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Abstract. Cold boot attacks target memory remanence effects in hard-
ware to secret key material. Such attacks were first explored in the scien-
tific literature by Halderman et al. (USENIX Security Symposium 2008)
and, since then, different attacks have been developed against a range of
asymmetric key and symmetric key algorithms. Such attacks in general
receive as input a noisy version of the secret key as stored in memory, and
use redundancy in the key (and possibly knowledge of a public key) to
recover the secret key. The challenge is to recover the key as efficiently
as possible in the face of increasing levels of noise. For the first time,
we explore the vulnerability of lattice-based cryptosystems to this form
of analysis, focussing in particular on NTRU, a well-established and at-
tractive public-key encryption scheme that seems likely to be a strong
candidate for standardisation in NIST’s post-quantum process. We look
at two distinct NTRU implementations, showing how the attacks that
can be developed depend critically on the in-memory representation of
the secret key. We develop, efficient, dedicated key-recovery algorithms
for the two implementations and provide the results of an empirical eval-
uation of our algorithms.
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1 Introduction

Cold boot attacks have received significant attention since they were first de-
scribed in the literature by Halderman et al. nearly a decade ago [7] (see also [§]).
This class of attack relies on the fact that computer memory normally keeps in-
formation when going through a power-down/power-up cycle, so an adversary
might be able to gain access to confidential information such as cryptographic
keys after a system reboot. Unluckily for such an adversary, once the power is
cut off, the bits in memory will undergo a gradual degradation, meaning that any
information retrieved from the computer memory will probably be noisy. Thus,
once the location of the key in memory has been discovered (itself a non-trivial
task), the adversary’s task becomes the mathematical problem of recovering a
key from a noisy version of that key. The adversary may have access to reference
cryptographic data created using that key (e.g. ciphertexts for a symmetric key
encryption scheme) or have a public key available (in the asymmetric setting).
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The amount of time for which information is maintained while the power is off
depends on the particular memory type and the ambient temperature. Experi-
mental results shown in [7] reveal that, at normal operating temperatures, there
is little corruption within the first few seconds, but this phase is then followed
by a rapid decay. The period of mild corruption can be prolonged by cooling the
memory chips. For instance, according to [7], in an experiment at —50°C' (which
can be achieved by spraying compressed air onto the memory chips) less than
0.1% of bits decay within the first minute. At temperatures of approximately
—196°C (achieved by means of the use of liquid nitrogen) less than 0.17% of
bits decay within the first hour. Notably, once power has been switched off, the
memory will be partitioned into regions, and each region will have a ’ground
state’ which is associated with a bit, 0 or 1. In a 0 ground state, the 1 bits will
eventually decay to 0 bits, while the probability of a 0 bit switching to a 1 bit
is very small, but not vanishing (a common probability is circa 0.001 [7]). When
the ground state is 1, the opposite is true. An attacker can determine the ground
state of a particular region of memory rather easily in an attack by reading all
the bits and determining how many of them are 0 bits and how many are 1 bits.

The main focus of cold boot attacks after the initial work pointing out their
feasibility [7] has been to develop algorithms for efficiently recovering keys from
noisy versions of those keys for a range of different cryptosystems, whilst explor-
ing the limits of how much noise can be tolerated. Heninger and Shacham [10]
focussed on the case of RSA keys, giving an efficient algorithm based on Hensel
lifting to exploit redundancy in the typical RSA private key format. This work
was followed up by Henecka, May and Meurer [9] and Paterson, Polychroniadou
and Sibborn [I8], with both papers also focussing on the mathematically highly
structured RSA setting. The latter paper in particular pointed out the asymmet-
ric nature of the error channel intrinsic to the cold boot setting and recast the
problem of key recovery for cold boot attacks in an information theoretic man-
ner. Cold boot attacks in the discrete logarithm setting were considered in [19].
There, the authors emphasise the critical role of the format in which the private
key is stored in memory in the development and success of attacks. Several pa-
pers have considered cold boot attacks in the symmetric key setting, including
Albrecht and Cid [I] who focussed on the recovery of symmetric encryption keys
in the cold boot setting by employing polynomial system solvers, and Kamal and
Youssef [14] who applied SAT solvers to the same problem. Further research on
the development of cold boot attacks for specific schemes can be found in [I5/13]
Cold boot attacks are also widely cited in the theoretically-oriented literature
on leakage-resilient cryptography, but the relevance there is marginal because
the cold boot attack scenario (direct access to a noisy version of the whole key)
does not really apply in the leakage-resilient setting.
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1.1 Our contributions

In this paper, we examine the feasibility of cold boot attacks against the NTRU
public key encryption scheme [12[T1]. We believe this to be the first time that
this has been attempted. Our work can be seen as a continuation of the trend
to develop cold boot attacks for different schemes (as evinced by the litera-
ture cited above). But it can also be seen as the beginning of the evaluation
of the leading post-quantum candidates against this class of attack. Such an
evaluation should form a small but important part of the overall assessment of
schemes in the soon-to-commence NIST selection process for post-quantum al-
gorithmsEI In particular, this paper evaluates what seems likely to be a leading
candidate and lays the groundwork for the later study of other likely candidates
in the same broad family of schemes that operate over polynomial rings (such as
NTRUprime [3] and various recently proposed ring-LWE-based schemes [2//5]).

As noted above, the exact format in which the private key is stored is critical
to developing key recovery attacks in the cold boot setting. This is because
the attack depends on physical effects in memory, represented by bit flips in
private key bits, and the main input to the attack is a bit-flipped version of the
private key. For this reason, it is necessary to either propose natural ways in
which keys would be stored in memory in NTRU implementations or to examine
specific implementations of NTRU. We adopt the latter approach, and we study
two distinct implementations. The first, ntru-crypto, is a pair of C and Java
libraries developed by OnBoard Security, a spin off of Security Innovation, the
patent-holder for some NTRU technologyﬂ The second, tbuktu is a pair of
libraries developed by “Tim Buktu”, and is available in ‘C’ and Java languagesﬂ
A fork of the Java implementation is included in the popular Bouncy Castle Java
crypto libraryﬁ

Each of these implementations stores its private keys in memory in slightly differ-
ent ways. For example, in Java, tbuktu supports a number of different formats,
including a representation where the key is stored as 6 lists of indices, each index
being a 32-bit integer representing a position where a certain polynomial has a
coefficient of value +1 or —1. Meanwhile, ntru-crypto’s C implementation uses
a special representation of polynomial coefficients by trits (three-valued bits),
and then packs 5 trits at a time into octets using base-3 arithmetic.

Each of these different private key formats therefore requires a different approach
to key recovery in the cold boot setting. In this paper, we will focus on just a
couple of the more interesting cases, where there is some additional structure

! See http://csrc.nist.gov/groups/ST/post-quantum-crypto/| for details of the
NIST process.

2 See https://github.com/NTRUOpenSourceProject/ntru-cryptol for the code and
https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources| for
a list of useful resources related to NTRU.

3 See http://tbuktu.github.io/ntru/|

4 See http://bouncycastle.org/.
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that we can exploit, or where novel approaches are called for. Nevertheless, we
will pose the problem of key recovery in a more general way that makes it pos-
sible to see how to generalise our ideas to cover other cases. Specifically, each of
our analyses involves splitting the (noisy) private key into chunks, and creating
log-likelihood estimates for each candidate value for each of the chunks. Each
such estimate can be regarded as a per chunk score. A log-likelihood estimate
(or score) for a candidate for the complete private key can then be computed by
summing the per chunk scores across the different chunks. Our problem then be-
comes one of efficiently enumerating complete candidates and their scores based
on lists of candidates for chunks and per-chunk scores, so that each complete
candidate can then be tested for correctness (for example, by trial encryption
and decryption). It makes sense to perform the enumeration in decreasing order
of score if possible, starting with the most likely candidate. This is a problem
that also arises in the side-channel attack literature, cf. [2004IT7IT6I6], where,
for example, one might obtain scoring information for each byte of an AES key
from a power analysis attack and then want to efficiently enumerate and test a
large number of completel6-byte candidates in decreasing order of score until
the correct key is found. We are able to apply standard algorithms (e.g. depth-
first search on a tree with pruning) as well as algorithms from this literature to
solve the key recovery problem in our context.

1.2 Paper organisation

This paper is organised as follows. Section [2] describes cold boot attacks and
the adversary model in more detail. It also gives a basic statistical approach to
recovering private keys in the face of noise, based on maximum likelihood estima-
tion. Section [ describes the NTRU public key encryption algorithm and details
of the two implementations that we target. Section [f] describes our algorithms
for attacking these implementations; these are largely based on established key
enumeration techniques from the literature on side-channel attacks. Section
describes our implementation of the algorithms and the results of our empirical
evaluation of the performance of the attacks. We conclude in Section [f]

2 Further Background

2.1 Cold boot Attack Model

Our cold boot attack model assumes that the adversary can obtain a noisy
version of the original NTRU private key (using whatever format is used to
store it in memory). We assume that the corresponding NTRU public key is
known exactly (without noise). We do not consider here the important problem
of how to locate the appropriate area of memory in which the private key bits
are stored, though this would be an important consideration in practical attacks.
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Our aim is then recover the private key. Note that it is sufficient to recover a list
of key candidates in which the true private key is located, since we can always
test a candidate by doing a trial encryption using the known public key and
then decryption using the candidate. It is highly likely that a simple test of
this type will filter out all wrong candidates (especially when the NTRU variant
considered is CCA secure).

We assume throughout that a 0 bit of the original private key will flip to a 1
with probability « = P(0 — 1) and that a 1 bit of the original private key will
flip with probability 8 = P(1 — 0). We do not assume that o = f; indeed,
in practice, one of these values may be very small (e.g. 0.001) and relatively
stable over time, while the other increases over time. Furthermore, we assume
that the attacker knows the values of o and  and that they are fixed across
the region of memory in which the private key is located. These assumptions
are reasonable in practice: one can estimate the error probabilities by looking
at a region where the memory stores known values (e.g. where the public key is
located), and the regions are typically large. Moreover, our algorithms will be
fairly robust to mis-estimations of these parameters.

2.2 Log Likelihood Statistic for Key Candidates

Suppose we have a true private key that is W bits in size, and let r = (7o, ..., rw_1
denote the bits of the noisy key (input to the adversary in the attack). Sup-
pose a key recovery algorithm constructs a candidate for the private key ¢ =
(co,--.,cw—1) by some means (to be determined). Then, given the bit-flip prob-
abilities «, B, we can assign a likelihood score to c¢ as follows:

Llesx] == Prfrle] = (1 — a)™0amo gm0 (1 — g)"

where ngg denotes the number of positions where both ¢ and r contain a 0 bit,
ng1 denotes the number of positions where ¢ contains a 0 bit and r contains a 1
bit, etc.

The method of maximum likelihood estimatiorﬂ then suggests picking as c the
value that maximises the above expression. It is more convenient to work with
log likelihoods, and equivalently to maximise these, viz:

L[c;r] :=log Prr|c] = ngo log(1l — @) + no1 log a + n1g log 5 + n11 log(1 — B).

We will frequently refer to this log likelihood expression as a score and seek to
maximise its value (or, equally well, minimise its negative).

®See for example https://en.wikipedia.org/wiki/Maximum_likelihood_
estimation.
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2.3 Combining Chunks to Build Key Candidates

Now suppose that the true private key r can be represented as a concatenation of
W/w chunks, each on w bits. As we shall see in the specific analyses of different
NTRU implementations, this will be the case in practice. For example, each
chunk might arise from the value of a coefficient of some polynomial making up
the NTRU private key.

Let us name the chunks r0, 7%, ..., #"W/®=1 go that 0 = rori...ry_1, rt =

TwTlwtl - - - T2w—1, €tc. Suppose also that candidates ¢ can be represented by

concatenations of chunks ¢, ¢!, ..., c¢"/*~1 in the same way.

Suppose further that each of the at most 2% candidates for chunk ¢! (0 < i <
W/w) can be enumerated and given its own score by some procedure (formally,
a sub-algorithm in an overall attack). For example, the above expression for log
likelihood across all W bits of private key is easily modified to produce a log
likelihood expression for any candidate for chunk ¢ as follows:

L[c'; 7] = log Prr|c’] = niylog(1 — a) + nf; log o + niylog B + niy log(1 — )
(1)

where the n!, values count occurrences of bits across the i-the chunks, r*, c’.

Thus we can assume that we have access to W/w lists of scores, each list contain-
ing up to 2% entries. Note that W/w scores, one from each of these per-chunk
lists, can be added together to create a total score for a complete candidate c. In-
deed, this total score is statistically meaningful in the case where the per-chunk
scores are log likelihoods because of the additive nature of the scoring function
in that case.

The question then becomes: can we devise efficient algorithms that traverse the
lists of scores to combine chunk candidates ¢’, obtaining complete key candi-
dates ¢ having high total scores (with total scores obtained by summation)? As
noted in the introduction, this is a problem that has been previously addressed
in the side-channel analysis literature [2004T7T6J6], with a variety of different
algorithmic approaches being possible to solving the problem. We shall return
to this question after having described the specific NTRU implementations that
we will attack.

3 NTRU Encryption Scheme and Private Key Formats

In this section we briefly describe the NTRU public key encryption scheme and
explore the various private key formats in the two implementations we will be
working with.

Let N,p,q € ZT. We define three polynomial rings:
R=1Z[z]/(X" = 1), R, =Zy[z)(X" ~1), Ry =Zyz](X" ~1).
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Thus, for example, elements of R, can be represented as polynomials of degree
at most N — 1 with coefficients from Z,. They can also be represented as vec-
tors of dimension N over Z, in the natural way, and we will switch between
representations at will.

Definition 1. Let a € R, The centred lift of a to R is the unique polynomial
a' € R satisfying a’ mod q = a whose coefficients all lie in the interval —% <
a, < g,

)
Definition 2. Let r be a fized integer and let C, be the function that, given
a € R, outputs the number of coefficients of a equal to r. Let dy,dy € ZT. We
deﬁne T(dl,dg) = {a €ER | Cl(a) = dl,C_l(a) = dg,Co(a) = N*dlfdg}. Note
that |T'(dy,d2)| = ((Jz\i) (Nd;dl), An element a € R is called a ternary polynomial
if and only if a € T(dy,ds) for some dy,dy € Z7.

3.1 NTRU Public Key Encryption Scheme

The NTRU public key encryption scheme is a lattice-based alternative to RSA
and ECC with security that is (informally) based on the problem of finding
the shortest vector in a particular class of lattices. The scheme exists in several
different versions, offering different forms of security (IND-CPA, IND-CCA). The
details of the scheme’s operation matter less to us than the format of private keys
in implementations. However, for completeness, we give an overview of NTRU.
We follow the description in [I1].

The scheme relies on public parameters (N, p, ¢, d) with N and p prime, ged(p, q) =
gcd(N,q) =1 and ¢ > (6d + 1)p.

Key generation:

1. Choose f € T(d + 1,d) that is invertible in R, and R,,.

2. Choose g € T(d1,dz) for some dy,dy € Z+.

3. Compute fy,, the inverse of f in R,,.

4. Compute fy, the inverse of f in R,,.

5. The public key is h = pfy - g € R; the private key is the pair (f, fy).

Encryption: On input message m, which we assume to be a centre-lifted version
of an element of R,, and public key h:

1. Choose a random r with small coefficients, in particular r can be chosen such
that r € T'(d, d).

2. Compute the ciphertext ease=r-h+m € R,.
Decryption: On input ciphertext e and private key (f, fy):
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1. Compute b =f-e in R,. (Note that this yields b = pg-r +f - m over R,.)

2. Centre-lift b modulo ¢ to obtain a, and then compute f, -a € R,. Centre-lift
the result modulo p to obtain m’.

We omit the correctness proof for this description of the NTRU scheme. Note
that f, can be computed from f) on the fly, and so some implementations may
only store f as the private key.

3.2 Private Key Formats for NTRU Implementations

NTRU at first was only available as a proprietary, paid-for library. It was not
until 2011 that the first open-source implementation, tbuktu, appeared under a
BSD licenceEI A fork of this first implementation forms the basis of the NTRU
code in the Bouncy Castle library. Two years later Security Innovation ex-
empted open source projects from having to obtain a patent license for their
ntru-crypto implementatiorﬂ and released an NTRU reference implementation
under the GPL v2 licence. Each of these two implementations is available in
both Java and C. We examine the private key formats for each of these imple-
mentations in turn.

3.2.1 The tbuktu/Bouncy Castle Java Implementation. In this imple-
mentation, there are four pieces of information that determine how the private
key is stored:

1. A variable t that points to a polynomial and from which variables corre-
sponding to the private key components f and f, are constructed.

2. A variable polyType that indicates the type of polynomial to use. This can
hold two values: SIMPLE or PRODUCT.

3. A boolean sparse that indicates if t is an sparse or dense polynomial. This
variable applies only if polyType has value SIMPLE.

4. A boolean fastFp that indicates the manner in which f is built from t. If
fastFp = true, then p = 3, f = 1 + 3t and f, = 1; otherwise f = t and
f, = t~! mod p. This relates to an implementation trick for the case p = 3.

When polyType has the value SIMPLE, t will be either a dense ternary poly-
nomial or a sparse ternary polynomial, as determined by the value of sparse.
In the dense case, t is represented as an int array of length N whose entries
have values from {—1,0,1}. In memory, each entry is stored as a 32-bit signed
integer, using two’s complement, i.e, +1 is stored as the 32-bit string 000...01,

5 See http://tbuktu.github.io/ntru/.
" See https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/
F0SS%20Exception.md.
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0 is stored as 000...00 and —1 is stored as 111...11. Meanwhile, in the sparse
case, t is represented as two int arrays, ones and negOnes, where:

1. The array ones contains the indices of the +1 coefficients of t in increasing
order (so that the entries in the area are 32-bit representations of integers
in the range [0, N — 1]).

2. The array negOnes contains the indices of the —1 coeflicients of t in increas-
ing order (with entries having the same bit representation as the entries of
ones).

When polyType has the value PRODUCT, t will be a product form polynomial.
In this case, t is represented by three different sparse ternary polynomials
f1,fo,f3 such that t = fify + f3. All three of fy,fy,f3 are stored in mem-
ory separately in sparse form. This means that, when polyType has the value
PRODUCT, then the private key is represented in memory by a total of 6 int
arrays fj.ones, fj.negOnes, 1 < i < 3.

Note that the private key formats for the tbuktu C implementation are largely
the same as for the Java one, and so we do not detail them further here.

3.2.2 Reference Parameters for tbuktu. The tbuktu implementation in-
cludes 10 named reference parameter sets with a range of choices for N and g,
targeting different security levels and optimisations. These 10 sets are detailed
in the EncryptionParameters class.

For example, both APR2011 439 and APR2011 439 _FAST parameter sets target
128 bits of security. If the former set is selected, f = t, with t being represented
as a sparse ternary polynomial with df = 146 coefficients set to +1 and with
df — 1 of them set to —1. If the latter set is selected, then f = 1 4 3t, with
t = f1f5 + f3; moreover f; has df1 = 9 coefficients set to each of +1 and —1, so
f1 € T(9,9) (while df2 = 8 and df3 = 5 for fz and f3, respectively).

3.2.3 The ntru-crypto Java Implementation. Here, the private key f is
always of the form 14 3t where t is a ternary polynomial and we have p = 3
(so that f, = 1). In this implementation, f is stored directly in memory as an
array of short integers. That is, the coefficients fy, f1,..., fxy—1 of f are stored
as a sequence of 16-bit signed two’s complement integers with fy € {—2,1,4}
and f; € {-3,0,3}, for 1 <i < N.

3.2.4 The ntru-crypto C Implementation. Here, key generation is carried
out by the function ntru_crypto_ntru_encrypt_keygen. During its execution,
f (the private key) is initially generated as either a product of polynomials
(f = f1 -f2 +f3) or as a single polynomial. Either way, f is represented internally
as a list of the indices of the +1 coefficients followed by a list of the indices
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of the -1 coefficients, where each index is stored in an unsigned 16-bit integer.
This data is then used to construct a packed private key blob following one of
two formats. The information-dense nature of these formats makes it harder to
mount cold boot key recovery attacks that perform significantly better than a
combinatorial search based on searching over low-weight error patterns. For this
reason we do not consider this format any further in this paper.

3.2.5 Reference Parameters for ntru-crypto. The ntru-crypto imple-
mentation includes 12 named reference parameter sets with a range of choices
for N and ¢, targeting different security levels and optimisations. For the Java
implementation, these parameter sets are defined in the KeyParams class. The
values of N range from 401 to 1499, with p = 3 and g = 2048 throughout; the
number of +1’s and —1’s in f (resp. g), denoted df (resp. dg) depends on N;
for example, for the parameter set ees449ep1, we have N = 449, df = 134, and
dg = 149.

4 Mounting Cold Boot Key Recovery Attacks

In this section, we present our cold boot key recovery attacks on the implementa-
tions and corresponding private key formats introduced in the previous section.
First, because of its simplicity, we consider the ntru-crypto Java Implementa-
tion (in which f is stored directly in memory as an array of short integers). We
will then consider the tbuktu Java Implementation in which the PRODUCT form
of private key is used and such that fastFp = true, so that f = 1 4 3t with
t = f1f5 + f3 where all three of f, f5, f3 are stored in memory in sparse form.

We continue to make the assumptions outlined in Section [2] We additionally as-
sume that all relevant public parameters and private key formatting information
are known to the adversary.

4.1 The ntru-crypto Java Implementation

Recall from Section [3:2.3] that the coefficients of f are stored directly in memory
as an array of 16-bit, signed two’s complement integers, with fo € {-2,1,4}
and f; € {—3,0,3}, for 1 < i < N. For simplicity, we assume that fy is known
(there are only 3 possible values for fy and the attack can be repeated for each
possible value). The attacker then receives a noisy version r = (rg,...,Tw-1)
of the array with entries f1,..., fy—1 which is W = 16(N — 1) bits in size. In
the terminology of Section [2 we set w = 16 and partition the noisy key into
W/w = N — 1 chunks r*, each chunk corresponding to a single, 16-bit encoded
coefficient f;11.

Using equation , we can compute log-likelihood scores L[c?; 7] for each chunk
i and each candidate ¢! for that chunk. Note that in each chunk, there are only
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3 possible candidates ¢!, since f; € {—3,0,3}. (In the general formulation with
w = 16 there could be up to 2!¢ candidates per chunk.)

Hence we obtain N — 1 lists of scores (log-likelihood values), each list containing
3 values. Alternatively, we can think of this as being an array of size 3 x (N —1).
Our task now is to combine candidates, one per chunk, to generate complete
private key candidates ¢ with high log-likelihoods, which can then be tested via
trial encryption and decryption.

In order to generate complete private key candidates ¢ with high scores, we em-
ploy an algorithm that is closely based on that of [I7] from the side-channel at-
tack literature. Specifically, as in [I7], we use a standard depth-first search across
the chunk counter ¢ to enumerate candidates. This employs a stack, with par-
tial cumulative scores for candidates at “depth” ¢ in the search being computed
by adding the chunk score at depth i to a cumulative score for the candidates
at “depth” ¢ — 1. Once “depth” N — 1 is reached, and a complete candidate is
generated, the candidate can be filtered and then tested. (In fact, the known
restrictions on the number of +3 and —3 coefficients in private keys for the stan-
dard parameters that we are attacking can be used to perform early aborts on
partial candidates.)

As in [I7], we can restrict the search space to certain intervals of scores by
appropriate pruning of partial solutions. By representing a complete search space
as a union of intervals, a degree of parallelisation can be achieved (but this may
involve repeated computation). We can also adapt the approaches of [I7J16]
to perform enumeration rather than generating candidates — computing how
many candidates have scores in a given interval. This is useful for estimating
the likely performance of the search algorithm. However, a significant difference
with [I7J16] arises from the parameters involved — there, typically there are
16 chunks with 256 candidates per chunk (corresponding to AES key bytes),
whereas here we will have on the order of a few hundred chunks and only 3
candidates per chunk.

4.2 The tbuktu Java Implementation

Now we turn our attention to the tbuktu Java implementation in some of its
more interesting cases. Recall from Section that when the PRODUCT form
of private key is used and when fastFp = true, then we have f = 1 + 3t with
t = f1f5 + f3 where all three of f, f5, f3 are stored in memory in sparse form.

This means that we have 6 arrays of indices in memory fj.ones, f;.negOnes, 1 <
1 < 3. Each array is of type int and each entry in each array stores the position of
either a +1 or a —1 coefficient in one of the polynomials f;; moreover the entries
should be in increasing order. We assume the starting positions in memory,
total sizes, and ranges of possible values in each of these tables is known. We
also know that for any pair fj.ones, fj.negOnes, the two tables of values should
be non-intersecting. We let L; denote the common length of the two arrays
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f;.ones, fi.negOnes (this is determined by the parameters used to generate the
private key).

We now present a two-phase attack to generate complete private key candidates.

4.2.1 Phase 1. In the first phase, we apply a modified version of the Optimal
Key Enumeration Algorithm (OKEA) of [20]. As in the description in Section
this algorithm takes as input a collection of W/w lists of candidates, one list per
chunk, and produces as output a list of 1size complete candidates, each across
all W bits. It uses a dynamic programming version of a list merging strategy to
generate complete candidates in decreasing order of score. The OKEA algorithm
has the property that it is guaranteed to output the 1size highest scoring (i.e.
most likely) candidates across all the chunks (hence its optimality). It seems to
be particularly effective when W/w, the number of chunks being considered, is
moderate — [20] applied it in the case of reconstructing 16-byte AES keys from
their bytes, with 16 chunks.

We perform this step for each of our 6 arrays as follows: we build W/w lists of
candidates, setting w = 32 and W = wL; so that we have L; chunks. Each chunk
corresponds to one int entry in the array, and each list is of size N (since, at the
outset, every chunk could take on any value between 0 and N — 1, these being
the possible indices of a +1 or —1 coefficient). The score for each entry in each
list is obtained using our per-chunk log-likelihood expression ( . We modify
the OKEA algorithm in such a way that it is guaranteed to output the top
lsize candidates by score which additionally respect our ordering requirement
— that is, the entries in a candidate should be in increasing order of size. This
modification is done by adding an extra filtering step in each merge phase of
OKEA which removes candidates that do not respect the ordering constraint.

At the end of this step, then, we obtain 6 lists C;, 1 < ¢ < 6, the entries
of each list comprising 1size high-scoring candidates for one of the 6 arrays
fi.ones, fi.neglnes, 1 < < 3.

4.2.2 Phase 2. In the second phase of the attack, we present these 6 lists as
inputs to the algorithm described in Section [£:I] above — that is, we perform a
stack-based, depth-first search on the lists, regarding each list as giving a set of
candidates on one of 6 chunks. Each complete candidate (on 6 chunks) now gives
a candidate for fj.ones, fj.neglnes,1 < i < 3, these being tables of the indices
where the component polynomials fy,fa, f3 have coefficients +1 and —1. We
then apply the constraint that the pairs of tables be non-intersecting (applying
it earlier in the process is not very efficient, since the probability of a collision of
indices is small for the parameters of interest). If a candidate survives this filter,
we can construct the full private key f = 1 + 3t with t = f1f5 + f3 and test it
for correctness.
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As before, this second phase is amenable to parallelisation and to searching over
restricted score intervals. Now the parameters are more akin to those studied
in the prior work [I7JT6] — we have 6 chunks, and lsize candidates per chunk,
with typical values for 1size in our experiments being 256, 512 and 1024.

5 Experimental Evaluation

5.1 Implementation

All of the algorithms discussed in this paper were implemented in Java. We
choose Java for several reasons. First, the two implementations that we have
studied in this paper were written in Java (as well as C). Second, the Java plat-
form provides the Java Collections Framework to handle data structures, which
reduces programming effort, and increases program speed and quality. Finally,
the Java platform also easily supports concurrent programming, providing high-
level concurrency APIs.

5.1.1 Parallelisation We made extensive use of parallelisation in our imple-
mentations, particularly for the stack-based, depth-first search that is at the core
of both attacks. The first parallelisation method we used comes directly from [17]
and involves splitting up the range of scores of interest into n disjoint, equal-
sized sub-intervals. The second method involves splitting the list of candidates
for the first chunk in our algorithm into m equal-sized sub-lists, and running
the algorithm as a separate task for each sub-list, thereby constraining solutions
from each task to begin with a chunk from the specified sublist for that task.
These two approaches can be combined, to execute mn threads in parallel. Of
course, as soon as one of the threads completes and successfully finds the private
key, the others can all be aborted.

5.1.2 Search Intervals Defining appropriate search intervals on which to run
our algorithms is important in guaranteeing the success of our attacks within
a reasonable amount of running time. Recall that, given a collection of lists as
input, each list containing candidate for chunks and their scores, our algorithms
will consider all possible candidates with total scores in any specified interval
[a, b]. We considered two distinct classes of search interval:

1. Class I intervals are the form [ — W, + W], where p is the average score of
the correct key and W is some real number that is tuned to the maximum
running time available. Here p can be computed empirically by generating
many private keys, flipping their bits according to the error probabilities «, £,
and then using the usual log-likelihood scoring function. Using such intervals
capture the intuition that it might be better to examine key candidates
that are situated around the average score, since these are more likely to
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be correct. This of course violates the principle of the maximum likelihood
approach.

2. Class II intervals are of the form [max —W, max], where max is the maximum
possible score and W is again a real number that can be tuned. Here, the
value of max is easily calculated by summing across the highest scoring
entries in each list. Searching in such intervals better matches the approach
of maximum likelihood estimation.

5.1.3 Simulations To simulate the performance of our algorithms, we gen-
erate a private key (according to some chosen format), flip its bits according to
the error probabilities «, 8, and then run our chosen algorithm with selected
parallelisation parameters m,n and interval definition [a, b]. We refer to such a
run attempting to recover a single private key as a simulation.

For our experiments, we ran our simulations on a machine with Intel Xeon CPU
E5-2667 v2 cores running at 3.30GHz; we used up to 16 cores. In order to run
our simulations concurrently, a pool of threads is initialised with a maximum
number of threads given as a parameter. When a simulation is to be run and
tested, it generates its various tasks according to the given parameters, each of
which then is submitted to the main pool in order. After it has finished, a thread
outputs either the recovered private key or null value (indicating failure to find
the key) along with some statistics. Note that having a pool created with a
defined number of threads helps to avoid exhausting and reusing computational
resources, in contrast to creating a new thread per task.

5.2 Results for the ntru-crypto Java Implementation

Here, we only considered Class IT intervals, i.e. intervals of the form [max —W, max].
To calculate suitable values for W, we used random sampling from the set of
possible candidates (by choosing chunks at random from each list) in order to
estimate o, the standard deviation of the candidate scores. We then set W as
ro and experimented with different values of r, the idea being that larger values
of r would correspond to bigger intervals, including more candidates and giv-
ing a higher chance of success at the cost of more computation. We used 22°
candidates in sampling to estimate o.

After manual tuning, the number of tasks was set to 3, r was set to 0.01 and the
number of subintervals m was set to 1. Hence in our experiments, searches were
conducted over the interval [max —0.01c, max] with 3 tasks.

Figure shows the success rate of our attack for the ees449epl parameters
(N = 449, df = 134, dg = 149, p = 3, and ¢ = 2048). Figure shows the
success rate for the ees677ep1 parameters(N = 677, df = 157, dg = 225, p = 3,
and g = 2048).
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(a) ees449epl parameters. (b) ees667epl parameters.

Fig. 1: Success rate of our algorithm (y-axis) against 8 (z-axis) for a fixed
a = 0.001, using Class II intervals.

It can be seen from the two figures that the success rate is acceptably high
for small values of 3, but rapidly reduces as [ is increased in size. Increasing
the size of r (and therefore the search interval [max —ro, max]) would improve
the success rate at the cost of increased running time. For r = 0.01, we saw
running times on the order of minutes to hours. There were a few simulations
with very high running times; these were aborted after 1 day of computation.
We observed this behaviour in particular for high values of 8. In this case, the
number of tasks, 3, the number of chunks, 400, and the nature itself of what
was considered a suitable candidate (number of 1’s and -1’s) made it hard to
predict the number of candidates in a given interval. So searching over a given
interval is done somewhat “blindly”, in the sense that searching over the interval
[max —0.010, max] will not behave in a consistent manner in terms of the number
of candidates found (and hence the running time needed).

5.3 Results for the tbuktu Java Implementation

Due to the additional structure of private keys compared to the ntru-crypto
implementation, we focussed a greater experimental effort on the tbuktu Java
implementation.

5.3.1 Counting candidates and estimating running times. Because of
the nature of the log-likelihood function employed to calculate scores, each of the
six lists C; output by Phase I of the attack will have many repeated score values.
This enables us to efficiently compute the number of candidates that Phase IT of
the attack will consider in any given interval [a, b]. To do this, we run a modified
version of Phase IT in which the lists C; are replaced by “reduced” lists which
eliminate chunk candidates having repeated score values, and include the counts
(numbers) of such candidates along with their common score. By simultaneously
computing the sums of scores and products of counts on these reduced lists, we
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can compute the total number of candidates that will have a given score, over
all possible scores in any chosen interval.

Because the size of each reduced list is less than 10 on average in our experiments
(when lisze is up to 1024), we obtain a very efficient algorithm for counting the
number of candidates in any given interval that our Phase II search algorithm
would need to consider. We can combine this counting algorithm with the aver-
age time needed to generate and consider each candidate to get estimates for the
total running time that our algorithm would encounter for a given choice of in-
terval. We can then also compute the expected success probability and estimated
running time (for the given number of candidates or given interval considered)
without actually running the full Phase II search algorithm.

5.3.2 Parameters. The encryption parameters used for running the simula-
tions are APR2011.439_FAST (N = 439, p = 3, ¢ = 2048, df1 = 9, df2 = 8,
df3 = 5, sparse = true, fastP = true so that t = f1f3 + f3, and f; € T(9,9),
fs € T(8,8), f35 € T(5,5)).

5.3.3 Results — complete enumeration. In our experiments, we set lsize
to 2" for Phase I, for r = 8,9, 10. Thus six candidate lists each of size 2" will be
obtained from Phase I. Let p; denote the probability that the correct candidate is
actually found in the i-list; p; will be a function of r. It follows that the probabil-
ity that our Phase II algorithm outputs the correct private key when performing
a complete enumeration over all 26" candidate keys is given by p = Hle i
This simple calculation gives us a way to perform simulations to estimate the
expected success rate of our overall algorithm (Phase T and Phase 1) without
actually executing the expensive Phase II. We simply run many simulations of
Phase I for the given value of 1size (each simulation generating a fresh private
key and perturbing it according to «, 8), and, after each simulation, test whether
the correct chunks of the private keys are to be found in the lists.

Figure [2| shows the success rates for complete enumeration for values of 1size =
2" for r € {8,9,10}. As expected, the greater the value of lsize, the higher
the success rate for a fixed o and 8. Also note that when the noise is high (for
example @ = 0.09 and 8 = 0.09), the success rate drops to zero. This is expected
since it is likely that at least one chunk of the private key will not be included
in the corresponding list coming out of Phase 1 when the noise levels are high,
at which point Phase II inevitably fails.

Note that each data point in this figure (and all figures in section) were obtained
using 100 simulations. Note that the running times for Phase 1 are very low in
average (< 50 ms), since that phase consists of calling the OKEA for each one
of the six lists with 1size in the set {256,512,1024}.
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(a) a = 0.001. (b) @ =0.09

Fig. 2: Expected success rate for a full enumeration for o = 0.001,0.09. The
y-axis represents the success rate, while the x-axis represents f3.
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(a) a = 0.001. (b) & =0.09

Fig. 3: Success rate for enumeration with 24° keys over a Class I interval for
a = 0.001,0.09, for different values of 1size. The y-axis represents the success
rate, while the z-axis represents 3.

5.3.4 Results — partial enumeration. Here, we exploit our counting al-
gorithm to estimate success rates as a function of the total number of keys
considered, K. Specifically, given a value K, and an interval type (I or II), we
can set W accordingly so that the right number of keys will be considered. Since
we can easily estimate the speed at which individual keys can be assessed, we
can also use this approach to control the total running time of our algorithms.

Figure [3] shows how the success rate of our algorithm varies for different values
of 1size, focussing on Class I intervals. We observe the same trends as for full
enumeration, i.e. the greater is 1size, the higher is the success rate for a fixed
a and . Also, for larger values of («, 3), the success rate drops rapidly to zero.

Figure [4] shows the success rates for a complete enumeration and partial enu-
merations with 230 keys and 240 keys, for both Class I and Class II intervals. As
expected, the success rate for a full enumeration is greater than for the partial
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(a) a = 0.001. (b) @ =0.09

Fig. 4: Success rates for full enumeration, and partial enumeration with 230

keys, 240 keys for a = 0.001,0.09 and with 1size = 1024. The y-axis represents
the success rate, while the z-axis represents .

enumerations (but note that a full enumeration here would require the testing of
up to 20 keys, which may be a prohibitive cost). Note that the closest success
rate to the success rate of a full enumeration is achieved with partial enumera-
tions with 240 keys over a Class II interval, and that partial enumerations over
Class I intervals perform poorly, in the sense that their success rates are even
dominated by the success rate of enumerations with 239 keys over Class II inter-
vals. The superiority of Class II invervals is in-line with the intuition that testing
high log-likelihood candidates for correctness is better than examining average
log-likelihood ones.

5.3.5 Running times. From our experiments, we find that our code is able
to test up to 1200 candidates per millisecond per core during Phase 2. This value
may vary in the range 700-1200 when there are multiples tasks running. The
reason for this variation may be the cost associated with the Java virtual machine
(particularly, its garbage collector). Using only a single core, an enumeration of
230 (240) candidate keys will take about 14 minutes (10 days, respectively).

6 Conclusions

We have initiated the study of cold boot attacks for the NTRU public key en-
cryption scheme, likely to be an important candidate in NIST’s forthcoming
post-quantum standardisation process. We have proposed algorithms for this
problem, with particular emphasis on two existing NTRU implementations and
two private key formats. We have experimented with the algorithms to explore
their performance for a range of parameters, showing how algorithms developed
for enumerating keys in side-channel attacks can be successfully applied to the
problem.
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Our attacks do not exploit the underlying mathematical structure of the NTRU
scheme. It would be interesting to explore whether our techniques can be com-
bined with other approaches, such as lattice-reduction, to further improve per-
formance. We also focussed mainly on the two available Java implementations.
It would be interesting to extend our work to consider the ntru-encrypt C im-
plementation which uses packing techniques to reduce the private key size. This
seems challenging because of the corresponding increase in information density
for these formats; however, there is still some redundancy in the second of the
two formats because of the ordering of indices. It is an interesting open prob-
lem to find ways to exploit this redundancy. Implementations of NTRU may
also compute additional private key values, for example the inverse of f mod p,
in order to speed up decryption operations. Thus these extra values might be
available in a cold boot attack. Finding methods for exploiting this additional
redundancy would be of interest.
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