive definition. This also enables us to obtain a
deeper understanding of the relationships among the Las Vergnas polynomial, the Bollobás-Riordan
polynomial, and the Krushkal polynomial. We also take this opportunity to extend some of Las
Vergnas’ results on Eulerian circuits from graphs in surfaces of low genus to surfaces of arbitrary
genus.

1. introduction

In [13, 15] (see also [12, 14]), Michel Las Vergnas introduced a polynomial LG(x, y, z) that extends
the classical Tutte polynomial to cellularly embedded graphs. This topological Tutte polynomial,
now called the Las Vergnas polynomial, is the first extension of the Tutte polynomial to embedded
graphs that the authors are aware of. Michel Las Vergnas was ahead of his time in his investigation
as not until many years later did other mathematicians and physicists initiate the serious attention
now paid to embedded graph polynomials. More recent embedded graph polynomials, such as the
ribbon graph polynomial of Bollobás and Riordan, RG (see [3, 4]), and Krushkal’s polynomial, KG

(see [11]), have led in turn to renewed interest in LG, for example in [1, 2].
The Las Vergnas polynomial was first defined in terms of the combinatorial geometry of an

embedded graph (i.e., via circuit matroids). It arises as a special case in his much larger body
of work on the Tutte polynomial of a morphism of matroids (see [9, 15, 16, 17, 18, 19]). We
present here a discussion of matroid perspectives in the special context of embedded graph theory.
Although LG has its origins in matroid theory, it is of independent interest as a tool for extracting
both combinatorial and topological information from graphs embedded in surfaces. Accordingly,
one of the aims of this work is to provide a formulation of LG that is readily accessible to topological
graph theorists without reference to matroid theory, and so to encourage further investigation into
it. (Also see [1] for such a discussion.)

We are especially interested here in deletion-contraction definitions of graph polynomials. A very
desirable property of such a recursive definition is that it reduces any graph to a linear combination
of edgeless graphs. Las Vergnas gave this type of deletion-contraction definition for the Tutte
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polynomial of a morphism of matroids. This definition, however, does not hold for his cellularly
embedded graph polynomial LG.

We show that by using an appropriate matroid framework to extend the Las Vergnas polynomial
to graphs in pseudo-surfaces (but not necessarily cellularly embedded graphs) it is possible to obtain
a deletion-contraction definition of LG in the language of topological graph theory. Furthermore,
this recursive definition for the embedded graph polynomial is consistent with that for the Tutte
polynomial of a morphism of matroids. Our approach begins by associating an abstract graph G†

to a graph in a pseudo-surface in analogy with the construction of G∗ for a cellularly embedded
graph G. We then see that the bond matroid of G† measures how a graph separates the pseudo-
surface it is embedded in the same way as the bond matroid of G∗ does. This matroid allows us
to extend the Las Vergnas polynomial to the broader class of graphs in pseudo-surfaces. Moreover,
this extended polynomial arises as a special case Tutte polynomial of a morphism of matroids, just
as the original polynomial for cellularly embedded graphs did. By using a deletion and contraction
for graphs in pseudo-surfaces that is compatible with deletion and contraction for their associated
matroid perspectives, we are able to give complete deletion-contraction relations for the Las Vergnas
polynomial.

Given the three extensions LG, RG and KG of the Tutte polynomial to embedded graphs, it is
natural to ask how they are related. The Krushkal polynomial, KG, contains both the embedded
graph polynomials LG and RG as specialisations (see [1, 2]), but does not yet provide a full un-
derstanding of the connection between the two polynomials. We similarly relate the Las Vergnas
polynomial and Krushkal polynomials for (not necessarily cellularly embedded) graphs in surfaces,
and discuss connections among these three topological Tutte polynomials.

We also take the opportunity here to revisit some of Las Vergnas’ work on Eulerian circuits. In
[14], Las Vergnas gave a number of formulae for enumerating Eulerian circuits of 4-regular graphs
in surfaces. However, most of the formulas only apply for graphs in the sphere, torus, or real
projective plane. Now, with recently developed language and tools for ribbon graphs we are able
to extend these results to all surfaces.

2. Background on embedded graphs

Our main aim here is to understand the Las Vergnas polynomial, which is defined as a polynomial
of matroid perspectives, in the context of contemporary research in polynomials of embedded graphs
(see also [1] for work in this direction). Doing so reveals its connections with other topological graph
polynomials, exposes nuances of deletion and contraction, and facilitates future research. In this
section, we provide a brief review of some standard notation, assuming familiarity with basic graph
theory and topological graph theory. We pay particular attention to the language of ribbon graphs,
since most of the recent research on topological graph polynomials appears in this context. Ribbon
graphs will also be important in Section 6. Further details of the material covered in this section
may be found in [7, 10].

2.1. Embedded graphs. As usual, if G is a graph, then V (G) is its vertex set, and E(G) its
edge set, with v(G) := |V (G)| and e(G) := |E(G)|. We denote the number of components of G by
c(G).The rank of G is r(G) := v(G) − c(G), and the nullity of G is n(G) := e(G) − r(G). These
agree with the rank and nullity of the cycle matroid of the graph as discussed in Section 3.1. If
A ⊆ E(G), then v(A), e(A), c(A), r(A), and n(A) are the number of vertices, number of edges,
number of components, rank and nullity, respectively, of the spanning subgraph (V (G), A) of G.
In cases where the graph G may not be immediately clear from context, we will use a subscript
writing, for example, rG(A).
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(a) G ⊂ Σ. (b) G/e ⊂ Σ/e.

Figure 1. Contracting an orientable loop of a graph in a pseudo-surface.

Let Σ be a connected surface or pseudo-surface (i.e., a surface with pinch points, also known as a
pinched surface), possibly with boundary. We use k(Σ) to denote the number of connected compo-
nents of the pseudo-surface Σ. For a subset X of Σ, we let N(X) denote a regular neighbourhood
of X.

If Σ is a surface (without pinch points) its Euler genus, γ(Σ), is its genus if it is non-orientable,
and twice its genus if it is orientable. Recall that the Euler characteristic, χ(Σ), of Σ can be
obtained as χ(Σ) = vt − et + ft, where vt, et, and ft are the numbers of vertices, edges, and faces,
respectively, in any triangulation (or more generally, cellulation) of Σ. Euler’s formula gives that
γ(Σ) = 2k(Σ)− b(Σ)− χ(Σ), where b(Σ) is the number of the boundary components of Σ.

A graph in a pseudo-surface, G ⊂ Σ, consists of a graph G and a drawing of G on a pseudo-surface
Σ such that the edges only intersect at their ends and such that any pinch points are vertices of
the graph.

The components of Σ\G are called the regions of G. If each region of G ⊂ Σ is homeomorphic
to an open disc, it is said to be cellularly embedded and the regions are called faces. Furthermore,
G ⊂ Σ is a cellularly embedded graph if it is cellularly embedded and Σ is a surface (so there
are no pinch points). If G ⊂ Σ is a graph in the pseudo-surface and A ⊆ E(G) then we define
ρ(A) to be the number of regions of the spanning subgraph (V (G) ∪ A) ⊂ Σ of G ⊂ Σ. That is,
ρ(A) = k(Σ\(V (G) ∪ A)). If G is not clear from context, we will specify it with a subscript, thus:
ρG(A).

Deletion of an edge of a graph in a pseudo-surface is straight forward. Given G ⊂ Σ and e ∈ E(G)
then G\e ⊂ Σ is the graph in a pseudo-surface obtained by removing the edge e from the drawing
of G ⊂ Σ (without removing the points of e from Σ, or its incident vertices). Edge contraction is
defined by forming a quotient space of the surface. G/e ⊂ Σ/e is the graph in a pseudo-surface
obtained by identifying the edge e to a point. This point becomes a vertex of G/e. Note that if e is
a loop, then contraction can create pinch points with the new vertex lying on it (see Figure 1). For
example, if G ⊂ Σ consists of a loop on a sphere, then G/e ⊂ Σ consists of two spheres that meet
at a pinch point, and that pinch point is a vertex. Thus the class of cellularly embedded graphs
is not closed under either deletion or contraction. At times it is convenient to view G/e ⊂ Σ/e as
the graph in a pseudo-surface that results from removing a small open neighbourhood of e from Σ,
then identifying all boundary components that this creates to obtain a new vertex.

An important observation for us here is that if G̃ is the underlying abstract graph of G ⊂ Σ,

then the underlying abstract graph of G/e ⊂ Σ/e is G̃/e, similarly the underlying abstract graph

of G\e ⊂ Σ is G̃\e.

2.2. Ribbon graphs. At times it will be convenient to describe cellularly embedded graphs as
ribbon graphs. We refer the reader to [7] for a more detailed discussion of ribbon graphs. A ribbon
graph G = (V (G), E(G)) is a surface with boundary, represented as the union of two sets of discs:
a set V (G) of vertices and a set of edges E(G) such that: (1) the vertices and edges intersect in
disjoint line segments; (2) each such line segment lies on the boundary of precisely one vertex and
precisely one edge; (3) every edge contains exactly two such line segments.
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Ribbon graphs arise as regular neighbourhoods of cellularly embedded graphs, with the vertex set
of the ribbon graph arising from regular neighbourhoods of the vertices of the embedded graph, and
the edge set of the ribbon graph arising from regular neighbourhoods of the edges of the embedded
graph. On the other hand, if G is a ribbon graph, then topologically it is a surface with boundary.
Filling in each hole by identifying its boundary component with the boundary of a disc results in
a ribbon graph embedded in a closed surface. (This in a band decomposition with the vertex discs
called 0-bands, the edge discs called 1-bands and the face discs are called 2-bands.) A deformation
retract of the ribbon graph in the surface yields a graph cellularly embedded in the surface. Thus,
ribbon graphs, band decompositions, and cellularly embedded graphs are equivalent. (Note that
this equivalence requires both that the graph is in a surface, rather than just a pseudo-surface, and
that it is cellularly embedded.)

If G is a ribbon graph, then G∗ is the ribbon graph corresponding to the geometric dual when
G is viewed as a cellularly embedded graph. It is often useful to think of G and G∗ in the setting
of band decompositions. In this setting they are represented by the same topological object, the
only difference being that the sets designated as vertices (0-bands) and face discs (2-bands) are
reversed. Note that the dual of an isolated vertex is an isolated vertex.

If G is a ribbon graph, then v(G), e(G), c(G), r(G), and n(G) are all as defined for the underlying
abstract graph of G (we use c for the components of a graph and k for the components of a
surface, as these need not coincide if G is not cellularly embedded). Furthermore, f(G) is the
number of boundary components of the surface defining the ribbon graph, and the Euler genus,
γ(G), of G equals the Euler genus of the surface defining the ribbon graph. Since each boundary
component of a ribbon graph corresponds to a face of a cellular embedding, Euler’s formula gives
that v(G)−e(G)+f(G) = 2c(G)−γ(G). A ribbon graph G is plane if it is connected and γ(G) = 0.
A ribbon graph H is a ribbon subgraph of G if H can be obtained by deleting vertices and edges of
G. If H is a ribbon subgraph of G with V (H) = V (G), then H is a spanning ribbon subgraph of G.
If A ⊆ E(G), then r(A), c(A), n(A), f(A), γ(A) each refer to the spanning subgraph (V (G), A) of
G (where G is given by context).

Deletion for ribbon graphs just removes an edge: if G is a ribbon graph, and e ∈ E(G), then
G − e is the spanning ribbon subgraph on edge set E(G)\{e}. (Note that we use “−” for ribbon
graph edge deletion, and “\” for embedded graph edge deletion.) An important aspect of deletion
as defined via ribbon graphs is that the result is again a ribbon graph. Remembering that ribbon
graphs correspond to cellularly embedded graphs, ribbon graph edge deletion is appropriate for
cellularly embedded graphs as G− e remains in the class of cellularly embedded graphs. However,
the surface associated with G by filling in the holes with discs may not be the same surface that
results from filling in the holes of with G− e. For example, if e is a bridge or a non-orientable loop,
then deleting the former will increase the number of components of the surface, and deleting the
latter may change the graph’s orientability.

3. Matroid perspectives and Las Vergnas’ polynomial

We will now review the original Las Vergnas polynomial of a cellularly embedded graph. This
polynomial arises as a special case of the Tutte polynomial of a matroid perspective. In this section
we describe how it can be written in terms of parameters that are more frequently used in the
study of topological graph polynomials. This allows for the polynomial to be positioned properly
in the field. We will also discuss deletion-contraction relations for the polynomial. While the Tutte
polynomial of a matroid perspective has a complete recursive definition (complete in the sense that
it reduces the computation of the polynomial to that of the trivial matroid perspective), the Las
Vergnas polynomial does not. We will explain why this is the case at the end of this section, and
will turn our attention fully to deletion-contraction reductions in Section 4.
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3.1. Matroids and matroid perspectives. Since the Las Vergnas polynomial was originally
defined in terms of the Tutte polynomial of a matroid perspective, we review the essential concepts
of matroids and matroid perspectives, and recall the definition of the Tutte polynomial of a matroid
perspective. We will work with matroids in terms of rank functions since this is most appropriate
for the connections with graph polynomials.

A matroid M = (E, r) consists of a set E and a rank function, r : P(E)→ Z≥0, from the power
set of E to the non-negative integers such that for each A ⊆ E and e, f ∈ E we have

r(∅) = 0,(3.1)

r(A ∪ {e}) ∈ {r(A), r(A) + 1},(3.2)

r(A) = r(A ∪ {e}) = r(A ∪ {f}) =⇒ r(A ∪ {e, f}) = r(A).(3.3)

A set A ⊆ E is independent if r(A) = |A|, and dependent otherwise. It is a circuit if it is a
minimal dependent set, so in particular, if A is a circuit, then r(A) = |A| − 1. A set A is a flat if
for all e ∈ E − A we have r(A ∪ e) = r(A) + 1. An element e ∈ E is an isthmus (or coloop) if for
each independent set A we have that A ∪ {e} is also independent. An element e is a loop if {e} is
a circuit.

If M = (E, r) is a matroid and e ∈ E, then M\e = (E\{e}, r|E\{e}) is the matroid obtained by
deleting e; and M/e = (E\{e}, r′), where r′(A) := r(A ∪ {e})− r({e}), is the matroid obtained by
contracting e. The dual of M is the matroid given by M∗ = (E, r∗), where r∗(A) := |A|+r(E\A)−
r(E).

If G is a graph, its cycle matroid is C(G) := (E(G), rC(G)), where rC(G)(A) := v(A)− c(A); and
its bond matroid is B(G) := (C(G))∗. When G is a plane graph (i.e., a graph cellularly embedded
a sphere) B(G∗) = (C(G∗))∗ = C((G∗)∗) = C(G). However, this identity does not hold in general
when G cellularly embedded in a higher genus surface.

A matroid perspective is a triple (M,M ′, ϕ) where M = (E, r) and M ′ = (E′, r′) are matroids,
and ϕ : E → E′ is a bijection such that for all A ⊆ B ⊆ E, we have

(3.4) r(B)− r(A) ≥ r′(ϕ(B))− r′(ϕ(A)).

Following the usual convention in the area, at times we suppress the bijection ϕ and use M →M ′

to denote a matroid perspective (M,M ′, ϕ), especially since we will primarily be interested in
matroid perspectives of the form (M,M ′, id), i.e., where the ground sets are the same or may be
naturally identified. When ϕ is the identity, we say M → M ′ is a matroid perspective on the set
E. In this case, as noted in [15], the condition given by (3.4) can be equivalently formulated as the
requirement that each circuit of M is a union of circuits of M ′, or as the requirement that every
flat of M ′ is a flat of M . Thus, in particular, a loop of M is a loop of M ′ and an isthmus of M ′ is
an isthmus of M .

Deletion and contraction for a matroid perspective (M,M ′, ϕ) are defined by, for e ∈ E, setting
(M,M ′, ϕ)\e := (M\e,M ′\e, ϕ|E\e) and (M,M ′, ϕ)/e := (M/e,M ′/e, ϕ|E\e). We will denote these
matroid perspectives by M\e→M ′\e and M/e→M ′/e, respectively.

3.2. The Tutte polynomial of a matroid perspective. Let M = (E, r) and M ′ = (E′, r′)
be matroids. As defined in [13, 15], the Tutte polynomial of the matroid perspective M → M ′ =
(M,M ′, ϕ) is defined by

(3.5) TM→M ′(x, y, z) =
∑
X⊆E

(x− 1)r
′(E′)−r′(ϕ(X))(y − 1)|X|−r(X)z(r(E)−r(X))−(r′(E′)−r′(ϕ(X))).
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As noted in [15], the classical Tutte polynomial TM (x, y) =
∑

X⊆E (x− 1)r(E)−r(X)(y − 1)|X|−r(X)

of a matroid M can be recovered from the more general polynomial:

TM (x, y) = TM→M (x, y, z),

TM (x, y) = TM→M ′(x, y, x− 1),

TM ′(x, y) = (y − 1)r(M)−r(M ′)TM→M ′(x, y, 1/(y − 1)).

Las Vergnas (Theorem 5.3 of [16]) showed that TM→M ′ satisfies deletion-contraction relations
that provide a complete recursive definition of the polynomial.

Theorem 3.1. Let M →M ′ be a matroid perspective on a set E. The following relations hold:

(1) if e ∈ E is neither an isthmus nor a loop of M , then

TM→M ′(x, y, z) = TM\e→M ′\e(x, y, z) + TM/e→M ′/e(x, y, z);

(2) if e ∈ E is an isthmus of M ′, and hence also an isthmus of M , then

TM→M ′(x, y, z) = xTM\e→M ′\e(x, y, z);

(3) if e ∈ E is a loop of M , and hence also a loop of M ′, then

TM→M ′(x, y, z) = yTM\e→M ′\e(x, y, z);

(4) if e ∈ E is an isthmus of M , and is not an isthmus of M ′, then

TM→M ′(x, y, z) = zTM\e→M ′\e(x, y, z) + TM/e→M ′/e(x, y, z);

(5) if E = ∅, then TM→M ′(x, y, z) = 1.

3.3. Las Vergnas’ topological Tutte polynomial. The Las Vergnas polynomial, LG, was first
defined in terms of the combinatorial geometry of an embedded graph, that is, B(G∗) and C(G), the
bond and circuit geometries, or equivalently bond and cycle matroids, of G∗ and G from Subsection
3.1. In Proposition 3.3, we describe LG in graph theoretical terms. (This approach was also taken
in [1].) In this section, like Las Vergnas, we assume that G is cellularly embedded, so that G∗ is
also cellularly embedded in the same surface as G. In this setting, we use the rank function of
C(G) which is given by rG(A) = v(A)− c(A) for A ⊆ E(G).

Definition 3.2. Let G be a graph cellularly embedded in a surface Σ. Let B(G∗)→ C(G) denote
the matroid perspective (B(G∗), C(G), id), where id is the natural identification of the edges of G
and G∗ and so suppressed in the following. Then the Las Vergnas polynomial, LG is defined by

LG(x, y, z) := TB(G∗)→C(G)(x, y, z).

By translating the notation and using Euler’s formula, we can rewrite Las Vergnas’ topological
Tutte polynomial in a form that more clearly reveals how it encodes topological information (see
also [1]).

Proposition 3.3. Let G be a ribbon graph. Then

LG(x, y, z) =
∑

A⊆E(G)

(x− 1)rG(G)−rG(A)(y − 1)nG(A)−(γ(G)+γG(A)−γG∗ (Ac))/2z(γ(G)−γG(A)+γG∗ (Ac))/2,

(3.6)

where Ac := E(G)−A.

Proof. By definition,

LG(x, y, z) =
∑

A⊆E(G)

(x− 1)r(C(G))−rC(G)(A)(y − 1)|A|−rB(G∗)(A)zr(B(G∗))−r(C(G))−(rB(G∗)(A)−rC(G)(A)).
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Note that r(C(G)) = r(G) and rC(G)(A) = rG(A), and recall that rM∗(A) = |A|+rM (M\A)−r(M).
Then, since B(G) = (C(G))∗, we have r(B(G∗)) = r(C(G∗)∗) = e(G∗) + rG∗(∅)− r(G∗) = n(G∗),
and rB(G∗)(A) = rC(G∗)∗(A) = |A|+ rG∗(A

c)− r(G∗). (Recall that if G is not plane, then C(G∗)∗

and C(G) are not generally equal.)
By Euler’s formula and the facts that fG∗(A

c) = fG(A) and f(G∗) = v(G), we have

2rB(G∗)(A) = 2|A| − 2cG∗(A
c) + 2c(G∗)

= 2|A| − vG∗(Ac) + |Ac| − fG∗(Ac)− γG∗(Ac) + v(G∗)− e(G∗) + f(G∗) + γ(G∗)

= |A| − v(G∗) + e(G∗)− fG∗(Ac)− γG∗(Ac) + v(G∗)− e(G∗) + f(G∗) + γ(G∗)

= |A| − fG(A)− γG∗(Ac) + v(G) + γ(G∗)

= vG(A)− 2cG(A) + γG(A)− γG∗(Ac) + v(G) + γ(G∗)

= 2rG(A) + γ(G) + γG(A)− γG∗(Ac).

Then, using this computation for the exponent of z, we have:

r(B(G∗))− r(C(G))− (rB(G∗)(A)− rC(G)(A))

= n(G∗)− r(G)− rG(A) + rG(A)− (γ(G) + γG(A)− γG∗(Ac))/2
= e(G∗)− v(G∗) + c(G∗)− v(G) + c(G)− (γ(G) + γG(A)− γG∗(Ac))/2
= e(G)− f(G) + 2c(G)− v(G)− (γ(G) + γG(A)− γG∗(Ac))/2
= γ(G)− (γ(G) + γG(A)− γG∗(Ac))/2
= (γ(G)− γG(A) + γG∗(A

c))/2.

�

If G is plane, so that γ(G) = γ(A) = 0 for all A ⊆ E(G), then it is easily seen from Equation
3.6 that LG(x, y, z) = TG(x, y). Furthermore, Las Vergnas showed in [15] that, for any cellularly
embedded graph G, the Tutte polynomial of the underlying abstract graph of G can be recovered
from LG as

(3.7) (y − 1)γ(G)LG(x, y, 1/(y − 1)) = TG(x, y).

Collecting the topological contributions in the expression for LG given in Equation 3.6 gives the
following particularly simple form of LG, which facilitates comparison with other topological graph
polynomials.

(3.8) (z(y − 1))γ(G)LG

(
x, y,

1

z2(y − 1)

)
=

∑
A⊆E(G)

(x− 1)rG(G)−rG(A)(y − 1)nG(A)zγG(A)−γG∗ (Ac).

It is also informative to compare the following form of LG, which is obtained by expand-
ing the Euler genus terms using Euler’s formula, to the dichromatic polynomial, ZG(x, y) :=∑

A⊆E(G) x
c(A)y|A| = (x/y)c(G)yv(G)TG((x+ y)/x, y + 1):

LG(x, y, z) = (1/(x− 1)(y − 1))c(G)zn(G∗)
∑

A⊆E(G)

((x− 1)/z)cG(A)((y − 1)z)cG∗ (Ac)(1/z)|A|.

We note that in [5] it is shown that LG is determined by the delta-matroid of G, but we do not
pursue this perspective here.
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3.4. Deletion-contraction. Although, by Theorem 3.1, the Tutte polynomial of a matroid per-
spective TM→M ′ has a deletion-contraction relation that applies to all types of edges, the Las Vergnas
polynomial for cellularly embedded graphs (or ribbon graphs) does not (although it does have
a deletion-contraction relation for some special types of edges). Taking an example from [1]
a little further, if G is the theta graph cellularly embedded on the torus, then LG(x, y, z) =
3z + 2z2 + xz2 + 1. Of the 17 cellularly embedded graphs on two edges, none have an xz2 term,
and so LG = 3z + 2z2 + xz2 + 1 can not satisfy the deletion-contraction identities of Theorem 3.1
for some notion of edge deletion and contraction defined on the class of cellularly embedded graphs
(such as ribbon graph deletion and contraction). Thus although, for cellularly embedded graphs,
LG is defined in terms of TM→M ′ , it does not inherit the recursive definition of TM→M ′ .

4. The Las Vergnas polynomial for graphs in pseudo-surfaces

The Las Vergnas polynomial of cellularly embedded graphs is not known to satisfy a complete
recursive definition, even though its ‘parent’, the Tutte polynomial of a matroid perspective, does.
In this section we will describe how, by enlarging the domain of the Las Vergnas polynomial, the
polynomial can be extended to a polynomial that does satisfy the deletion-contraction relations of
Theorem 3.1. In keeping with the emphasis of this paper, we focus on topological graph theoretic
interpretations of the resulting polynomial.

4.1. A generalised Las Vergnas polynomial. The construction of the matroid B(G∗) used in
the original definition of LG requires that G be cellularly embedded so that the geometric dual G∗

is a well-defined cellularly embedded graph. Essentially, what we want to extend the polynomial
to arbitrarily embedded graphs is a matroid that plays the role of the bond matroid of G∗ in the
setting of non-cellularly embedded graphs. Mimicking the usual construction of G∗ by placing a
vertex in each connected component of the complement of G, and connecting vertices whose regions
share an edge involves choices of how to embed the new edges in the surface that may result in
inequivalent embeddings (although of the same abstract graph). Nevertheless, we can construct an
abstract graph G† from G ⊂ Σ whose bond matroid has the desired properties.

Definition 4.1. Given a graph in a pseudo-surface, G ⊂ Σ, we define G† to be the abstract graph
with vertex set corresponding to the regions of Σ\E and an edge between (not necessarily distinct)
vertices whenever the corresponding regions share an edge of G on their boundaries (technically,
the boundaries of regions meet boundaries of regular neighborhoods of edges, but the meaning is
clear). Note that as in the case of geometric duals, this gives a natural identification between the
edges of G† and G.

Given our interest in graph polynomials, our first aim is to understand the bond matroid B(G†)
and its rank function in terms of parameters of the embedded graph. The following proposition is
a generalisation of Lemma 4.1 of [1].

Proposition 4.2. If G ⊂ Σ, then rB(G†)(A) = |A| − ρG(A) + ρG(∅).

Proof. We have

(4.1) rB(G†)(A) = r(C(G†))∗(A) = |A|+ rC(G†)(E\A)− rC(G†)(E)

= |A|+ vG†(E\A)− cG†(E\A)− vG†(E) + cG†(E)

= |A| − cG†(E\A) + cG†(E) = |A| − ρG(A) + ρG(∅),
For the last equality, if G = (V,E) and R is the set of regions of G, then cG†(E\A) is the number
of components of (R ∪ (E\A))\V . On the other hand, ρG(A) is the number of components of
Σ\(V ∪ A) = (R ∪ (E\A))\V and it follows that cG†(E\A) = ρG(A). Taking A = ∅ in this
argument gives cG†(E) = ρG(∅). �
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Theorem 4.3. Let G ⊂ Σ be a graph in a pseudo-surface. Then (B(G†), C(G), id) is a matroid
perspective, where id is the natural identification between the edges of G and G†.

Proof. To prove that (B(G†), C(G), id) is a matroid perspective, we must show that the rank
functions satisfy the condition from Equation (3.4). By telescopic summations, it is suffices to do
this one edge at a time, that is, to show that

rB(G†)(A ∪ {e})− rB(G†)(A) ≥ rC(G)(A ∪ {e})− rC(G)(A),

for each A ⊆ E and e ∈ E\A. By Proposition 4.2, this reduces to showing that

1− ρG(A ∪ {e}) + ρG(A) ≥ cG(A)− cG(A ∪ {e}).
Thus we need to show that

cG(A)− cG(A ∪ {e}) = 1 =⇒ ρG(A ∪ {e})− ρG(A) = 0.

If cG(A) − cG(A ∪ {e}) = 1, then e is a bridge of (V (G), A). Also ρG(A ∪ {e}) is the number of
components of Σ\(V ∪ A ∪ {e}) = (Σ\(V ∪ A))\{e},and ρG(A) is the number of components of
Σ\(V ∪A). Since e is a bridge of (V (G), A), it bounds exactly one region of the drawing of (V (G), A)
on Σ. Thus deleting e from (Σ\(V ∪A)) will not create any additional connected components, giving
ρG(A ∪ {e})− ρG(A) = 0, as needed. �

We can now extend the Las Vergnas polynomial to all graphs in pseudo-surfaces and obtain an
expression for it in purely topological graph theory terms.

Definition 4.4. Let G = (V,E) be a graph in a pseudo-surface Σ. Then the Las Vergnas polyno-
mial, LG⊂Σ, is defined by

(4.2) LG⊂Σ(x, y, z) := T(B(G†),C(G),id)(x, y, z)

=
∑
A⊆E

(x− 1)c(A)−c(E)(y − 1)ρ(A)−ρ(∅)z|E|−|A|−ρ(E)+ρ(A)+c(E)−c(A).

The following proposition tells us that this extended Las Vergnas polynomial does indeed spe-
cialize the original Las Vergnas polynomial for cellularly embedded graphs.

Proposition 4.5. If G ⊂ Σ is a cellularly embedded graph, then (B(G†), C(G), id) = (B(G∗), C(G), id),
and LG⊂Σ(x, y, z) = LG

Proof. The result follows immediately from the observation that if G ⊂ Σ is a cellularly embedded
graph, then G† = G∗ as abstract graphs. �

4.2. Deletion and contraction. Since one of the goals is a full deletion-contract reduction for
LG⊂Σ, we must first establish that deletion and contraction of an edge of G ⊂ Σ is compatible with
that for the bond matroid of G†. (Since deletion and contraction do not change the underlying
abstract graphs, we have that C(G)\e = C(G\e) and C(G)/e = C(G/e).)

Lemma 4.6. Let G ⊂ Σ be a graph in a pseudo-surface, and e ∈ E(G). Then

(1) B(G†)\e = B((G\e)†), and
(2) B(G†)/e = B((G/e)†).

Proof. We use here the expression for the rank from Proposition 4.2 that rB(G†)(A) = |A|−ρG(A)+

ρG(∅). For the first item, note that B(G†)\e and B((G\e)†) are both on the same set, and
rB(G†)(A) = rB((G\e)†)(A) when e /∈ A. This is since ρG(∅) − ρG(A) = ρG\e(∅) − ρG\e(A) be-
cause if deleting e from G creates a new component this extra component is counted, with opposite
signs, in both ρG\e(∅) and ρG\e(A).

9



loop

q.-loop bridge

q.-bridge

Figure 2. A Venn diagram illustrating the various edge types.

For the second item, again both matroids are on the same set. For the rank functions, if e /∈ A,

(4.3) rB(G†)/e(A) = rB(G†)(A ∪ {e})− rB(G†)({e}) = |A| − ρG(A ∪ {e}) + ρG({e}).
On the other hand, by Proposition 4.2,

(4.4) rB((G/e)†)(A) = |A| − ρG/e(A) + ρG/e(∅).
However, since (Σ/e)\V (G/e) and Σ\(V (G)∪{e}) are homeomorphic (to see this, view contraction
as the operation of removing a neighbourhood of e then identifying all of the boundary components
to a since vertex, as described in Section 2.1), it follows that ρG/e(∅) = ρG({e}) and ρG/e(A) =
ρG(A ∪ {e}). �

If G is a plane graph, we have that e is a loop in G if and only if it is a loop in B(G∗), and that
e is a bridge (cut-set of size one) in G if and only if it is a isthmus in B(G∗). This however does
not hold for the matroid B(G†). To find the types of edges of a graph in a pseudo-surface that
correspond to loops and isthmuses in B(G†) we generalise loops and bridges by extracting one key
feature of each:

Definition 4.7. Let G ⊂ Σ be a graph in a pseudo-surface, and e ∈ E(G). Then we say that e is
a quasi-loop if ρ(e) > ρ(∅), and we say that e is a quasi-bridge if it is adjacent to exactly one region
of G ⊂ Σ.

A quasi-loop in G is a loop, and a bridge in G is a quasi-bridge. However, a loop is not necessarily
a quasi-loop and quasi-bridge need not be a bridge (for example a longitudinal loop on a torus is
not a quasi-loop, but is quasi-bridge). See Figure 2.

Proposition 4.8. Let G ⊂ Σ be a graph in a pseudo-surface, and e ∈ E(G). Then the following
hold.

(1) e is a quasi-loop in G if and only if e is a loop in B(G†).
(2) e is a quasi-bridge in G if and only if e is an isthmus of B(G†).

Proof. For the first item, e is a loop in B(G†) if and only if rB(G†)(e) = 0 if and only if 1− ρ(e) +

ρ(∅) = 0 if and only if ρ(e) > ρ(∅).
For the second item we consider a slight generalisation of a polygonal decomposition of a surface.

Recall that if G is a cellularly embedded in a surface Σ we may create a polygonal decomposition
of Σ by arbitrarily orienting the edges of G and giving them distinct labels (we identify the labels
with the edge names). The faces of G are then polygons with directed labeled sides, and thus give
a polygonal decomposition of Σ. The surface Σ may be recovered from this set of labeled polygons
by identifying sides of polygons with the same labels consistently with the directions of the arrows.
This can be thought of as “cutting” the surface along the directed edges of G to form the polygons
with directed sides labeled by the edge names.

Now let G = (V,E) ⊂ Σ be a graph in a pseudo-surface. We consider a slight generalisation of the
above polygonal decomposition to obtain a decomposition of Σ\V . As before direct and distinctly
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label the edges ofG, delete small neighbourhoods of the vertices, and cut the surface along the edges.
The resulting regions are no longer necessarily polygons, but surfaces with labeled directed curves
on their boundary components. Again, Σ\V , with the edges of G drawn on it, may be recovered
by identifying curves with like labels so that the directions align. We apply the construction to
subsets of the edges as follows. Let E := E(G). If A ⊆ E then Cut(A) is the complex obtained by
arbitrarily labelling and directing each edge of G, removing a small neighbourhood of each vertex,
and “cutting Σ open” along the edges in A. This results in a set of surfaces with boundaries, where
the boundaries have directed arcs labeled by the edges of A on them. These surfaces correspond to
the regions of the spanning subgraphs (V,A) ⊂ Σ of G ⊂ Σ. We have that Σ\V is obtained from
Cut(A) by, for each a ∈ A, identifying the two a-labelled boundary arcs such that their directions
agree. We call the elements of Cut(E) the bricks of G ⊂ Σ.

Observe that |Cut(A)| = ρ(A), and that |Cut(A)| = ρ(∅) if and only if A is an independent
set of B(G†). Any element of Cut(A) may be formed from some subset of the bricks of Cut(E)
by identifying appropriate arcs labeled by edges in E \ A. Also observe that e ∈ A if and only
if e labels two of the arcs on the boundary components of elements of Cut(A). Moreover, e is a
quasi-bridge if and only if in Cut(E) both of the boundary arcs labelled e lie on the same brick.

We need to show that e is an isthmus of B(G†) if and only if e is a quasi-bridge of G ⊂ Σ. That
is, we need to show

[ρ(A) = ρ(∅) =⇒ ρ(A ∪ {e}) = ρ(∅)] ⇐⇒ [e a quasi-bridge].

By restricting to the component of Σ\V that contains e, we can assume without loss of generality
that Σ\V is connected, and so it is enough to show that

[(Σ\(V ∪A) connected) =⇒ (Σ\(V ∪A ∪ {e}) connected)] ⇐⇒ [e is a quasi-bridge].

We will prove the equivalent statement,

[(Σ\(V ∪A) connected) and (Σ\(V ∪A ∪ {e}) not connected)] ⇐⇒ [e is not a quasi-bridge].

Suppose that Σ\(V ∪A) is connected, but Σ\(V ∪A∪{e}) is not. Then e lies on the boundary of
exactly two elements of Cut(A∪ {e}), say C1 and C2. Since C1 and C2 are formed from two disjoint
sets of bricks of Cut(E), it follows that e must lie on two distinct bricks in Cut(E), and is therefore
not a quasi-bridge.

Conversely, suppose that e is not a quasi-bridge. Then in Cut(E) there are two distinct bricks
B1 and B2 that have an arc labelled e. Inductively construct a two component complex and a set
of edges A as follows. Begin by setting I := E, C1 := B1, C2 := B2 and S := Cut(E)\{B1, B2}. As
long as there is a label, say b, that only appears once on the boundary of C = C1 t C2, we update
these sets with the following construction. Notice that if there is such a b, then there is a brick
B ∈ S which also has a label of b on its boundary. Attach B to C by identifying the b-labeled
arcs. Then let Ci be the result of the attachment if B was attached to Ci, and otherwise Ci = Ci.
Furthermore, let I := I\{b} and S := S\{B}. Since there are only a finite number of edges, this
process terminates. When it does, S = ∅ since Σ is connected. Let C = C1∪C2 denote the resulting
complex, and Ce be the complex obtained from C by identifying the e-labelled arcs.

We then have that C = Cut(I) is not connected, but Cut(I\e) is. We set A := I\e, and note
that it is independent in B(G†), while A ∪ {e} is not. This completes the proof. �

Theorem 3.1 together with Lemma 4.6 and Proposition 4.8 now give the desired complete
deletion-contraction relations for the Las Vergnas polynomial:

Theorem 4.9. Let G ⊂ Σ be a graph in a pseudo-surface. Then the following relations hold:

(1) if e ∈ E is neither an quasi-loop nor quasi-bridge of G, then

LG⊂Σ(x, y, z) = LG\e⊂Σ(x, y, z) + LG/e⊂Σ/e(x, y, z);
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(2) if e ∈ E is a bridge of G, then

LG⊂Σ(x, y, z) = xLG\e⊂Σ(x, y, z);

(3) if e ∈ E is a quasi-loop of G, then

LG⊂Σ(x, y, z) = yLG\e⊂Σ(x, y, z);

(4) if e ∈ E is a quasi-bridge but not a bridge of G, then

LG⊂Σ(x, y, z) = zLG\e⊂Σ(x, y, z) + LG/e⊂Σ/e(x, y, z);

(5) if E(G) = ∅, then LG⊂Σ(x, y, z) = 1.

Note that for plane graphs, loops are quasi-loops and bridges are quasi-bridges, so, for plane
graphs, the polynomial defined by the relations in Theorem 4.9 is indeed the classical Tutte poly-
nomial.

5. Relations with other topological Tutte polynomials

In this section we restrict to graphs in surfaces. We consider two other notable topological Tutte
polynomials, that is, polynomials of graphs in surfaces that generalize the classical Tutte polyno-
mial. These are the 2002 ribbon graph polynomial of Bollobás and Riordan, RG, from [4] (which
subsumes the 2001 version for orientable ribbon graphs from [3]), and the 2011 Krushkal polyno-
mial, KG, from [11] for graphs arbitrarily embedded in orientable surfaces (which was extended to
non-orientable surfaces by Butler in [2]). We now determine the relations between these polyno-
mials and the Las Vergnas polynomial, both the original version for cellularly embedded graphs
(which was first done in [1]), and the new version for arbitrarily embedded graphs. We begin by
recalling the definitions of RG and KG.

Definition 5.1. Let G be an cellularly embedded graph, or, equivalently, a ribbon graph. Then
the ribbon graph polynomial or Bollobás-Riordan polynomial, RG(x, y, z) ∈ Z[x, y, z], is defined by

RG(x, y, z) =
∑

A⊆E(G)

(x− 1)rG(G)−rG(A)ynG(A)zcG(A)−fG(A)+nG(A).

Noting that exponent of z is equal to the Euler genus γ(A), the ribbon graph polynomial may
be rewritten as

(5.1) RG(x, y, z) =
∑

A⊆E(G)

(x− 1)rG(E)−rG(A)ynG(A)zγG(A).

Although RG often appears with a fourth variable that records the orientability of each spanning
ribbon subgraph, here we omit it as it plays no role in our results. Note that the classical Tutte
polynomial, TG, is a specialisation of RG as TG(x, y) = RG(x, y − 1, 1), and that TG(x, y) =
RG(x, y−1, z) when G is a plane graph (since when G is plane the Euler genus of all of its spanning
ribbon subgraphs is zero).

Comparing the state sums for LG and RG from Equations (3.8) and (5.1) illuminates the key
differences and similarities between these two topological Tutte polynomials in the case of cellularly
embedded graphs: L(G) records information about the spanning subgraphs of the dual, whereas
R(G) does not. Furthermore, Equation (5.1) together with Equation (3.7) gives that RG(x, y, 1) =

yγ(G)LG(x, y+1, 1/y), whenG is cellularly embedded. However, Askanazi et al. have given examples
in [1] suggesting that it is unlikely that either of RG or LG may be recovered from the other.

We now turn our attention to the Krushkal polynomial which was defined in [11] for graphs
embedded (not necessarily cellularly) in orientable surfaces, and in [2] for graphs in non-orientable
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surfaces. For this, recall from Section 2.1 that N(X) denotes a regular neighbourhood of a subset
X of a surface Σ, and k(Σ) is its number of connected components. The neighbourhood N(X) is
itself a surface and so we can consider topological properties of this surface, such as its Euler genus.

Definition 5.2. LetG ⊂ Σ be a graph in a surface. Then the Krushkal polynomial, KG⊂Σ(x, y, a, b) ∈
Z[a, b, x1/2, y1/2], is defined by

KG⊂Σ(x, y, a, b) :=
∑

A⊆E(G)

xc(G)−c(A)yk(Σ\A)−k(Σ)a
1
2
γ(N(A))b

1
2
γ(Σ\A).

We follow [2] and use the form of the exponent of y from the proof of Lemma 4.1 of [1] rather
than the homological definition given in [11].

Krushkal showed for orientable surfaces [11], and Butler [2] for non-orientable surfaces, that when
G ⊂ Σ is cellularly embedded, then the ribbon graph polynomial RG can be recovered from KG⊂Σ

as
RG(x, y, z) = y

1
2
γ(G)KG⊂Σ(x− 1, y, yz2, y−1).

Furthermore, it was shown in [1] for the orientable case, and [2] for the non-orientable case, that the
Las Vergnas polynomial for cellularly embedded graphs can also be recovered from the Krushkal
polynomial, here as

(5.2) LG(x, y, z) = z
1
2
γ(G)KG⊂Σ(x− 1, y − 1, z−1, z).

We can extend this relation to the full Krushkal polynomial:

Theorem 5.3. Let G = (V,E) ⊂ Σ be a graph in a surface. Then

(5.3) L(G,Σ)(x, y, z) = z
1
2

(γ(N(E))−γ(Σ\E))KG⊂Σ(x− 1, y − 1, z−1, z).

Proof. We proceed by comparing the exponents in the expression for LG from Definition 4.4 with
those on the right-hand side of Equation (5.3), which is

(5.4)
∑
A⊆E

(x− 1)c(A)−c(E)(y − 1)k(Σ\A)−k(Σ)z
1
2

(γ(Σ\A)−γ(N(A))+γ(N(G))−γ(Σ\E)).

The exponents of x− 1 in Equations (4.2) and (5.4) are the same. Since Σ is a surface, deleting
vertices does not change numbers of connected components, and so the exponents of y − 1 in
Equations (4.2) and (5.4) are the same. We now examine the exponents of z.

Noting that c(E) = k(N(V ∪ E)) and c(A) = k(N(V ∪ A)), and since Σ is a surface, ρ(E) =
k(Σ\E) and ρ(A) = k(Σ\A) the exponent of z in L(G,Σ)(x, y, z) is

(5.5) |E| − |A| − k(Σ\E) + k(Σ\A) + k(N(V ∪ E))− k(N(V ∪A)).

On the other hand, expanding the z exponent in Equation (5.4) in terms of the Euler character-
istic gives

k(N(V ∪ E)) − 1
2χ(N(V ∪ E)) − 1

2b(N(V ∪ E))
− k(Σ\E) + 1

2χ(Σ\E) + 1
2b(Σ\E)

− k(N(V ∪A)) + 1
2χ(N(V ∪A)) + 1

2b(N(V ∪A))
+ k(Σ\A) − 1

2χ(Σ\A) − 1
2b(Σ\A).

The b terms in this expression cancel since Σ\A and N(V ∪A) have identical boundary components
for each A ⊆ E(G). To show that the above sum is equal to Equation (5.5) we show that χ(N(V ∪
A))−χ(N(V ∪E)) = |E| − |A| and that χ(Σ\E)−χ(Σ\A) = |E| − |A|. It suffice to show this one
edge at a time, i.e. to show that χ(N(V ∪ (X ∪ {e}))) = χ(N(V ∪X))− 1, and χ(Σ\(X ∪ {e})) =
χ(Σ\X) + 1, for any X ⊆ E. This follows by recalling that χ(Σ) = vt− et + ft, where vt, et, and ft
are the numbers of vertices, edges, and faces, respectively, in any cellulation of Σ, and then noting
that extending a cellulation of N(V ∪X) to N(V ∪X ∪ {e}) changes the Euler characteristic by
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(a) A triangulation of
N(V ∪X).

(b) A triangulation of
N(V ∪X ∪ {e}).

Figure 3. Triangulations of neighbourhoods of (V,X) and (V,X ∪ {e}) when e /∈ X.

1, as can easily be seen from Figure 3. Similarly, χ(Σ\E) − χ(Σ\A) = |E| − |A|, and thus the
exponents of z in Equations (4.2) and (5.4) agree, completing the proof. �

Observe that when G ⊆ Σ is cellularly embedded then γ(Σ\E) = 0, and Equations (5.3) and
(5.2) agree.

It is likely that the Bollobás-Riordan and Krushkal polynomials can be extended to graphs in
pseudo-surfaces in such a way that the identity in Theorem 5.3 still holds. We leave doing this as
an open problem.

6. New perspectives on Las Vergnas’ low genus work with Eulerian circuits

Michel Las Vergnas also worked with cellularly embedded graphs via their Tait graphs. We now
use some tools recently developed to study twisted duality (see [6, 7]) to build on Las Vergnas’
foundations in this area.

In this section we will work entirely with cellularly embedded graphs and ribbon graphs (which
are equivalent). We recall that if G = (V,E) is a ribbon graph and A ⊆ E then f(A) is the number
of boundary components of the spanning ribbon subgraph (V,A), and γ(A) is its Euler genus. The
parameters f(A) and γ(A) are most easily described in terms of ribbon graphs, but they can be
computed in terms of cellularly embedded graphs: given G ⊂ Σ, describe G as a ribbon graph,
construct its spanning ribbon subgraph G′ = (V,A), then translate back to the language of cellularly
embedded graphs to get G′ ⊂ Σ′. Then f(A) is the number of faces of G′, and γ(A) = γ(Σ′). In
particular, it is important to remember that f(A) may not be the number of regions of G′\Ac, and
similarly γ(A) need not equal γ(Σ).

6.1. Graph states and Tait graphs. We first briefly recall some terminology. Further details,
including definitions of vertex and graph states, as well as medial and Tait graphs, relevant to this
context, may be found in [6, 7].

A vertex state at a vertex v of an abstract 4-regular graph F is a partition, into pairs, of the
edges incident with v. If F is an cellularly embedded 4-regular graph, a vertex state is simply the
result of replacing a small neighbourhood of v by a choice of one of the configurations in Figure 4.

v
−→ , or

Figure 4. The vertex states of a vertex v of a graph.

If G is a cellularly embedded graph and Gm its medial graph, checkerboard coloured so that
faces containing a vertex of G are coloured black, then we may use the checkerboard colouring to
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distinguish among the vertex states, naming them a white split, a black split or a crossing, as in
Figure 5.

v
−→

in Gm white split black split crossing.

Figure 5. The three vertex states of a vertex v of a checkerboard coloured medial graph.

A graph state s of any 4-regular graph F is a choice of vertex state at each of its vertices. Each
graph state corresponds to a specific family of edge-disjoint cycles in F . We call these cycles the
components of the state, denoting the number of them by c(s).

A cellularly embedded graph G is a Tait graph of a cellularly embedded 4-regular graph F if F
is the medial graph of G. A cellularly embedded checkerboard colourable 4-regular graph is always
a medial graph and will have exactly two (possibly isomorphic) Tait graphs, one corresponding to
each colour in the checkerboard colouring as in the following definition. We will generally view Tait
graphs as ribbon graphs.

Definition 6.1. Let F be a checkerboard coloured 4-regular cellularly embedded graph. Then

(1) the blackface graph, Fbl, of F is the embedded graph constructed by placing one vertex in
each black face and adding an edge between two of these vertices whenever the corresponding
regions meet at a vertex of F ;

(2) the whiteface graph, Fwh, is constructed analogously by placing vertices in the white faces.

Note that Fbl, Fwh are the two Tait graphs of F , and that choosing the other checkerboard
colouring just switches the names of Fbl and Fwh. An example is given in Figure 6.

6.2. Circuits in medial graphs. We begin with the main theorem of [14] which is a formula
for the number of components in a graph state without crossings of a checkerboard coloured 4-
regular graph (or equivalently, a checkerboard coloured medial graph) cellularly embedded in the
sphere, torus, or real projective plane. We note that in the language of [14], a graph state with
k-components is called an Eulerian k-partition. Also, the labelling of vertex states as black or white
in [14] is the reverse from that used in this paper.

Theorem 6.2 (Las Vergnas [14]). Let F be a checkerboard coloured 4-regular graph cellularly
embedded in the sphere, torus, or real projective plane; and let s be a graph state without crossings.

(a) A checkerboard coloured
4-regular embedded graph
F ⊂ S2.

(b) The blackface graph
Fbl ⊂ S2.

(c) The whiteface graph
Fwh ⊂ S2.

Figure 6. The blackface and whiteface graph. Note that F is the medial graph of
both its blackface graph and its whiteface graph.
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Then the number of components of s is equal to

(6.1) min{(|B|+ r(Fwh)− 2rFwh
(B) + 1), (v(F )− |B|+ r(Fbl)− 2rFbl

(W ) + 1)},
where B is the set of edges of Fwh corresponding to vertices of F with a black split in the graph
state, and where W is the set of edges of Fbl corresponding to vertices of F with a white split in
the graph state when we view F as the medial graph of both Fwh and Fbl.

The strength of this formula is that it computes a topological property from readily attainable
combinatorial quantities.

We now give a related formula for the number of components of a graph state, with a much
shorter proof than the original, that does hold for every surface. We then use it to explain why the
formula of Theorem 6.2 fails on surfaces other than the sphere, torus, or real projective plane.

Proposition 6.3. Let F be a 4-regular connected checkerboard coloured cellularly embedded graph,
and let s be a graph state without crossings. Then the number of components in s is

(6.2) fFbl
(W ) = 2cFbl

(W )− γFbl
(W ) + |W | − v(Fbl),

where Fbl is viewed as a ribbon graph, and W is the set of edges of Fbl corresponding to vertices of
F with a white split in the graph state s.

Proof. This is nearly a tautology. We see in Figure 7 an edge of Fbl (realised as a ribbon graph)
together with the corresponding vertex of F , which shows that black splits essentially ‘snip through’
the corresponding edges, effectively deleting them. Thus, the components of the graph state s of
Fbl just follow the face boundaries when the edges corresponding to black splits are deleted. The
number of circuits in a state with no crossings is then just fFbl

(W ). The right-hand side of Equation
(6.2) follows from Euler’s formula. �

eve

(a) The edge e in
G and correspond-
ing vertex in Gm.

(b) Black split:
‘snips’ e.

(c) White split: fol-
lows the boundaries
of e.

(d) Crossing: fol-
lows the boundaries
of a half twist of e.

Figure 7. For the justification of Propositions 6.3 and 6.6.

Although, since practically tautological, Proposition 6.3 may be less useful than Theorem 6.2, it
does lead us to rewrite Theorem 6.2 in a form that reveals why the theorem does not generalise to
other surfaces.

Theorem 6.4. Let F be a connected checkerboard coloured 4-regular graph cellularly embedded in
the sphere, torus, or real projective plane. Then the number of components of a graph state without
crossings is equal to

(6.3) min{fFbl
(W ) + γFwh

(B), fFbl
(W ) + γFbl

(W )},
where Fbl and Fwh are viewed as ribbon graphs, B is the set of edges of either Fbl or Fwh corre-
sponding to vertices of F with a black split in the graph state, and where W is the set of edges of
either Fbl or Fwh corresponding to vertices of F with a white split in the graph state, when we view
F as the medial graph of both Fwh and Fbl.
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Proof. Viewing Fbl and Fwh as ribbon graphs, Euler’s formula states that v(G) − e(G) + f(G) =
2c(G)− γ(G). With this,

|B|+ r(Fwh)− 2rFwh
(B) + 1 = |B|+ v(Fwh)− 2v(Fwh) + 2cFwh

(B)

= fFwh
(B) + γFwh

(B)

= fFbl
(W ) + γFwh

(B),

where the last equality follows by noting that since B and W are complementary sets in dual
graphs, fFbl

(W ) = fFwh
(B). A similar calculation shows that v(F )− |B|+ r(Fbl)− 2rFbl

(W ) + 1 =
fFbl

(W ) + γFbl
(W ), and the result then follows by Theorem 6.2. �

In the proof of Corollary 6.5 we can now see the importance of low genus in Theorem 6.2.

Corollary 6.5. If F is a connected checkerboard coloured 4-regular graph cellularly embedded in
the sphere, torus, or projective plane, then

min{fFbl
(W ) + γFwh

(B), fFbl
(W ) + γFbl

(W )} = fFbl
(W ),

where Fbl and Fwh are viewed as ribbon graphs, and B and W are as in the statement of Theo-
rem 6.4.

Proof. For the plane, torus, or projective plane, we note that γFwh
(B) and γFbl

(W ) are in {0, 1, 2}.
For the plane, both are 0, so the result follows immediately. On the torus and the projective plane,
since (Fwh −W ) and (Fbl − B) are edge disjoint (if we identify the edges of Fwh and Fbl), both
cannot contain fundamental cycles. Thus, one or the other of γFwh

(B) and γFbl
(W ) must be 0,

from which the result follows. This is not the case on surfaces of higher genus. �

The tools of twisted duality from [6, 7] allow us to extend the enumeration formula in Proposition
6.3 to all graph states, not just those without crossings. We will not review those tools in detail
here, but only note that an edge in a ribbon graph may be given a “half-twist”, i.e. detach one end
of an ribbon from an incident vertex, give the ribbon a half twist, and then reattach it. If G is a
ribbon graph, and A ⊆ E(G), then Gτ(A) is the ribbon graph resulting from giving a half-twist to
all the edges in A.

Proposition 6.6. Let F be a connected checkerboard coloured 4-regular cellularly embedded graph.
Then the number of circuits in any graph state is

f((Fbl)
τ(C) −B),

where Fbl is viewed as a ribbon graph, B is the set of edges of Fbl corresponding to vertices of F
with a black split in the graph state, and C is the set corresponding to crossings.

The proof, based on Figure 7 is nearly a tautology, so we omit it.

Las Vergnas provided, in Theorem 6.7 below, an application of Theorem 6.2 which relates Euler-
ian circuits and spanning trees. By using the language of ribbon graphs and the quasi-bridges
introduced in the previous section, we can now extend this result and give new perspectives on
circuits in medial graphs.

Theorem 6.7 (Las Vergnas [14]). Let F be a checkerboard coloured 4-regular graph embedded in
the sphere, torus or real projective plane. Let s be a graph state without crossings of F , let B be
the set of edges of Fwh corresponding to vertices of F with a black split in the graph state s, and
W be the set of edges of Fbl corresponding to vertices of F with a white split in the graph state s.
Then s defines an Euler circuit of F if and only if Fwh −W is a spanning tree of Fwh, or Fbl −B
is a spanning tree of Fbl.
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The language of ribbon graphs allows us to extend Theorem 6.7 to all cellularly embedded graphs.
If we let G denote the whiteface graph Fwh and view it as a ribbon graph, then an Eulerian circuit
without crossings in F corresponds to a quasi-tree of G, which is a ribbon subgraph of G that
has exactly one face (so all the edges of a quasi-tree are quasi-bridges). In addition, the ribbon
graph Fwh−W corresponds to a ribbon subgraph G−A of G, and Fbl−B corresponds to a ribbon
subgraph G∗−Ac of G∗, where we identify the edges of G and G∗, and Ac = E(G)−A = E(G∗)−A.
Thus, Theorem 6.7 is equivalent to the statement that if G is a ribbon graph homeomorphic to a
punctured sphere, torus or real projective plane, then G−A is a quasi-tree if and only if G−A or
G∗−Ac is a spanning tree of G. It is clear that this statement, and hence Las Vergnas’ Theorem 6.7,
is completed by Theorem 6.8 below.

Theorem 6.8. Let G be a ribbon graph and A ⊆ E(G). Then G−A is a quasi-tree if and only if
G∗ −Ac is a quasi-tree. Moreover, if G−A is a quasi-tree, then

γG(Ac) + γG∗(A) = γ(G).

Proof. Since the ribbon subgraphs G−A and G∗ −Ac of G have the same boundary components,
G− A has exactly one face if and only if G∗ − Ac has exactly one face. This proves the first part
of the theorem.

For the second statement, suppose that G−A is a quasi-tree. It then follows that G, G−A and
G∗|A are all connected. By Euler’s formula we then have

γG(Ac) + γG∗(A) =γ(G−A) + γ(G∗ −Ac)
=e(G−A)− v(G−A)− f(G−A) + 2c(G−A)

+ e(G∗ −Ac)− v(G∗ −Ac)− f(G∗ −Ac) + 2c(G∗ −Ac)
=e(G)− v(G)− f(G) + 2

=e(G)− v(G)− f(G) + 2c(G) = γ(G),

where the second equality follows since e(G) = e(G−A)+e(G∗−Ac), v(G−A) = v(G), v(G∗−Ac) =
v(G∗) = f(G), and f(G − A) = f(G∗ − Ac) = c(G − A) = c(G∗ − Ac) = c(G) = 1 (as G − A is a
quasi-tree). �

6.3. A curious relation. In [14], Las Vergnas also gave interpretations for evaluations of LG for
graphs cellularly embedded in the plane, torus, or real projective plane in terms of the medial graph
of G. We conclude by showing that this now yields a very different kind of relationship between
the Las Vergnas polynomial and the Bollobás-Riordan polynomial than that given previously in
Section 5. This identity uses circuits in medial graphs to give a relation between one variable
specialisations of LG and RG on low genus graphs. To do so, we first note the following evaluation
of RG.

Proposition 6.9. Let G be a connected cellularly embedded graph and let fk(Gm) be the number
of k-component graph states of its medial graph Gm without crossings. Then

tRG(t+ 1, t, 1/t) =
∑
k≥1

fk(Gm)tk.

Proof. This result is immediate from the relation between the topological transition polynomial
and RG in [8], but can also be seen as follows. If G is connected, then RG(t + 1, t, 1/t) =

t−1
∑

A⊆E(G) t
f(A). Note that there is a one-to-one correspondence between the boundary com-

ponents of the spanning ribbon subgraphs of G and the components of states of Gm with no
crossings. This correspondence is given by a white split at the vertex corresponding to an edge e if
e ∈ A, and a black split otherwise. Thus, RG(t+ 1, t, 1/t) = t−1

∑
tc(s), where the sum is over all

non-crossings states s of Gm, and collecting like terms gives the result. �
18



Theorem 6.10. If G is a graph embedded on the plane or real projective plane, then

LG(t+ 1, t+ 1, 1) = RG(t+ 1, t, 1/t);

and if G is embedded in the torus, then

L2,G(t+ 1, t+ 1) + tL1,G(t+ 1, t+ 1) + L0,G(t+ 1, t+ 1) = RG(t+ 1, t, 1/t),

where, if we view LG(x, y, z) as a polynomial in (Z[x, y]) [z], then Li,G(x, y) is the coefficient of zi

in LG(x, y, z).

Proof. Let F be the checkerboard coloured medial graph of G so that Fbl = G. Las Vergnas proved
in Proposition 4.1 of [14] that tLFbl

(t+ 1, t+ 1, 1) =
∑

k≥1 fk(F )tk when F is on the sphere or real

projective plane; and that L2,Fbl
(t+1, t+1)+tL1,Fbl

(t+1, t+1)+L0,Fbl
(t+1, t+1) =

∑
k≥1 fk(F )tk−1,

when F is on the torus. The results then follow by Proposition 6.9. �
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