
An Algebraic Framework for Cipher Embeddings

C. Cid1?, S. Murphy1, and M.J.B. Robshaw2

1Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
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Abstract. In this paper we discuss the idea of block cipher embeddings
and consider a natural algebraic framework for such constructions. In
this approach we regard block cipher state spaces as algebras and study
some properties of cipher extensions on larger algebras. We apply this
framework to some well-known examples of AES embeddings.

1 Introduction

Cryptosystems are designed to hinder the efforts of the cryptanalyst. However it
is good cryptographic practice to ensure that the cryptosystem is presented in a
clear and natural manner to facilitate independent scrutiny. Since there is rarely
one single viewpoint for looking at a cipher, one approach for the cryptanalyst
is to consider alternative presentations. At first sight it may appear that there
is little to be gained by studying the same cryptosystem in a different way.
However, new perspectives may well:

– reveal mathematical structure that was hidden;
– permit calculations that were previously considered intractable;
– encourage the development of ideas about the analysis of the cryptosystem;
– provide implementation insights.

In fact, finding different presentations is fundamentally the only technique
available for the analysis of many asymmetric cryptosystems, as the following
two examples of widely used asymmetric cryptosystems demonstrate.

– RSA. The security of the RSA cryptosystem [16] with modulus n, where
n = pq (two unknown primes), is believed to fundamentally depend on the
inability of an attacker to factor the integer n. This is equivalent to the
inability of an attacker to find a presentation based on the ring “factoring”
isomorphism Zn → Zp × Zq.
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– Cryptosystems based on Discrete Logarithms. There are many cryp-
tosystems, such as ElGamal [5], the Digital Signature Standard [15] or Ellip-
tic Curves [10, 7], whose security is believed to fundamentally depend on the
inability of an attacker to calculate discrete logarithms in certain finite cyclic
groups. For such a group G of order p, this is equivalent to the inability of
an attacker to find a presentation based on the isomorphism G → Z+

p , where
Z+

p is the additive cyclic group of integers modulo p.

For an asymmetric cryptosystem, it is often fairly obvious which presentation
of the cryptosystem might be of greatest use to the analyst. The difficulty for
an alternative presentation of an asymmetric cryptosystem is “merely” one of
calculating this presentation.

For a symmetric cryptosystem it is unlikely to be so obvious. One standard
technique for analysing a mathematical structure is to embed it as a sub-structure
within a larger one. In this way the original mathematical structure is presented
within the context of a larger structure and such an approach has yielded great
insights in many areas of mathematics. In this paper, therefore, we consider a
framework for the embeddings of block ciphers.

While embeddings are usually constructed in the hope that they can provide
a further insight to the cryptanalyst, they can also be useful when considering
some implementation issues: an alternative presentation could provide a more
efficient implementation of the cipher, or might be used to protect against some
forms of side-channel attacks, such as timing or power analysis.

Our discussion is conducted with a view to providing a basic framework
for block cipher embeddings. The question of whether a particular block cipher
embedding yields any new insights might be, to some extent, a subjective judge-
ment. However we observe that there are embeddings that are in some sense
“trivial” and they cannot possibly offer extra insight into the cipher. In this
paper we seek to provide a framework to provide some initial discrimination
between embeddings of different types.

We begin the development of this framework by considering the natural math-
ematical structure for a block cipher state space, namely the algebra. The em-
bedding of one block cipher into a larger one is then discussed in terms of the
embedding function between the two state space algebras. This leads to a natural
mathematical derivation of the extended cryptographic functions of the larger
block cipher. To illustrate our approach, we discuss some well-known examples
of AES embeddings [1, 11, 12].

2 State Space Algebras

The state space of a block cipher is usually composed of a number of identi-
cal components. For example, the state space of the Data Encryption Standard
(DES) [13] consists of 64 bits, whereas the state space of the Advanced Encryp-
tion Standard (AES) [14, 3, 4] is usually thought of as consisting of 16 bytes. For
many block ciphers, these components are viewed as elements of some algebraic



structure, and internal block cipher computations often depend on using opera-
tions based on this structure. Thus, it is natural to regard a component of the
DES state space as an element of the finite field GF (2), and a component of the
AES state space as an element of the field GF (28).

For a block cipher, in which a component of the state space is naturally
regarded as an element of a field K, the entire state space is given by the set
Kn, where n is the number of components (n = 64 for the DES and n = 16 for
the AES). The set Kn has a natural ring structure as the direct sum of n copies
of the field K, as well as a natural vector space structure as a vector space of
dimension n over K. A set with such structure is known as an algebra [8]. More
formally, we have the following definition.

Definition 1. Let K be a field. An associative K-algebra (or simply algebra)
is a vector space A over K equipped with an associative K-bilinear multiplication
operation.

Informally, we can regard an algebra as a vector space which is also a ring.
Algebras can be also generalised to the case when K is a commutative ring (in
which case A is a K-module rather than a vector space). The dimension of the
algebra A is the dimension of A as a vector space. The set A′ ⊂ A is a subalgebra
of A if A′ is an algebra in its own right, and A′ is an ideal subalgebra if it is also
an ideal of the ring A. We can also classify mappings between two algebras in
the obvious way, so an algebra homomorphism is a mapping that is both a ring
homomorphism and a vector space homomorphism (linear transformation).

Considering block ciphers, the algebra of most interest cryptographically is
formed by the set Kn. This is an algebra of dimension n over K, where “scalar”
multiplication by the field element λ ∈ K is identified with multiplication by the
ring element (λ, . . . , λ) ∈ Kn. This algebra is the natural algebraic structure for
most block cipher state spaces and we term the algebra Kn the state space alge-
bra. We note that even in cases where K is not a field (for example, a component
of the state space of the SAFER family of block ciphers [9] is most naturally
thought of as an element of the ring Z28), the K-algebra Kn still remains the
most interesting structure for our analysis, and most of the discussion following
can be suitably modified.

The algebraic transformations of a state space algebra, that is transforma-
tions that preserve most of the structure of the algebra, are necessarily based
either on a linear transformation of the state space or on a ring-based transfor-
mation of the state space. However, a secure design often requires some non-
algebraic block cipher transformations; for example in each round there is often
a transformation using a substitution or look-up table. There are cases however
(most notably the AES) where the round transformations are dominated by al-
gebraic operations and, in such cases, it may be interesting to study the cipher
by means of an embedding of the state space algebra in a larger algebra. An em-
bedding may be defined so that all transformations of the embedded state space
are also algebraic transformations with respect to the larger algebra. The hope
is that this new representation may offer new insights on the essential structure
of the original cipher.



3 Block Cipher Embeddings

Suppose that A = Kn is the state space algebra of dimension n over K for
some block cipher, and that the encryption process consists of a family of (key-
dependent) functions f : A → A. A block cipher embedding is constructed from
an injective mapping η : A → B from the algebra A into some (possibly larger)
algebra B and suitably extended versions of the functions f defined on B. We
now consider different methods of embedding block ciphers.

3.1 Identity Embeddings

The are clearly many ways of embedding A in an algebra B of higher dimension.
One obviously unproductive way to construct a cipher embedding is to embed
the algebra A and the cryptographic function f into the algebra B by means of
the identity mapping.

Suppose that the algebra B can be written as the direct sum

B = A⊕A′,

with the embedding mapping given by η : a 7→ (a, 0). The functions f can easily
be extended in a trivial manner, so that (a, 0) 7→ (f(a), 0). This provides a direct
mirror of the cipher within B, and the A′-component of the embedding (and the
value of the extended function beyond η(A)) is irrelevant to the definition of the
original cipher in its embedded form. Clearly, this idea can also be extended to
any embedding mapping of the form η : a 7→ (a, ?) and any extension of f to a
function (a, ?) 7→ (f(a), ?). For example, the cryptographic function f : A → A

could be extended to a cryptographic function f̂ : B → B given by (a, a′) 7→
(f(a), g(a′)) for some function g : A′ → A′.

Knudsen essentially gives an example of such an embedding where f is the
Data Encryption Standard (DES) [13] encryption function and g is the RSA [16]
encryption function, with the same key used (in very different ways) for each
of these encryption functions [6]. Based on this embedding function, Knudsen
makes statements about the security of DES in terms of the security of RSA and
vice versa [6]. The readers of [6] are left to draw their own conclusions about a
security statement made about one cipher but which is based on the analysis of
a different arbitrary cipher.

We term such an embedding an identity-reducible embedding. Apart from
possibly providing another presentation of the cipher, identity-reducible embed-
dings are of little interest mathematically or cryptographically.

3.2 Induced Embeddings

The starting point for a cipher embedding is an injective function η : A → B.
We denote by BA = η(A) ⊂ B the image of this mapping. We now discuss the
natural method of extending the cipher functions f to functions on B using η.



We first consider how to define the induced embedded cryptographic func-
tions fη : BA → BA. These functions need to mirror the action of f on A, but
within BA. They must therefore be given by

fη(b) = η
(
f

(
η−1 (b)

))
for b ∈ BA,

which is illustrated in the diagram below (Figure 1). To illustrate this induced

A
η−1

←− BA

↓ ↓
f fη

↓ ↓
A

η−→ BA

Fig. 1. Induced Function given by the Embedding η.

function, consider the usual case where subkeys are introduced into a block cipher
by addition, that is by the function f(a) = a+k. Suppose we choose an additive
embedding transformation η, whose definition can be extended to subkeys. In
this case, the corresponding embedded method of introducing subkeys can be
naturally defined by addition, as

fη (η(a)) = η
(
f

(
η−1 (η(a))

))
= η (f(a)) = η(a + k) = η(a) + η(k).

3.3 Natural Extensions of Embeddings

The reason for considering an embedding is to analyse a cipher within a (possi-
bly) larger cipher in the hope of gaining a better insight into the original cipher.
In general however, BA = η(A) is not a subalgebra of B, but it exists within
the context of the algebra B and operations on BA are defined by the algebra
B. It is thus far more natural to work within the algebra B and define BA

mathematically within B, than it is to consider BA in isolation. For example,
while BA may not be a vector space, the induced encryption functions may be
defined in terms of a matrix multiplication of the elements of BA. It is clearly
mathematically appropriate in such an example to consider the vector space on
which the linear transformation is defined instead of just one subset (e.g. BA).
It is thus desirable in an embedding to naturally extend the function fη to B,
so that the extension retains the main algebraic properties of fη.

The most appropriate structure to consider in this case would be the set BA,
the (algebraic) closure of BA. This is the minimal algebra containing BA, and
is generated (as an algebra) by the elements of BA. The set BA can now be
considered algebraically entirely within the context of the closure BA, and the
operations on BA are defined within the algebra BA.



It is clear how this notion of closure can give the appropriate extension of the
induced functions fη : BA → BA to an extended induced functions fη : BA →
BA. In particular, such an extension fη preserves algebraic relationships between
the input and output of the functions fη. It should also be clear that BA is the
absolute extent of the cipher within B. No elements outside BA (that is B \BA)
can be generated by the embedded versions of elements of the state space algebra
A. Thus the extension of any function beyond BA is not determined algebraically
by the original cipher function, and can thus be considered arbitrary. There
seems to be no need (or point) in considering anything beyond the closure of the
embedding.

We have thus described a natural three-step process for embedding a cipher
within another cipher with a larger state space algebra:

1. Define an injective embedding function from the original state space algebra
to the larger state space algebra.

2. Based on the embedding function, define the induced cryptographic functions
on the embedded image of the original state space algebra.

3. Extend these induced cryptographic functions in a natural manner to the
larger state space algebra by algebraic closure.

This general approach seems to be an appropriate framework for consider-
ing cipher embeddings, particularly for ciphers with a highly algebraic structure
(note that key schedules can usually be similarly embedded). However it is clear
that each embedding should be considered on its own merits. Furthermore, not
every property of the embedded cipher is of immediate relevance to the original
cipher. Indeed, an example of a weakness of the larger algebraically embedded ci-
pher that does not translate to the original cipher was given in [12]. However our
framework allows us to immediately identify some embeddings that inevitably
have little cryptanalytical value.

4 Embeddings of the AES

The AES [14] is a cipher with a highly algebraic structure, and it is a suitable
cipher on which to apply and analyse different embedding methods. We look at
three different approaches that have been proposed in the literature and consider
their merits in terms of the framework given in Section 3.

The AES encryption process is typically described using operations on an
array of bytes, which we can regard as an element of the field F = GF (28).
Without loss of generality, we consider the version of the AES with 16-byte
message and key spaces, and 10 encryption rounds. The state space algebra of
the AES is thus the algebra F16, which we denote by A.

4.1 Dual Ciphers of the AES

In [1] Barkan and Biham construct a number of alternative representations of
the AES, which they call dual ciphers of Rijndael. These distinct representations



are derived from the automorphisms of the finite field F = GF (28) (based on the
Fröbenius map a 7→ a2) and the different representations of the field itself (via the
explicit isomorphisms between fields of order 28). Each representation can clearly
be seen as a form of embedding; the embedding functions are isomorphisms
and therefore B ∼= A. The AES cryptographic functions are extended to B
according to these isomorphisms. These embeddings are essentially mirrors of
the AES, although the different representations may permit us to gain a better
insight of algebraic structure of the cipher, such as the importance of some of
the choices made in the design of the AES. For instance, by analysing different
representations, it is concluded that a change of the “Rijndael polynomial” (used
to represent the finite field GF (28) within the cipher) should not affect the
strength of the cipher [1]. Such alternative representations can also be useful in
providing additional insights into efficient and secure implementation practices.

4.2 The BES Extension of the AES

The embedding of the AES in a larger cipher called Big Encryption System
(BES) was introduced in [12]. The main goal of this construction was to represent
the AES within a framework where the cipher could be expressed through simple
operations (inversion and affine transformation) in the field F = GF (28).

The BES operates on 128-byte blocks with 128-byte keys and has a very
simple algebraic structure. The state space algebra of the AES is the algebra
A = F16, while the state space algebra of the BES is the algebra F128 (denoted
by B). The embedding function for the BES embedding is based on the vector
conjugate mapping φ : F → F8 [12], which maps an element of F to a vector of
its eight conjugates. Thus φ is an injective ring homomorphism given by

φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)

.

This definition can be extended in the obvious way to an embedding function
φ : A → B given by φ (a) = φ (a0, . . . , a15) = (φ(a0), . . . , φ(a15)), which is an in-
jective ring homomorphism. We note that the image of this ring homomorphism,
BA = Im(φ), is a subring of B, but not a subalgebra. However, it contains a
basis for B as a vector space, and so B is the closure of BA. Thus φ is not a
identity-reducible embedding.

The three-step process of Section 3 shows how this embedding gives an em-
bedded cipher on B. Based on the embedding function φ, an encryption function
f : A → A of the AES induces an embedded encryption function fφ : BA → BA.
This can be naturally extended by closure to a function fφ : B → B. This exten-
sion to B can be expressed by simple operations over GF (28), namely inversion
and affine transformation. These are natural extensions of the algebraic opera-
tions of the AES to the larger algebra B, based on the embedding function.

The AES embedding in the BES is an example of a cipher embedding which
yields insights into the cipher that are not apparent from the original description.
This is demonstrated by the multivariate quadratic equation system for the AES
that is based on the BES embedding [12, 2], which is a much simpler multivariate



quadratic equation system than can be obtained directly from the AES. More
generally, it is clear that the AES embedding in the BES offers a more natural
environment in which to study the algebraic properties of the AES.

4.3 AES Extensions of Monnerat and Vaudenay

Monnerat and Vaudenay recently considered extensions of the AES and the BES,
namely the CES and the Big-BES [11]. The authors showed that these were
weak extensions in which cryptanalytic attacks could be easily mounted. They
observed however that the weaknesses in the larger ciphers did not translate to
weaknesses in the AES and BES, and were therefore of no consequence to the
security of the AES. Within the framework established in Section 3 it is now
very easy to see why the extensions given in [11] are inevitably divorced from
the original cipher.

The extensions of the AES to CES and the Big-BES are similar, so we only
consider the extension of the AES to the CES in this paper. A component of the
state space for the CES can be considered as an element of the set R = F× F.
The set R is given a ring structure (R,⊕,⊗) with binary operations defined by:

Addition (x1, y1)⊕ (x2, y2) = (x1 + x2 , y1 + y2) ,
Multiplication (x1, y1)⊗ (x2, y2) = (x1x2 , x1y2 + x2y1) .

The state space algebra for the CES is the algebra C = R16, which is an algebra
of dimension 32 over F, with scalar multiplication by the field element λ ∈ F
being identified with multiplication by the ring element (λ, 0, λ, 0, . . . , λ, 0) ∈ C.

The embedding of the AES in the CES is based on the injective algebra
homomorphism θ : F→ R given by θ(a) = (a, 0). This definition can be extended
in the obvious way to the injective algebra homomorphism θ : A → C

θ (a) = θ (a0, . . . , a15) = (θ(a0), . . . , θ(a15)) = ((a0, 0), . . . , (a15, 0)) .

The AES cryptographic functions were then induced based on this embedding
map, and extended to the entire state space C to define the cipher CES.

There are several reasons why the cryptographic and algebraic relevance of
such an embedding would be immediately questionable. Firstly, the definition
of the function on the embedded image does not appear to be appropriate since
some important algebraic properties are not retained within the CES. For in-
stance, the AES “inversion” function satisfies x(−1) = x254, but this algebraic
relationship is not satisfied by the CES “inversion” function. Secondly, the alge-
bra C can be expressed as the direct sum of CA = Im(θ) and some other ideal
subalgebra C′. Thus, in our terminology, θ is a identity-reducible embedding.
As shown earlier, this means that the way the embedded encryption function
fθ : CA → CA is extended beyond CA is irrelevant and has no consequences in
the analysis of the AES. However, the cryptanalysis of the CES given in [11] is
based on the properties of this arbitrary C′-component of the CES. The funda-
mental reason for this separation into two components is clearly seen using the



framework presented in this paper. The other embedding mappings proposed
in [11] (based on a 7→ (a, λa)) are also identity-reducible and so at a fundamen-
tal level they are bound to have the same ineffectiveness in tying together the
properties of the underlying cipher and the extension cipher.

5 Regular Representations of State Space Algebras

A very powerful and widely used technique in the study of algebras is to embed
an algebra in a matrix algebra. Such an embedding of an algebra is known as
a representation of the algebra. Thus a representation of a state space algebra
gives an embedding of a cipher in a matrix algebra. In this section, we consider
how a cipher state space algebra may be represented as matrix algebra, and how
such a matrix representation can highlight properties of the cipher and its state
space.

A representation of an n-dimensional algebra A is formally defined as an
algebra homomorphism from A to a subalgebra of Ml(K) [8], where Ml(K)
denotes the set of l × l matrices over the field K. Thus a representation of the
algebra A identifies A with an n-dimensional subalgebra of the l× l matrices. If
the algebra homomorphism is an isomorphism, then we may identify A with this
n-dimensional subalgebra of the l × l matrices. Clearly, there are many ways in
to define a representation. One standard technique is the regular representation,
which is the algebra homomorphism ν : A → Mn(K) that maps a ∈ A to the
matrix corresponding to the linear transformation z 7→ az (z a K-vector of
length n) [8].

An illustration of a regular representation is given by the complex numbers,
which form a 2-dimensional algebra over the real numbers. The complex number
x+iy can be identified with its regular representation as a matrix, which is given
by

ν(x + iy) =
(

x y
−y x

)
.

The set of all such matrices forms a 2-dimensional algebra over the real numbers
and can be identified with the complex numbers.

5.1 Regular Representation of the AES and the BES

The regular representations of the AES and the BES state spaces are algebra
homomorphisms to diagonal matrix algebras. Thus we identify elements of these
state spaces with the obvious diagonal matrix. An element of the AES state space
A has a regular representation as a 16× 16 diagonal matrix over F, so A can be
thought of as the 16× 16 diagonal matrices. An embedded element of the AES
state space in the BES has a regular representation as a diagonal 128×128 matrix
over F in which the diagonal consists of octets of conjugates. The closure under
matrix (algebra) operations of such embedded elements is clearly the algebra of
all 128× 128 diagonal matrices, which is the regular representation of the state
space algebra B. The BES, and hence the AES, can thus be defined in terms



of standard matrix operations in the regular representation of B. Suppose B is
the diagonal 128× 128 matrix that is the regular representation of some b ∈ B,
then these BES transformations are given in matrix terms below.

– Inversion. For diagonal matrix B, this is the mapping B 7→ B(−1) = B254.
For an invertible diagonal matrix B, this is matrix inversion.

– Linear Diffusion. For diagonal matrix B, there exist diagonal matrices Di

and permutation matrices Pi (i = 0, . . . , 31) such that this linear transfor-
mation can be defined by

B 7→
31∑

i=0

DiPiBPT
i .

– Subkey Addition. For diagonal matrix B and round subkey diagonal ma-
trix K, this is the mapping B 7→ B + K.

Thus the BES can be defined in matrix terms through the regular representation
of the algebra B as the subalgebra of diagonal matrices, with the operations of
the BES being represented by algebraic operations on these matrices.

The natural algebraic method of generalising operations on diagonal matrices
is to extend these operations by some method to a larger algebra of matrices that
contain the diagonal matrices. Thus we could define a “Matrix-AES” or “Matrix-
BES” defined on some algebra of matrices that coincides with the AES or the
BES for diagonal matrices. As we discuss below, this is in fact the approach
taken in [11] to give the definition of the CES and the Big-BES. However, the
functional “inversion” operation M 7→ M254 is not an invertible mapping on
any subalgebra containing non-diagonal matrices. Thus there is no algebraic
extension of the AES or BES state spaces beyond the diagonal matrices. In any
case, the regular representation of the AES and the BES state spaces as diagonal
matrices illustrates very well the point made in Section 3. From the viewpoint
of the AES or the BES, all extensions beyond diagonal matrices are arbitrary
and algebraically indistinguishable.

5.2 Regular Representations of Monnerat–Vaudenay Embeddings

We now consider the regular representation corresponding to the Monnerat and
Vaudenay embedding. The algebra R has dimension 2 over F, so its regular
representation is given by a 2-dimensional subalgebra of the 2× 2 matrices over
F. For an element (x, y) ∈ R, the regular representation (with right matrix
multiplication) is given by

ν ((x, y)) =
(

x y
0 x

)
.

Thus the regular representation of R is as the algebra of triangular matrices with
constant diagonals, with the subalgebra corresponding to the embedding of F in
R being the 1-dimensional subalgebra of 2× 2 diagonal matrices with constant



diagonals. It is clear that in any matrix operation related to the AES, the value
of the diagonal elements never depends on any off-diagonal element. The regular
representation of the CES state space (C) is a subalgebra of the 32×32 matrices
over F given by the 32-dimensional subalgebra of 2× 2 block diagonal matrices
of the form given above. The regular representation of the AES subalgebra of
the CES is given by the 16-dimensional subalgebra of diagonal matrices with
pairs of constant terms. As noted above, the off-diagonal elements never have
any effect on the diagonal elements and are entirely arbitrary. However, from
the algebraic viewpoint of the AES, this subalgebra of diagonal matrices is the
only subalgebra with any relevance. We note that this subalgebra of diagonal
matrices is a representation in the 32 × 32 matrices of the algebra A, and is
clearly algebra isomorphic to the subalgebra of diagonal 16×16 matrices, which
is the regular representation of the AES state space A.

All the regular representations of the AES subset of the various state spaces
considered consist of diagonal matrices. Those diagonal matrices given by the
regular representation of Monnerat and Vaudenay embeddings merely use di-
agonal matrices of twice the size with diagonal entries repeated. Every cipher
considered (AES, BES, CES and Big-BES) can all be defined solely in matrix
terms within the subalgebra of diagonal matrices. Any extension of the block
cipher definitions beyond diagonal matrices is arbitrary. The use of other em-
beddings based on similar algebraic structures is also suggested in [11]. However,
it can be seen that the regular representations of the state space algebras of
such embeddings merely correspond to other matrix subalgebras containing the
diagonal matrix subalgebra. Thus such other embeddings also have the same
cryptographic relevance as the original embeddings of Monnerat and Vaude-
nay [11]. Any conclusions drawn about diagonal matrices (AES embeddings) by
considering the effect of these arbitrary block ciphers on non-diagonal matrices
is arbitrary.

6 Conclusions

In this paper, we have presented a natural framework for the analysis of block
cipher embeddings. This has been done in terms of the algebra of their state
spaces, but takes into consideration the construction of the embedding function,
how to “naturally” induce the cryptographic function on the embedded image,
and how to (possibly) extend this image to the algebraic closure.

In this way we have shown that different approaches to embeddings in the
literature are not algebraically equivalent. By way of example we have looked at
three embedding strategies that have been discussed in the context of the AES. It
is clear that while some embeddings might bring benefits such as cryptanalytic
or implementation insights, it is possible to define other embeddings that, by
their very construction, cannot possibly offer additional insights into the cipher.
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