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We find new properties of the topological transition polynomial of embedded graphs,
Q(G). We use these properties to explain the striking similarities between certain

evaluations of Bollobás and Riordan’s ribbon graph polynomial, R(G), and the topo-
logical Penrose polynomial, P (G). The general framework provided by Q(G) also
leads to several other combinatorial interpretations these polynomials. In particular,
we express P (G), R(G), and the Tutte polynomial, T (G), as sums of chromatic poly-
nomials of graphs derived from G; show that these polynomials count k-valuations of
medial graphs; show that R(G) counts edge 3-colourings; and reformulate the Four
Colour Theorem in terms of R(G). We conclude with a reduction formula for the
transition polynomial of the tensor product of two embedded graphs, showing that it
leads to additional relations among these polynomials and to further combinatorial
interpretations of P (G) and R(G).
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1. Introduction

In this paper we give versatile new identities for the topological transition polynomial

Q(G). We use these identities to obtain new connections between, and interpretations

of, the Penrose polynomial P (G), and Bollobás and Riordan’s ribbon graph polynomial

R(G), and also to explain similarities between known combinatorial evaluations of P (G)

and R(G). (Definitions of these polynomials can be found in Sections 3.1 and 4.1.)

† Supported by the National Science Foundation (NSF) under grant number DMS-1001408 and by
the Vermont Space Grant Consortium through the National Aeronautics and Space Administration
(NASA)



2 J. Ellis-Monaghan and I. Moffatt

We are motivated by some strikingly similar combinatorial interpretations of P (G)

and R(G) in terms of edge colourings of medial graphs. If G is an embedded graph (i.e.,

a graph in a surface as in Section 2), a k-valuation of its medial graph, Gm, is an edge

k-colouring of Gm such that each vertex is incident to an even number (possibly zero) of

edges of each colour. A k-valuation of a checkerboard-coloured embedded medial graph

yields four possible arrangements of colours about a vertex, which we term white, black,

crossing, or total, as in Figure 1. We let tot(φ) and cr(φ) denote the number of total

vertices and crossing vertices, respectively, in a k-valuation φ.
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Figure 1. Classifying k-valuations at a vertex, where i 6= j.

The polynomials R(G) and P (G) admit the following remarkably similar interpreta-

tions as sums over k-valuations of Gm:

kc(G)R(G; k + 1, k, 1/k, 1) =
∑

2tot(φ), (1.1)

P (G; k) =
∑

(−1)cr(φ), (1.2)

P (G;−k) = (−1)f(G)
∑

2tot(φ). (1.3)

The sum in (1.1) is over all k-valuations φ of Gm that contain no crossing configurations,

the sum in (1.2) is over those that contain no black or crossing configurations, and the

sum in (1.3) is over those that contain no black configurations. In addition, in (1.3), G

must be orientable and checkerboard colourable. (Equation (1.1) is due to Korn and Pak

[17]; while (1.2) and (1.3) are from [11], with (1.2) extending results of Jaeger [16] and

Aigner [1].)

The striking fact that R(G) and P (G) have such similar combinatorial evaluations

demands explanation, and we find it here through the topological transition polynomial,

Q(G). We unify and extend Equations (1.1) and (1.2) by finding a combinatorial inter-

pretation of Q(G) in Theorem 4.2. Using the facts that Q(G) specialises to P (G), and

to R(G) along certain curves, we show that (1.1) and (1.2) arise as specialisations of a

combinatorial evaluation of Q(G) (see Evaluation 5), thus explaining their similarity.

The connection between (1.1) and (1.3) is especially interesting as it arises from duality

identities. By considering the twisted duality relation for the transition polynomial from

[10], in Theorem 4.5 we connect P (G∗) and R(G×), where G∗ is the geometric dual

of G and G× is its Petrie dual. This new relation, together with our combinatorial

evaluation of Q(G), allow us to extend Equation (1.3) to a larger class of graphs (see

Evaluation 6). This amalgamates Equations (1.1)–(1.3) into a single result about the

transition polynomial, explaining not only the similarities between P (G) and R(G), but

also the restriction on G in Equation (1.3).
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The new properties of Q(G) also lead to a host of other interpretations of, and relations

between, graph polynomials. The point of this is two-fold: it deepens the understanding

of the relations between various graph polynomials; and, perhaps more importantly, it

reveals combinatorial and topological information that is encoded by evaluations of these

polynomials. For example, we show in Theorem 5.3 that the Penrose polynomial can be

written as a sum of chromatic polynomials:

P (G;λ) =
∑

A⊆E(G)

(−1)|A|χ((Gτ(A))∗;λ).

This identity completes a result of Aigner, from [1], in which it was shown that χ(G∗; k) ≤
P (G; k), for all k ∈ N, and extends the version in [11] from plane graphs to all embedded

graphs. We give a similar identity for the ribbon graph and Tutte polynomials (see

Corollary 5.5). We also give a number of new combinatorial evaluations of, and identities

for, the ribbon graph polynomial R(G) including a reformulation of the Four Colour

Theorem (Section 5.2).

Many of the results mentioned so far rely on an identity connecting P (G∗) and R(G×),

which arose from the twisted duality relation for the transition polynomial from [10]. In

Section 6 we present a family of connections that is obtained instead by considering tensor

products of embedded graphs. If G andH are abstract or embedded graphs, then, roughly

speaking, the tensor product of G⊗H is obtained by replacing each edge of G with a copy

of H − e. In [5], Brylawski showed how the Tutte polynomial of G⊗H can be written

in terms of the Tutte polynomial of its tensor factors. Brylawski’s result was extended to

R(G) in [14]. In Theorem 6.1, our third central result, we give a tensor product formula

for the transition polynomial, expressing Q(G⊗H) in terms of Q(G). This leads to a

new family of identities relating the P (G) and R(G), and to new interpretations of these

polynomials, and to connections with some results of Jaeger from [15].

2. Notation for embedded graphs

In this section, we briefly review relevant constructions involving embedded graphs. More

leisurely expositions can be found in [6], in Sections 2.1–2.3 of [11], and Section 2.1 of

[20]. Our notation is standard.

2.1. Embedded graphs

Cellularly embedded graphs, ribbon graphs, and arrow presentations all represent the

same object, which we call an embedded graph. We will move freely between these three

descriptions, which we presently describe.

A cellularly embedded graph G = (V (G), E(G)) ⊂ Σ is a graph embedded in a surface

Σ such that each connected component of Σ\G is homeomorphic to a disc. The connected

components, when viewed as subsets of Σ, are the faces of G. Two cellularly embedded

graphs G ⊂ Σ and G′ ⊂ Σ′ are equivalent, if there is an (orientation preserving when Σ is

orientable) homeomorphism ϕ : Σ → Σ′ with the property that ϕ|G : G → G′ is a graph

isomorphism. We consider cellularly embedded graphs up to this equivalence.
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A ribbon graph G = (V (G), E(G)) is a surface with boundary represented as the union

of two sets of discs, a set V (G) of vertices, and a set E(G) of edges such that: the vertices

and edges intersect in disjoint line segments, each such line segment lies on the boundary

of precisely one vertex and precisely one edge, and every edge contains exactly two such

line segments. Ribbon graphs are known to be equivalent to cellularly embedded graphs

(ribbon graphs arise as neighbourhoods of cellularly embedded graphs, while capping

off the the boundary components of a ribbon graph with discs results in a cellularly

embedded graph). We say that two ribbon graphs are equivalent if they define equivalent

cellularly embedded graphs. Ribbon graphs are considered up to this equivalence.

An arrow presentation consists of a set of circles, each marked with a collection of

disjoint, labelled arrows, called marking arrows on them such that there are exactly two

marking arrows with each label. Arrow presentations describe ribbon graphs as follows:

if G is a ribbon graph, for each edge e, arbitrarily orient its boundary, place an e-labelled

arrow pointing in the direction of the orientation on the arcs where e intersects a vertex.

Taking the boundaries of the vertices together with the labelled arrows gives an arrow

presentation. In the other direction, given an arrow presentation, obtain a ribbon graph

by identifying each circle with the boundary of a vertex disk. Then, for each label e,

take a disc with an orientation of its boundary and identify an arc on its boundary with

an e labelled arrow such that the direction of each arrow agrees with the orientation.

Thus, in an arrow presentation, each circle corresponds to a vertex of an embedded

graph, and each pair of e-labelled arrows corresponds to an edge. We say that two arrow

presentations are equivalent if they describe the same ribbon graph (and therefore the

same cellularly embedded graph). Arrow presentations are considered up to equivalence.

Let G be an embedded graph. We set v(G) := |V (G)| and e(G) := |E(G)|, and denote

the number of components of G by c(G). The rank of G is r(G) := v(G)− c(G), and

the nullity of G is n(G) := e(G)− r(G). If G is viewed as a ribbon graph, then f(G)

is the number of boundary components of the surface defining the ribbon graph, and if

G is viewed as a cellularly embedded graph, f(G) is the number of its faces. The Euler

genus, γ(G), of G equals the genus of G if G is non-orientable, and is twice its genus

if G is orientable. Euler’s formula gives that v(G)− e(G) + f(G) = 2c(G)− γ(G). An

embedded graph G is plane if it is connected and γ(G) = 0.

We define subgraphs of embedded graphs in terms of ribbon graphs. A ribbon graph H

is a ribbon subgraph of G if H can be obtained by deleting vertices and edges of G. If H is

a ribbon subgraph of G with V (H) = V (G), then H is a spanning ribbon subgraph of G.

We define embedded subgraphs for other realisations of embedded graphs by translating

into the language of ribbon graphs. In particular, this means that a cellularly embedded

subgraph H of a cellularly embedded graph G is automatically equipped with a cellular

embedding in a surface, although G and H may be embedded in different surfaces. (For

example, let G be the orientable ribbon graph consisting of one vertex v and two edges

e and f that meet v in the cyclic order (e f e f), and let H = G− e. When viewed as

a cellularly embedded graph, G is embedded on the torus with one loop following a

meridian and the other a longitude. However, as a cellularly embedded graph, H is a
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any edge non-loop non-orientable loop orientable loop

G

G/e

Table 1. Contracting an edge of an arrow presentation and a ribbon graph.

loop embedded in the sphere.) For A ⊆ E(G), we let r(A), c(A), n(A), f(A), g(A), and

γ(A) each refer to the spanning subgraph of (V (G), A) of G (where G is given by context).

2.2. Deletion and contraction

Care has to be taken when deleting and contracting edges of embedded graphs to ensure

that the operation results in an embedded graph.

If e ∈ E(G) then G− e is the spanning subgraph on edge set E(G)\{e}. When viewed

in the setting of ribbon graphs, then it is clear that G− e is again a ribbon graph, i.e.

is cellularly embedded, although not necessarily embedded in the same surface as G as

noted in the torus example above.

We will define contraction through arrow presentations. If G is an embedded graph

viewed as an arrow presentation and e ∈ E(G), then G/e is obtained as follows. Suppose

α and β are the two e-labelled arrows. Connect the tip of α to the tail of β with a line

segment; and connect the tip of β to the tail of α with another line segment. Delete

α, β and the arcs of the circles (or circle) on which they lie. This results in an arrow

presentation for G/e. (See Table 1.) This definition of contraction agrees with the usual

idea of contracting an edge by identifying it and its incident vertices in the cases where

doing so results in a cellularly embedded graph or a ribbon graphs. Table 1 shows the

local effect of contracting an edge of a ribbon graph. In it, the ribbon graphs are identical

outside of the region shown.

2.3. Petrie duality and Geometric duality

Let G be an embedded graph viewed as a cellularly embedded graph. Recall that the

geometric dual, G∗, of G is formed by placing one vertex in each face of G and embedding

an edge of G∗ between two vertices whenever the faces of G they lie in are adjacent. Note

that G and G∗ are embedded in the same surface.

The Petrie dual, or Petrial, G×, of G is the embedded graph with the same edges and

vertices as G, but with Petrie polygons, which are the result of closed left-right walks in

G, as the faces (see Wilson [24]). Petrie duals have a very simple definition in terms of

arrow presentations in that reversing the direction of exactly one arrow of each label in

an arrow presentation of G results in the arrow presentation of G×. Observe that in the

language of arrow presentations, Petrie duality is a local operation rather than a global
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operation, and thus we can form the Petrie dual with respect to only a subset of edges.

Let G be an embedded graph represented by an arrow presentation and A ⊆ E(G). Then

the partial Petrial Gτ(A) is the embedded graph obtained by, for each e ∈ A, reversing

the direction of exactly one of the e-labelled arrows. Note that G× = Gτ(E(G)) and that

G∅ = G. If A = {e} then we will write Gτ(e) for Gτ({e}). In terms of ribbon graphs and

working informally, G× is obtained by detaching one end of each edge from its incident

vertex disc, giving the edge a half-twist, and reattaching it to the vertex disc. The partial

petrial Gτ(A) of a ribbon graph G is formed by adding a half-twist only to the edges in

A. Note that, by equivalence, any number of full-twists may be added or removed from

an edge.

2.4. Medial graphs

Let G be a cellularly embedded graph. Its medial graph, Gm, is the embedded graph

constructed by placing a vertex on each edge of G, and then drawing the edges of the

medial graph by following the face boundaries of G (so each vertex of Gm is of degree 4).

The medial graph of an isolated vertex is a closed loop. (Medial graphs may thus have

free loops, where a free loop is a circular edge with no incident vertex.) Note that if G

is cellularly embedded in a surface Σ, then Gm is also cellularly embedded in Σ. The

vertices of Gm correspond to the edges of G, and we will generally index V (Gm) using

E(G): if e is an edge of G, we denote the corresponding vertex of Gm by ve.

A checkerboard colouring of a cellularly embedded graph is an assignment of the colour

black or white to each face such that adjacent faces receive different colours (i.e., it is a

face 2-colouring). If Gm is the medial graph of G, then Gm can be checkerboard coloured

by colouring the faces corresponding to a vertex of G black, and the remaining faces

white. We call this checkerboard colouring the canonical checkerboard colouring. Note

that G must be specified to determine the canonical checkerboard colouring of Gm, and

that medial graphs are always checkerboard colourable.

3. Graph polynomials and k-valuations

3.1. Topological graph polynomials

We start by briefly reviewing the definitions of the ribbon graph polynomial and the

Penrose polynomial.

3.1.1. The ribbon graph polynomial. In [3] and [4], Bollobás and Riordan extended

the Tutte polynomial from graphs to embedded graphs, resulting in the ribbon graph

polynomial, R(G).

Definition 1. [Bollobás and Riordan [4]] Let G be an embedded graph. Then the ribbon

graph polynomial or Bollobás-Riordan polynomial, R(G;x, y, z) ∈ Z[x, y, z], is defined by

R(G;x, y, z) =
∑

A⊆E(G)

(x− 1)r(G)−r(A)yn(A)zc(A)−f(A)+n(A).
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Although R(G) often appears with a fourth variable that records the orientability of each

embedded spanning subgraph, here we omit the fourth variable as it plays no role in our

results.

The Tutte polynomial, T (G), is a specialisation of R(G): T (G;x, y) = R(G;x, y − 1, 1).

In addition, as the exponent of z is equal to the Euler genus γ(A), we have that T (G)

and R(G) agree when G is a plane graph:

T (G;x, y) = R(G;x, y − 1, z). (3.1)

3.1.2. The Penrose polynomial. The Penrose polynomial was defined implicitly by

Penrose in [22] for plane graphs and was extended to all embedded graphs in [11]. This

extension to embedded graphs reveals new properties of the Penrose polynomial that can

not be realised exclusively in terms of plane graphs. The (plane) Penrose polynomial has

been defined in terms of bicycle spaces, left-right facial walks, or states of a medial graph.

Here, however, we use a formulation of the polynomial from [11] to define it in terms of

partial Petrials.

Definition 2. Let G be an embedded graph. Then the Penrose polynomial, P (G;λ) ∈
Z[λ] is

P (G;λ) :=
∑

A⊆E(G)

(−1)|A|λf(Gτ(A)).

The Penrose polynomial encodes a lot of information about graph colouring. For

example, it is well-known that proving the Four Colour Theorem is equivalent to proving

that every plane, cubic, connected graph can be properly edge-coloured with three

colours. The Penrose polynomial encodes exactly this information (see [22]): if G is a

plane, cubic, connected graph, then

the number of edge 3-colourings of G = P (G; 3) = (−1/4)
v(G)

2 P (G;−2) . (3.2)

For further explorations of its properties we refer the reader to the excellent expositions

on the classical Penrose polynomial given by Aigner in [1] and [2], and to [11] for its

extension to embedded graphs.

3.2. k-valuations

Definition 3. Let G be an embedded graph and Gm be its canonically checkerboard

coloured medial graph. A k-valuation ofGm is an edge k-colouring φ : E(Gm) → {1, 2, . . . , k}
such that for each i and every vertex ve of Gm, the number of i-coloured edges incident

to ve is even. We let K(Gm, k) denote the set of k-valuations of Gm.

Suppose Gm is canonically checkerboard coloured. Then in a k-valuation φ, at each

vertex ve ∈ V (Gm), one number appears four times, or two distinct numbers appear twice.

There are exactly four ways that this can happen, and we use the canonical checkerboard

colouring to classify the four types (φ, ve) as in Figure 1.

A k-valuation φ of Gm is:
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• admissible if (φ, ve) is a white or crossing type for each ve ∈ V (Gm), and we let

A(Gm, k) denote the set of admissible k-valuations;

• R-permissible if (φ, ve) is a white, black, or total type for each ve ∈ V (Gm), and we

let R(Gm, k) denote the set of R-permissible k-valuations;

• P -permissible if (φ, ve) is a white, crossing, or total type for each ve ∈ V (Gm), and

we let P(Gm, k) denote the set of P -permissible k-valuations.

If φ is a k-valuation, we let wh(φ), bl(φ), cr(φ), and tot(φ), denote, respectively, the total

number of white, black, crossing, and total types in φ.

As mentioned in the introduction, R(G) and P (G) both count k-valuations. Korn and

Pak found the following combinatorial evaluation of the ribbon graph polynomial.

Evaluation 1 (Korn and Pak [17]). Let G be an embedded graph, and k ∈ N. Then

kc(G)R(G; k + 1, k, 1/k) =
∑

φ∈R(Gm,k)

2tot(φ). (3.3)

Turning to the Penrose polynomial, Jaeger proved that when G is a plane graph, P (G; k)

can be expressed as a count of k-valuations.

Evaluation 2 (Jaeger [16]). Let G be a plane graph, and k ∈ N. Then P (G; k) =

|A(Gm, k)|.

The authors extended Jaeger’s interpretation to all embedded graphs by showing that

P (G; k) gives a signed count of admissible k-valuations:

Evaluation 3 ([11]). Let G be an embedded graph, and k ∈ N. Then

P (G; k) =
∑

φ∈A(Gm,k)

(−1)cr(φ). (3.4)

We note that Evaluation 2 can be recovered from Evaluation 3 since, for plane graphs,

cr(φ) ≡ 0 mod 2 (see [11] for details).

For certain graphs, the Penrose polynomial at negative integers, P (G;−k), can also

be described by a count of k-valuations:

Evaluation 4 ([11]). If G is orientable and checkerboard colourable, then

P (G;−k) = (−1)f(G)
∑

φ∈P(Gm,k)

2tot(φ). (3.5)

Evaluation 4 does not hold for general embedded graphs (for example, consider the

1-path). However, in Evaluation 6, we will see that Equation (3.5) holds for a somewhat

larger class of embedded graphs than conditioned here.
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4. Unifying the combinatorial interpretations

4.1. The transition polynomial

The generalised transition polynomial, q(G;W, t), of [12] is a multivariate graph polyno-

mial that generalises Jaeger’s transition polynomial of [16]. In [10], the authors specialised

the generalised transition polynomial to embedded graphs, calling this specialisation

the topological transition polynomial. Although both the generalised and the topological

transition polynomials encode vertex-specific weight systems, as in [10] and [12], it suffices

for our purposes here to use weight systems which are the same at each vertex. However,

several of the results we present may readily be extended to the more general setting

should the need arise.

A vertex state at a vertex v of a 4-regular graph arises from a partition, into pairs, of the

half-edges incident to v. If (u, v) and (w, v) are two non-loop edges whose half edges are

paired at the vertex v, then we replace these two edges with a single edge (u,w), which,

in the case of a cellularly embedded graph, lies in an ε-neighbourhood of the original two

edges. In the case of a loop, we temporarily imagine an extra vertex of degree two on

the loop, carry out the operation, and then remove the temporary vertex. After this is

done for all pairs in the partition at v, the resulting configuration is called a vertex state

at v. If G is an embedded graph and Gm is its canonically checkerboard coloured medial

graph then we may distinguish among the vertex states at v as in Figure 2. We call the

three vertex states a white smoothing, a black smoothing, and a crossing as defined in the

figure. The white smoothing and black smoothing are known collectively as smoothings.

v
−→

in Gm white smoothing black smoothing crossing.

(state weight α) (state weight β) (state weight γ).

Figure 2. The three vertex states of a vertex v of a canonically checkerboard coloured medial graph,
and their state weights in the medial weight system (α, β, γ).

A graph state of a 4-regular graph F is a choice of vertex state at each of its vertices,

which results in a set of curves. The number of these curves is the number of components

of the state. If F has no vertices, and so is either empty or a collection of free loops,

then its unique graph state is just itself. We let S(F ) denote the set of graph states of

F . A graph state s consists of a set of disjoint closed curves, and we refer to these as the

components of the state, denoting the number of them by c(s).

Let G be an embedded graph, and α, β, γ ∈ C. (For simplicity, we will work with

coefficients in C, but our results may be adapted to other rings.) The medial weight

system for Gm defined by (α, β, γ) is the mapping ω : S(Gm) → C given by ω(s) :=
∏

v∈V (Gm) ω(v, s) where (v, s) is the vertex state at the vertex v in the state s; and, with

respect to the canonical checkerboard colouring, ω(v, s) = α if (v, s) is a white smoothing,

ω(v, s) = β if (v, s) is a black smoothing, and ω(v, s) = γ if (v, s) is a crossing state (see

Figure 2).
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Definition 4. The topological transition polynomial Q(G, (α, β, γ), t) ∈ C[t] is defined

by

Q(G, (α, β, γ), t) :=
∑

s∈S(Gm)

ω(s)tc(s),

where ω is the medial weight system for Gm defined by (α, β, γ).

Since, as noted in Section 2.4, the medial graph of an isolated vertex is a free loop, it

follows that if G has no edges, then Q(G, (α, β, γ), t) = tk(G).

The topological transition polynomial was shown in [10] to admit a deletion-contraction-

type reduction identity which is akin to that for the Tutte polynomial. Since it holds for

vertex specific weights in [10], it holds also for the version given in Definition 4, yielding

the form below in Proposition 4.1. This identity will be useful in subsequent inductive

proofs.

Proposition 4.1. Let e be an edge of an embedded graph G. Recalling that edge con-

traction is defined as in Section 2.2, we have

Q(G; (α, β, γ), t) = αQ(G/e; (α, β, γ), t) + βQ(G− e; (α, β, γ), t) + γQ(Gτ(e)/e; (α, β, γ), t).

(4.1)

4.2. k-valuations and the transition polynomial

We now see that Q(G) can be expressed as a sum over all k-valuations, and this, our

first main theorem, will provide the unifying framework for similarities between R(G)

and P (G).

Theorem 4.2. Let G be an embedded graph, and k ∈ N. Then

Q(G; (α, β, γ), k) =
∑

φ∈K(Gm,k)

(α+ β + γ)tot(φ)αwh(φ)βbl(φ)γcr(φ). (4.2)

Proof. We use induction on the number of edges of an embedded graphG = (V,E). The

claim is easily verified when |E| = 0. Now assume that |E| 6= 0, and that the claim holds

for all embedded graphs with fewer than |E| edges. For φ ∈ K(Gm, k) and U ⊆ V (Gm),

set

Θ(G,φ, U) :=
∏

ve∈U

(α+ β + γ)tot(φ,ve)αwh(φ,ve)βbl(φ,ve)γcr(φ,ve).

Fixing some e ∈ E, we can write the right-hand side of Equation (4.2) as

α
(

∑

φ∈K(Gm,k)
(φ,ve) tot. or wh.

Θ(G,φ, V (Gm)\{e})
)

+ β
(

∑

φ∈K(Gm,k)
(φ,ve) tot. or bl.

Θ(G,φ, V (Gm)\{e})
)

+ γ
(

∑

φ∈K(Gm,k)
(φ,ve) tot. or cr.

Θ(G,φ, V (Gm)\{e})
)

. (4.3)
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G G/e G− e Gτ(e)/e

Graph e

Medial graph
ve

Table 2. Local differences in G, G/e, G− e, Gτ(e)/e, and their medial graphs for a non-loop edge e.

We show that the first term in (4.3) equals αQ(G/e; (α, β, γ), k). Consider G locally at an

edge e, and Gm locally at the corresponding vertex ve as shown in Table 2. Note that in

the table we are not assuming that the vertices at the ends of e are distinct or that they

lie on the plane on which they are drawn, and so Table 2 and the following argument

also includes the cases when e is an orientable or non-orientable loop. Table 2 also shows

G/e and (G/e)m at the corresponding locations. All the embedded graphs in the table

are identical outside of the region shown. Let φ′ be a k-valuation of (G/e)m. Then both

of the arcs of (G/e)m shown in Table 2 are coloured with the same element i, or they are

coloured by different elements i and j. The k-valuation φ′ of (G/e)m naturally induces

a k-valuation φ of Gm in which (φ, ve) is total or white. As this process is reversible,

we have a bijection between K((G/e)m, k) and {φ ∈ K(Gm, k) | (φ, ve) total or white}.
Under this bijection

∑

φ∈K(Gm,k)
(φ,ve) tot. or wh.

Θ(G,φ, V (Gm)\{e}) =
∑

φ∈K((G/e)m,k)

Θ(G/e, φ, V ((G/e)m)

= Q(G/e; (α, β, γ), k),

(4.4)

where the second equality follows by the inductive hypothesis. Similar arguments give

that the second and third sums in (4.3) equal βQ(G− e) and γQ(Gτ(e)/e) respectively.

Thus Equation (4.3) equals αQ(G/e) + βQ(G− e) + γQ(Gτ(e)/e), which by Proposition

(4.1), is Q(G).

4.3. The ribbon graph and Penrose polynomials at positive integers

In this section we show that Evaluations 1–3 arise as special cases of Theorem 4.2. For

this we need the following result which shows that R(G) and P (G) are assimilated by

the transition polynomial. This result provides the unifying framework for explaining the

connections among the evaluations of R and P .
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Proposition 4.3 ([13] and [11]). If G is an embedded graph. Then

Q
(

G;
(
√

y/x, 1, 0
)

,
√
xy

)

= xc(G)(
√

y/x)v(G)R(G;x+ 1, y, 1/
√
xy) (4.5)

Q(G; (1, 0,−1), λ) = P (G;λ). (4.6)

The specialisation R(G;x+ 1, y, 1/
√
xy) that appears in Equation (4.5) is significant

as it as appears in many results about the ribbon graph polynomial, for example in

duality relations (see [4, 13, 19]) and in connections to knot theory (see for example

[7, 8, 19]). In addition, R(G;x+ 1, y, 1/
√
xy) has a deletion-contraction relation that

reduces it to a linear combination of polynomials of edgeless ribbon graphs (see [6]),

which are easily computed. In contrast, the known deletion-contraction reduction for

the three-variable polynomial R(G;x, y, z) will only reduce it to a linear combination of

polynomials of ribbon graphs in which every edge is a loop, and there is not currently

an efficient method for computing these forms.

Proposition 4.3 allows us to unify Evaluations 1–3 and to explain their similarities by

showing that they are all special cases of Theorem 4.2. In fact, this framework allows us

to extend Korn and Pak’s Evaluation 5 as seen in (4.9) below.

Evaluation 5. Let G be an embedded graph, and k ∈ N. Then

kc(G)R(G; k + 1, k, 1/k) =
∑

φ∈R(Gm,k)

2tot(φ); (4.7)

P (G; k) =
∑

φ∈A(Gm,k)

(−1)cr(φ); (4.8)

kc(G)br(G)R
(

G;
k + b

b
, bk,

1

k

)

=
∑

φ∈R(Gm,k)

(b + 1)tot(φ)bwh(φ); (4.9)

T (G; k/b+ 1, kb+ 1) =
∑

φ∈R(Gm,k)

(b + 1)tot(φ)bwh(φ), when G is plane. (4.10)

Proof. We prove Equation (4.9) first. For this, observe that by Equations (4.5), and (4.2),

kc(G)br(G)R(G; (k + b)/b, bk, 1/k) = Q(G; (b, 1, 0), k)

=
∑

φ∈K(Gm,k)

(b+ 1)tot(φ)bwh(φ)1bl(φ)0wh(φ).

Note that (b+ 1)tot(φ)bwh(φ)1bl(φ)0wh(φ) = 0, whenever wh(φ) 6= 0, and is 1 otherwise.

Therefore we can sum over R(Gm, k) and drop the 0wh(φ) term, giving the result.

Equation (4.7) follows from Equation (4.9) by setting b = 1. Equation (4.8) is proved

in a similar way to (4.9), but using (4.6) instead of (4.5). We omit the details of this

argument. Equation (4.10) follows from Equation (4.9) as T (G) and R(G) agree on plane

graphs as in Equation (3.1).
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4.4. Duality and the Penrose polynomial at negative integers

We have seen that Evaluations 1–3 can be recovered from, and even extended by, The-

orem 4.2. We will now see that Theorem 4.2 can also be used to recover and extend

Evaluation 4. To do this we exploit the fact that the transition polynomial is well behaved

under both geometric and Petrie duality. This fact will allow us to obtain Evaluation 4

from the special case of Theorem 4.2 that appears in Korn and Pak’s Evaluation 1. This

is a very different approach from that used in the original proof of Evaluation 4 in [11]

which relied upon a connection between P (G) and the circuit partition polynomial of [9].

It is well-known that the Tutte polynomial satisfies a geometric duality relation for

plane graphs: T (G;x, y) = T (G∗; y, x). An analogous geometric duality identity was de-

termined for Q(G) in [13], and a much more general twisted duality identity for Q(G)

was given in [10]. In this paper we will use the following special cases of the twisted

duality relation for Q(G).

Proposition 4.4 ([10, 13]). Let G be an embedded graph. Then

Q(G; (α, β, γ), t) = Q(G∗; (β, α, γ), t), (4.11)

Q(G; (α, β, γ), t) = Q(G×; (γ, β, α), t). (4.12)

The following theorem is a central result in this paper. It is an easy consequence

of Propositions 4.3 and 4.4. Its importance lies in that it provides a useful connection

between R(G) and P (G), and that it helps explain why they give such similar eval-

uations. Furthermore, Theorem 4.5 will subsequently lead to additional identities and

combinatorial interpretations of evaluations of both polynomials.

Theorem 4.5. Let G be an embedded graph. Then

P (G∗;λ) = λc(G×)(−1)r(G
×)R(G×; 1− λ,−λ, 1/λ). (4.13)

Proof. We have

P (G∗;λ) = Q (G∗; (1, 0,−1), λ) = Q (G; (0, 1,−1), λ)

= Q
(

G×; (−1, 1, 0), λ
)

= λc(G×)(−1)r(G
×)R(G×; 1− λ,−λ, 1/λ),

where the first equality follows from Equation (4.6), the second and third from Theo-

rem 4.4, and the fourth from Equation (4.5).

We now use Theorem 4.5 to expand the class of graphs for which Evaluation 4 applies,

and to explain its connection to Theorem 4.2.

Evaluation 6. Let G be an embedded graph such that G∗× is orientable. Then

P (G;−k) = (−1)f(G)
∑

φ∈P(Gm,k)

2tot(φ). (4.14)
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Proof. If G is orientable, then the z’s in R(G;x, y, z) always appear with even expo-

nents. Thus, if G is orientable,

kc(G)R(G; k + 1, k,−1/k) = kc(G)R(G; k + 1, k, 1/k) =
∑

φ∈R(Gm,k)

2tot(φ),

where the last equality follows from Evaluation 1. Using Theorem 4.5, when G∗× is

orientable, we have

P (G;−k) = (−k)c(G
∗×)(−1)r(G

∗×)R(G∗×; k + 1, k,−1/k) = (−1)f(G)
∑

φ∈R((G∗×)m,k)

2tot(φ),

where the third equality follows since v(G∗×) = v(G∗) = f(G).

To rewrite the R-permissible k-valuations of (G∗×)m, in terms of P -permissible k-

valuations of Gm, consider Figure 3. An edge e in the arrow presentations of G and G∗×

is shown in Figures 3(a) and 3(b). The top row of the table in Figure 3(c) shows the

vertex ve and boundary components of Gm and (G∗×)m, with the shading indicating the

canonical checkerboard colouring at ve. The first column shows, at ve, the P -permissible

k-valuations of Gm, and the second column shows the R-permissible k-valuations of

(G∗×)m. We see from the table that there is a bijection between the P -permissible k-

valuations of Gm and the R-permissible k-valuations of (G∗×)m. Moreover, this bijection

preserves the number of total vertices in the k-valuations. Thus,

∑

φ∈R((G∗×)m,k)

2tot(φ) =
∑

φ∈P(Gm,k)

2tot(φ).

The result then follows.

Remark 1. To see that Evaluation 6 generalises Evaluation 4, observe that G∗× being

orientable is a weaker condition than G being orientable and checkerboard colourable. For

example, let G be the embedded graph consisting of one vertex and three non-orientable

loops that meet the vertex in the cyclic order (a b c a b c). Then G∗× is orientable (it is

a plane 3-cycle), but G is neither orientable nor checkerboard colourable. On the other

hand, if G is is orientable and checkerboard colourable, then G∗ is is orientable and

bipartite, so G∗× is orientable (every cycle of G∗ has even length, so receives an even

number of half-twists).

Remark 2. Although we have focused on R(G) in this paper to facilitate connections

with the current literature, Theorem 4.5 and several of the other results have much

simpler formulations in terms of the topochromatic polynomial, which is just a reparam-

eterisation of R: Z(G;x, y, z) = (xc/z)c(G)yv(G)R(G; (xz + y)/y, yz, 1/z) (see [19]). For

example, Equation (4.13) becomes simply P (G∗;λ) = Z(G×; 1,−1, λ).
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(a) An arrow presentation
for an edge e of G.

(b) The arrow presentation
for the edge e of G∗×.

Gm (G∗×)m

i

i i

i i

i i

i

j

i i

j j

i i

j

j

i j

i j

i j

i

P -permissible R-permissible
(c) A table showing Gm at ve, and its P -permissible k-valuations in the first column; and
(G∗×)m at ve, and its R-permissible k-valuations in the second column.

Figure 3. Identifying the P -permissible k-valuations of Gm and the R-permissible k-valuations of
(G∗×)m.

5. Graph Colouring Connections

5.1. The chromatic polynomial and the Penrose polynomial

In [1], Aigner proved the following result which connects the Penrose polynomial of a

plane graph G and the chromatic polynomial χ(G∗, λ) of its geometric dual G∗.

Theorem 5.1 (Aigner [1]). Let G be a plane graph, and k ∈ N. Then

χ(G∗; k) ≤ P (G; k). (5.1)

In [11], the authors extended Aigner’s result by expressing, when G is plane, P (G;λ) as

a sum of chromatic polynomials in which χ(G∗;λ) appears as a single summand:

Theorem 5.2 ([11]). Let G be a plane graph. Then

P (G;λ) =
∑

A⊆E(G)

χ((Gτ(A))∗;λ). (5.2)
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We will now complete Theorems 5.1 and 5.2 by showing that that Penrose polynomial of

an arbitrary embedded graph can be written as sum of chromatic polynomials. This result

is a consequence of the combinatorial interpretation of P (G; k) in terms of k-valuations

from Evaluation 3, and hence it follows from Theorem 4.2.

Theorem 5.3. Let G be an embedded graph. Then

P (G;λ) =
∑

A⊆E(G)

(−1)|A|χ((Gτ(A))∗;λ).

Proof. From Evaluation 3, for each k ∈ N we have

P (G; k) =
∑

φ∈A(Gm,k)

(−1)cr(φ) =
∑

X⊆V (Gm)

(−1)|X|
∑

φ∈A(Gm,k)
(φ,v) crossing ⇐⇒ v∈X

1.

We now view G as a ribbon graph and construct a bijection from the set of admissible

k-valuations of the medial graph Gm to a certain set of colourings of the boundaries of the

partial Petrials of G. Let Aφ ⊆ E(G) be the set of edges corresponding to vertices of Gm

with crossings in the admissible k-valuation φ. The cycles in Gm (which are determined

by the colours in the k-valuation φ) follow exactly the boundary components of the partial

Petrial Gτ(Aφ). Moreover, the colours of the cycles in the k-valuation induce a colouring

of the boundary components of Gτ(Aφ). We define a proper boundary k-colouring of a

ribbon graph to be a map from its set of boundary components to the colours {1, 2, . . . , k}
with the property that whenever two boundary components share a common edge, they

are assigned different colours. It is then clear that the map from φ to Gτ(Aφ) defines a

bijection between the set of admissible k-valuations of Gm and the set of proper boundary

k-colourings of the partial Petrials of G. Moreover, this bijection identifies the vertices

with crossing states with the edges in Aφ. Thus we have

∑

X⊆V (Gm)

(−1)|X|
∑

φ∈A(Gm,k)
(φ,v) crossing ⇐⇒ v∈X

1 =
∑

A⊆E(G)

(−1)|A|
∑

proper boundary

k-col. of Gτ(A)

1. (5.3)

A proper boundary k-colouring of Gτ(A) corresponds to a proper face k-colouring of

Gτ(A), and hence to a proper k-colouring of (Gτ(A))∗. Since the chromatic polynomial

counts proper k-colourings of a graph, we can then write (5.3) as
∑

A⊆E(G)

(−1)|A|
∑

proper face

k-col. of Gτ(A)

1 =
∑

A⊆E(G)

(−1)|A|
∑

proper k-col.

of (Gτ(A))∗

1 =
∑

A⊆E(G)

(−1)|A|χ((Gτ(A))∗; k).

The theorem then follows upon observing that k is an arbitrary natural number.

Remark 3. Theorem 5.2 can be recovered from Theorem 5.3 in the case of plane graphs,

as, if |A| is odd, then (Gτ(A))∗ must contain a loop. To see why, draw G on the plane,

and use this to obtain a plane drawing of the boundary cycles of Gτ(A) in the natural

way. The Jordan Curve Theorem implies that two boundary cycles of Gτ(A) must cross
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each other an even number of times in this drawing. Thus, if |A| is odd, some boundary

cycle must cross itself, and this corresponds to a loop in (Gτ(A))∗.

5.2. Extending results to the ribbon graph polynomial

We have seen that the connection between P (G∗) and R(G×) of Theorem 4.5 can be used

to reveal new properties of the Penrose polynomial. We now use it to uncover properties

of R(G), beginning with a new formulation of the Four Colour Theorem.

Theorem 5.4. The following statements are equivalent:

1 the Four Colour Theorem is true;

2 for every connected, loopless plane graph G, (−1)v(G)R(G×;−2,−3, 1/3)< 0;

3 for every connected, loopless plane graph G, (−1)v(G)R(G×;−3,−4, 1/4)< 0.

4 for every connected, loopless plane graph G, R(G×; 3, 2,−1/2) 6= 0.

Proof. Corollary 9 of [1] states that the Four Colour Theorem is equivalent to P (G; 3) >

0 for all connected, bridgeless plane graphs G. This is equivalent to P (G∗; 3) > 0 for all

connected, loopless plane graphsG, which, by Theorem 4.5, is equivalent to the inequality

(−1)r(G
×)3c(G

×)R(G×;−2,−3, 1/3) > 0, or, since G is connected and has the same rank

and number of vertices as G×, this is equivalent to (−1)v(G)R(G×;−2,−3, 1/3, 1)< 0,

which yields the equivalence between items (1) and (2) of the theorem.

The equivalence between items (1) and (3) is shown in a similar way but using the fact

from [1] that the Four Colour Theorem is equivalent to showing that P (G; 4) > 0 for all

connected, bridgeless plane graphs G.

The equivalence between items (1) and (4) follows from [15], Proposition 7, which says

that if G is plane and connected, then (−1)e(G)(−1/2)v(G)−2P (G;−2) is equal to the

number of face 4-colourings of G.

Another way to recover new results relies on the partial duals of Chmutov [6] and the

more general twisted duals of [10]. As we only use twisted duality explicitly in the proof

of Corollary 5.5, to avoid a lengthy discussion we refer the reader to [10] or [11] for the

relevant definitions and properties.

Corollary 5.5. Let G be an embedded graph, and Gδ(A) be its partial dual with respect

to A.

1 If G is an embedded graph, then

(−1)r(G)λc(G)R(G; 1 − λ,−λ, 1/λ, 1) =
∑

A⊆E(G)

(−1)|A|χ((Gδ(A))×;λ).

2 If G is a plane graph, then

(−1)r(G)(1− x)c(G)T (G;x, x) =
∑

A⊆E(G)

(−1)|A|χ((Gδ(A))×; 1− x).
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Proof. For Item 1, observe that Theorems 4.5 and 5.2 give

(−1)r(G)λc(G)R(G; 1− λ,−λ, 1/λ) = P ((G×)∗;λ) =
∑

A⊆E(G)

χ(((G×)∗)τ(A))∗;λ).

Rewriting the exponent, with Ac := E(G)\A, and using group relations for τ and δ from

[11], gives

δτ(E(G))τ(A)δ(E(G)) = δτδτ(A)δδτ(Ac) = τδ(A)τ(Ac) = (Gδ(A))×,

and the result follows.

Item 2 follows from Item 1 and Equation (3.1).

The following result is another consequence of Theorem 4.5.

Corollary 5.6. Let G be plane, connected, and cubic, and let H = (G∗)×. Then the

number of edge 3-colourings of G is

(−1)v(H)−13R(H ;−2,−3, 1/3) = R(H ; 3, 2,−1/2).

Proof. The result follows easily from Theorem 4.5 and Equation (3.2). For recovering

the second expression observe that v(G)/2 + v(H) = v(G)/2 + f(G). As G is cubic,

2e(G) = 3v(G), so Euler’s formula gives f(G) = 2 + v(G)/2, and so v(G)/2 + f(G) =

2 + v(G) ≡ 0 mod 2.

Remark 4. Corollary 5.5 and its proof relied upon twisted duality properties from [10].

Twisted duality, in fact, forms the foundation of most of the results in this paper. This

is since Proposition 4.1, and Equations (4.11) and (4.12), which appear implicitly or

explicitly in most of the proofs here, depend upon twisted duality.

6. Relating graph polynomials through tensor products

In Sections 4.4 and 5.2 we obtained new combinatorial identities for P (G) and R(G).

Since these results relied upon Theorem 4.5, the evaluations forR(G) were all restricted to

the specialisation R(G; 1− x,−x, 1/x). In this section we outline a family of connections

between the polynomials P and R that hold for other 1-variable specialisations of R(G),

and we describe how these provide new combinatorial interpretations of R(G). These

connections between P and R arise from a formula for Q(G) for the tensor product of

graphs. There are various constructions that go by the name of tensor product in the

literature. Here we follow the terminology established by Brylawski in [5] in the context

of identities for the classical Tutte polynomial, where the tensor product of two graphs

essentially replaces each edge of one graph by the other graph. This tensor product

construction has been generalised to ribbon graphs in [14].

We start by illustrating the general principle behind our new identities with a special

case. Let G be a cellularly embedded graph, and let D(G) be the cellularly embedded

graph obtained from G by doubling all the edges, that is, for each edge e of G, by

embedding a new edge parallel to e so that the two edges bound a face of degree 2.
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By comparing the calculations of the transition polynomial at an edge of G, and the

corresponding pair of edges in D(G), we see that

Q(G; (α2t+ 2α(β + γ), β2 + γ2, 2βγ), t) = Q(D(G); (α, β, γ), t). (6.1)

Setting (α, β, γ) = (1, 0,−1) and using Proposition 4.3 then yields that

tc(G)(t− 2)r(G)R(G; (2(t− 1)/(t− 2), t(t− 2), 1/t) = P (D(G), t). (6.2)

Thus, we have a new connection between R and P . Combining it with previous evalua-

tions of the Penrose polynomial gives new interpretations of R(G). For example,

kc(G)(k − 2)r(G)R(G; 2(k − 1)/(k − 2), k(k − 2), 1/k) =
∑

φ∈A(D(G)m,k)

(−1)cr(φ);

λc(G)(λ − 2)r(G)R(G; 2(λ− 1)/(λ− 2), λ(λ− 2), 1/λ) =
∑

A⊆E(D(G))

(−1)|A|χ((D(G)τ(A))∗;λ);

and if G∗× is orientable

kc(G)(k − 2)r(G)R(G; 2(k − 1)/(k − 2), k(k − 2), 1/k) = (−1)f(G)
∑

φ∈P(D(G)m,k)

2tot(φ).

Note that by Equation (3.1), these evaluations give identities for the Tutte polynomial

of a plane graph.

We will now fully generalise this construction and process. Instead of just doubling

edges, we will be able to replace the edges of G by any graph, using the tensor operation

for embedded graphs from [14]. We will then use the same process of examining terms and

appropriately adjusting the weights to find a general formula for the transition polynomial

of a tensor product. Finally, this formula, combined with the previous relations among

the various polynomials, will give the desired family of new connections between P and

R and hence new evaluations.

Just as with abstract graphs, the intuitive idea of a tensor product G⊗ϕ H of two

embedded graphs G and H is to replace each edge of G with a copy of H − e. We will

define tensor products in terms of ribbon graphs. It is an easy exercise to reformulate

this definition in terms of cellularly embedded graphs or arrow presentations.

Definition 5. Let G and H be ribbon graphs and e be a distinguished non-loop edge

of H . Let {β1, β2} = {e} ∩ V (H) (so each βi is an arc where the edge e is attached to its

incident vertices). Similarly, for each f ∈ E(G), let {α1
f , α

2
f} = {f} ∩ V (G). Furthermore,

let ϕ := {ϕf}f∈E(G) be a family of homeomorphisms such that for each i and f we have

ϕf : {f} → {e} and ϕf (α
i
f ) = βj where j ∈ {1, 2} (since ϕ is a homeomorphism, this

means that ϕf (α
1
f ) 6= ϕf (α

2
f )). We call ϕ the family of identifying maps. Then the tensor

product, G⊗ϕ H , is the ribbon graph formed as follows:

1 For each f ∈ E(G), take a copy of H and identify f and e using ϕf .

2 In the resulting complex, for each f , delete the image ϕ(f) = e of the identified edges

except for the arcs ϕf (α
i
f ) = βi. Note that, for i = 1, 2 this merges two vertex discs,
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(a) A plane graph G.

e

(b) A plane graph H. (c) A tensor product
G⊗ϕ H.

Figure 4. An example of a tensor product G⊗ϕ H. The map ϕ determines how the edge e of H is
identified with each edges of G.

one from G and one from H , that intersect in the arc ϕf (α
i
f ) = βj to form a single

vertex.

An example of a tensor product of plane graphs is given in Figure 4. As another example,

G⊗ C3 is the graph obtained by subdividing each edge of G; and D(G) is G⊗ θ, where

θ is the plane graph consisting of two vertices joined by three parallel edges. Figure 5

shows G locally at f and the corresponding location in G⊗ϕ H , in which f is “replaced”

by a copy of H − e. Observe that up to equivalence of ribbon graphs, for each f ∈ E(G),

there are four possible ways to replace f with a copy of H − e.

Identities for tensor products of graphs, also called parallel connections, have been

given for various forms of the Tutte polynomial, for example in [5, 14, 21, 23, 25]. Our

central result gives the corresponding formula for the transition polynomial in Theorem

6.1.

Theorem 6.1. Let G be an embedded graph, H be an embedded graph with a distin-

guished non-loop edge e, and G⊗ϕ H be their tensor product determined by the identifying

maps ϕ. Then, for t ∈ C\{0, 1,−2},

Q(G⊗ϕ H ; (α, β, γ), t) = Q(G; (κ, λ, µ), t),

where κ, λ, and µ are the unique solutions to

tκ+ t2λ+ tµ = Q(H − e; (α, β, γ), t) (6.3)

t2κ+ tλ+ tµ = Q(H/e; (α, β, γ), t) (6.4)

tκ+ tλ+ t2µ = Q(Hτ(e)/e; (α, β, γ), t). (6.5)

Proof. We work in the language of ribbon graphs. We draw medial graphs by placing

vertices in the centres of the edges of the original graph, and then drawing the edges of

the medial graphs so that they pass through the endpoints of intersections between edge

discs and vertex discs of the original graph, namely, the points {af , bf , cf , df} shown in

Figure 5(a). Likewise, we suppose that the cycles in the states of a medial graph also pass

through these points. We choose an orientation for each edge f of G, and arrange the

labels {af , bf , cf , df} so that the labeled points are met in the order af , bf , cf , df when
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fuf vf

af

bf cf

df

(a) An edge f of G.

uf vf

af

bf cf

df

H−e
︷ ︸︸ ︷

(b) The corresponding ribbon sub-
graph in G⊗ϕ H.

Figure 5. A labelling used in the proof of Theorem 6.1.

following the orientation of the edge, and furthermore, the points are labeled so that af
and bf are the end points of one interval of intersection between f and a vertex, while

cf and df are the end points of the other (see Figure 5(a)). This labelling of points in G

then induces a labelling of points on the boundaries of uf and vf in G⊗ϕ H as indicated

in Figure 5(b); and also a labelling of points on the vertices of copies of H , H − e, H/e,

and Hτ(e)/e.

The proof is structured as follows. We first show that the graphs states of (G⊗ϕ H)m
may be viewed as graph states of Gm with a number of additional cycles arising from the

copies of (H − e)m. The former correspond to cycles of (G⊗ϕ H)m that pass through

the points in {af , bf , cf , df | f ∈ E(G)}. To enumerate the latter, at each edge f of G we

consider the cycles of (H − e)m that do not pass through {af , bf , cf , df}. These can be ex-

pressed in terms of Q(H − e; (α, β, γ), t), Q(H/e; (α, β, γ), t), and Q(Hτ(e)/e; (α, β, γ), t),

by solving for κ, λ, µ in the equations above. This gives the appropriate weights to

substitute into the computation of Q(G), from which the result will follow.

We begin by partitioning the graph states of (G⊗ϕ H)m according to how they pass

through the set of points {af , bf , cf , df | f ∈ E(G)}. A cycle in a graph state of (G⊗ϕ

H)m that passes through af for some f must enter the copy of (H − e)m and then exit

it by passing through one of bf , cf or df , thus pairing af with one of the other points.

The remaining two points are necessarily similarly paired in the graph state. Thus, in

any given state of (G⊗ϕ H)m, for each edge f , one of the three situations occurs: af is

paired with bf , and cf with df ; or af is paired with cf , and bf with df ; or af is paired

with df , and bf with cf . We consider two graph states of (G⊗ϕ H)m to be in the same

set of the partition if they have the same pairings for each f . Let X denote this partition.

Then

Q(G⊗ϕ H ; (α, β, γ), t) =
∑

s∈S((G⊗ϕH)m)

ω(s)tc(s) =
∑

X∈X

∑

s∈X

ω(s)tc(s). (6.6)

Because each setX is determined by pairings in {af , bf , cf , df | f ∈ E(G)}, and likewise

each graph state of Gm is determined by these same pairings, each set X corresponds to a

unique graph state of Gm. The set of cycles in any graph state s ∈ X can be partitioned

into the set of cycles that pass through points in {af , bf , cf , df | f ∈ E(G)}, and the
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set cycles that do not. The number of cycles in s ∈ X that pass through some point

in {af , bf , cf , df | f ∈ E(G)} is exactly the number of cycles in this graph state of Gm

corresponding to X . The number of cycles in each s ∈ X which do not pass through any

of these points can be obtained by, for each f ∈ E(G), considering the cycles in all the

graph states of (H − e)m in which af , bf , cf , df are paired in the same way as in s, then

counting all cycles except of those that pass though any of the points af , bf , cf , df on

(H − e)m.

By these observations we have

∑

X∈X

∑

s∈X

ω(s)tc(s) =
∑

s∈S(G)

tc(s)
∏

f∈E(G)

∑

σ∈Yf (s)

ω(σ)tb(σ), (6.7)

where Yf (s) is the set of graph states of (H − e)m in which af , bf , cf , df are paired in

the same way as in s, and b(σ) is the number of cycles in σ that do not contain a point

af , bf , cf , or df .

We now turn our attention to determining
∑

σ∈Yf (s)
ω(σ)tb(σ). For this we split up the

terms of the transition polynomial Q(H − e) according to how the cycles pass through

the points af , bf , cf , df . Let

• Q=(H − e) denote the terms of Q(H − e; (α, β, γ), t) which arise from the states of

(H − e)m in which there is a cycle containing the points af , bf , cf , df in that order;

• Qq(H − e) denote the terms of Q(H − e; (α, β, γ), t) which arise from the states of

(H − e)m in which there is a cycle containing the points af , bf , and a different cycle

containing the points cf , df ;

• Q×(H − e) denote the terms of Q(H − e; (α, β, γ), t) which arise from the states of

(H − e)m in which there is a cycle containing the points af , bf , df , cf in that order.

The partitioning of terms used in the definition ofQ×(H − e) is illustrated in Figures 6(a)

and 6(b). We have

1
∑

σ∈Yf (s)
ω(σ)tb(σ) = t−1Q=(H − e), when s pairs af with df , and bf with cf (i.e., s

has a white smoothing at f );

2
∑

σ∈Yf (s)
ω(σ)tb(σ) = t−2Qq(H − e) when s pairs af with bf , and cf with df (i.e., s

has a black smoothing at f ); and

3
∑

σ∈Yf (s)
ω(σ)tb(σ) = t−1Q×(H − e) when s, pairs af with cf and bf with df (i.e., s

has a crossing at f ).

Figure 6 provides an illustration of Item (3) above: consider the graph state of (G⊗ϕ H)m
shown locally at a copy of H − e in Figure 6(c). Figure 6(b) shows the corresponding

graph state in (H − e)m. Then the contribution ω(σ)tb(σ) made by the graph state of

Figure 6(c) is equal to that made by the graph state in Figure 6(b) except we have over

counted the cycles (specifically the one containing the points af , bf , df , cf ). Item (3) is

readily seen to follow. The cycles of (G⊗ϕ H)m containing the labels are counted by the

cycles in the vertex states of Gm as in Figure 6(d) which shows the vertex state of Gm

corresponding to Figure 6(c).
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af

bf cf

df

(a) A copy of H − e.

af

bf cf

df

(b) A graph state of (H − e)m that
contributes to Q×(H − e) drawn on H − e.

uf vf

af

bf cf

df

H−e
︷ ︸︸ ︷

(c) A graph state of (G⊗ϕ H)m drawn
on G⊗ϕ H locally at a copy of H − e.

uf vf

af

bf cf

df

(d) A graph state of Gm drawn on G
locally at an edge f .

Figure 6. Illustrating the definition of Q×(H − e), and the connection between states of (H − e)m,
(G⊗ϕ H)m, and Gm.

Returning to the proof, combining items (1)–(3) with Equations (6.6) and (6.7) gives

Q(G⊗ϕ H ; (α, β, γ), t)

=
∑

s∈S(G)

tc(s)(t−1Q=(H − e))ws(s)(t−2Qq(H − e))bs(s)(t−1Q×(H − e)))cs(s)

= Q(G; (t−1Q=(H − e), t−2Qq(H − e), t−1Q×(H − e)), t),

where, in the middle equation, ws(s), bs(s), and cs(s) are respectively the numbers of

white, black, and crossing vertex states in the graph state s.

It remains to determine Q=(H − e), Qq(H − e), and Q×(H − e). To do this we define

Q=(H/e), Qq(H/e), Q×(H/e), Q=(H
τ(e)/e), Qq(H

τ(e)/e), and Q×(H
τ(e)/e) in a similar

way to the H − e case above. Q=(H/e), Qq(H/e), Q×(H/e) are the terms of Q(H/e) in

which, respectively, ad appear on a cycle, and bc appear on a different cycle; abcd appear

on a cycle in that order; and adbc appear on a cycle in that order. Also, Q=(H
τ(e)/e),

Qq(H
τ(e)/e), and Q×(H

τ(e)/e) are the terms of Q(Hτ(e)/e) in which, respectively, the

points adbc appear on a cycle in that order; abdc appear on a cycle in that order; and ac

appear on a cycle, and bd appear on a different cycle.
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We have

Q(H − e; (α, β, γ), t) = Q=(H − e) +Qq(H − e) +Q×(H − e),

Q(H/e; (α, β, γ), t) = Q=(H/e) +Qq(H/e) +Q×(H/e),

Q(Hτ(e)/e; (α, β, γ), t) = Q=(H
τ(e)/e) +Qq(H

τ(e)/e) +Q×(H
τ(e)/e).

(6.8)

It is easily checked that

Q=(H/e) =tQ=(H − e), Qq(H/e) =t−1Qq(H − e), Q×(H/e) =Q×(H − e),

Q=(H
τ(e)/e) =Q=(H − e), Qq(H

τ(e)/e) =t−1Qq(H − e), Q×(H
τ(e)/e) =tQ×(H − e).

Writing t−1Q=(H − e) = κ, t−2Qq(H − e) = λ, and t−1Q×(H − e) = µ, then substitut-

ing these into (6.8) gives the system of equations in (6.3), (6.4), (6.5) to solve for

Q=(H − e), Qq(H − e), and Q×(H − e). The theorem then follows since the determinant

of the resulting system of equations has roots 0, 1 and -2.

Remark 5. Theorem 6.1 gives unique solutions for t ∈ C\{0, 1,−2}, but what happens
when t ∈ {0, 1,−2}? If t = 0, then Q(G⊗ϕ H) = Q(H) = 0. However, a factor of tmay be

cancelled in all of equations (6.3), (6.4), (6.5) since the right hand sides have no constant

terms, and then again a unique solution results. If t = 1, then by Theorem 4.2, it follows

that Q(G, (α, β, γ), 1) = ce(G) for some constant c, and thus Q(G⊗ϕ H ; (α, β, γ), t) is just

ce(G)(e(H)−1)). The case when t = −2 is more interesting. For example, if E(G) 6= ∅ then

it is easy to show (by induction on the number of edges) that Q(G; (α, α, α),−2) = 0, for

all values of α. Thus if H has at least two edges, all possible values of κ, λ, and µ give

a solution to the system of equations in Theorem 6.1. It is then easy to find examples

for which Q(G⊗ϕ H ; (α, α, α),−2) = 0 but Q(G; (κ, λ, µ),−2) 6= 0. Thus Theorem 6.1

does not hold when t = −2. Finding an analogue of Theorem 6.1 for when t = −2 is an

interesting open problem.

Remark 6. Although, as mentioned following Definition 4, we did not use the version of

Q from [10] with locally specified vertex weights here, Theorem 6.1 readily adapts to this

more general setting. In fact, using the same techniques as in the proof of Theorem 6.1,

it is possible to determine the necessary weights at each vertex of Gm to accommodate

the insertion of a different graph at each edge of G (or even at just a single edge) instead

of inserting the same graph H at all of them.

At each edge f of G, up to equivalence there are four possible ways to identify an

edge f of G and the distinguished edge e of H . These choices are determined by the

identifying maps ϕ. This means there are up to 4e(G) different tensor products of G

and H . A consequence of Theorem 6.1 is that the transition polynomial, and hence its

specialisations, will give the same value on all of these embedded graphs:

Corollary 6.2. The polynomial Q(G⊗ϕ H ; (α, β, γ), t) depends only upon G, H, and

the edge e of H, and not the particular identification maps ϕ used in the construction of

the tensor product.
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Proof. In Theorem 6.1, Q(G), κ, λ and µ, and therefore Q(G⊗ϕ H), do not use a

particular choice of ϕ in their calculations. Since this holds for all t ∈ C\{0, 1,−2}, it
follows that the polynomials do not depend upon these choices.

Theorem 6.1 can also be used to recover a special case of the tensor product formula

for the ribbon graph polynomial from [14]:

Corollary 6.3 ([14]). Let G be an embedded graph, and H be a connected orientable

embedded graph with a distinguished non-loop, non-bridge edge e. Furthermore, let ϕ be

a family of identifying maps. Then when κ, λ 6= 0, xy 6= 1 and
√
xy /∈ {0, 1,−2},

(
√

y/x)r(G⊗ϕH)R(G⊗ϕ H ;x+ 1, y, 1/
√
xy) = κr(G)λn(G)R

(

G;

√
xy λ

κ
+ 1,

√
xy κ

λ
,

1√
xy

)

where

κ =
(
√

y/x)r(H/e)

1− xy
(R(H − e)− xR(H/e)), λ =

(
√

y/x)r(H−e)

1− xy
(R(H/e)− xR(H − e)),

and where R(H/e) = R(H/e;x+ 1, y, 1/
√
xy) and R(H − e) = R(H − e;x+ 1, y, 1/

√
xy)

in all of the expressions.

Proof. Theorem 6.1 gives

Q(G⊗ϕ H ; (b, 1, 0), t) = Q(G; (κ, λ, µ), t) = λe(G)Q(G; (κ/λ, 1, 0), t),

where κ, λ, and µ are the solutions to Equations (6.3)-(6.5) with (α, β, γ) = (b, 1, 0).

However, as H is orientable, the only way for one cycle to cross another is for there to be

a crossing transition at some vertex. Since crossing transitions have weight zero, it follows

that µ = Q×(H − e; (b, 1, 0), t) = 0, and so κ and λ can be determined using only (6.3)

and (6.4), giving κ and λ in terms of Q(H − e) and Q(H/e). The result then follows by

using Equation (4.5) to express the transition polynomial expressions in terms of R(G).

Initially, one may expect to be able to adapt the proof of Corollary 6.3 to obtain a

tensor product formula for the Penrose polynomial, but a little thought shows that this

cannot be done. The key fact that enabled us to obtain Corollary 6.3 from Theorem 6.1

was that setting γ = 0 in Q(G⊗ϕ H ; (α, β, γ), t), gave that µ = 0 in Q(G; (κ, λ, µ), t).

However, recalling that the weight system for the Penrose polynomial is (1, 0,−1), if

we set β = 0 in Q(G⊗ϕ H ; (α, β, γ), t), then it does not necessarily follow that λ = 0

in Q(G; (κ, λ, µ), t). (For example, take H to be the plane θ-graph.) Rather than being

a hindrance, this is fortunate in that it provides a family of identities that relate the

Penrose and ribbon graph polynomials. To see this, Theorem 6.1 and Equation (4.6) give

P (G⊗ϕ H ;λ) = Q(G; (κ, λ, µ), λ), (6.9)
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where

tκ+ t2λ+ tµ = P (H − e;λ)

t2κ+ tλ+ tµ = P (H/e;λ)

tκ+ tλ+ t2µ = P (Hτ(e)/e;λ).

(6.10)

If it happens that the solution to (6.10) gives µ = 0 (which does indeed occur for

particular choices of H , such as the plane θ-graph ) then (6.9) gives that

P (G⊗ϕ H ; t) = tc(G)κr(G)λn(G)R(G; tλ/κ+ 1, tκ/λ, 1/t), (6.11)

again connecting the ribbon graph and Penrose polynomials. Thus, Equation (6.2) arises

from (6.11) by taking H to be the plane θ-graph. This family of relations between

polynomials can then be used to translate between interpretations of, and results about,

the two polynomials. It would be interesting to have a characterisation of the family of

1-variable specialisations of R(G) that appear on the right-hand side of Equation (6.11)

and hence can be written as the Penrose polynomial of some graph.

We conclude with a discussion of the relationship between the work presented here

and a result of Jaeger. In [15], Jaeger found the following connection between the Tutte

and transition polynomials, which we have translated to our notation (the polynomials

here and in [15] differ by a prefactor and the roles of α and β are reversed).

Theorem 6.4 (Jaeger [15]). Let G be a connected plane graph, and let t ∈ C\{0, 1,−2}
and λ, µ ∈ C\{0}. Then

τ−1λv(G)−1µf(G)−1Q(G; (β, α, γ), t) = T (G; (λt)/µ+ 1, (µt)/λ+ 1)),

where α, β, and γ satisfy

tα+ β + γ = t/µ+ 1/λ

α+ tβ + γ = 1/µ+ t/λ

α+ β + tγ = 1/µ+ 1/λ.

Jaeger’s theorem can be obtained as a special case of Theorem 6.1 as follows.

R(G; (λt)/µ+ 1, (µt)/λ, 1/t) = (µ/(λt))c(G)(λ/µ)v(G)µe(G)Q (G; (µ/λ, 1, 0), t))

= (µ/(λt))c(G)(λ/µ)v(G)µe(G)Q (G; (1/λ, 1/µ, 0), τ))

= (µ/(λt))c(G)(λ/µ)v(G)µe(G)Q (G; (β, α, γ), τ)),
(6.12)

where α, β, and γ are the solutions the system of equations given in Theorem 6.4.

In (6.12), the first equality is by Equation (4.5), and the third equality follows by an

application of Theorem 6.1 where H = C2 and the tensor product is chosen so that

G⊗ϕ C2 = G. Jaeger’s Theorem 6.4 can then be recovered by restricting to connected

plane graphs (so R(G; (λt)/µ+ 1, (µt)/λ, 1/t) = T (G; (λt)/µ+ 1, (µt)/λ+ 1)), and by

using Euler’s formula to rewrite the prefactor.
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It is interesting to note that Jaeger proves his result by, essentially, proving and apply-

ing the tensor product for the special case G⊗ϕ C2 as above. However, the application

of Theorem 6.1 is unnecessary since (β, α, γ) = (1/λ, 1/µ, 0) is the solution to the system

of equations in Theorem 6.12. Thus the first two lines of (6.12) give rise to a much

simpler proof of Theorem 6.4 than the one in [15]. In particular, we see that Theorem 6.4

is equivalent to Equation (4.5), and so it provides no additional information than the

simpler formula.
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