
Supplemental Material:
Ripplonic Lamb Shift for Electrons on Liquid Helium

The Supplemental Material describes the technical de-
tails of the calculations carried out in the main text.

I. THE WKB WAVE FUNCTIONS

In this section we describe the analytical approxima-
tion for the energies En and the eigenfunctions ψn(z) of
highly excited states of motion normal to the helium sur-
face. For energies . 1 eV and for the distances from the
surface z & 1Å, the confining potential above the flat
helium surface in Eq. (??) has the form

V (z) = −Λz−1 + eE⊥z, Λ = e2
ε− 1

4(ε+ 1)
, (1)

where ε is the helium dielectric constant, whereas V (z)→
∞ for z → −0. We note that the effect of the ripplons
on the shift of the electron energy levels is accounted for
directly, therefore it would be inconsistent to consider
the smearing of the helium surface due to the ripplons.
However, Eq. (1) has to be modified on the atomic scale,
which contributes to the T = 0 shift of the electron en-
ergy levels [1–5], as indicated in the main text.

We change to dimensionless length, energy, and press-
ing field,

ζ = z/rB , εn = En/R, F = (eE⊥rB)/R, (2)

(rB = ~2/Λm and R = ~2/2mr2B are the localization
length of the ground state and the electron binding en-
ergy for E⊥ = 0). We will assume that the dimensionless
force is small, F . 1; in the experiment discussed in this
paper F ∼ 0.1.

In the variables (2) the Schrödinger equation for the
motion normal to the surface becomes[

− d2

dζ2
− 2

ζ
+ Fζ

]
ψn(ζ) = εnψn(ζ) (3)

with the boundary condition ψn(0) = 0.
For large energies εn � 1 and not too small ζ the

solution can be sought in the WKB form

ψn(ζ) =
Cn√
p(ζ, εn)

sin

[
S(εn)−

∫ ζ

0

p(ζ ′, εn)dζ ′ +
π

4

]
,

S(εn) =

∫ ζn

0

p(ζ ′, εn)dζ ′, (4)

where p(ζ, ε) = [ε + 2/ζ − Fζ]1/2 is the scaled classical
momentum of motion in the z-direction and Cn is the
normalization constant, which we set to be a real number.
The value of ζn is given by equation p(ζn, εn) = 0; for
large εn we have ζn ≈ F−1εn + 2ε−1n � 1.

The WKB approximation breaks down for small ζ, be-
cause the confining potential is singular at ζ → 0. For
the WKB to apply, the de Broglie wavelength should be
small compared to the distance on which it changes. This

means that Eq. (4) applies for ζ � ε
−3/4
n .

For small ζ, where Fζ � ε+2/ζ, we can disregard the
term Fζ in Eq. (3). The solution of this equation then
becomes

ψn(ζ) = C̃nζe
−iε1/2n ζ

1F1

(
iε−1/2n + 1, 2, 2iε1/2n ζ

)
+ c.c.,

(5)
where 1F1 is the confluent hypergeometric function and
C̃n is a constant. We will see that C̃n can be assumed
real, in which case the term ∝ 1F1 and its complex con-
jugate are equal.

The solutions (4) and (5) should match in the range

where ε
3/4
n ζ � 1 and at the same time Fζ � εn + 2/ζ.

In the considered case of large εn, both solutions should

apply in the range εn/F � ζ � ε
−1/2
n . For ε

1/2
n ζ � 1

we have

1F1

(
iε−1/2n + 1, 2, 2iε1/2n ζ

)
≈ [1/Γ(1 + iε−1/2n )]

× exp[2iε1/2n ζ + (iε−1/2n − 1) log(2iε1/2n ζ)],

so that, assuming C̃n to be real, we have in this range
from Eq. (5)

ψn(ζ) ≈ C̃nε−1/2n e−π/2ε
1/2
n

× sin
{
ε1/2n ζ + ε−1/2n [ln(2ε1/2n ζ) + γ]

}
, (6)

(γ is the Euler constant), whereas Eq. (4) gives

ψn(ζ) ≈ Cnε−1/4n sin
{
S(εn) +

π

4
− ε1/2n ζ

−ε−1/2n [1 + ln(2εnζ)]
}

(7)

By comparing Eqs. (6) and (7), we obtain

S(εn) = π

(
n− 1

4

)
+ ε−1/2n (1− γ + ln ε1/2n ) (8)

with integer n; C̃n = (−1)n+1Cnε
1/4
n exp(π/2ε

1/2
n ).

The classical action S(ε) can be found for small F/ε2

and ε� 1, where the image potential can be considered
a perturbation. The image-potential induced correction
is nonanalytic in ε,

S(ε) ≈ 2ε3/2

3F
+ ε−1/2 log(cεε

2/F ), F/ε2 � 1, (9)

where constant cε ≈ 20 is estimated by interpolating the
numerical value of S(ε). Equations (8) and (9) give the
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energy spectrum of the excited states with logarithmic

corrections from the image potential, εn ≈ ε(0)n + ε
(1)
n ,

ε(0)n = [(3πF/2) (n− 1/4)]
2/3

,

ε(1)n = − F

ε
(0)
n

[
3

2
ln ε(0)n − 1 + γ + ln(cε/F )

]
. (10)

To the leading order in ε−1n , the normalization constant
Cn can be calculated disregarding the image potential.

From Eq. (4), Cn ≈ F 1/2ε
−1/4
n .

For very large εn one can disregard the image potential
in Eq. (3) and assume that the electrons are in a trian-
gular well. The solution ψn(ζ) can be sought in terms of
the Airy functions as Ai

(
F 1/3(ζ − F−1εn)

)
, with εn de-

termined by the condition ψn(0) = 0. This gives asymp-

totically the same leading term ε
(0)
n in the expression for

the energy, εn. The correction from the image potential
can be calculated as −2〈ψn|ζ−1|ψn〉; the result is close

to Eq. (10) for ε
(1)
n .

In order to compare the results with the experiment
[6, 7], we performed a detailed numerical study of the
energies and the wave functions for the field E⊥ =
106 V/cm used in the experiment. We calculated the
energies En as well as the matrix elements of the momen-
tum pz (and of the electrostatic interaction, see below)
for n ≤ 30 by numerically solving the Schrödinger equa-
tion (3). For larger n, one can use Eq. (5) to describe
the wave functions in the region of small ζ . 1, which
contribute to the overlap integrals 〈n|pz|n1〉 with n1 ∼ 1.
Expression (5) for ψn was corrected by multiplying it by

an extra factor exp(iFζ2/4ε
1/2
n ). This factor accounts for

the field-induced term in the WKB expression (4), which
was dropped in Eq. (7) to match Eq. (5), which refers to
the limit Fζ2 → 0.
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FIG. 1. Solid line: the analytical expression (5) for the wave
function of the level n = 30 at small distance from the sur-
face; the expression has been corrected by the WKB factor

exp(iFζ2/4ε
1/2
n ). The numerical results are shown by dots.

The data refers to E⊥ = 106 V/cm, the dimensionless energy
of the level is ε30 = 6.57

We found that for n & 20 functions ψn(ζ) modified this
way are in a very good agreement with the numerically
calculated wave functions in the whole region ζ � εn/F ,
see Fig.1. The values of the matrix elements 〈n|pz|n1〉
calculated with such ψn(ζ) for n1 = 1, 2 are in a very

TABLE I. Values of the scaled matrix elements π1n =
(i/~)rB〈n|pz|1〉 and π2n = (i/~)rB〈n|pz|2〉] calculated for
E⊥ = 106 V/cm and for large n using Eq. (5) with the WKB
correcting factor (see Fig. 1) and the approximation of a tri-
angular potential well. The wave functions ψ1,2 are calculated
numerically. For comparison, the numerical solutions of Eq.
(3) for n = 30 give π1n = 0.0662 and π2n = 0.0415.

n Equation (3) Triangular well

π1n [π2n] π1n [π2n]

30 0.0663 [0.0415] 0.0740 [0.0443]

102 0.0347 [0.0199] 0.0419 [0.0239]

103 0.0091 [0.0049] 0.0104 [0.0056]

104 0.0021 [0.0011] 0.0023 [0.0012]

105 0.0005 [0.0003] 0.0005 [0.0003]

good agreement with the numerical values, too, see Ta-
ble I. Therefore in the numerical calculations for large n
we used these functions. The matrix elements 〈n|pz|n1〉
become close to those for ψn calculated in the triangular
well approximation for n & 104.

As a test of the accuracy of our numerical calculation
we checked the convergence of the sums∑

n′≤nmax

|〈n′|pz|n〉|2 → 〈n|p2z|n〉, nmax →∞,

∑
n′≤nmax, En′ 6=En

|〈n′|pz|n〉|2

(En − En′)
→ −m/2, nmax →∞.

(11)

The results presented in Fig. 2 show slow, but consistent
convergence.
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FIG. 2. The convergence of the numerically evaluated sums
(11) relevant for finding the energy shift of the states n = 1
and n = 2; Σ1 =

∑
n′≤nmax

|〈n′|pz|n〉|2/〈n|p2z|n〉 and Σ2 =

(2/m)
∑

n′≤nmax
|〈n′|pz|n〉|2/(En′ − En). The data refer to

the pressing field E⊥ = 106 V/cm used in the experiment.

As expected from the estimate that led to Eq. (8) of
the main text, the matrix elements 〈n|pz|n1〉 fall off ap-
proximately as n−2/3 for n� 1 and n1 ∼ 1. Therefore it
was necessary to sum over a large number of the virtual
states in Eq. (7) of the main text. In this equation the
summation index is n′, and in Eq. (11) and below we refer
to sums over n′ for given n. If the sum over n′ in Eq. (7)
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of the main text is limited to n′ ≤ 105, the energy En′

is ≤ 0.98 eV for the considered E⊥ = 106 V/cm, which
is on the boundary of the approximation of an infinite
potential barrier at the helium surface.

The shape of the electron barrier V (z) on the helium
surface for energies > 1 eV and the form of the electron
wave functions for the states with energies > 1 eV are
not known. Also, the shape of the wave function of the
low lying states at distances < 1Å from the surface is not
known either. However, we can find the contribution of
the highly excited states to the level shift using the sum
rules (11).

To see how it comes about we note first that, in the T -
dependent term in Eq. (7) of the main text for the level
shift, the sum over the ripplon wave vectors q is limited
to q . qT . Therefore, for temperatures T . 0.8 K, as
seen from Fig. 1(b) of the main text, ∆p,q,α < 0.1 eV.
If Enmax − En � ∆p,q,α, in the terms with n′ > nmax in
Eq. (7) of the main text one can expand the denominator
in ∆p,q,α/(En − En′). The sums over n′ > nmax for the
terms of the zeroth and first order are then given by the
above sum rules with the subtracted terms for n′ < nmax.
Therefore, once the summation in Eq. (7) of the main
text has been done for n < nmax, the overall level shift
is known from the sum rules to the first order in the
parameter δmax = ∆p,qT ,α/(Enmax

− En) irrespective of
the form of the barrier V (z). The second-order term
in δmax can be easily found also using the sum rule for
|〈n|pz|n′〉|2/(En − En′)2.

For E⊥ = 106 V/cm and nmax = 105, we have
δmax ∼ 0.1. Given that the sum rules hold very well
for the wave functions we have found, we could therefore
extend the summation in Eq. (7) to n′ →∞ using these
wave functions. This is the procedure used to obtain the
energy shift in Fig. 2 of the main text.

II. CONTRIBUTION OF THE
ELECTROSTATIC COUPLING

Ripplon-induced warping of the helium surface leads
to a change of the electron image potential. The energy
of the electron-ripplon coupling is the change of the po-
larization energy of liquid helium in the electric field of
the electron. For the electron located at r it has the form
[8, 9]

V pol(r, z) =− Λ

π

∫
dr1

∫ ξ(r1)−ξ(r)

0

dz1

× [(r− r1)2 + (z − z1)2]−2, (12)

where Λ = e2(εHe − 1)/8 (εHe ≈ 1.057 is the helium
dielectric constant and we disregard the terms of higher
order in εHe − 1).

Because the ratio 〈ξ2〉1/2/rB is small, one can expand
the energy (12) to the second order in ξ(r). One should
also take into account another part of the electrostatic

energy, which is the energy of the electron in the trans-
verse field E⊥. This energy changes when the electron
position is shifted by ξ(r). The expression for the total
electrostatic part of the electron-ripplon coupling energy
then reads

Ĥel
i =

∑
q

V (1)
q (z)ξqe

iqr

+
∑
q1,q2

V (2)
q1,q2

(z)ξq1
ξq2

ei(q1+q2)r. (13)

Here, ξq = Qq(bq + b†−q), see Eq. (2) of the main text.

Functions V
(1)
q and V

(2)
q1q2 describe one- and two-ripplon

coupling, respectively. They are given in Refs. 8–10,

V (1)
q (z) = Λz−2[1− qzK1(qz)] + eE⊥,

V (2)
q1,q2

(z) = − Λ

z3
+

Λ

2z

[
q21K2(q1z) + q22K2(q2z)

−(q1 + q2)2K2 (|q1 + q2|z)
]

(14)

K1,2(x) are the modified Bessel functions. In the last

term in Eq. (14) for V
(2)
q1q2 one should replace (q1 +

q2)2K2 (|q1 + q2|z) with 2/z2 for q1 = −q2.
The expansion of V pol(r, z) in ξ(r) breaks down for

very small z. In this range the major contribution to the
integral over r1 in Eq. (12) comes from small |r1 − r|.
For such r1, and assuming that ξ(r) is smooth, one can
expand ξ(r1) − ξ(r) ≈ |∇ξ(r)| · |r1 − r| · cosφ where φ
is the angle between ∇ξ(r) and r1 − r. One can then
integrate over |r1 − r| for a given φ and z1, then over z1,
and ultimately over φ. For z → 0, to the leading order
in 1/z the result reads

V pol(r, z) ≈− Λ

2πz

∫ π/2

−π/2
dφ
π − 2 arctan y(r, φ)

y(r, φ)
,

y(r, φ) = [|∇ξ(r)| cosφ]−1 (15)

For small |∇ξ(r)|, this expression is ∝ [∇ξ(r)]2, to the
leading order in |∇ξ(r)|. It then coincides with the
asymptotic form of Hel

i for small z, where the major con-

tribution to Hel
i comes from V

(2)
q1,q2(z). Numerically, ap-

proximating Eq. (15) by the term ∝ [∇ξ(r)]2 works well
in a broad range of |∇ξ(r)|; even for |∇ξ(r)| = 0.7 the
difference with the full expression (15) is < 10%, and it
decreases fast with the decreasing |∇ξ(r)|.

The assumption of the smoothness of ξ(r) used in
Eq. (15) requires that the root mean square displacement
〈ξ2(r)〉1/2 largely exceed the typical length on which
ξ(r) changes. If we limit the ripplon wave numbers to
qc = 108 cm−1, for the T = 0 fluctuations we have

qc〈ξ2(r)〉1/2T=0 ∼ 1.5, cf. Fig. 1(c) of the main text. This
shows that Eq. (15) is a good approximation for small
|∇ξ(r)|, whereas for |∇ξ(r)| & 1 in the expansion of
ξ(r1) − ξ(r) in Eq. (12) one should take into account
higher-order terms in r1 − r. They lead to V pol(r, z) in-
creasing even slower than z−1 with the decreasing z, for
very small z.
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From Eq. (15), the region of small z does not contribute
appreciably to the matrix elements of V pol(r, z) on the
wave functions ψn(z), which are ∝ z for small z. In the
whole region |∇ξ(r)| ≤ 1 the integral of z2V pol(r, z) over

the range z . 〈ξ2(r)〉1/2T=0 ∼ 10−8 cm gives an extremely
small contribution to the level shift, . R〈ξ2(r)〉T=0/r

2
B ∼

10−3R (we keep only the T = 0 terms in this estimate,
since only such terms are essential for large ripplon wave
numbers). At the same time, for not too small z the
coupling energy (12) is nonsingular and can be expanded
in ξ(r). This justifies using Eqs. (13) and (14) to describe
the electrostatic electron-ripplon coupling.

The direct two-ripplon coupling ∝ V (2)
q1,q2(z) leads to a

shift of the energy levels already in the first order of the
perturbation theory. From Eq. (13), for an nth level the
shift is

∆Ẽ(2)
n =

∑
q

〈n|V (2)
q,−q(z)|n〉|Qq|2(2n̄q + 1).

The terms linear in ξq give a shift when taken to
the second order. This shift is determined by the ma-
trix elements of the sum of the kinematic interaction
Ĥ

(1)
i [Eq. (3) of the main text] and the linear in ξq

terms in Eq. (13). To calculate the sum over the in-
termediate electron states, one can use the Bethe trick,
Eq. (6) of the main text. One can then use the relation

i[pz, V
(1)
q (z)] = ~V (2)

q,−q(z), which follows from Eq. (14),

to show that the shift ∆Ẽ
(2)
n cancels out (in the cal-

culation one should also use the completeness condition∑
n′〈n|Â|n′〉〈n′|B̂|n〉 = 〈n|ÂB̂|n〉 that holds for any op-

erators Â, B̂). The full expression for the level shift due
to the electrostatic electron-ripplon coupling, which also
includes the cross term from the electrostatic and kine-
matic coupling, is

∆Epot
np = ~

∑
q,α

Nqα
∑
n′

(En − En′ −∆p,q,α)−1
[
~
∣∣∣〈n′|V (1)

q (z)|n〉
∣∣∣2 − 2(En − En′)Im 〈n|pz|n′〉〈n′|V (1)

q (z)|n〉
]
, (16)

where Nqα = |Qq|2 [n̄q + (1 + α)/2] /~2, cf. the main
text; ∆p,q,α is defined in the main text below Eq. (5).
The level shift (16) should be added to the purely kine-
matic shift given by Eq. (7) of the main text to describe
the full level shift due to the electron-ripplon coupling.
Note that the term with n′ = n gives the polaronic shift
due to virtual processes within the same subband of mo-
tion normal to the surface, see [8, 11, 12]. The term
quadratic in the pressing field E⊥, which gives the major
contribution to this shift for large E⊥ [12], is indepen-
dent of the subband number n and drops out from the
expression for the frequency of inter-subband transitions,
which is of the central interest for this paper.

A numerical calculation shows that, for typical press-
ing fields E⊥ . 300 V/cm, the T = 0 level shift described
by Eq. (16) is much smaller than the T = 0 kinematic
shift discussed in the main text. For E⊥ = 106 V/cm
(the field used in the experiment discussed in the main
text), the T = 0 term in the sum (16) for n = 1 and
q & 107 cm−1 is an order of magnitude smaller than the
corresponding term in Eq. (7) of the main text. The
T = 0 shift given by Eq. (16) is a part of the small devi-
ation from the simple model of noninteracting electrons
above the flat helium surface. Such deviation has not
been measured in the experiment, and it is not easy to
measure. This paper shows that the deviation is small
without using adjustable parameters or extra approxima-
tions.

III. TWO-RIPPLON SCATTERING

As indicated in the main text, the two-ripplon coupling
can provide an important contribution to inelastic elec-
tron scattering. This is a consequence of the possibility to
scatter into ripplons with large wave numbers q, q′ while
keeping the total ripplon momentum ~(q + q′) small, of
the order of the electron thermal momentum or the re-
ciprocal quantum localization length in a magnetic field
multiplied by ~. The scattering rate is determined by the
transition matrix elements calculated for the same total
energy and the same total momentum of the electron-
ripplon system in the initial and finite states. These ma-
trix elements (the vertex, in terms of the diagrams) are
given by the direct two-ripplon coupling in the first order
and the single-ripplon coupling in the second order of the
perturbation theory.

If only the direct two-ripplon coupling was kept in
the analysis of inelastic scattering, this would lead to
a very high scattering rate. For example, the rate of
transitions from the bottom of the first excited subband
(n = 2,p = 0) to the lowest subband (n = 1) due to the

kinematic coupling Ĥ
(2)
i [Eq. (3) of the main text] would

be & 108 s−1. This is orders of magnitude higher than in
the existing experimental data. However, as in the case
of the electron energy shift, the major part of the direct
coupling is compensated by the linear in ξ(r) coupling

Ĥ
(1)
i . To find this compensation, one can use again the

Bethe trick.

We consider an electron transition from the initial
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state |ni,pi, {n(q)}〉 to the final state |nf ,pf , {n′(q)}〉,
where |{n(q)}〉 is the ripplon wave function in the oc-
cupation number representation. To the first order in

Ĥ
(2)
i and to the second order in Ĥ

(1)
i , the matrix element

Mkin
if (q1,q2) of the kinematic coupling, which describes

a two-ripplon transition with emission or absorption of
ripplons with wave vectors q1 and q2, has the form

Mkin
if (q1,q2) = gαβ~−2Qq1Qq2

[
〈nf |p2z|ni〉(Eni − Enf

)−
∑
n′

〈nf |pz|n′〉〈n′|pz|ni〉(Eni − En′)

×
(
Lα1α2

nin′ (q1,q2) + Lα2α1

nin′ (q2,q1)
)]
, Lα1α2

nin′ (q1,q2) = ∆pi+~q1,q2,α2
/(Eni

− En′ −∆pi,q1,α1
) (17)

Here, the subscripts α1,2 indicate whether the transition
is accompanied by ripplon emission (α1 = α2 = 1), ab-
sorption (α1 = α2 = −1), or scattering (α1 = −α2 =
±1). Factor gα1α2

≡ gα1α2
(q1,q2) is determined by

the initial ripplon occupation numbers, gα1,α2
(q1,q2) =

{[n(−α1q1) + (1 + α1)/2][n(−α2q2) + (1 + α2)/2]}1/2.
In the final ripplon state |{n′(q)}〉 the occupation num-
bers of ripplons with the wave vectors −α1q1 and −α2q2

are changed by α1 and α2, respectively, compared to the
state |{n(q)}〉. In Eq. (17) we took into account that
the final and initial energy of the electron-ripplon sys-
tem is the same as is also the total in-plane momentum,

pf = pi + ~(q1 + q2).

One can similarly calculate the contribution of the
electrostatic electron-ripplon coupling to the matrix ele-
ment of two-ripplon scattering. An important cancella-
tion of the terms with large ripplon momenta occurs in
this case, too. To the first order in the direct electro-
static two-ripplon coupling and to the second order in
the one-ripplon electrostatic coupling and the cross-term
with the one-ripplon kinematic coupling, using Eq. (14)
we obtain for the matrix element of the same transition
as in Eq. (17) the expression

Mpot
if (q1,q2) = gα1α2

Qq1Qq2

{〈
nf

∣∣∣∣Λ [ 2

z3
− (q1 + q2)2

z
K2(|q1 + q2|z)

]
− i
[
Enf
− Eni

~∆pi,q1,α1

pzV
(1)
q1

+ (q1 � q2)

]∣∣∣∣ni〉
+

[
〈nf |V (1)

q2 |n′〉〈n′|V
(1)
q1 − (i/~)(Eni − En′)pz|ni〉

Eni
− En′ −∆pi,q1,α1

− i (Eni − En′)∆pi+~q1,q2,α2〈nf |pz|n′〉〈n′|V
(1)
q1 |ni〉

~∆pi,q1,α1
(Eni

− En′ −∆pi,q1,α1
)

+ (q1 � q2)

]}
.

(18)

Here V
(1)
q is a shorthand for V

(1)
q (z) and “+(q1 � q2)”

means adding the same expression with the interchanged
{q1, α1} and {q2, α2}; function gα1,α2 is defined below

Eq. (17). Numerical calculations of the relaxation rate
based on Eqs. (17) and (18) are beyond the scope of the
present paper.
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