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Abstract

Micro-bunching instabilities (MBI) occur when an electron bunch exceeds a threshold

current, resulting in bursts of coherent synchrotron radiation (CSR) which is more intense

than its incoherent counterpart. This CSR is emitted within the millimetre wavelength

range and thus acts as a source of terahertz radiation. Diamond Light Source is one of

many third generation light sources that has observed MBI. The dynamics of MBI are not

fully understood and therefore, in this thesis, a detection system has been designed and

developed to investigate these instabilities, their dynamics and the spectral characteristics

of the CSR bursts. Schottky barrier diodes (SBDs) function at these CSR wavelengths and

benefit from fast speeds, low noise, excellent sensitivity and room-temperature operation.

The spectrometer is composed of eight individually characterised SBDs, collectively cov-

ering a range of 33-1000 GHz and creating a spectrometer able to observe the individual

bursts of CSR. The spectrometer was installed and commissioned at the Diamond Light

Source storage ring, in order to be used to investigate the onset of CSR bursts. In par-

ticular, the effect of increasing bunch currents, increasing radio frequency voltage and

different machine lattices and fill patterns on bursts of CSR was studied. From these in-

vestigations, the machine parameters at Diamond Light Source which result in bursts of

CSR from MBI have been determined as well as their bursting nature.
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Chapter 1
Introduction

1.1 Accelerators & Light Sources

Ernest Rutherford is often the person who is credited with igniting the investigations into

the feasibility and creation of a particle accelerator. It was at the Royal Society in 1928

during his presidential speech when he said “I have long hoped for a source of positive

particles more energetic than those emitted from natural radioactive substances”. In due

time particle accelerators were created.

These particle accelerators were built for high energy and nuclear physics research.

However when the accelerators caused the particles to circulate, the particles were los-

ing energy. This phenomenon was measured at General Electric (GE) by Blewett in

1946 [1]. The following year in 1947 at GE (70 MeV), synchrotron radiation (SR) was

first observed [2]. To the researchers synchrotron radiation was a nuisance, an undesired

by-product. Though only measured and seen in the mid-1940s, the theory had been devel-

oped at the end of the nineteenth century by Larmor and Liènard. In 1897 Larmor derived

the expression to determine the total instantaneous power emitted when a non-relativistic

charged particle is accelerated [3]. A year later, Liènard determined the relation for a

relativistic charged particle travelling along a circular path. Thanks to these physicists,

it is now known that when a relativistic charged particle is accelerated transversely, the

power emitted instantaneously is

Pe =
2
3

e2
0c

4πε0ρ2 γ
4, (1.1)
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where c is the speed of light in a vacuum, e0 the charge of an electron, ε0 is the vacuum

permittivity, ρ the bending radius and γ the Lorentz factor. And so, this relation creates

the backbone of synchrotron light sources.

It was realised that this SR could be beneficial to other types of experiments and

in the late 1950’s the first user experiments were underway at the Cornell 320 MeV syn-

chrotron. These first user experiments were carried out parasitically using machines built

for high energy physics, which became known as first generation light sources.

The second generation light sources are the original dedicated light sources. They

are composed of dipole bending magnets as their source of SR and are able to host

many beamlines from these dipole magnets. The creation of these second generation

light sources caused a large increase in the use of SR for research and thus a surge in

SR demand. One of the earliest second generation light sources began operation in the

mid-1970s in Tokyo, called the SOR ring with an energy of 380 MeV [4].

As a result of the increasing demand for SR and the successful work with insertion

devices, third generation light sources were constructed. These light sources are optimised

for high brilliance but with a low emittance. They also used bending magnets to generate

the SR but had started employing insertion devices too. Insertion devices are periodic

arrays of magnets, permanent or electromagnets and come in several varieties including

undulators and wigglers. As the electron beam travels through the array of magnets it

oscillates transversely resulting in the emission of enhanced SR. It was as a result of the

insertion devices that the higher brilliance could be achieved. These light sources, though

still circular, had larger straight sections to allow for the insertion devices to be installed

[4].

Traditionally one of the most important factors in building a synchrotron light

source was the energy. Higher energy machines result in a higher flux and thus user

experimental duration times decrease and more experiments can be conducted. In trying

to build higher and higher energy electron storage rings, the limiting factor becomes the

relationship between the energy loss and the energy desired. Nowadays with the world

populated with light sources of different energies, the goal of high energy machines is no

longer relevant, nevertheless the term ‘higher’ is a relative one. The type of research to be

carried out depends on the level of energy required. Currently, medium energy machines,
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like Diamond Light Source at 3 GeV, are the most common. No matter the energy, the

radio frequency (RF) system is there to provide enough voltage for the charged particle

beams to be accelerated (in the linear accelerator and booster ring) but also to replace the

losses in the beam’s energy (in the storage ring). In order to reduce the strain put on the

RF system especially at increased energies the bending magnet field strength can be re-

duced, however this results in a machine with a larger footprint which ultimately increases

the cost. Of course, depending on the advancements at the time, the bending radius may

be limited by the strength of the currently available magnets. The relationship between

the energy, E, of the synchrotron and the bending radius, ρ is

E = e0cBρ, (1.2)

where

Bρ =
p
e0
, (1.3)

Bρ is the magnetic rigidity and p the relativistic momentum.

1.2 Diamond Synchrotron Light Source

Diamond Light Source (Diamond) is a third generation light source located in Oxford-

shire, UK operating at 3 GeV. Diamond began user operation in early 2007 [5] as the

United Kingdom’s national synchrotron. Like many third generation synchrotron facili-

ties, Diamond follows the common layout as shown in Figure 1.1. The four main sections

involved in the acceleration are the electron gun, linear accelerator (linac), booster ring

and storage ring. It is from the storage ring that the beamlines emerge.

At the electron gun the process begins, with electrons being emitted via thermionic

emission into the linac where they are accelerated up to 100 MeV. The linac injects the

100 MeV electrons into the full-energy booster of circumference 158.4 m. It is within

the booster that the electrons are ramped up to 3 GeV. The booster follows a racetrack

design. In the straight sections are the RF cavities which ‘boost’ the energy of the elec-

tron beam during each revolution until the desired 3 GeV is reached. Thirty-six dipole

magnets are used in the curved sections to bend the electron beam around the corners [6].
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These magnets are electromagnetic and thus there is the capacity to adjust the magnetic

field strength. This is extremely necessary when increasing the energy of the electrons

because the electron beam is required to remain within the beampipe along the same path

as before. By changing (increasing) the magnetic field with time as the energy of the elec-

tron beam increases, the booster can have a fixed path i.e. a constant orbit radius. Once

at the applicable energy of 3 GeV, the electron bunches are injected into the storage ring

where they circulate the 561.6 m long ring.

Figure 1.1: The layout of a typical third generation light source [6].

The storage ring is the largest component of a synchrotron light source. As the

name suggests, the storage ring stores the electrons as well as accumulates the injected

electrons from the booster ring. These electrons are travelling at relativistic speeds and

follow the circular path of the ring. Throughout their journey the electrons lose energy

in the form of photons, namely SR. The radiation emitted from the circulating electrons

extends from millimetre wavelengths through visible to x-rays and is channeled into the

beamlines at Diamond.

The RF system is paramount in the operation of a synchrotron light source. RF

cavities give energy to the beam. Before the storage ring the RF system provides the

beam with the means to meet the desired energy, 3 GeV in the case of Diamond. Once

at the requested energy, the RF cavities within the storage ring put back energy that has

been lost by the electrons due to SR. The RF cavities input this energy into the beam
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by establishing an electric field across the accelerating gap. An alternating field is used,

because the electrons must always see the field going in the same (forward) direction.

As a result of this alternating field, the electrons become bunched. The bunching occurs

because of what the electrons experience, i.e. which part of the alternating field. In the gun

where the electrons are non-relativistic, the electrons with lower energies are slower and

will therefore arrive later in the RF cavities. Correspondingly, they will experience more

of the forward gradient and thus will receive a larger portion of energy. The higher energy

electrons are faster and arrive earlier than the lower energy electrons. As a result, the

difference in energy has been accounted for. Simply put, if electrons observe the forward

Figure 1.2: The arrival of particles with respect to the RF waveform, where A is the
synchronous particle and B represents all other particles (Courtesy of [7]).

gradient they will be accelerated, while if they experience the decreasing gradient they

will fall behind, thus forming bunches. The electrons after the gun are truly relativistic and

thus will behave differently, specifically the higher energy electrons will have longer path

lengths and will thus arrive after the lower energy electrons which are ‘faster’. Moreover

instead of bunching occurring in the remainder of the machine (linac, booster and storage

ring) the bunch tails are cleared. Demonstrated in Figure 1.2, the synchronous particle

(A) is one that is synchronous with the RF voltage and will thus not require any additional

energy. It is the other particles (B) that will be affected by the RF voltage, because they

are not completely in-sync with the RF waveform. As can be seen in the figure, the lower

energy particles arrive earlier than the higher energy particles due to their differing path

lengths travelled. At Diamond, a bunch is home to approximately 4× 109 electrons. By

the energy being kept constant (in the storage ring) a fixed orbit is maintained around
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the storage ring. The RF cavities at Diamond are super conducting cavities with an RF

frequency, fr f , of 499.655520 MHz giving a bunch spacing of approximately 2 ns. Using

Equation 1.4, the revolution frequency, frev of Diamond is determined to be 533.820 kHz

where βc is the velocity and ρ the bending radius of the storage ring. The harmonic

number, h, of Diamond is 936 (Eq. 1.5) [8].

frev =
βc

2πρ
(1.4)

fr f = h · frev (1.5)

This means that there are 936 places on the circumference where an electron could be

put and would arrive synchronously [8]. These 936 locations are known as buckets which

each can house a bunch of electrons. To prevent electrons undergoing unknown and un-

wanted collisions within the beampipe, the entire of Diamond from gun to beamline is

kept under vacuum conditions of the order 2×10−8 Pa.

Dipole magnets, quadrupole magnets and sextupole magnets, colour-coded green,

red and yellow respectively are electromagnets which make-up a significant portion of the

lattice implemented at Diamond as shown in Figure 1.3. The electromagnets operate at

room temperature and are water-cooled. Dipole or bending magnets are used to control

the beam orbit. They guide the beam of electrons along the desired orbit, traveling the arc

of a circle. Since its commissioning forty-eight dipole magnets are used at Diamond [9]

in order to combine all forty-eight straight sections that make up the Diamond storage

ring. In late 2016, the Diamond storage ring lattice will be altered thus giving fifty dipole

magnets connecting forty-nine straight sections [10, 11]. As well as guiding the electrons,

dipole magnets also have another significant role, they are sources of SR. Quadrupole

magnets are the primary focussing elements. These magnets contain four poles creating

a field with a constant gradient in both the horizontal and vertical planes [4]. However,

quadrupole magnets only focus in one plane at a time (while defocusing the opposite

plane) [12], thus quadrupole magnets come in pairs where the first will focus in one plane

and the second in the other plane. Sextupole magnets are composed of six poles and are

used to control the chromaticities and x-y coupling within the ring. The chromaticity

is defined as the tune spread due to the momentum [8] where the tune is the number of
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Figure 1.3: Inside Diamond Storage Ring tunnel showing quadrupole (red) magnets, sex-
tupole (yellow) magnets, dipole bending (green) magnet, the vacuum ion pumps and the
ratchet wall.

oscillations around the closed orbit (synchrotron oscillations) for one complete revolution

around the ring. Similar to quadrupoles, sextupoles are also used for focussing. The

six poles generate a field which varies in amplitude as the square of the distance from

the magnet’s centre [4]. This variation in gradient allows for a variation in focussing with

electron momentum (chromaticity). The arrangement of the magnets within a synchrotron

is called the lattice and it is the lattice that determines the main features of the light source,

including the emittance and transverse dimensions of the beam, as well as the amount and

positions of the straight section for insertion devices.

In previous generations of synchrotron light sources, dipoles were the sole source

of synchrotron radiation. However this is no longer the case, with the introduction of in-

sertion devices. Insertion devices are composed of arrays of alternating polarity magnets.

Most commonly a top jaw and bottom jaw house magnetic arrays which cause deflections

of the electron beam as it travels between the jaws. It is the inclusion of said devices

that resulted in third and future generations of lights sources being born. The two types

of insertion devices used at Diamond are wigglers and undulators. The former generate
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broadband emission in a fan-shaped photon beam, by ‘wiggling’ the electrons with deflec-

tions that are large compared to the natural emission angle of synchrotron radiation [4].

The radiation produced by a wiggler is similar to that of a bending magnet however the

light is 2Np times more intense [4], where Np is the number of periods. Undulators cause

small electron deflections. These smaller deflections are comparable in magnitude to the

natural emission angle of synchrotron radiation [4]. A narrow cone of light is produced

from an undulator because the small deflections allow the radiation generated in individ-

ual undulator elements to interfere coherently and produce spectrum of discrete lines or

harmonics.

Currently twenty-nine beamlines at Diamond are operational. Several beamlines

obtain their SR from dipole magnets, however the main source of synchrotron light for

the Diamond beamlines is an insertion device. Nevertheless, with regards beamlines the

dipole magnets are always needed to separate the radiation from the electron beam by

guiding the electron beam in an arc while the photon beam (SR) continues straight along

a beamport and into a beamline hutch.

The front-end is the connection either side of the ratchet wall and is defined as

where the beamline emerges from the storage ring to the point it enters the optics hutch

after the ratchet wall of the storage ring. Most commonly beamlines are divided into three

sections: optics hutch, experimental hutch, and control cabin. The optics hutch is the first

room the photon beam enters after emerging from the storage ring tunnel. It is within

this hutch where the radiation is prepared by focussing and filtering as required for the

particular speciality of the beamline. This hutch contains a variety of mirrors and most

importantly diffraction gratings or a crystal monochromator which selects the wavelength

of light to be used in the upcoming experiments.

The experimental hutch houses the experimental apparatus, including detectors. It

is here that the sample to be tested is placed. The prepared beam is directed onto the

sample whereby the outcome of this reaction is captured via detectors centered around

the sample. The detectors send the collected data to the control cabin. Within this final

room, the control cabin, the data are analysed. The control cabin is usually the only room

of the three where it is safe for a human to be while collecting data as the optics and

experimental hutch contain the x-ray radiation. The optics and experimental hutches are
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insulated to contain the radiation usually by lead walls, doors and ceilings.

The control system implemented at Diamond is EPICS, an Open Source package

developed at many institutions worldwide [13]. It provides the user with real-time control

for large scientific applications including particle accelerators. EPICS is used in both the

control of the machine with its electron beam and all the components of the beamlines

with their SR.

1.3 An Introduction to Micro-Bunching Instabilities

Electrons circulate the storage ring in bunches. However, when the charge of a single

bunch exceeds a threshold current, it causes the bunch to filament [14]. These filaments

or micro-bunches go on to emit coherent synchrotron radiation (CSR). What is special

about this type of radiation is usually CSR occurs for wavelengths longer than the bunch

length but in the case of micro-bunching instabilities (MBI), the wavelength of CSR can

occur at wavelengths shorter than the bunch length. More specifically the wavelength of

CSR is limited by the longitudinal bunch size but its wavelength must be longer than the

bunch filament emitting the CSR. It must be reiterated that MBI only occurs when the

criterion is met and thus a single bunch can filament, recombine to form one whole bunch

again, filament, recombine again and again. MBI, the theory behind it and its applications

are further discussed in Section 2.5.

1.4 Contribution to Current Research

The approach undertaken throughout this thesis is the design and creation of a detec-

tion system in order to investigate MBI in a turn-by-turn regime and thus to measure

the spectral characteristics of the CSR produced at Diamond, which is one of the many

light sources around the world that have observed MBI [15]. Other light sources include

BESSY-II [16–18], SURF-II [19], NSLS-VUV [20–22], Advanced Light Source [23],

UVSOR-II [24], MAX-I [25] and Canadian Light Source [26]. As a result of these in-

ternational observations, MBI are being investigated on a worldwide scale with each re-

search group employing varying techniques. In order to achieve our goal, a turn-by-turn
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spectrometer has been developed. This spectrometer is a collection of detectors: seven of

which are narrow-band and the eighth is a broadband detector. These detectors make up

a detector array, or ‘spectrometer’, and have been individually characterised in order to

thoroughly analyse the data they receive.

Schottky barrier diodes (SBDs) are the chosen detector type. The benefits that

SBDs provide are immense and, from our point of view, dwarf the competitors, with

average values of 250 ps speeds [15] and noise equivalent powers (NEPs) in the range of

1-45 pWHz−1/2 [27, 28], all operating at room temperature (or even cryogenic temper-

atures). These SBDs can detect from millimetre to sub-millimetre wavelengths and are

hence often used as detectors in this wavelength range. The first known use of SBDs to

observe bursting CSR was by Kramer at the VUV Ring [29]. SBDs benefit from excellent

sensitivity (103 V/W) matched, for example, by the hot electron bolometer [15] and oper-

ate at high speeds [30] due to their semiconductor-metal interface. They can be terminated

in a high (1 kΩ +) or low impedance (50 Ω) set-up to bring out either improved sensitivity

with reduced speed or limited sensitivity with quicker speeds, respectively. SBDs perform

at room temperature and thus they take up less space and are more economic, as a dewar

is not required for cooling compared to the hot electron bolometer, for example. SBDs

can also be frequency restricted by way of waveguides or filters, therefore it can be deter-

mined at which frequencies the CSR signals are being observed. Other room temperature

millimetre detectors include pyroelectric detectors and golay cells. They benefit from

large sensitivity regions ranging from millimetres to ultra-violet but can also be wave-

length restricted by use of a filter or the windowing material. However, these detectors

are inherently slow and easily affected by sound and mechanical vibrations. Moreover,

they require a modulated signal as their detection systems lock-in to the changes ob-

served. Naturally, the signal can be mechanically chopped prior to the detector, however

the CSR emission especially the CSR bursts are not smooth nor continuous and thus to be

mechanically chopped would alter the true signal emitted.

By employing a number of SBDs, a larger frequency range is probed and a clearer

picture of what is happening during these CSR bursts can be realised. The Canadian

Light Source has reported the use of three SBDs spanning 33-110 GHz [31], however

the most amount of SBDs employed and first known recording of a detector array was
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in 2015 by the author and colleagues [32]. (Currently a four YBCO detector system

is under development at KIT [33]). In this work, the detectors used were individually

characterised on the test bench with their respective horn antennas (if applicable) in the

forward direction, as described in Section 3.4. Furthermore, this characterisation was

carried out in free space that is to say an Erickson Waveguide power meter [34] was not

employed but a Thomas Keating (TK) power meter [35]. By using a TK power meter a

more realistic calibration was ascertained as the SBDs were not connected to a waveguide

when in use but in free space in front of the beam viewport.

SBDs observe power and transmit their signal as a voltage. In the set-up utililsed

here each of the eight SBDs are terminated into individual high impedance (10 kΩ) volt-

age amplifiers to boost the signals by a factor of 100 before traversing the 30 m of cables

to the data acquisition unit. A high input impedance is required to force the SBDs to op-

erate with their famous sensitivity, but at the cost of a slower speed. The data acquisition

system is composed of a simultaneous multi-channel digitiser which constantly outputs

the data into a server. The server then carries out Fourier transforms on the incoming

data. The framework acts somewhat like a soft lock-in amplifier, where the region of in-

terest and bandwidth are specified. By using this acquisition method the expense of eight

lock-in amplifiers, one for each detector, is not incurred. The technique of ‘locking-in’

allows for accurate measurements to be made of very small signals even if there is noise

present many times larger than the desired signal. Lock-in amplifiers disregard any signal

not at the reference and thus noise signals are eliminated. KIT, Germany have designed

KAPTURE (KArlsruhe Pulse Taking Ultra-fast Readout Electronics), their own data ac-

quisition system for ultra-short CSR emission via thin film and diode detectors [36]. It

is a four channel, high accuracy acquisition system with the capability to observe each

bunch in turn-by-turn mode [36]. KAPTURE is limited to one second’s worth of data but

to alleviate some of the issue caused by this, the storage ring is filled with many bunches

of differing currents and in a modified filling patterns. Moreover, the data acquisition

system portrayed within this thesis, is able to stream data continuously. However for the

streamed data to be stored the only limit is the available storage. The speed of the de-

tectors at 10 kΩ input impedance combined with the data acquisition system allows for

turn-by-turn data capture. Bunch-by-bunch acquisition has been investigated but deemed
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superfluous.

One of the popular methods for observing the CSR bursts as a result of MBI is to

employ an interferometer. Interferometers use the principle of superposition in order to

determine more about the source. The beam is split in two with one branch travelling a

fixed path while the other’s displacement is varied by way of a moving mirror. When the

light branches interfere, their relationship can be constructive, destructive or a combina-

tion and it is from these interference relations that information about the source can be

gleaned. The longitudinal bunch distribution can be determined using an interferometric

set-up [37]. Interferometers have the advantage of higher resolution data compared to just

using a fast detector like an SBD in a spectrometer set-up. However, interferometers have

the disadvantage that they require more time (moving mirror) and thus result in smearing

out of the CSR bursts during one interferometric reading. This means only a spectrum of

the average of MBI emissions is ascertained. In summary SBDs provide fast results with

lower spectral resolution while interferometers present higher resolution data but need

longer time to obtain.

Most commonly a Michelson interferometer is employed with a bolometer [17, 20,

22, 23, 25, 31, 38–41]. However, interferometers with a variety of other detectors have

also been used including a pyroelectric detector [42] and a quasi-optical SBD [42, 43].

Moreover, Martin-Puplett interferometers are also popular, almost identical to a Michel-

son but with a wire-grid polariser as its beam splitter. Though interferometers are favoured

throughout the years, there has been interest in other techniques to learn more about the

CSR from short wavelengths, including streak cameras [17, 39, 44, 45], electro-optical

spectral decoding (EOSD) [46–51] and direct measurements using a variety of different

detectors [23, 31].

In brief, the method of a multi-channel SBD array depicted within the pages of

this thesis was chosen because of SBDs observation range, distinguished sensitivities,

fast responses - ability to observe bursts as they happen, room temperature operation -

reduction in cost and space, apparatus does not affect stability of beam and finally the

more channels the wider frequency bandwidth for investigation.
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1.5 Research Objectives

The aim of this research is to develop a fast spectrometer in order to investigate the spec-

tral characteristics of MBI. Globally, MBI have been detected and many institutes are

investigating their causes, dynamics, benefits and repercussions. The reason for this is

MBI produce bursts of CSR, i.e. a source of THz radiation. Despite a huge amount of

research having gone into the electromagnetic spectrum, there still exists the ‘Terahertz

Gap’. Though this gap is being filled in and will soon be a remnant from the past, it has

resulted in a reduced knowledge about these frequencies, ill-defined boundaries and min-

imal sources. With the introduction of compressed electron bunches at synchrotron light

sources, THz radiation can be created on demand providing another source of these wave-

lengths and a very intense one at that. By compressing the bunches the ratio of electrons

to bunch size increases, leading to the bunches suffering from MBI and thus resulting in

the bursts of CSR in the THz regime. Hence, a source of THz radiation has been born.

It must be noted that without altering the length or charge of bunches, CSR is naturally

produced at a synchrotron facility but shielded by the vacuum pipes. Additionally, by just

reducing the bunch length to below the shielding of the beampipe (i.e. above the cut-off

frequency), the shortened bunch lengths are also able to coherently emit and will not be

damped by the vacuum pipe. It is by reducing the bunch lengths that allow for coherent

THz radiation to be emitted.

Unfortunately, the coherent THz bursts above the threshold are intense and occur on

fluctuating timescales with unstable intensities, hence the term instability. MBI have the

ability to affect the performance of the synchrotron light source and can harm user exper-

iments. Subsequently light sources usually endeavour to avoid the conditions that cause

MBI. Nevertheless it must be mentioned that several light sources do provide specific

user runs for the production of THz radiation including BESSY [52, 53], ANKA [39, 54],

Metrology Light Source [55, 56], SPEAR3 [57] and Diamond [58]. These conditions,

often referred to as ‘low-alpha mode’ are highly researched and strictly monitored for

dedicated experiments and beamlines, with parasitic use by others.

Diamond undergoes two types of low-alpha runs in order to provide one specific

beamline with shorter radiation pulses for time of flight and pump-probe experiments

13



1.5. Research Objectives

giving a by-product of CSR THz radiation and another type of low-alpha mode to benefit

a different beamline with intense THz radiation. Both these low-alpha user runs operate

at a much reduced current, between either a factor of 15 or 30 lower than the current

during a normal optics user run. The low intensity of the beam does not allow for many

x-ray experiments to be carried out. If Diamond was able to increase the current of these

low-alpha runs or operate this mode constantly without affecting the overall stability and

the performance of the ring, all beamlines could make use of the beam in their individual

ways simultaneously.

Occasionally other diagnostic equipment at Diamond has been altered in order to

observe these bursts of CSR, namely the streak camera and BPMs (beam position mon-

itors) [45]. However these pieces of apparatus are stretched to their limit to observe

the longitudinal dynamic feature that is CSR bursting. A streak camera is designed to

carry out time domain measurements and can be used to determine the length of an elec-

tron bunch. Most commonly it uses the visible part of the emitted synchrotron radiation.

BPMs are primarily employed to determine the position of the electron beam within the

vacuum beampipe for feedback and orbit correction systems. BPMs can also measure

the beam current. In the paper presented by Martin [45], it is only the SBD array that is

expressly designed to observe bursting CSR. Thus not only is the SBD array beneficial on

its own but also complements the streak camera and other synchrotron diagnostics.

If more was known about MBI, it would be easier to harness their benefits thus re-

sulting in a reliable source of THz radiation and brighter light for all. MBI have been and

continue to be modelled by various institutes worldwide, however the accuracy of these

simulations is always in question. With real experimental data gathered via the aforemen-

tioned SBD array as well other methods, these simulations can be compared against and

their accuracy determined. Examples of theoretical work and modelling can be found in

many of Stupakov’s publications [59–61], Roussel [62], Klein [63], and simulations car-

ried out in conjunction with measurements obtained at Diamond [64, 65] and ANKA [66].

In the synchrotron user community, lower emittance is always preferred. Thus with

the continual movement for low emittance rings, MBI are becoming a limiting threshold.

This is because in order to reach lower emittances, the beam size must be reduced and

instabilities are amplified with a decrease in bunch length. After all, the emittance is
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related to bunch size.

The novelty of this work is in the individual characterisations of each detector as

well as the use of them in a combined eight channel array. The signal observed via

this array is able to be continually monitored and the Fourier transformed data extracted

continually. As a spectrometer, the data are obtained faster with lower resolution thus in

contrast to the more popular interferometric method of slow capture but much improved

resolution. As a result of the SBD the data captured can be used to understand more

about the dynamics of this instability and hopefully will provide explanations and accurate

models in due course.

Succinctly, this thesis portrays the theoretical background of this work gleaned from

a variety of sources; both the method and results of the characterisations for each detector;

the creation of the SBD array and its data acquisition system; the use of the spectrometer at

Diamond and finally the information determined as a result of the analysis of the spectral

data.
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Chapter 2
Theoretical Background

2.1 Synchrotron Radiation Properties

The electromagnetic radiation emitted when a charged particle is accelerated due to a

magnetic field is called SR. As the particle moves in a curved path (thereby accelerated),

the SR is emitted in a narrow cone centered around the direction of the particle’s travel [4].

Most commonly it is the electron that is accelerated at synchrotron light sources. This SR

is extremely intense and covers a large range of the electromagnetic spectrum from mil-

limetre wavelengths, through visible and ultraviolet to both soft and hard x-rays. At syn-

chrotron light sources, like Diamond, this SR is guided through tangential photon beam-

lines where it is used for a diverse mixture of scientific research including microscopy,

x-ray diffraction, spectroscopy and timed pulse-probe experiments. SR can be used in a

non-destructive way which is very important when using Diamond and other light sources

to investigate ancient artefacts and masterpieces.

The total instantaneous power of radiation emitted from an electron moving at non-

relativistic speeds can be derived from the Larmor formula [3, 67, 68]:

Pe =
2
3

e2
0

4πε0m2
0c3

(
dp
dt

)2

, (2.1)

where p = m0v is the electrons’s momentum, m0 is the rest mass of the electron, v the

velocity of the electron, c the speed of light in a vacuum, e0 the charge of an electron, t

the (coordinate) time and ε0 is the vacuum permittivity. From Equation 2.1 it is clear that
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2.1. Synchrotron Radiation Properties

electromagnetic energy is only emitted when the electron’s momentum changes as a result

of an applied force [68]. This means that dp
dt 6= 0. Furthermore, for the case of relativistic

particles a Lorentz transformation is required where dt = γdτ with τ representing proper

time, thus giving [68]:

Pe =
2
3

e2
0

4πε0m2
0c3

[(
dp
dτ

)2

− 1
c2

(
dE
dτ

)2]
(2.2)

In a storage ring the electrons are being circularly accelerated and thus we only

observe the perpendicular case. This means that the energy remains constant because

though energy is being lost by the emission of SR, the RF cavities put back what has been

lost and thus the second term of Equation 2.2 can be ignored to give:

Pe =
2
3

e2
0

4πε0m2
0c3

(
d p
dτ

)2

(2.3)

Pe =
2
3

e2
0γ2

4πε0m2
0c3

(
d p
dt

)2

(2.4)

where γ is the Lorentz factor,

γ =
E
E0

=
E

m0c2 (2.5)

The change in momentum causes the SR, thus the last term of Equation 2.4 is the

change in momentum that an electron experiences due to the dipole magnets as it travels

through the entire storage ring. Accordingly, where ρ is the bending radius,

d p
dt

=
γm0c2

ρ
(2.6)

Moreover, by combining Equations 2.6 with 2.4, the result brings us back to the

familiar equation stating that power is instantaneously emitted when a relativistic charge

particle is transversely accelerated, Equation 1.1, displayed again here:

Pe =
2
3

e2
0c

4πε0ρ2 γ
4 (2.7)

SR has two categories; incoherent and coherent radiation. Synchrotron light sources
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2.2. Coherent Synchrotron Radiation Properties

generate both incoherent and coherent radiation. The difference between the two types of

radiation is whether the waves of radiation are in phase with each other or not. Coherent

radiation occurs when in phase at the same frequency and can thus cause interference. It

will be further discussed in Section 2.2. However coherent synchrotron radiation (CSR)

is usually shielded by the vacuum beampipe, that is to say it is suppressed by the chamber

and thus cannot propagate nor escape [14, 23, 69]. In order for CSR to be emitted from

one of the tangential beamlines, it must be at frequencies above the cut-off of the vac-

uum pipe, derived from an infinite parallel plates model with a separation of h [14, 69].

The cut-off varies for each machine dependent on the Equation 2.8, where the cut-off

frequency is fcuto f f , h = 38 mm the height of the vacuum chamber, c the speed of light

and ρ = 7.13 m the bending radius. The cut-off frequency of Diamond is estimated to be

54 GHz [15, 70].

fcuto f f =
c

2h

√
ρ

h
(2.8)

Parameters of synchrotrons can be altered in order to allow CSR to have a shorter wave-

length than the cut-off and thus not be hindered by the vacuum shielding. At Diamond

and other light sources, this means the wavelength of CSR is in the millimetre range, thus

producing coherent radiation in the GHz-THz range [15].

2.2 Coherent Synchrotron Radiation Properties

Coherence can be spatial (transverse) or temporal (longitudinal), dependent on the trans-

verse bunch size or the longitudinal bunch size, respectively. The condition for complete

spatial coherence can be written as in [71],

λ � 2πr0sin(θ)≈ 2πr0γ
−1 (2.9)

where r0 is the radius of a cylinder considering an electron bunch to have a even distribu-

tion over a cylinder, θ the angle of emission and γ the relative energy [71]. Moreover, r0

can be assumed to be the equivalent to the transverse bunch dimension, σx,y resulting in
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2.2. Coherent Synchrotron Radiation Properties

the condition for spatial coherence to be expressed as,

σx,y ≤
γλ

4π
(2.10)

On the other hand, temporal coherence occurs when the longitudinal bunch length

is comparable to the wavelength of radiation being emitted, which results in the electrons

emitting their radiation with the same phase. Throughout this thesis the relevant form

of coherent synchrotron radiation is temporal coherence and accordingly from here on

referred to simply as coherent synchrotron radiation.

CSR is known to come from the longer wavelength regions of the electromagnetic

spectrum in particular the microwave regions. If these long wavelengths are longer than

the transverse dimensions of the beampipe, they will not propagate through the vacuum

pipe, and hence not be seen at beamports or beamlines [72]. Parameters and conditions of

a storage ring can be altered to allow for CSR to be above the shielding cut-off (Eq. 2.8),

allowing it to propagate, be emitted and observed.

In normal circumstances CSR arises when its wavelength is longer than the bunch

length. This is because CSR can be generated if the wavelengths of radiation emitted

by the bunch interact with the same phase and thus superimpose [73, 74]. When CSR is

produced as a result of MBI, the wavelength can be shorter than the overall bunch length

but must be the same size or longer than the structure (micro-bunch) emitting it. This

implies that the wavelength of CSR can be much shorter than the total longitudinal bunch

size. It is a steadfast rule, that the structure emitting the CSR must be comparable to or

shorter than the wavelengths being emitted.

At a storage ring, CSR can be generated via two methods, both requiring the in-

crease of charge density of the electron bunch. The first way squeezes the bunch in order

to generate a bunch with an overall smaller longitudinal dimension, the shorter bunch

can then go on to emit SR with wavelengths comparable to bunch length. As the bunch

length and wavelength are of comparable size, the SR generated is CSR. The reduced size

allows it to propagate throughout the vacuum pipe and therefore be emitted. This is the

more gentle approach in which to create CSR at a synchrotron light source. Commonly,

this procedure is used to yield shorter pulses of light for time-resolved and pump-probe
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2.2. Coherent Synchrotron Radiation Properties

user experiments.

To go one step further, by compressing the bunch even more, micro-bunching in-

stabilities (MBI) are achieved. As well as compressing the bunch, more electrons can be

forced into a bunch to produce the same results because MBI are caused when a threshold

single bunch charge density is exceeded. Once surpassed, the bunch separates into indi-

vidual filaments or ‘micro-bunches’ and each of these filaments can go-on to emit CSR.

So though, the CSR being emitted from the micro-bunches has a shorter wavelength than

the original bunch length in truth its wavelength is comparable to the longitudinal dimen-

sion of the micro-bunch emitting it.

Not only is coherent radiation desired due to its emitted wavelengths and a side-

effect of short pulses, its intensity goes as the square of the number of electrons in a

bunch, Ne, as compared to incoherent SR which is just proportional to Ne. The derivation

for this relation in one dimension is considered below [72]. The radiated field from a

single electron is given, where ω is the frequency of radiation and A an amplitude.

E j ∝ ei(ωt+ϕ j) (2.11)

The phase, ϕ j is defined as the position of the j-th electron with respect to the center of

the bunch, where z j is the distance from the bunch centre [72].

ϕ j =
2π

λ
z j (2.12)

It is assumed that the difference in path length from the beam cross-section to the observer

is small with respect to the shortest wavelength of radiation emitted. The radiation field

from Ne electrons at a frequency of ω and phase ϕ j is expressed as a sum.

Etotal ∝

Ne

∑
j=1

ei(ωt+ϕ j) (2.13)

Thus the radiated power, P(ω), is proportional to the square of the radiation fields.

P(ω) ∝

Ne

∑
j

E j

Ne

∑
k

E∗k (2.14a)
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P(ω) ∝

Ne

∑
j

ei(ωt+ϕ j)
Ne

∑
k

e−i(ωt+ϕk) =
Ne

∑
j,k

ei(ϕ j−ϕk) (2.14b)

For j = k,
Ne

∑
j=k

ei(ϕ j−ϕk) = NePe(ω) (2.15)

where the power emitted from a single electron, Pe(ω) can be expressed in terms of Ee(ω),

the field from one electron as:

Pe(ω) = E jE∗k =| Ee(ω) |2 (2.16)

Consequently Equation 2.14b becomes,

P(ω) ∝ NePe(ω)+
Ne

∑
j=1

Ne

∑
k=1, j 6=k

ei(ϕ j−ϕk) (2.17)

If each electron within a bunch is expected to have the same energy, then the total power

emitted by a bunch is,

P(ω) ∝ NePe(ω)+Pe(ω)
Ne

∑
j=1

Ne

∑
k=1, j 6=k

ei(ϕ j−ϕk) (2.18)

When j 6= k, that is the bunches are not the same, a form factor must be defined and im-

plemented [75]. The total power emitted by a single electron bunch at a given wavelength

is expressed below [73, 76],

P(ω) = NePe(ω)(1+(Ne−1) fω), (2.19)

where fω is the form factor for the forward directed radiation and is only dependent on

the longitudinal distribution. The bunch distribution must be taken into account especially

as, the CSR power spectrum depends on the bunch distribution [72]. The form factor

is given by the square of the modulus of Fourier transform of the longitudinal charge

distribution [73, 74]:

fω =

∣∣∣∣∫ +∞

−∞

g(z)eikzdz
∣∣∣∣2 (2.20)
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Figure 2.1: The amplitude of each coherent spectrum for a Gaussian bunch distribution
(Ne = 1010) with lengths 0.5 mm, 1 mm, 2 mm and 5 mm.

where k = 2π/λ is the wavenumber. Assuming a Gaussian bunch distribution of,

g(z) =
1

σz
√

2π
e

(
−

z2

2σ2
z

)
(2.21)

where σz is the rms bunch length the form factor can be expressed as,

fω = e−k2σ2
z (2.22)

The form factor is sensitive to the bunch shape and varies between fω = 0 for incoherent

emission due to an infinitely long bunch and fω = 1 for coherent emission from a point-

like bunch [58, 73, 74]. Illustrated in Figure 2.1, the amplitudes of coherent spectra

where a Gaussian bunch distribution is assumed (Eq. 2.21) are shown for four different

bunch lengths using Equations 2.19 and 2.22 as a function of frequency. At the lower
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frequencies, all four curves appear to have the same amplitudes, with the discernment

between bunches becoming more apparent with increasing frequencies. It can be seen

that the longer bunches produce less higher frequency spectra than their shorter bunch

counterparts. The y-axis denoted as P(ω)/Pe(ω)−Ne can be considered as Ne fω(Ne−1).

By plugging back in the values for the form factor into Equation 2.19 we obtain

two relationships (Eqs. 2.23 and 2.24) depicting the total power in the case of incoherent

and coherent radiation, respectively. As can be seen in Equation 2.24, coherent emission

goes as the square of the number of electrons per bunch. This quadratic relationship is the

signature of coherent emission.

fω = 0 =⇒ P(ω) = NePe(ω) (2.23)

fω = 1 =⇒ P(ω) = N2
e Pe(ω) (2.24)

In the case of electron storage rings Ne is usually in the order of 109 - 1010 and thus for

the case of coherence as fω approaches 1, the total power emitted is significantly large

(Eq. 2.24) and the relationship can be clearly seen in data captured, which is later shown

in this thesis.

2.3 Low Alpha Mode

Diamond has the ability to operate at a selection of different beam settings, which can be

divided into two main categories. Table 3.1 displays the lattice and beam parameters for

a variety of Diamond’s different user modes. Normal user optics and low-alpha optics are

the two main categories where the former is the most used setting and Diamond operates

in this configuration approximately 98% of the time. Some user experiments at light

sources require different machine conditions, frequently shorter electron bunches. Many

light sources internationally, including Diamond, provide user runs with shorter bunch

lengths [39, 52, 53, 56, 57]. This user mode is called low-alpha mode and gives rise to

an assortment of different user experiments. These experiments include time-resolved or

pump-probe experiments because a smaller electron bunch corresponds to a shorter x-

ray pulse length. The reduction in bunch length also affects the wavelengths of radiation
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produced and allows for the emission of CSR in the GHz to mid-infrared regimes [77, 78].

The natural bunch length, σz0 is proportional to the square root of the momentum

compaction factor, α [44, 79, 80]. Thus, by reducing α , hence the name ‘low-alpha

mode’, the bunches become smaller, more compressed. Unfortunately, the reduction of α

is not as simple as it sounds and provides many additional complications especially when

many other ring parameters must be maintained including injection efficiency, longitudi-

nal beam dynamics and lifetime of the stored beam [44].

The momentum compaction factor, expressed in Equation 2.25 is defined as the

relative change in path length during one turn of the storage ring with respect to the

relative change in the particle’s momentum [81]:

α =

∆l
l0
∆p
p0

, (2.25)

where ∆l is the change in circumference travelled by the particle, l0 the circumference of

the storage ring, ∆p change in momentum of the particle and p0 is the nominal momentum

of the particle. Shown as a singular parameter, α can be expanded to allow for many more

terms, usually as a power series with respect to the change in relative particle momentum,

where δ =
∆p
p0

,

α(δ ) = α1 +α2δ +O(δ ) (2.26)

Within this work, only the first two expansions are considered, where ρ is the dipole

bending radius, η the dispersion and η ′ its spatial derivative [44].

α1 =
1
l0

∮
η1(s)

ρ
ds (2.27)

α2 =
1
l0

∫
η ′1(s)

2

2
+

η2(s)
ρ

ds (2.28)

The reduction of α1 is carried out by altering the lattice namely by minimising the

dispersion in the dipoles as close to zero as possible. In order for the momentum aperture

to remain at a reasonable size, α2 must also be reduced [44]. Naturally, for a most effective

and thorough reduction of α , further α values from the power series expansion should also
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2.4. Beam Modes of the Diamond Storage Ring

be reduced.

As well as the momentum compaction factor the RF voltage, Vr f , also influences

the size of the bunch. The natural bunch length is inversely proportional to the
√

Vr f

[75, 79, 80]. Accordingly, for low-alpha modes, in order to reduce the bunch length, not

only is α reduced but also the RF voltage increased. Byrd states the equation below [80]

where E is the beam energy and fs the synchrotron frequency:

σz0 ≈

√
αE3

2π fsVr f
(2.29)

Typically, the operation of a synchrotron storage ring is how best to facilitate the

users, thus a high flux and low emittance is the most sought after goal. Even when pro-

viding special beam conditions such as low-alpha mode these aims are still demanded.

Nevertheless, not all criteria can be met. At Diamond, low emittance is maintained dur-

ing low-alpha optics albeit not as low as during normal mode user operation. However

to achieve a stable operation, the stored current and thus the flux cannot be kept at such

a level. The beam current is reduced by a factor between 15 and 30, to ensure that the

machine remains in stable operation and to avoid chaotic MBI. In the case of both Dia-

mond low-alpha modes, the bunch current is set to 50 µA whereby the bursting threshold

is not exceeded in the case of the short pulse low-alpha mode (low-alpha pulse mode) and

is surpassed for the mode of THz generation resulting in quasi-periodic bursts (low-alpha

THz mode).

2.4 Beam Modes of the Diamond Storage Ring

At Diamond, normal user optics is defined as having a momentum compaction factor of

α = 1.7×10−4, with a maximum current of 300 mA and typical combined cavity voltage

of 2.5 MV. Normal mode can deliver a selection of filling patterns including a standard

fill with 900 bunches (of the 936 buckets) and a hybrid mode of 686 bunches with a high

charge single bunch in the middle of the gap, both depicted in Figure 2.2. The figure

represents the filling pattern used for each mode and the associated charge for each filled

bucket. The most implemented of all the beam modes at Diamond is the normal user
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mode with 900 bunches filled at 300 mA.

Low-alpha mode is the second category of beam mode varieties conducted at Di-

amond, where low-alpha mode means that the momentum compaction factor is reduced

compared to normal user optics. The first implementation of low-alpha mode at Diamond

was realised in 2008 [82], with the first user experiments the following year. Since the

initial application of low-alpha modes at Diamond, two dedicated low-alpha user lattices

have been created, each assigned to a specific beamline whose full details are displayed

in Table 3.1. The most frequently operated low-alpha mode is for beamline B22, the

Infra-red Beamline. This low-alpha mode is applied to obtain terahertz radiation. It uses

α =−4.5×10−6 with a fill pattern of 200+1 bunches and a current of 10 mA. The other

low-alpha mode in operation is implemented to generate short pulses for the pump-probe

and time-resolved experiments of beamline I06. The conditions are α = −1× 10−5 at

20 mA with a fill of 400+1 bunches. The fill patterns and associated bunch charges of

these low-alpha modes are displayed in Figures 2.3.

2.5 Micro-Bunching Instabilities & its Applications

MBI have been a popular topic for many years especially in light of the creation of third

generation light sources. With the detection of bursting CSR at light sources interna-

tionally, the theory of MBI came about. In 2002, Heifets and Stupakov [83] presented a

theory to explain the bursting CSR, namely MBI. The theory proposed that the filaments

or micro-bunches caused as a result of the instability were created by the SR from the

beam acting back on the beam itself [23, 83]. The interaction between the beam and its

wake-field is then amplified by the onset of CSR, where a wake-field is defined as the

wavefront from a relativistically charged particle, scattering off boundaries e.g. the vac-

uum pipe, and thus affecting the motion of the charged particles behind, both parallel and

perpendicular to their direction of motion. Therefore the growth and decay of MBI causes

the bursting nature of the CSR emission detected. Within the same year, Byrd et al put

forward the first evidence that these bursts of CSR are due to MBI [23], coinciding with

Heifets and Stupakov’s theory [83].

The longitudinal bunch distribution or charge distribution can be assumed to be
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Figure 2.2: Filling pattern for Normal User Mode with 900 bunches with an overall beam
current of 300 mA (top) and Hybrid Mode with 686 bunches and a high charge single
bunch giving an overall beam current of 300 mA (bottom).
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Figure 2.3: Filling pattern for Low-Alpha THz Mode with 200 bunches with an overall
beam current of 10 mA (top) and Low-Alpha Short Pulse Mode with 400 bunches with
an overall beam current of 20 mA (bottom).
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Gaussian (Eq. 2.21) and is known to be so, at low currents [74, 81]. However a density

fluctuation can result in a change of the distribution and thus effect the spectrum emitted.

Below a threshold current, wake-fields can cause a density fluctuation and result in the

static non-Gaussian deformation of a bunch [76]. When CSR is emitted, it must be when

a change in the bunch shape/distribution has arisen and this can come about in two ways.

The first is for the bunch to be compressed enough that when when the emitting wave-

lengths of radiation superimpose in phase they are sufficiently short and can be propagated

through the vacuum pipe, and the second method involves MBI.

CSR is able to occur with wavelengths shorter than the bunch length yet it is not

possible for the emitting structure to be larger than the wavelengths radiated. Hence it

is established that the bunch as a whole is not emitting the CSR but rather sub-structures

within the bunch, sub-structures known as micro-bunches. MBI can only occur when

a threshold bunch current is exceeded thus allowing the interaction between the bunch

and its wake-field be sufficiently strong to cause a density modulation. By increasing the

bunch current, the more deformed the bunch becomes [76], i.e. the more the fluctuations

affect and act upon the bunch causing more and more micro-bunches each emitting CSR.

From the proposed model [83], Byrd et al derived a criterion which determines at what

bunch current the MBI threshold will be met and thus at which point CSR bursts will

occur [23]. For a Gaussian distribution this criterion states:

Ib >
π1/6
√

2
e0c
re

γ

ρ1/3

αδ 2
0 σ

λ 2/3 , (2.30)

where Ib is the average bunch current, re the classical electron radius, γ the beam energy,

ρ the dipole bending radius, α the momentum compaction factor, δ0 the relative energy

spread, σ the rms bunch length and λ is the wavelength of radiation less than the vac-

uum chamber cut-off (Eq. 2.8). Using the values appropriate to Diamond during normal

user operation Ib = 0.46 mA. Once above the threshold value the CSR bursts, which in-

dicates that both the bunch’s internal and hence entire structure are changing notably, on

ever-changing timescales and that this truly is an instability. Initially above the threshold

current the bunches are emitted quasi-periodically but the higher in current the bunches

become the more random the bursting becomes. It is known that the compression of a
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bunch can lead to a bunch interacting with its own wake-field because the compression of

a bunch alters its charge density even if it is below the threshold value. When the bunches

are short the CSR impedance dominates [76].

Although MBI are known for limiting storage ring operation and are implemented

with a low intensity beam, this instability can open the door for many other possibili-

ties and opportunities. From the point of view of the user, THz spectroscopy, Raman

spectroscopy and Fourier Transform Infrared (FTIR) imaging are highly important in the

areas of cancer diagnosis [84–86] and historic artefacts investigation [87, 88] as well as

metal-organic frameworks research [89, 90]. In contrast to x-ray radiation, THz radiation

does not harm the sample [91], hence its applications for human physiology and ancient

relics. Naturally, the desire for stable CSR is paramount in order to allow many of these

experimental techniques to proceed as they require a stable output signal in order to com-

pare their signal received with and without the sample in question. As with many THz/IR

beamlines, including B22 at Diamond, a comparison method is undertaken whereby the

spectrum is observed with no sample present, then with a sample and finally the two spec-

tra are compared. Therefore, it is paramount that the source remains constant to allow for

accurate comparisons between the spectra.

Not only does the user benefit from the onset of THz radiation, but more diagnostics

tools can be employed. The power spectrum of a bunch can be determined using FTIR

spectroscopy [76], just as the data can be captured on a beamline for user experiments

it can be obtained and used for monitoring the spectrum of the beam. Observing the

spectrum of the CSR beam can also, of course, be determined using the eight channel

SBD array as outlined within the pages of this thesis. Primarily used in stable beam

conditions, streak cameras can be operated to determine the longitudinal bunch profile of

the shortened bunches and even during a burst too [45].

Single shot bunch length measurements can be carried out by determining the tem-

poral profile using the EOSD technique [46, 49]. Though recently implemented at stor-

age rings [48] (originally used at linacs), it has proved successful. Changes in the bunch

structure and sub-structure are able to be observed using EOSD with resolution to bunch

lengths of 1.5 ps (rms) and bunch charges down to 30 pC in the case of ANKA [49] and

even sub-picosecond lengths by others [47, 50]. As a result, EOSD allows for the de-
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tection of MBI [49, 50]. EOSD and THz radiation also allow for the investigation into

long-ranging wake-fields and examining bunch-to-bunch interactions [49]. Briefly de-

scribed using EOSD on a desired bunch is as follows: the THz pulse from the bunch (or

micro-bunch) must be stretched in time with the laser pulse lengthened to be the same

as the THz pulse, the two then propagate through an electro-optical crystal probing the

birefringence and after a series of wave-plates the amplitude modulation of the laser pulse

represents the characteristics of the THz pulse [46, 50]. Using a spectrometer the laser

pulse is analysed. Clearly, there are many stages involved in determining the longitudinal

details but in spite of its high resolution and both the speed and precision, there is a lot of

effort with regards the design and implementation of the system.

Using the CSR THz emission, unstable bunch oscillations can be detected as they

happen [76]. Determining unstable bunch oscillations improves with shorter and shorter

bunches and thus CSR producing bunches are ideal [76].
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Chapter 3
Experimental Hardware

This chapter provides an in-depth description of all the components and systems used in

order to employ the detector array as a spectrometer to observe the bursts of CSR at Dia-

mond. The equipment used on the test bench for the design and development of the array

is described. As part of the commissioning the optimal positioning of the spectrometer

was determined as well as the growth of the beam travelling longitudinally. Accordingly

the commissioning of the spectrometer is reported below.

3.1 Millimetre-Wave Diagnostic Beamport

Within the Diamond storage ring tunnel, there is a beamport that has been dedicated

to the investigations of CSR and by extension CSR from MBI [92, 93]. The beamport

transports the SR from dipole magnet B06 to the silica viewport window as illustrated in

Figures 3.1 - 3.4. The first image depicts the beampipes of the appropriate storage ring

cell where the separation of the tangential beampipe from that of the radiation’s pipe is

shown. Figure 3.2 again shows the path of the radiation and the electron beams, but now

consisting of all components of the cell including the dipole magnet B06 which is the

source of radiation for the beamport. Figure 3.3 documents the journey of SR throughout

the radiation beampipe from just after the source to just before emission from the view-

port. The total distance travelled in the beampipe is approximately 3.5 metres, whereby

the radiation initially travels in the same plane as the electron beam and at approximately

one metre from the viewport window the radiation is parallel but vertically lower than the
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3.1. Millimetre-Wave Diagnostic Beamport

Table 3.1: The main parameters of the Diamond storage ring for different user modes [6,
44, 75, 78].

Parameter Normal User Mode Low Alpha Mode Hybrid Mode
THz Pulse

Beam current, mA 300 10 20 300
α1 1.7×10−4 −4.5×10−6 −1.0×10−5 1.7×10−4

α2 1.9×10−3 −2.3×10−5 −2.2×10−5 1.9×10−3

σz, ps (rms) 15.8 3.5 3.5 16.8
εx, nm rad 2.7 3.9 4.4 2.7
Number of bunches 900 200+1 400+1 686+1
RF Voltage, MV 2.5 3.4 3.4 2.5

electron beampipe due to a periscope design in the beampipe indicated by Figure 3.3. The

final figure (Fig. 3.4) shows the emission of radiation from the viewport window and the

table for mm-wave investigation with the SBD array.

The radiation arises within the dipole bending magnet, B06, and travels along its

dedicated radiation leg towards the beamport and out the silica window (Figs. 3.1 and 3.2).

Throughout the path of the radiation while within the beampipe, there are many apertures.

These apertures are standard at Diamond and do not affect the x-ray radiation which is

desired most amongst its users. Nevertheless, these apertures can and do hinder the mm-

wavelengths because of their larger opening angles.

3.1.1 Diamond Storage Ring

As discussed previously, Diamond is a 3 GeV synchrotron light source with 24 cells. It

benefits from a 561.6 m circumference storage ring [94] and approximately 499.7 MHz

RF frequency, resulting in 936 buckets with a bunch spacing of approximately 2 ns. By

adjusting lattice and other machine parameters Diamond is able to operate with a variety

of different filling patterns and bunch sizing. Table 3.1 displays some of the current types

of beam modes available for user runs at Diamond. Most commonly, Diamond runs with

the normal user optics. Twenty-nine beamlines are currently operational at Diamond with

a further four in the construction or commissioning phases.
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Figure 3.1: The relevant cell showing the direction and separation of the SR radiation and
electron beam where the magnets have been removed for a clearer view.

Figure 3.2: The entire cell of B06 with several key features labeled.
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Figure 3.3: The path the radiation takes within the beamport from just after B06 to the
silica window.

Figure 3.4: The detector array installed in the tunnel with respect to the viewport.
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3.1.2 Synchrotron Radiation Generation at Diamond

When a charged particle travels along a curved path due to the presence of a magnetic

field, SR is generated. In the case of a synchrotron storage ring, this emission of SR

occurs as a result of dipole bending magnets or insertion devices. The dipole magnet B06

at Diamond provides the magnetic field to generate SR for the work presented throughout

this thesis. At the time of writing (before installation of DDBA (double-double bend

achromat) in late 2016 [10, 11]) all forty-eight dipole magnets, including B06, are of

C-type design and length 0.900 m with a magnetic length of 0.935 m [94]. Thus the

magnetic field strength can be calculated to be ∼1.4 T.

Diamond operates at 3 GeV with the bending radius, ρ of the dipoles is 7.13 m [95].

By substituting these values into Equation 2.7, the emitted power from a single electron

is ∼1.1 µW. This power is emitted across the entire EM spectrum produced at Diamond.

3.1.3 Radiation Transport & Manipulation System

The SR naturally separates from the electron beam as the electrons continue along the

curved trajectory dictated by the dipole magnet, while the SR unaffected by the magnetic

field continues straight ahead, tangential to the electron beam and its pipe. This is shown

in Figure 3.1 where only the beampipes are on view for clarity. In Figure 3.2 the entire

cell is illustrated including the relevant dipole magnet (radiation source) where the path

of the electron beam versus the radiation is presented with respect to the true set-up. In

order to alter the path of the desired radiation, but primarily to absorb and thus remove the

x-ray radiation, water-cooled copper mirrors are employed to guide the mm and visible

radiation through the periscope towards the beamport’s exit as illustrated in Figure 3.3.

It can also be seen that the radiation travels parallel but vertically lower than the electron

beampipe (Figs. 3.1 and 3.3). The beamport concludes with a fused silica window after

which and directly in front of the silica window, the SBD array is installed as shown in

Figure 3.4. Like the storage ring, the beamport is kept under vacuum conditions.

Ray tracing inside the dipole magnet was carried out to determine the source of

the dipole radiation, courtesy of Hammond and Rawcliffe [96]. With regards the wave-

lengths of interest, they are all combined in the horizontal plane and thus an average or
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Figure 3.5: View of the lower and upper slit absorbers as seen by the SR [6].

Figure 3.6: A simplified schematic of the first vertical and horizontal apertures after the
generation of SR at the source within the bending magnet.

midpoint between the two extreme rays was taken as the source point. It is from this de-

termined midpoint that longitudinal measurements were determined. The first and most

severe limit is caused by the slit absorbers creating a vertical aperture of 11.5 mm at a

distance of 532 mm from the source point. These curved metal absorbers, depicted in

Figure 3.5 as if viewed by the radiation, travel the length of the dipole vessel protecting

the downstream magnets and machine from radiation damage in the vertical plane. To

accommodate the fan of radiation the dipole vessel itself expands in the horizontal plane.

The crotch absorber and finger absorber create the first horizontal limit, with a diameter

of 20.7 mm at 1142 mm from the source point. A simplified schematic is shown in Fig-

ures 3.6 where only the source, an initial placing of the slit absorbers and finger-crotch

aperture are shown. The crotch absorber is the beginning of the solid divide between the

electron beam and the photon beam and protects the downstream equipment especially
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Figure 3.7: The spectrum of SR generated by an electron beam travelling through a dipole
magnet at the Diamond Light Source, displayed as intensity against photon energy.

the magnets. As the name suggests the crotch absorber is positioned in the crotch of the

dipole vessel. After passing through the finger-crotch aperture, the dipole radiation travels

into the radiation leg. The radiation leg maintains a fixed vertical height of 33 mm while

its horizontal dimension extends slowly from 39 mm and then it joins the vacuum valve.

The vacuum valve connects the radiation leg to the beamport.

3.1.4 Viewport for Millimetre-Wave Transmission

With a diameter of 89 mm and thickness of 6 mm [75], a fused silica window supplied

by Torr Scientific Ltd is placed at the end of the beamport. As stated by Shields [75], the

thickness of the silica window is very important due to the refractions and reflections that

occur as a result of it and of course its effect on the spectra observed.

It must be noted that the dedicated beamport has not been designed specifically

nor optimally for millimetre and sub-millimetre wavelengths. The analogy often used

is to describe the beampipe as a waveguide, nevertheless caution must be exercised. In

many ways, using this analogy the beamport can be described as an over-moded pipe.

This problem of complexity increases with the number of modes propagating through a

structure and is referred to as being over-moded. In this context a mode can be defined
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by Feynman as, a pattern of motion which has completely sinusoidal movement at any

point, with all points oscillating at the same frequency, albeit some points may move

more than their counterparts [97]. Neglecting the beampipe’s influence, the impact of

the slit absorbers have the most significant (negative) effect on the mm- and sub-mm-

components of SR. The presence of these slits is to protect the downstream machine from

unwanted x-rays however, in the millimetre and sub-millimetre regime the radiation beam

is affected. The main effects are the diffraction and reflection of the beam.

As mentioned in the previous section, the first and most significant aperture after

the source of radiation is caused by the slit absorbers creating a vertical limit of 11.5 m,

the next limit experienced by the radiation is horizontal with diameter 20.7 mm. These

apertures, shown in Figure 3.6, do not interfere with the x-ray radiation produced at Di-

amond, however they affect the longer wavelength radiation regions of relevance in this

work. The effect is greater for the longer wavelength regions because they have a higher

divergence than that of the x-rays and thus significant portions of the radiation can be cut

due to the apertures. Moreover, the apertures are of comparable size to the wavelengths

of interest. For example the 11.5 mm aperture is comparable to approximately the 9 mm

wavelength of 33 GHz and thus diffraction can be expected. For two different frequen-

cies observed by the detector array, 33 GHz and 220 GHz, the effect of the radiation as

it interacts with the vertical aperture created by the slit absorbers and then the horizontal

finger-crotch aperture was investigated.

In the case of 33 GHz, Figure 3.8 shows the radiation prior to any aperture. It

is Gaussian - an even uniform shape and has a smooth intensity in both horizontal and

vertical dimensions. As expected there is a peak of intensity in the central position, in-

dicating that the intensity is strongest at this point with a value of just below 1× 109

ph/s/.1%bw/mm2. Figure 3.9 contrasts greatly with the previous figure as it depicts the

33 GHz radiation after the vertical aperture with height 11.5 mm, similar to the 9 mm

wavelength of 33 GHz. The intensity in the vertical position forms a narrow peak reach-

ing slightly higher than the 1× 109 ph/s/.1%bw/mm2. This peak has sidebands showing

that diffraction has occurred, though at significantly lower orders of magnitude. In the

horizontal plane there has also been an effect on the radiation. The intensity of radiation

reaches an increased value of 1.5×109 ph/s/.1%bw/mm2, however not at the central po-
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Figure 3.8: The intensity of the 33 GHz radiation prior to any apertures.

Figure 3.9: The intensity of the 33 GHz radiation immediately after the vertical aperture
created by the slit absorbers, where the effect in the horizontal and vertical planes are also
detailed.
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Figure 3.10: The intensity of the 33 GHz radiation immediately after the horizontal finger-
crotch aperture, where the effect in the horizontal and vertical planes are also detailed.

Figure 3.11: The intensity of the 33 GHz radiation at the viewport which is approximately
3.5 m from the source, where the effect in the horizontal and vertical planes are also
detailed.
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sition which remains slightly above 1× 109 ph/s/.1%bw/mm2. The intensity across the

horizontal plane, also suffers from diffraction as can be seen by the numerous sidebands.

With the introduction of the horizontal finger-crotch aperture 610 mm after the slit ab-

sorber aperture, a significant change in signal is observed, with sharp narrow peaks in

both the horizontal and vertical fields. It must be noted that Figure 3.10 has a lower res-

olution compared to its counterparts because of the limits of the simulation. Figure 3.10

shows that the overall aperture through which the SR can travel is significantly reduced

and thus there is a decrease in photon intensity. The vertical plane still has a peak but no

sidebands, however it can be assumed that this is due to the lower resolution. Its peak is

approximately 9×106 ph/s/.1%bw/mm2. The horizontal plane produces two peaks close

to each other with an intensity above 9× 106 ph/s/.1%bw/mm2. The final figure for the

SR propagation at 33 GHz is Figure 3.11, where the radiation is depicted 3.5 m after the

source and thus after the two main apertures. It can be seen that the beam has expanded

again in the approximate 2.4 m since the horizontal aperture with a more gentle curve

spread over a large range in both planes. However, the curves contain structure and are

thus not smooth like they were prior to the apertures. The intensity has decreased by

six orders of magnitude to approximately 2× 103 ph/s/.1%bw/mm2 rather than the orig-

inal 1× 109 ph/s/.1%bw/mm2. It is paramount to note that due to the complex nature of

the beampipe in these simulations only the initial vertical and horizontal aperture were

considered.

A similar investigation was carried out with 220 GHz radiation, corresponding to

a wavelength that is a factor of nine smaller than 33 GHz. As expected and depicted

in Figure 3.12, the beam is narrower and also has a Gaussian distribution. It reaches a

maximum intensity of 4× 1010 ph/s/.1%bw/mm2 at its peak, which again is the central

position. The effect of the vertical aperture can be seen to have a significant affect on the

radiation intensity in Figure 3.13. It may have been assumed that because the aperture

is less comparable to the wavelength of 220 GHz (compared to 33 GHz), a reduce effect

would have occurred. This is not the case, if not it is the contrary. The intensity in the

vertical plane has a split peak with smaller peaks in the centre, similar to beats. In the

horizontal plane, the radiation retains its Gaussian shape. the peak intensity reached is

again higher than prior to the propagation through the apertures. Finally, at the viewport
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Figure 3.12: The intensity of the 220 GHz radiation prior to any apertures.
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Figure 3.13: The intensity of the 220 GHz radiation immediately after the vertical aperture
created by the slit absorbers, where the effect in the horizontal and vertical planes are also
detailed.

Figure 3.14: The intensity of the 220 GHz radiation at the viewport which is approxi-
mately 3.5 m from the source, where the effect in the horizontal and vertical planes are
also detailed.
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after propagation through both the vertical and horizontal aperture, the radiation intensity

is 3× 107 ph/s/.1%bw/mm2 at the peak in both vertical and horizontal positions. This

equates to a reduction in intensity by three orders of magnitude. What is interesting

to note is that in the case of 33 GHz, the reduction was twice that, i.e. six orders of

magnitude. This vast difference must be to do with the difference in wavelength and that

the wavelength of 33 GHz is more comparable to the aperture sizes, resulting in more

diffraction and impact on the radiation. The radiation profile for 220 GHz at the viewport

has a Gaussian shape, with gentle and small sidebands. Though already known, it has

been shown in this section (Fig 3.8 - 3.14) that the frequencies of the detector array will

all be impacted by the vertical and horizontal apertures.

3.2 Detector Array & Data Acquisition System

A spectrometer is a piece of apparatus used to detect and analyse wavelengths of the EM

spectrum. The spectrometer has been created in such a manner that all eight SBDs are as

close together as possible to observe the most signal simultaneously [92] as depicted in

Figure 3.15 with some blue pyramidal foam present to minimise the possibility of reflec-

tions. In order to eliminate the risk of shadowing all entrance apertures are in one plane.

Due to the polarisation nature of waveguides, the horn antennas and hence detectors must

be aligned correctly in order to observe the E-field. The detectors will be discussed later

in Section 3.3.1.

As shown in Figure 3.4, the detector plate is installed in open air in front of the

silica window, not further than 1 m away [92]. The detector array plate is attached to a

three-way motion set-up in order to move the spectrometer in the x-, y- and z-planes and

thus to optimise the signal obtained in the different channels. Directly after the viewport

window there is a sheet of polystyrene, which is used to block unwanted frequencies

that may affect the measurements, namely visible wavelengths of light and infrared while

allowing THz and mm-wavelengths to pass through [92]. Though not required by the

SBDs, the polystyrene has remained installed when it was used to protect pyroelectric

detectors from visible frequencies. The transmission spectrum of a polystyrene sheet

is shown in Figure 3.16. It is clear to see that it is effective at allowing the frequency
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Figure 3.15: Layout of detector array plate with all with labels denoting the model of each
detector and horn combination.
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Figure 3.16: Relative transmission of sheet of polystyrene, courtesy of Arne Hoehl [98].
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Figure 3.17: The two plates of the SBD array attached together perpendicularly and fixed
to one arm of the motion stage.

bands of the detector array through. Furthermore, there are no spectral absorption features

observed and across the relevant ranges the transmission is fixed.

To ensure the SBD operates in a high impedance set-up, each detector is terminated

in its own voltage amplifier with an input impedance of 10 kΩ. These amplifiers are

custom made by FEMTO, Germany (HVA-S Switchable Gain) and have a dual purpose

because they provide a high impedance set-up but also boost the signals. The latter is

important because these signals must traverse approximately 30 m of cable and would

become very noisy as the signal is being attenuated. As discussed in Section 3.2.1 below,

to accommodate a good signal-to-noise ratio around the revolution frequency, the cable

capacitance must be low as the input impedance is high. In order to lower the capacitance

shorter cables were used, thus a plate housing the amplifiers was attached to the detector

array allowing for minimal cable length [92]. The perpendicular attachment between

the detector plate and amplifier plate is shown in Figure 3.17. Following the voltage

amplifiers the signals are carried out of the tunnel, where they are fed into a simultaneous

16-channel sampling digitiser.
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3.2.1 Cable Capacitance

As a result of this high impedance regime, the capacitance of the cables becomes very

significant. There are two methods to alter the effect of capacitive loading of the cables,

both of which were employed here. The primary and most drastic change was to choose

shorter cables. By removing the original cables and implementing shorter ones, the sen-

sitivity was improved by a factor of four. The secondary alteration was to use cables with

a lower capacitance. The desire for a low cable capacitance is especially important when

dealing with large impedances because of the relationship between the two as depicted in

the RC time constant. This time constant, also known as τ is the time for the decay of a

voltage in an RC circuit and is expressed as

RC = τ =
1

2π fcut
, (3.1)

where fcut is the cut-off frequency. Figure 3.18 simply depicts the diode, cable and voltage

amplifier as a circuit diagram. The central part of the diagram, represent an RC series

circuit, where the capacitor (C2) with capacitance (C2) represents the cable’s capacitance

and the resistor (R1) with resistance (R1) symbolize the input impedance of the amplifier.

The desired signal to measure is the voltage across the resistor, VR1, and for it to be as

close to the input voltage V(RC)in however the voltage across the capacitor, VC2, affects

this. According to the following relation VR1 = V(RC)in−VC2, thus the larger the voltage

across the capacitor is, the less V(RC)in is equal to VR1. From the expressions of VC2 and

VR1 in Equations 3.2 and 3.3, it can be seen that when R1 = C2, some voltage is lost

across the capacitor with the rest of V(RC)in becoming VR1. However, when R1 << C2,

VC2 becomes equivalent to VRC−in, thus VR1 becomes negligible. This is most significant

in high impedance regimes because the discrepancy between the resistance (impedance)

and the capacitance is at its largest.

VC2 =V(RC)in(1− e−t/R1C2) (3.2)

VR1 =V(RC)ine−t/R1C2 (3.3)
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Figure 3.18: A circuit diagram showing the diode, cable and amplifier, where the RC
series circuit (low pass filter, highlighted in green) simply represents the circuit between
the SBD diode and the input impedance of the voltage amplifier.

The cables used were of length 0.25 m with capacitance 96 pF/m, giving an RC time

constant of 2.4×10−7 s. The junction capacitance of the SBDs implemented is approxi-

mately 35 fF, significantly less than the cable capacitance of 24 pF. The diodes themselves

also contribute capacitance in the form of junction capacitance. However, the cable’s ca-

pacitance is much larger than the diode’s junction capacitance and thus makes the junction

capacitance negligible and the cable capacitance significant.

3.2.2 Installation of Detector Array

The table for millimetre investigation had previously been installed at Diamond. It is

placed at appropriate height with respect to the beamport fused silica window as shown

in Figure 3.4. Its entire surface is a breadboard upon which a three-way motion set-up is

attached. The first step was to install the detector array, upon the motion stages procured

from BiSlide Velmex Inc. This was executed by fixing the detector plate directly onto

the mounting plate of the stages enabling the amplifier plate attached to the detector plate

to be perpendicular as shown in Figure 3.17. Though the stages have a wide range of

movement along the x-, y- and z-axes, due to the close proximity to the storage ring itself

movement at particular points is limited. It must be noted that originally the detector

array only contained six detectors, covering the range of 33-500 GHz. Due to preliminary

results a seventh detector was purchased in order to probe higher frequencies. This new

addition covers the range of 500-750 GHz. The quasi-optical detector (100-1000 GHz)
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was also added to the array when it was not required anymore by its previous experiment.

The amplifier plate was fixed at right angles to the detector plate in order to keep the

cable lengths between the detectors and amplifiers at a minimum. Power supplies were

connected to each of the amplifiers and then plugged into nearby sockets. The data signals

from the amplifiers were fed into a patch panel which would allow the signals travel to a

corresponding patch panel in the appropriate Control and Instrumentation Area (CIA).

3.2.3 Preparation of Detector Array

A variety of raster scans were obtained in a range of beam conditions. These scans in-

volved the detector array collecting data in the x-y plane at various z positions, where z

is the axis determining the longitudinal distance from the beamport window. The aims

of the scans were to determine the beam growth as it goes farther and farther from the

beamport and also to view the beam as a whole (Section 4.4).

From these raster scans the optimal position for the detector array to be placed for

each longitudinal position was ascertained using the mean (Fig. 3.19, top) and standard

deviation (Fig. 3.19, bottom) across all eight detectors. The images show the average

signal or standard deviation of the mean of the eight SBDs at each xy position for one z

location. Examples of the original raster scans used to establish the mean and standard

deviation are shown in Figures 4.20 and 4.21. The optimal position was determined by

taking into account each of the eight detectors and what they observed at the different

positions with each detector normalised to itself. Determining the ratio between the mean

(Fig. 3.19, top) and standard deviation (Fig. 3.19, bottom) shows where the least variance

is (Fig. 3.20, top). To ensure that this was the correct approach, several more stringent

ratios were investigated including the mean over the cubed standard deviation (Fig. 3.20,

bottom). However from Figure 3.20 (bottom), it can be seen that the only suggested area

where all detectors saw the same amount of signal was where none were observing signal

and can therefore be concluded that only the mean over standard deviation need be taken

into account.

Accordingly, for other non-raster scan experiments namely current ramps, the SBD

array was placed at these optimal positions, one place for every longitudinal (z) position.

For the longitudinal position of z=-330 mm, i.e. furthest from the source, the (x,y) coor-
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Figure 3.19: On the top image, the mean signal over all eight SBDs is depicted, where red
shows the higher agreement of mean values across all the SBDs. On the bottom image,
the standard deviation with respect to the mean for the eight SBDs, where blue represents
the lowest standard deviation of the mean across all the SBDs. The horizontal and vertical
positions are with reference to the SBD plate position.
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Figure 3.20: On the top image, the ratio of mean over standard deviation, where red
depicts the smallest differences between the mean and its standard deviation. On the
bottom, the ratio of mean over cubed standard deviation, again with red showing the
smallest differences between the mean and its standard deviation. The horizontal and
vertical positions are with reference to the SBD plate position.
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3.2. Detector Array & Data Acquisition System

Figure 3.21: A view of the relevant rack in the CIA, housing the data acquisition hardware.

dinates were found to be (185 mm, 168 mm), where the units in all cases are defined by

the motion stages.

Due to the nature of these raster scans, they are time consuming and thus could not

be carried out all the time. Moreover, the scans showed reproducibility and thus when

data were obtained just at one position a map of the beam could be determined showing

what the array would have seen had it carried out a raster scan.

3.2.4 Data Acquisition System & Capturing Data with SBD Array

The apparatus for the data acquisition includes a 16-channel simultaneous sampling 1 MSPS

digitiser from D-TACQ Solutions Ltd., a server and network switch, all displayed in their

rack in Figure 3.21. The data are streamed continually from the detectors directly into the

ADC (analogue to digital converter). The ADC then sends them to the server whereby the
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Area Detector Framework is operating in conjunction with EPICS. The procedure carried

out by the data acquisition system is given in the schematic in Figure 3.22. Set by the

Area Detector Framework the ADC feeds in 105 samples at a time. The framework is

capable of assessing sixteen channels (16 x 100000) and thus the first step carried out is

to reduce the data collected to eight channels, one for each detector (8 x 100000). This

framework is primarily used to deal with images nevertheless, here it carries out Fourier

transforms along every ten stacks of data, where a Fourier transform is expressed below,

Xk =
n=0

∑
N−1

xnei2πkn/N (3.4)

A region of interested (ROI) is then chosen. The ROI is set up similar to a lock-in amplifier

whereby the framework locks into the revolution frequency of the ring, 533.820 kHz. By

locking-in, very small signals can be detected despite the presence of noise, as a side

note the amount of data to be transferred decreases. As the digitiser has a sample rate

of 1 MSPS, the Nyquist frequency lies at 500 kHz where the Nyquist sampling theorem

states the sampling frequency must be at least twice signal’s highest frequency to allow

for the signal to be accurately reconstructed. Consequently, there is only 33.820 kHz of

a gap between Nyquist and the chosen ‘lock-in’ frequency. To counteract this issue, the

sampling rate of the digitiser was reduced and thus allowed for a larger difference between

Nyquist and the revolution frequency. The optimal sampling rate was decided upon by

taking into account the revolution frequency, the doubled revolution frequency, the tripled

revolution frequency and each of their corresponding aliases. As depicted in Figure 3.23,

for a range of sampling clock dividers (‘clkdiv’) by plotting the distance between the

aliased revolution frequency bin and Nyquist bin, then to the doubled revolution frequency

bin and finally the distance to the tripled revolution frequency bin, a point of intersection

can be determined. This point of intersection signifies that the Nyquist frequency bin

occurs at the same point of the double revolution frequency bin for a certain clkdiv. As

there was no intersection involving the red curve, for this selection of clock dividers the

only bins to consider are the aliased revolution frequency bins to the Nyquist bin and the

aliased to the double revolution frequency bin. The cross-over is shown in more detail

in Figure 3.24 and can be seen to be between clkdiv equal to 112 or 113. This resulted
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3.2. Detector Array & Data Acquisition System

Figure 3.22: A flow-chart showing the steps of the Area Detector Framework imple-
mented for the data acquisition system of the eight channel spectrometer for a sampling
frequency of approximately 892857 Hz where the sample frequency is denoted on the left
and the size of the data arrays on the right.
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3.2. Detector Array & Data Acquisition System

in a clkdiv of 112 being chosen and this gives a sampling frequency of 892857.1429 Hz,

presented in Equation 3.5. This reduction in sampling allows for a much wider bandwidth

of 87391.43 Hz as opposed to 33820 Hz when clkdiv = 100. Naturally with the change

in sampling frequency, the ROI must be edited in order to capture the larger amount of

signal now available.

100×106

clkdiv
=

100×106

112
= 892857.1429 Hz (3.5)

As power is the only parameter conserved in noise, power averaging was imple-

mented. Power averaging is executed upon every ten 19576× 8 data arrays resulting in

1 Hz resolution, illustrated by Figure 3.25. The averaging is done on frequency data but

over time.

Data were captured when no beam was present in the ring in order to obtain a noise

floor for each of the diodes and to make sure nothing else was being picked up by the SBD

array. Depicted in Figure 3.26 the signal obtained (or lack there of) by the SBDs with no

beam (lines) was comparable to that seen when the SBD array was meant to be acquiring

signal but due to a insignificantly low beam current signal could not be observed until a

threshold was surpassed (dots).

The position of (185, 168, -330) mm was the optimal and thus most used location for

the detector array to be placed, unless raster scans were being carried out. The synchrotron

light source was set to the desired conditions; single bunch or multi-bunch, normal user

optics or low-alpha optics and the SBD array collected the data. The signal observed from

the viewport was guided into the detectors via their horn antennas or silicon lens in the

case of the QOD, it was then converted into a voltage and travelled by coaxial cables to

their respective amplifiers. The FEMTO amplifiers housed on the amplifier plate adjacent

to the detector plate, boosted the signals by a factor of 100. These amplified voltages then

traversed ∼30 m of coaxial cables whereby each detector’s cable was patched into the

SMA plate of the digitiser. The D-TACQ digitiser samples the data continually and feeds

them directly into a nearby server via gigabit ethernet. The server carries out preliminary

processing. After this, the user collects the data and executes the thorough analysis.

The major benefit stemming from the implementation of this data acquisition sys-
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Figure 3.23: The distance between aliased revolution frequency (rev freq) bins to Nyquist.
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Figure 3.24: A closer look at the crossing between the aliased and double aliased frequen-
cies.
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3.2. Detector Array & Data Acquisition System

Figure 3.25: A sketch of the power averaging carried out over every ten stacks of 19576
x 8 arrays of the ROI of the Fourier transformed data.

Figure 3.26: Signal obtained by each detector of the SBD array when the beam was
present (dots) and the determined noise floor for each of the eight detectors (lines).
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tem is the ability to quasi-live stream the Fourier transformed data, meaning that any

changes to the spectrum can be seen almost exactly when they occur. This feature was

useful not only for this work, but also in confirming hypotheses to the operation of the

ring. The effect of moving collimators and insertion devices on the millimeter spectrum

could be determined via the SBD array and its acquisition system, the results of which are

shown in Section 4.10.

a) Comparison of Signal at DC and Revolution Frequency

There are two possible locations where the Framework can ‘lock-in’ and thus retrieve the

signal from the diodes. These locations are at DC and the revolution frequency of the

ring (533.820 kHz). As stated above in Section 3.2.4, the latter was chosen because of

the signal-to-noise ratio (SNR) at that point. SBDs as well as other diodes suffer from 1/f

(flicker) noise. Therefore at increasingly lower frequencies the noise experienced by the

diode is enhanced.

b) Magnitude & Power Averaging

Prior to the power averaging feature being installed, magnitude averaging was carried out.

Magnitude averaging signifies that a mean was taken of the magnitudes of the signal. The

power averaging feature squares the data, averages the result and then takes the square

root. Power averaging is preferred because power is the only parameter conserved in

noise. With respect to the results portrayed throughout this thesis, the majority of the

data was obtained when the power averaging feature was enabled. However, whenever

magnitude data is shown, it will be clearly specified.

3.3 Detectors

Two types of detectors are employed in this work. Both sensitive to millimetre and sub-

millimetre wavelengths, they are Schottky barrier diodes (SBDs) and a Thomas Keating

absolute power meter. The former make up the spectrometer and thus observed the CSR

from Diamond’s B06. The Thomas Keating power meter was used on the test bench to
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characterise the bench apparatus and most importantly each of the SBDs. In this section

the diodes are described as well as the detectors’ applications in the presented work.

3.3.1 Schottky Barrier Diodes

The SBD is the key piece of apparatus for this research, procured from Millitech Inc. and

Virginia Diodes Inc. (VDI), USA. SBDs have a metal-semiconductor junction whereby a

metal contact is deposited upon the semiconductor [99]. It is as a result of their semiconductor-

metal junction that gives them ultra-fast switching because the junction does not possess

any minority carriers and thus does not need to wait for the recombination of them [30].

Their current-voltage (IV) characteristics are explained by Equation 3.6.

UDC = n UT ln
(IDC

IS
+1
)
+ RS · IDC, (3.6)

where UDC is the junction voltage, n the ideality factor, UT =
k T
e0

the thermal voltage, k

the Boltzmann constant, T the temperature, e0 the electron charge, IDC the diode current,

IS the (reverse) saturation current and RS the series resistance. Assuming a room tempera-

ture of 300 K, UT equals approximately 26 mV. The ideality factor ranges from 1-2 where

unity is the most ideal. A well-made diode should have an ideality factor of less than 1.20

[99].

Named after the German physicist, Prof Walter Schottky, these diodes are best

known for their fast response [30, 100], low noise and excellent sensitivity. Operating

at room temperature, SBDs are sensitive to mm- and sub-mm-wavelengths and hence are

often used as detectors within this wavelength range [92]. SBDs are able to observe a

wide range of frequencies in the GHz - THz regions however their bandwidths can be re-

stricted as a result of their packaging, e.g. waveguides. The detector diodes that have been

chosen are housed within waveguides and fed signal using horn antennas. This naturally

limits their frequency range with a hard cut-off at the lower frequencies and reduced effec-

tiveness at higher frequencies. As a result of their waveguide packaging, these SBDs are

sensitive to polarisation. SBDs perceive the electric field (E-field). When terminated with

a low impedance (typically 50 Ω) the SBDs operate at a much faster speed approximately

250 ps [15] but at the cost of lower sensitivity. Using Ohm’s Law of V = IR, we know
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3.3. Detectors

Figure 3.27: Image of a DXP de-
tector from Millitech [101].

Figure 3.28: Image of a DET de-
tector from Millitech [102].

Figure 3.29: Three VDI detectors (WR5.1ZBD, WR3.4ZBD, WR2.2ZBD) with their ac-
companying conical and diagonal horn antennas [103].

that when an SBD experiences a higher resistance (input impedance) a larger voltage will

have to be drawn compared to if a smaller resistance was present for the same current

and so for the same input signal the output depends on the impedance encountered. In

the set-up as described in this thesis, the SBDs are connected to a high impedance (10

kΩ) and thus achieve a higher sensitivity at the compromise of a slower speed [92]. Two

examples of the Millitech Inc. SBDs employed in this thesis are shown in Figures 3.27

and 3.28 (without their antennas), where the casings around the diodes are gold-plated

and the SMA connections are visible. Three of the frequency restricted VDI detectors

and accompanying horns are shown in Figure 3.29, with the broadband QOD displayed

in Figure 3.30.

SBDs are non-linear devices and are well known for their square-law detection

Within the square-law region, the diode responds to the square of the voltage across the

junction so the detected signal is a function of power [104]. At low input power levels,

SBDs detect within the square-law region however at a certain criterion the detection re-
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Figure 3.30: An image of the quasi-optical detector from VDI [103].

gion will undergo a transition from square-law to linear. The top image of Figure 3.31

shows the stages of signal detection for a typical diode at a given input impedance. The

criterion that changes the detection regime from square-law to linear occurs is if too much

power is inputted (commonly >-10 dBm) i.e. when the junction voltage (UDC) is greater

than the thermal voltage (UT ) which is usually 26 mV. It is known that the input impedance

affects the input power to output voltage relationship. The effect of the square-law de-

tection on the operation of the SBD array means that the signal being observed has to

be below this 26 mV to allow the diode to detect as expected. With an increase in load

impedance the sensitivity of a diode also increases as illustrated in the bottom image of

Figure 3.31 for a Millitech Inc. diode. The responsivities for five alternate values of load

impedance are plotted showing the relationship of impedance and responsivity. For fur-

ther examples of a Schottky diode square-law response see [105–111], where they are

well described.

Eight zero-biased SBDs, each covering a specific frequency band with stated ranges

from 33-1000 GHz were employed. Of the eight detectors chosen, seven are housed

within waveguides. The eighth detector is a broadband quasi-optical detector (QOD) with

a silicon lens [92]. The three detectors with the lower frequency ranges are supplied by

Millitech Inc., while the remaining five detectors are from Virginia Diodes Inc. Table 3.2

shows the properties of the chosen SBDs. The waveguide ranges contrast from the stated

frequency ranges because the former is determined by the dimensions of the waveguide

itself. The fundamental mode cut off (transverse electric mode, T E10) and the lower cut

off of the frequency of the next mode are classed as the waveguide range within this work
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Figure 3.31: Relationship between input power and output voltage [101, 106], where the
lower figure is supplied by Millitech Inc., our detector manufacturer.

and are further referred to in Section 3.4.4 and Figures 3.45 - 3.50. The stated range is a

subset of the true frequency range.

a) Horn Antennas

Worldwide there are a huge variety of horn antennas available. Horn antennas are used in

the emission and reception of radiation, normally in conjunction with waveguide feeds.

The radiation patterns for emission are identical to those of reception. In this work, horn

antennas are used for the emission during bench tests, and signal reception for all tests

and experiments. The three types utilised in this work are the pyramidal horn antenna

(Fig. 3.32, top), the conical (Fig. 3.32, bottom) and the diagonal horn antenna. With
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Table 3.2: SBD Specifications

Model Stated Range Waveguide Range NEP
GHz GHz pW/

√
Hz

1 DXP-22 [101] 33-50 26.36-52.73 632.46
2 DXP-12 [101] 60-90 48.41-96.81 1998.55
3 DET-08 [102] 90-140 73.82-147.64 6324.56
4 WR5.1ZBD [103] 140-220 115.79-231.59 13.2
5 WR3.4ZBD [103] 220-330 173.69-347.38 17.6
6 WR2.2ZBD [103] 330-500 295.28-590.55 9.1
7 WR1.5ZBD [103] 500-750 393.70-787.40 15.2
8 QOD [103] 100-1000 (silicon lens) 50-115

regards the RF source and its associated amplifiers and frequency multipliers for the cal-

ibration (described below Section 3.4.1), only pyramidal horn antennas have been imple-

mented. Seven of the eight SBDs require horn antennas to guide the radiation from free

space through the waveguides and across the diode to detect. Pyramidal horn antennas

are implemented for the SBDs covering the lowest frequency ranges (33-140 GHz), one

conical horn antenna is used to cover the range 140-220 GHz and finally three diagonal

horn antennas are employed for the three detectors from 220-750 GHz. The cause for the

variety of horns is due to limited availability of the manufacturers, primarily as a result of

the difficulty and delicacy needed to machine horn antennas for high frequencies.

Each horn antenna design handles the radiation in a different way and thus each

must be individually taken into account. The most appropriate method of doing this is by

using the affective aperture, Ae f f [113–115],

Ae f f =
λ 2

4π
G, (3.7)

where G is the absolute power gain and λ the wavelength of radiation being observed or

transmitted. The gain of an aperture can be determined using the equation below [114].

G = η
4πAdim

λ 2 , (3.8)

where η is the efficiency of the horn antenna and can be defined as the ratio of the effective

aperture (Ae f f ) over the dimensional aperture (Adim) [114]. The dimensional aperture is
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Figure 3.32: Geometry of a pyramidal horn antenna (top) and conical horn antenna (bot-
tom) using the source notation [112, 113].

the area at the opening of the horn, no matter if it is a diagonal, conical or pyramidal horn

antenna. It is known that the effective aperture of a conical horn is 52% of the actual

aperture when the horn has been designed optimally [113]. Furthermore, with an increase

in length of the horn while keeping the aperture area constant this ratio can increase

up to 84% for very long horns. In Table 3.3, the comparison between the dimensional

and effective apertures are shown, whereby the pyramidal and conical horn antennas all

display a value similar to that given by King [113]. Optimal diagonal horn antennas

have been known to have an efficiency of 0.81 [114] and thus, are deemed more effective

relative to their size than conical or pyramidal horn antennas. The WR2.2 diagonal horn

antenna gives a ratio (0.89) close to that of 0.81. Implausibly, the other two diagonal

antenna give efficiencies greater than 1. The efficiency of an antenna is dependant on

the gain (Eq. 3.7) and the dimensions of the horn’s aperture (Adim). The beamwidth

and consequently gain measurements have been supplied by the company. The aperture
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Table 3.3: Horn Antenna Apertures

Model Shape Adim, m2 Ae f f , m2 Ae f f /Adim

SGH-22 [117] Pyramidal 2.31×10−3 1.15×10−3 0.50
SGH-12 [117] Pyramidal 6.85×10−4 3.41×10−4 0.50
SGH-08 [117] Pyramidal 2.95×10−4 1.47×10−4 0.50
WR5.1 [103] Conical 5.54×10−5 2.99×10−5 0.54
WR3.4 [103] Diagonal 3.14×10−5 3.34×10−5 1.06
WR2.2 [103] Diagonal 1.30×10−5 1.15×10−5 0.89
WR1.5 [103] Diagonal 5.76×10−6 6.49×10−6 1.13

where Ae f f is with respect to the central frequency of the waveguide range, Eq. 3.7.

dimensions have also been provided by the manufacturer but have been verified by the

author. Moreover, the waveguide dimensions of the WR2.2 horn have been measured with

a ZEISS AxioVision Optical Microscope [116] and is in keeping with what is expected.

Therefore it can be deduced that the gain values are the cause of the 100%+ efficiency,

attributed to the rounding of values as the gain is supplied with only two significant figures

and no error.

b) IV Curves of SBDs

A diode is a non-linear circuit element. An ideal diode will allow current to flow in

the forward direction but will block any current trying to travel in the reverse direction.

This relation between current flowing through a diode and the applied voltage across its

terminals is the main characteristic of a diode. SBDs also exhibit this characteristic IV

curve, however it is slightly different from the more common pn-junction curve. The IV

relation is depicted in Figure 3.33 for both pn- and Schottky barrier diodes where the vari-

ation between the two can be observed and also expressed as in Equation 3.6 for SBDs.

Diodes with a pn-junction have a turn-on voltage of approximately 0.7 V while SBDs’

turn-on voltage is at 0.2 V, which can be seen relatively in Figure 3.33. Moreover, Schot-

tky diodes have a lower breakdown voltage compared to their pn-junction counterparts.

This is due to SBDs containing a metal-semiconductor junction unlike the semiconductor-

semiconductor junctions of pn-junction diodes. Moreover, zero-bias SBDs are the most

sensitive type as they require a very low forward voltage to operate.

In order to establish that a diode is healthy, the IV curve can be measured and fitted
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Figure 3.33: Typical IV curve of a Schottky barrier diode compared to a pn-junction
diode. (Courtesy of [118])

with a model (Eq. 3.6), i.e. parameters n, Is and Rs. This test was regularly carried out

to ensure each SBD was not affected by other radiation in the storage ring tunnel. In

Table 3.4 and Figure 3.34, a data set for all of the eight diodes is displayed and fitted

with the model. It must be noted that though all the diodes used are zero-bias detectors

there are two distinct ‘families’ of diodes present - the Millitech and VDI diodes shown

in Figure 3.34 (top) and (bottom), respectively. The lower frequency Millitech Inc diodes

have much smaller saturation current, Is, values when compared to the VDI family. Nev-

ertheless, SBDs have much larger values of Is as against pn-diodes on the whole and zero

bias SBDs in particular require a large Is in order to have enough ability to reach high

currents at low voltages. The high frequencies that the VDI diodes reach require large Is

values. Within the Millitech family, the DET08 exhibits a faster growth compared to the

DXP22 and DXP12, this can be attributed to the fact that the DET08 is a newer model,

works at higher frequencies and is possibly making use of a modified SBD. It is apparent

from the results in Table 3.4 that with an increase in Is there is an increase in Rs. The

large value of Rs for WR5.1ZBD, WR3.4ZBD, WR2.2ZBD, WR1.5ZBD and QOD can

be attributed by the presence of an electrostatic discharge (ESD) safety circuit namely

the resistor component. All VDI detectors used contain ESD circuits [119] either built

directly into the detector unit or as separate additions. For completion, the Millitech Inc.

detectors do not contain any ESD safety circuits and thus their experimentally determined

parameters are true to the diode itself [120].
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Figure 3.34: Fitted IV curves for the 33-140 GHz detectors from Millitech Inc. (top) and
140-1000 GHz from VDI (bottom).
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Table 3.4: Parameters of the SBDs as determined experimentally.

Model Stated Range n Is Rs

GHz µA Ω

DXP22 33-50 1.23 6.54 37.7
DXP12 60-90 1.22 6.09 37.5
DET08 90-140 1.23 8.42 40
WR5.1ZBD 140-220 1.66 75.2 507
WR3.4ZBD 220-330 1.73 56.8 499
WR2.2ZBD 330-500 1.61 84.9 513
WR1.5ZBD 500-750 1.94 81.0 535
QOD 100-1000 1.88 22.3 480

3.3.2 Thomas Keating Power Meter

The Thomas Keating power meter is a broadband detector requiring modulated signal as

shown in Figure 3.35. The aperture is of dimensions 65 mm × 40 mm and sensitive to

to approximately 20-3000 GHz. It is between the window panes of the TK power meter

where the detection occurs. In between the two window panes, a closed air cell exists

within which is a thin metal film [121]. The absorption of the radiation beam causes

variations in the temperature of the cell and hence changes in the pressure of the cell.

These pressure variations are detected via the pressure-transducer in the TK head and

recorded. It is known that approximately 50% of the incoming beam is absorbed by the

thin metal film in the window [121]. The remainder of the incident beam is reflected or

transmitted through the cell. In order to minimise reflections caused by the windows, the

TK head must be used at the Brewster’s angle. Brewster’s angle is defined as the particular

angle of incidence at which light is reflected from a surface completely polarised and is

55.5◦ [121] in the case of the TK’s windowing material. The emitted beam from the

RF source is polarised due to the waveguide and the E-field has the same orientation

as the polarised field. Thus, the orientation of the waveguide (and hence horn antenna)

determines about which axis Brewster’s angle is used.

The main benefit of the TK power meter is that it can be calibrated by directly

inputting a known modulated signal via the BNC connections on the side of the TK head.

As a result of this, the TK power meter can then be used to characterise the source (on the

test bench) and therefore used in the characterisation of the SBDs also.
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Figure 3.35: A photo of the Thomas Keating power meter [35], showing the detection
aperture, BNC connection for signal output on the top and two connections on the side
for the film.

3.4 Test Bench

The test bench is the optics table housing all the equipment necessary for the creation and

quantification of the detector array as displayed in Figure 3.36. In this section the use and

evaluation of the primary components is described. Following from the characterisation

of the test bench apparatus itself, the detector array was developed and tested. The results

are included below.

3.4.1 RF Source

The Ka band emitter (26.5 GHz - 40 GHz) is the radio frequency (RF) source used on

the test bench to produce a signal with which the SBDs are quantified. The RF source

employed is shown in Figure 3.37. The emitter employs a Gunn diode to produce the

output frequency. The Gunn diode within this emitter produces frequencies in the range

of 13 GHz - 20 GHz and, before it is transmitted from the source unit, the signal passes

through a doubler, thus creating a Ka band emitter. This emitter has two methods to vary
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Figure 3.36: A schematic and photograph of the Test Bench set-up.

Figure 3.37: Ka Band Emitter
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Table 3.5: Frequency Multipliers

Model Type Input Frequency Output Frequency

MUD-15 [122] Doubler 25-37.5 GHz 50-75 GHz
MUT-10 [122] Tripler 25-36.67 GHz 75-110 GHz
WR5.1X3 [103] Tripler 46.67-73.33 GHz 140-220 GHz

the output frequency and attenuation. The output frequency can be determined by the

control voltage dial or by inputting a DC voltage via a BNC connection from an external

source and the same for the attenuation. The primary method employed was to use a

waveform generator to input the voltage for both output frequency and signal attenuation.

By using the BNC connection for signal attenuation, the output frequency signal can be

modulated. In Figure 3.37, the front panel of the emitter can be seen, along with the dials,

BNC connectors and the waveguide connection for the frequency output.

In order to achieve the desired frequency ranges, various frequency multipliers were

utilised. The properties of the multipliers are show in Table 3.5. Due to the nature of

multipliers, the strength of the signal declines when passing through one (or more). To

counteract this continual decrease in signal, an amplifier was used to boost the output

power. The amplifier utilised is an AMP-15 from Millitech Inc. with an input frequency

of 50-66 GHz and a gain of 22 dB. The combinations of frequency multipliers and power

amplifiers are depicted in the schematic diagrams of Figure 3.38, where the orange circles

indicate the RF source itself, the blocks the multiplier employed and finally ending with

a pyramidal horn antenna. When the frequency is being increased by a factor of six an

amplifier is used, shown as a cyan triangle. As for the detector array, horn antennas were

employed by the RF source and its relevant multipliers. All of the horn antennas used by

the RF source were of pyramidal design.

Each multiplier from Millitech Inc. was accompanied by a data sheet. The power

output for each frequency value was given for the stated constant input power. The con-

version losses for both MUD-15 and MUT-10 were calculated from these values. Both

the experimental data according to Millitech Inc. and the results gathered by the author

were combined, as presented in Figure 3.39. It can be seen that there is a good agreement

between the data sheet results and those determined on the test bench.

Before detector characterisation could be carried out, the RF source itself had to be
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Figure 3.38: Block diagrams of the combinations of source, multipliers, amplifier and
pyramidal antenna.
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Figure 3.39: Ka band emitter with fundamental, doubler and tripler attached with their
respective results from the data sheets.
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investigated. Employing a waveform generator, voltage values were fed into the source

and the corresponding output frequency identified by the spectrum analyser. Horn an-

tennas were used to transmit the signal from the RF source and then to receive it into

the spectrum analyser. For a known voltage inputted into the RF source, the spectrum

analyser read the output frequency. From these tests, the resulting relationship between

the input voltage and output frequency is depicted in Figure 3.40. This knowledge was

then built into the code used on the test bench. Due to the range of the spectrum analyser,

the full range of the RF source was unable to be examined. Nevertheless, the remaining

values were extrapolated from the experimental data.

To determine the attenuation, the fundamental horn (SGH-28) was attached to the

RF source and at a continual output of one frequency value the signal was read by the

TK while the voltage controlling the attenuation was altered. Thus the attenuation was

ascertained for incremental increases in the inputted voltage. The established attenuation

as a function of the inputted voltage is shown in Figure 3.41, where it can be seen that

there is a sharp drop off in signal strength after 1 V. The voltage controlling the frequency

output was inputted as a square wave using a waveform generator to ensured the signal

remained modulated.

The stability of the frequency output was determined using the spectrum analyser

with the RF source employing the doubler at an output frequency centered on 79.855 GHz.

The consistency of the output frequency was measured in two different cases. In the first,

the time required by the source to ‘heat up’, thus stabilising the output, was found to be

20 minutes. Once warmed up, the consistency of the output could be ascertained for the

second case. Six ‘snapshots’ were taken to illustrate the constant change in the frequency

output. Furthermore, an average was also taken over one hundred sweeps. These seven

data sets were plotted in Figure 3.42 where it can be seen that the frequency output has an

error of ± 2 MHz resulting in a relative error of 0.005 %, which is excessively low.

3.4.2 Test Bench Layout

In the primary set-up, the TK power meter or SBD was placed on the optics bench using

a rail system. The RF source stood alone on a stage inline with the rail 50 cm in front

of the detector. Depending on the frequencies being investigated a selection of frequency
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Figure 3.40: Frequency output measured from spectrum analyser when wave-
form generator inputs control voltage.
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Figure 3.41: Attenuation curve of emitter as measured by TK power meter.
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Figure 3.42: Frequency stability of the Ka band emitter showing the ± 2 MHz instability.

multipliers, power amplifiers and a horn antenna were attached to the RF source. Via its

BNC connections, the RF source was connected to a waveform generator. The waveform

generator was used to input a DC voltage to alter the frequency output and a square wave

to electrically chop the output signal. When required the power amplifier was connected

to a voltage supply delivering 9 V to the amplifier. The signal from the TK and SBDs was

fed via a coaxial cable from their respective coaxial connector into an ADC with a high

impedance. The ADC used for reading the data from the TK and SBDs has two input

channels, both with a high impedance but only one channel with an amplifier to boost the

signal of the TK. The signal from the SBDs does not require further amplification in the

lab. The ADC was supplied with 5 V from a power source, and the data were fed into

a computer via USB. As shown in Figure 3.36, the optics bench and the area around the

set-up were covered with blue pyramidal absorber foam to minimise the reflections of the

mm-wavelengths [112].
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3.4.3 Data Acquisition on the Test Bench

A private network was created within the lab, encompassing the ADC to readout data,

the waveform generators for voltage control and modulation and the computer running

MATLAB. All hardware could be controlled using MATLAB. For each data collection, a

calibration would be conducted and then a frequency sweep carried out, so that the cali-

bration was fresh and thus more reliable. A software lock-in centered on the modulation

frequency (17 Hz) was used to mimic a lock-in amplifier.

3.4.4 Main Test Results

Initially, the TK power meter was calibrated and using this information the RF source was

quantified over the entire range of frequencies (26 GHz - 240 GHz) using the multipliers

and amplifier [92]. This was carried out in several stages. First, a range of modulation fre-

quencies were delivered to the TK and the response was monitored. Using Equation 3.9,

where P0 is the peak power, V the voltage inputted and R f ilm the resistance of the TK

aperture which was measured to be 166 Ω, the sensitivity of the TK at each modulation

frequency was calculated.

P0 =
V 2

R f ilm
(3.9)

By determining the sensitivity of the TK at a range of modulation frequencies and thus the

noise, the optimal modulation frequency was identified. Figure 3.43 (top) depicts the sen-

sitivity of the TK, by the voltage detected and the peak power from Equation 3.9, across

a range of modulation frequencies. The curve is a smooth decay presenting an increased

sensitivity for a lower modulation frequency. The noise was calculated using the stan-

dard deviation of the signal received by the TK and the relative sensitivity. Figure 3.43

(bottom) shows the relationship between the noise and modulation frequency as ever fluc-

tuating. From the two plots of Figure 3.43 it can be seen that lower frequencies are more

optimal as the TK seems to struggle at high frequencies. Hence, a modulation frequency

of 17 Hz was selected as it agreed with the TK but also being a prime number it would

be less likely to pick up any noise especially the mains at 50 Hz, that is to say that 17 Hz

has minimal harmonics in common with the mains frequency. In Figure 3.44, the power

of the signal from the RF source, its various frequency multipliers and horn antenna as
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Figure 3.43: The sensitivity (top) and noise (bottom) of the TK detector with respect to
a variety of modulation frequencies, where the chosen modulation frequency of 17 Hz is
highlighted.
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Figure 3.44: Power of signal received by the TK power meter for 26-240 GHz at a distance
of 50 cm from the source with amplification on the doubler-tripler combination. The noise
of the measurements with the TK as described within set-up.

received by the TK head is presented. The integration time was 1 second. The TK head

and the emitter were at a set distance of 50 cm. Each frequency multiplier employed to

achieve the desired range is portrayed as an alternately coloured curve. As expected due

to the nature of multipliers the power of signal is reduced and thus the fundamental fre-

quency band experiences the highest signal power. In order to minimise reflections, the

area in and around the test bench was lined with pyramidal absorber. Furthermore the TK

head was placed at Brewster’s angle with respect to the source, 55.5◦ [121], to minimise

reflections and thus standing waves between source and detector. The distance of 50 cm

from the source was decided upon to ensure the detectors, in particular the SBDs would

receive sufficient signal but would not be saturated.

The TK recorded the amplitude of the signal observed from the RF emitter. Within

the software using the calibration factor, the power of the signal was determined. The TK

was then removed and in its place was put an SBD and its specific horn antenna. This

SBD was also positioned at 50 cm with both the emission and reception horns angled cor-

rectly. The amplitude of the signal received was sent as a voltage to the computer. Using

the power determined by the TK for each frequency band, and signal amplitude actually
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perceived by the SBDs, the sensitivities of the detector diodes could be ascertained.

To produce a more realistic value of sensitivity for each of the detectors and their

corresponding horn antennas, a power density approach was undertaken. This technique

was carried out because the aperture of the TK is large, especially in contrast to the phys-

ical apertures of the individual horn antennas. The power received by the TK from the

RF emitter was expressed in terms of W/m2 with reference to the TK’s aperture. Thus

by working with power densities (W/m2) and sensitivities per area (V/(W/m2)) a more

dependable result was found.

Despite the source and combination of multipliers achieving frequencies higher than

240 GHz, due to the limited range of the amplifier, approximately 20 GHz of the 240 GHz

occurs below the noise level as observed in Figure 3.44. Therefore, this cannot be used

with regards the characterisation and thus the enforced upper limit of the set-up becomes

217 GHz.

The responsivities of the SBDs and their respective horn antenna partnerships as a

function of frequency are depicted below (Figs. 3.45 - 3.50). They have been previously

published by the author et al [92]. In each of the figures, the frequency multipliers and

amplifier combination used to characterise the individual detector and horn antenna part-

nership is shown as well as the true waveguide limits (WG Cut-Off) as opposed to the

industry’s label and also the power amplifier range (AMP range), where applicable. The

true waveguide limits are the fundamental (i.e. TE10) mode cut-off of the waveguide and

the lower cut-off of the frequency of the next mode. The true waveguide ranges are shown

in Table 3.2 for each detector. It must be noted that the sensitivities determined from the

power densities have been calculated for the detector and horn antenna combination in

the forward direction.

DXP22 and its pyramidal horn antenna, SGH22, have the narrowest bandwidth of

the SBD array. It is sold as a 33-50 GHz detector but in truth it can observe 26.36-

52.73 GHz. From Figure 3.45, it can be seen that the sensitivity across the frequency

range of DXP22 and its horn antenna is quite constant [92]. Nevertheless, the detector

is still able to observe signal after the cut-off, albeit erratically. This is unsurprising as

the lower cut-off of the next mode is not a hard cut-off and when dealing with higher

modes it is more complicated to predict what will happen with respect to the power in the
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waveguide.

Figure 3.46 depicts the sensitivity of the DXP12 detector and its SGH12 horn an-

tenna. It is clear to see that there is a gradual decrease in signal observed with respect to

an increasing frequency [92]. What is important to note is the comparable results for both

the data obtained via the doubler (50-75 GHz) and the tripler (75-110 GHz). Similar to

DXP22, the DXP12 still detects signal after the lower cut-off however it is with a much

lower sensitivity per area.

The DXP22, DXP12 and DET08 detectors are all procured from Millitech Inc. It

is usually correct to assume that the diodes used in equivalent models and thus from the

same manufacturer are alike. Hence the sensitivity per area for DXP22 (with SGH22) and

DXP12 (with SGH12) should be comparable but DET08 (with SGH08) could differ. This

is the case. DET08 is a new model by Millitech Inc. and as a result it is likely to differ.

In Figure 3.47, the shape of the curve differs strongly from DXP22 (with SGH22) and

DXP12 (with SGH12) in Figures 3.45 and 3.46, respectively. DET08 and its pyramidal

horn antenna have a peak sensitivity per unit area at 100 GHz.

WR3.4 has a true waveguide range of 173.69-347.38 GHz of which the current

set-up can only probe the lower end. Depicted in Figure 3.49 is the sensitivity per unit

area of this detector and its horn antenna fluctuate. There are two main points of change,

the first is at and after the lower cut-off of the waveguide and then again as a result of

the fall off from the power amplifier [92]. Measurements of the waveguide dimensions

were performed in order to explain the unanticipated results of WR3.4ZBD. Both the

horn and waveguide of the detector were surveyed using a Zeiss AxioVision Optical Mi-

croscope [116]. Between the expected and measured values there existed a 1-5 % error

giving an average of 2.75 %, which is slightly larger than other comparisons of waveg-

uide and horn dimensions. Moreover, the difference in measurement between the horn

antenna’s and detector’s waveguides was 3 % in both dimensions, again larger than other

comparisons. These discrepancies could attribute to variance in the sensitivity per unit

area of WR3.4ZBD and its antenna.

The eighth detector, the quasi-optical detector (QOD), does not make use of waveg-

uides nor horn antennas. It employs a silicon lens to guide the signal into a log-periodic

antenna [123]. The range as stated by the manufacturer of the QOD is 100-1000 GHz.
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Figure 3.45: The sensitivity per unit area for DXP22 and its horn antenna (33-50 GHz).
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Figure 3.46: The sensitivity per unit area for DXP12 and its horn antenna (60-90 GHz).
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Figure 3.47: The sensitivity per unit area for DET08 and its horn antenna (90-140 GHz).
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Figure 3.48: The sensitivity per unit area for WR5.1 and its horn antenna (140-220 GHz).
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Figure 3.49: The sensitivity per unit area for WR3.4 and its horn antenna (220-330 GHz).
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Figure 3.50: The sensitivity per unit area for Quasi-Optical Detector (100-1000 GHz).
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However it must be noted that SBDs are able to see below this 100 GHz as demonstrated

by the DXP22 and even lower but they are also able to probe higher than a 1 THz, usually

in the region of 2 THz. It can be assumed therefore that the limits given by the manufac-

turer are the optimal operating frequencies for the manufactured detector. The silicon lens

is 10 mm in diameter [123] and is thus comparable to the wavelengths at 100 GHz and

below, as 10 mm corresponds to a frequency of 30 GHz. The QOD was subjected to the

output signal of both the tripler and the combined doubler, tripler with power amplifier.

The two set-ups are depicted by two differently coloured curves in Figure 3.50 where the

red tripler signal has an overall higher amplitude with a shape comparable to that pre-

sented in Figure 3.47 for the DET08 with its SGH08. It can be seen in the figure, the

sensitivity per unit area is variable and fluctuates. These fluctuations can be attributed to

the silicon lens being of the same or similar size as the wavelength thus causing standing

waves [92].

The remaining detectors with their corresponding horn antennas (WR2.2 and WR1.5)

and the higher frequencies of already mentioned detectors could not be calibrated in the

described set-up. However by way of providing sensitivity per unit area values and also

as a means of comparison between the sensitivities given by the manufacturer and those

determined by the methods described in this chapter, an inverse calculation was carried

out to determine the remaining detectors.

The reverse determination of sensitivities per area was carried out in order to as-

certain sensitivities per area for the uncharacterised diodes and also to establish how the

results of the method described in this thesis compared with the manual given values.

These values and those determined on the bench are shown in Table 3.6 for each detector

and horn antenna where relevant. The sensitivity values experimentally determined in the

fourth column of Table 3.6 are those used throughout the remainder of the thesis in or-

der to calculate the power received by the SBDs from the beam of synchrotron radiation.

Moreover, in the case of WR2.2ZBD and WR1.5ZBD the sensitivity values used are from

the manufacturer. The higher frequency diodes had not been characterised on the bench

because no relevant source could be attained. Furthermore, it must always be remembered

that the sensitivities presented here are for the detector and its relevant horn antenna in

a forward direction. This contrasts with the sensitivity values given in the detector man-
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uals where the value is only valid for the detector itself. The discrepancies between the

experimentally determined and manufacturer given sensitivity values are due to different

experimental set-ups. In this thesis the detector and its horn in the forward direction were

only investigated and the ‘gold standard’ implemented was the free space TK power me-

ter as against a waveguide Erickson power meter for the manufacturers tests. The values

issued by the company are for the model of the detector (without horn) and not specific

to the individual detector. By using the effective area of a horn antenna, described in

Section 3.3.1 a), one can switch between sensitivities per area (V/(W/m2)) and manual

given sensitivities (V/W ).
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Chapter 4
Experimental Results

Once the detector array was installed at the beamport, experiments were conducted and

data collected. The experiments were both to learn more about the detector array and also

the characteristics of Diamond’s beam in a variety of different beam modes. Throughout

this chapter the analysis of the data captured using the SBD array at the B06 viewport

of the Diamond Light Source is presented and discussed. It is paramount to note that

Figures 4.10 - 4.18, 4.26 - 4.28 and Figure 4.32 are only showing the signal obtained

directly at the revolution frequency of the ring and not the sidebands (from bursting).

The signal observed at the revolution frequency is the steady state emission, while any

variation goes into the sidebands where there is a bandwidth of more than 87 kHz. The

detector is characterised by looking at the steady state. The instabilities are not well

understood and thus looking at the sidebands of data would not be beneficial.

4.1 Reaction Time of the SBDs

To investigate the pulse shape and length detected by an SBD when observing a single

bunch at Diamond a 13 GHz bandwidth oscilloscope with a sample rate of 40 GS/s was

employed. Using this oscilloscope a single bunch as viewed by the WR5.1ZBD (140-

220 GHz) can be seen in Figure 4.1, where it is the raw signal directly from the oscil-

loscope. The length of the pulse can be determined using the x-axis, while the y-axis

depicts the magnitude of the signal as observed by the SBD. Repeated calculations show

that the full-width half-maximum (FWHM) of the bunch as observed by the detector is
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Figure 4.1: A typical signal from the WR5.1ZBD (140-220 GHz) detector by directly
connecting to the 13 GHz oscilloscope.

1.1 ns. Therefore, it is verified that these detectors can operate in a turn-by-turn set-up.

In order to carry out further characterisation tests for the set-up, in particular look-

ing at each SBD of the array simultaneously, an eight-channel 16 bit 1 GHz bandwidth

oscilloscope was employed. Each of the SBDs were directly terminated into this oscil-

loscope which provided 50 Ω input impedance, thus the SBDs were in a low impedance

set-up allowing for faster speed at the cost of lower sensitivity and the cable capacitance

inconsequential. The lower impedance reduces the magnitude differences between R and

C as discussed in Section 3.2 a), resulting in the VR becoming closer to the value of Vin.

As it is a 16 bit oscilloscope, signals below a millivolt could be determined however for

a single shot or live data capture this could only be seen during a burst. In order to ob-

serve such low voltages when not bursting, averaging was carried out. Using the 1 GHz

eight channel oscilloscope, there was worry that the pulse from each detector was being

stretched. However when tested with an oscilloscope of much wider bandwidth (13 GHz)

it could be seen that the pulse remained the same as before and thus concluded that the

original oscilloscope had not been stretching the pulse. Moreover, it was deduced that the
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4.1. Reaction Time of the SBDs

cables were not altering the pulse shape either and that it was a true artefact of the diode

itself. The diode has a significant shape of a sharp rise and a slow decay which can be

seen in Figure 4.1.

This characteristic slow decay results in the diode not returning to the noise floor

when observing between bunches. It had been noticed that when a train with consecu-

tively filled buckets was present, the detector array did not show the breaks between the

bunches. The diodes almost reached the noise floor when the same train had only every

second bunch filled and definitely depicted the empty buckets when every fourth bucket

was only occupied. Figures 4.2 and 4.4 illustrate the signal observed by all eight SBDs

of the array, respectively when a 200 bunch continuous train was present and then with

a train of 50 bunches where there are three empty bucket between each filled one. They

show which buckets are filled and accordingly the amplitude of the signal observed by

each detector. From these figures a slight rise time discrepancy can be observed, espe-

cially for the QOD, where upon initially observing signal the diode’s response does not

instantly jump to the true reading. This rise time disparity is shown for all detectors, to

some measure in a screenshot in Figure 4.6 taken directly from the 1 GHz oscilloscope.

Here the x-axis represent time (100 ns/div or 20 ns/div) and the y-axis the amplitude of the

signal detected by each of the SBDs (1 mV/div or 200 µV/div). The left hand side sub-

figures depict in descending order detectors 33-50 GHz (yellow), 90-140 GHz (magenta),

220-330 GHz (cyan) and 500-750 GHz (green), while the right show the 60-90 GHz

(white/green), 140-220 GHz (purple), 330-500 GHz (red) and 100-1000 GHz (orange).

Two curves are shown for each detector with the top curve (ZX) representing a zoomed

version of the lower (CX) in order to distinctly see the delay in rise time. However this

rise time discrepancy is outweighed by that of the decay.

Figures 4.3 and 4.5 display data from the same capture as Figures 4.2 and 4.4,

however the view is focussed in on the end of the bunch train in order to better observe.

Illustrated in these zoomed figures (Figs. 4.3 and 4.5) ringing can be seen after the bunch

trains cease, nevertheless the diodes are actually observing real signal here. As the ring

is filled with minimal charge and the oscilloscope is sensitive, the latter is depicting the

noise in the ring as bunches. In truth, this noise is actually buckets that have been filled

but unintentionally. If operating at higher charge, the apparent ringing would be deemed
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grossly insignificant. The two congregations of large spikes in Figures 4.2- 4.5, are due

to cross talk from the external trigger of the revolution frequency of the ring. The period-

icity of the 120 bunches is attributed to the booster and the filling technique employed at

Diamond.

4.2 Bunch-by-Bunch Versus Turn-by-Turn

In order to determine the disparity, if any, between turn-by-turn observations and bunch-

by-bunch, the eight detectors were terminated directly into the 1 GHz oscilloscope de-

scribed above in Section 4.1. Operating the oscilloscope, a variety of different data sets

were obtained including two bunch data where two buckets side-by-side were each filled

with one bunch. Figure 4.7 shows the bunches at each revolution of the ring (x-axis) for

20 ms, where the positions of the recorded peak signals are at the 6th and 11th position,

which are arbitrarily chosen place names. As a result, each of the two bunches can be seen

as a band in the figure. The bursting behaviour of the two bunches shown in Figure 4.7

as observed by the same detector (140-220 GHz) is depicted in Figure 4.8. Throughout

the data set of 20 ms, the bursting can be seen and is expected to be irregular and fluc-

tuating, with amplitude variations of seven fold. While the data was being captured, it

could be assumed that the bunches were unaffected by the other and behaved as individ-

ual bunches with no influence over the other. This assumption was later confirmed during

analysis whereby cross-correlations indicated that there was no relationship between the

neighbouring bunches. Cross-correlation of a discrete function can be defined as follows,

rab = a(t)⊗b(t) =
+∞

∑
−∞

a∗(t)b(t + τ) = FFT (a) · iFFT (b) (4.1)

where a and b are discrete functions, a∗ is the complex conjugate of a, t is time and τ

is the displacement. The correlation of the two neighbouring bunches was not observed.

This cross-correlation or lack thereof is presented in Figure 4.9, where a value of one (on

the y-axis) would describe full correlation. The majority of the data show a correlation

close to zero increasing to just above 0.1 at the most correlated point of these two burst-

ing data sets. It can be concluded that due to the low values of correlation (0-0.1) the

91



4.2. Bunch-by-Bunch Versus Turn-by-Turn

0 200 400 600 800 1000 1200

−2

0

2

4

6

8

10

12

x 10
−4

Buckets

A
m

pl
itu

de
, V

 

 

33−50GHz

60−90GHz

90−140GHz

140−220GHz

220−330GHz

330−500GHz

500−750GHz

100−1000GHz

Figure 4.2: A continuous train of 200 bunches in low-alpha mode (α = −4.5× 10−6)
averaged over 1000 sweeps. For a clearer view, the data has been staggered across the x-
and y-axes.
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Figure 4.3: A zoomed image of the above figure, where all data has been aligned to (0,0),
in order to highlight the signal observed after the continuous 200 bunch train and show
that the signal does not decay adequately between bunches.
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Figure 4.4: A multi-bunch fill of 50 bunches with three empty buckets between each filled
bucket in low-alpha mode (α = −4.5×10−6) averaged over 1000 sweeps. For a clearer
view, the data has been staggered across the x- and y-axes.
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Figure 4.5: A zoomed image of the above figure, where all data has been aligned to
(0,0), in order to highlight the signal observed after the 50 bunch train, the blips from the
external trigger and to show the signal decays to zero between bunches.
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Figure 4.7: The two neighbouring bunches in the storage ring for each revolution as
viewed by the 140-220 GHz detector during low-alpha mode (α =−4.5×10−6).
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Figure 4.8: The bursting observed by the 140-220 GHz WR3.4ZBD for low-alpha mode
(α =−4.5×10−6) with two neighbouring bunches during the data capture of 20 ms.
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Figure 4.9: The correlation of the two neighbouring bunches with data collected by the
WR3.4ZBD during low-alpha mode (α =−4.5×10−6).

two bunches are independent of each other. Additionally this is indicated by the TMBF

(Transverse Multi-bunch Feedback System) implemented at Diamond. The TMBF sys-

tem acts on each bunch individually [124] in order to damp instabilities below 200 MHz.

As the bunches are independent of one another, there is no need for bunch-by-bunch data

acquisition.

Once the experiment with the oscilloscope was concluded, the original data ac-

quisition system was re-implemented. Thus the eight detectors were connected to their

individual voltage amplifiers with high input impedance and their signals fed into the

multi-channel simultaneous digitiser.

4.3 Single Bunch Versus Multi-Bunch Fill

Each SBD is able to observe each electron bunch but is unable to differentiate between

the bunches. As a result of this, single bunch mode is usually preferred. Henceforth,

data were routinely and most commonly obtained when the ring was operating in single
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bunch mode. However it must be remembered that SBDs are non-linear, continuous-

wave devices and are best operated within their square-law region (Section 3.3.1). With

respect to the data presented here, when a diode is in the square-law region (meaning

quadratic of field) it is detecting linearly. This means that the relationship between power

observed by the SBDs and the bunch current will be depicted as a quadratic relationship

if the radiation is coherent, or a linear dependence if the radiation emitted is incoherent.

Ergo, single-bunch mode may not be most applicable for these detectors and would most

likely push the diodes out of the square-law, into the linear regime. This of course should

only occur if the power is high enough to do this. Moreover in single bunch mode these

higher powers could be reached sooner than in multi-bunch mode. As a result multi-

bunch fills were investigated and a comparison between the two is aired throughout this

section. Data have been taken in both multi-bunch and single bunch mode and under a

variety of machine conditions most notably ‘normal user mode’ and ‘low-alpha mode’.

In each case current ramps were carried out with the bunch current starting in the noise

floor of the detectors and slowly increased to and beyond the instability threshold. In the

forthcoming figures, only the data captured at the revolution frequency (533.820 kHz)

is depicted. As described at the beginning of the chapter, the signal at 533.820 kHz is

the steady state emission while the signal from the rest of the bandwidth is the variation

from steady state. The detector can only be characterised by looking at the steady state

as too little is known about the activity in the sidebands. Looking at the figures within

this section, the curve patterns remain the same throughout each mode. That is to say

in normal mode, the detector observing the most to least power goes 100-1000 GHz,

90-140 GHz, 60-90 GHz, 220-330 GHz, 330-500 GHz, 33-50 GHz, 140-220 GHz and

finally 500-750 GHz detectors, while in low-alpha THz mode the order is 100-1000 GHz,

220-330 GHz, 330-500 GHz, 90-140 GHz, 60-90 GHz, 500-750 GHz and a tie between

33-50 GHz and 140-220 GHz detectors. In each case, this can be attributed to what is

observed by the diodes but then converted into power via the calibration factors as well as

the location for each of the detectors in the array.
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4.3.1 Single Bunch

As discussed above, a single bunch fill was assumed to be the correct choice for the SBD

array because the discernment between bunches would be unavailable (and also unnec-

essary), thus data were taken in single bunch low-alpha mode (α = −4.5×10−6). If the

diodes were observing sufficient signal to remain within the square-law region, a current

ramp would result in the power of CSR quadratically proportional to the bunch current.

Figure 4.10 illustrates the signal observed by the detector array in terms of Watts with an

increase of bunch current. A current ramp was carried out and the signals observed by

the individual SBDs of the array are portrayed as different colours in the figure. Unsur-

prisingly the QOD (peach) reports the highest power thus denoting the most amount of

signal detected, this is due to its wide bandwidth and lack of hard cut-off (waveguide).

The next curve representing the detector observing the second highest amount of power

is the 220-330 GHz (magenta) detector and is approximately two orders below that of the

QOD’s curve. The order of the coloured curves indicate the strength of signal observed

across the variety of frequency bands. As expected and depicted in Figure 4.10, the result

was not quadratic but decidedly linear. That is to say with an increase of bunch current,

the power of signal observed by the SBDs followed a linear trend. A linear relationship

should imply that the electron beam is emitting incoherently, however it is known that

this cannot be true because the frequency bands of the detectors ensure they can only be

observing in the GHz-THz region which is only created as coherent radiation at Diamond.

The linear dependence occurred because even though the average power was kept low the

peak power was too high and drove the diodes into the linear regime as outlined in Sec-

tion 3.3.1. Consequently, to reduce the peak power a multi-bunch fill with an overall low

beam current has been implemented. With this machine set-up, the square-law region of

the diodes can be probed and the transition into the linear regime has been recorded also.

It must always be remembered that SBDs are continuous wave devices by nature and thus

depositing all the power from a single bucket within a couple of picoseconds, does not

agree with it. This may seem at odds with detecting CSR bursts but the initial aim is to

characterise the detector array and that is done with the steady state emission from the

signal at the revolution frequency. Moreover when characterised and in use, bursting can

still be seen when the overall peak power has been decreased and though the beam current
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remains low, the bunch current can still be exercised. Multi-bunch could be considered

more similar to a continuous wave than single bunch.

The power of signal observed by each of the eight SBDs during a bunch current

ramp where the machine was in normal mode conditions with a single bunch fill is pre-

sented in Figure 4.11. With regards normal mode single bunch, the signal was primarily

quadratic with respect to the current and at high bunch currents, became more linear. The

figure shows this relationship, which is in keeping with the behaviour of SBDs, with an

increase of input power the diodes begin to move into the linear regime. Nevertheless,

the transition from quadratic to linear is not as smooth or gradual as it ought to be and

this is no doubt due to the high peak power. It can be seen that this transition behaviour

is not adhered to by the 500-750 GHz (grey) and QOD (peach) detectors, instead they

undergo a large step-change at approximately 45 µA. This and other features of the sev-

enth and eighth detectors are discussed in Section 4.9. All eight detectors observed a

step-change in signal at approximately 85 µA, where the 33-500 GHz detectors noted an

increase in signal while the 500-750 GHz detector (grey) and the QOD (peach) detected

a decrease. As the diodes are not operating in their ideal region, the observations can not

be definitively explained. Furthermore, normal mode current ramps too benefited from a

multi-bunch fill.

4.3.2 Multi-Bunch

When using a multi-bunch fill, the bunch current must be kept low because if too high,

the SBDs might again be driven into the linear regime. Furthermore, the lower in current

reached the longer the current ramps become, allowing for as much data as possible to be

captured. In normal user optics, it is straightforward to inject small amounts of current

into the ring during a current ramp. A half-fill was used, meaning 468 buckets were filled.

Nevertheless, reaching low enough currents in low-alpha mode is more arduous. The

method implemented for low-alpha mode was to ramp up all the magnets as if injection

was occurring but not fire the gun. This resulted in dark current being trickled into the

storage ring. The approach was slow and meant that there was no control over the amount

of bunches being filled. In order to reach higher currents in this ‘ultra-low’ current ramp,

another method was also employed, by changing the amount of charge generated by the
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Figure 4.10: Signal observed at the revolution frequency of the ring via all eight channels
of the spectrometer for Low-Alpha THz Mode (α = −4.5× 10−6) with a single bunch
fill during a current ramp. A linear dependence can be observed.
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Figure 4.11: Signal observed at the revolution frequency of the ring via all eight channels
of the spectrometer for Normal Mode (α = 1.7×10−4) with a single bunch fill during a
current ramp. Primarily a quadratic dependence is shown, with a tendency towards linear
at higher bunch currents, as expected.
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electron gun. This allowed for real current to be injected but the amount of current injected

was severely reduced.

There are two interpretations on how to have a multi-bunch filling pattern in a stor-

age ring. The first method is the most conventional approach at Diamond, whereby the

buckets filled are all in one block called a train. The other method spreads out the individ-

ual bunches throughout the ring either individually or combined in a collection of smaller

trains. Data obtained in multi-bunch mode were translated into single bunch mode by

dividing across by the relevant number of bunches. It was also assumed that the ampli-

tude of the signal is proportional to the number of bunches and thus the amplitude of the

observed signal was also divided across by the relevant number of bunches. This assump-

tion was shown to be correct as data captured with various multi-bunch fill patterns once

‘translated’ into single bunch data were equivalent to each other.

Presented in Figure 4.12 is the power of the signal as seen by the individual detectors

of the SBD array, represented by a different colour, in normal mode with a multi-bunch

fill during a current ramp. Six of the eight detectors (33-500 GHz) note a quadratic sig-

nal. The 500-750 GHz detector (grey) and the QOD (peach) do not appear to detect any

significant signal and remain flat. It is assumed that this is because the diodes have not

‘turned on’ due to low levels of signal. This is in keeping with what is seen in figures,

like Figure 4.14. Section 4.9 describes the behaviour of the higher frequency detectors in

contrast to that of the 33-500 GHz detectors. In Figure 4.12, four of the curves are wide

while the other four are narrow. The 60-90 GHz (green), 90-140 GHz (red), 220-330 GHz

(magenta) and 330-500 GHz (gold) detectors begin with a wide curve but become more

refined with an increase in bunch current and thus power detected. This implies that at a

particular current only a restrictive range of power of the signal occurs. This is in contrast

to the wide bands of the 33-50 GHz detector (blue) and the 140-220 GHz (cyan), which

imply many more signal strengths are seen for a particular bunch current. It could be as-

sumed that with the increase in bunch current, the curves of the other detectors would also

narrow, but this does not seem to be the case as demonstrated by Figure 4.14. Moreover,

these wide curves are only witnessed in normal mode. For the normal mode multi-bunch

data (Fig. 4.12), both the QOD and 500-750 GHz detector observe no signal, a discussion

of which is outlined in Section 4.9.
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The relationship between an increase of bunch current and the power detected by

the SBD array is also shown by Figure 4.13. However, as the data for this figure were

captured during low-alpha THz mode, a variety of filling techniques were employed in

order to achieve the necessary bunch currents. These different filling methods are depicted

as different shapes. From these two figures (Figs. 4.12 and 4.13), it is clear to see that all

of the detectors which observe a signal behave quadratically. Consequently, this means

that the diodes were operating within the square-law regime and therefore the diodes were

not observing excessive current to be driven into the linear detection regime as described

in Section 3.3.1. Once again, the QOD detector (peach) appears to detect more power

than the others, which is a direct result of its large bandwidth. The remaining detectors

are grouped closer together, more than two orders of magnitude lower. Distinctly in the

case of Figure 4.13, above 10 µA, some of the detector bands display an undulating signal.

This is especially true of the 33-50 GHz (blue), 140-220 GHz (cyan) and 500-750 GHz

(grey) detectors and the undulation increases with bunch current.

As expected, in both the modes, the relationship between the bunch current and sig-

nal power is clearly quadratic. It is a good time to remember that the signal shown in this

section’s figures is at the revolution frequency of the ring i.e. the steady state emission,

and when the SBDs are operating in the square-law region, the diodes are detecting lin-

early. Additionally, for Figure 4.13, the relationship becomes more linear as the diodes

are being driven from the square-law region into the linear regime due to the CSR emis-

sion increasing with bunch current in low-alpha THz mode. The pattern is, as expected a

quadratic dependence, then the changeover and finally a linear dependence is observed in

the figure.

a) Multi-Bunch Train

In the case of normal mode, the ring was filled with 468 bunches with the current ramp

converted to single bunch values. The results of this data capture are illustrated in Fig-

ure 4.14, where the bunch current is on the x-axis and the power of the signal as seen

by each of the eight SBDs on the y-axis. Again, in order to achieve the desired range of

bunch currents different filling methods were employed and are shown as the variety of

different shapes. A half-filled ring was used in order for the lock-in amplifier to function
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Figure 4.12: Signal observed at the revolution frequency of the ring via all eight channels
of the spectrometer for Normal Mode with a multi-bunch fill during a current ramp. A
quadratic dependence can be observed.
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Figure 4.13: Signal observed at the revolution frequency of the ring via all eight channels
of the spectrometer for Low-Alpha THz Mode with a multi-bunch fill during a current
ramp using a variety of different filling methods, where each is shown as a different shape
and the changes between the quadratic and linear regimes are marked.
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because if the entire ring was filled, the acquisition system would not be able to lock-in to

the revolution frequency of the ring. The lock-in technique requires a change of pattern

with each revolution. With regards the low-alpha mode, for some of the filling methods

undertaken to achieve small injection currents there was no control over the number of

buckets filled. This instead was determined by the parameters of the booster, which has

120 buckets. As described above, Figure 4.13 depicts the signal observed at 533.820 kHz

by all eight detectors during a multi-bunch train current ramp in low-alpha THz mode.

b) Multi-Bunch with Different Fill Patterns

During low-alpha mode when the ring was filled with bunches not in one continuous

train, a quadratic dependence between the bunch current and power is noted by the SBDs

as portrayed in Figure 4.14 for normal mode and Figure 4.15 for low-alpha THz mode.

Figure 4.15 shows that when the bunch current was increased in a ramp the SBDs detected

a quadratic increase in the power of the signal and thus the emission was CSR. A variety

of different filling patterns were used in this investigation, where half the ring was always

left with empty buckets. Each filling pattern is depicted with a different shape in Fig-

ure 4.15. These filling patterns were 100100..., 111111111000000000..., 111000111000...

and 100000100000...., where ‘1’ signifies a filled bucket and ‘0’ an empty one. The signal

obtained by each of these alternative filling patterns gave very similar results, shown by

the agreement between the curves representing the various filling patterns. Though the

data are primarily quadratic, the changeover into the linear regime is noticeable as the

detectors are exposed to excessive power.

Furthermore in low-alpha mode Figures 4.16 and 4.17 also show the relationship of

power observed by the detector array with an increase in bunch current, where the former

displays data from all eight channels and the latter just the observed power from three

selected SBDs for a clearer view. These two figures display not just multi-bunch filling

patterns both in a continuous train and not, but also include true single bunch data for

comparison. As can be seen in both Figures 4.16 and 4.17, these alternative spread out

multi-bunch patterns correspond with the train-filled multi-bunch patterns (dots, stars and

squares), but contrast with true single bunch data (open circles). The single bunch data

follows a linear trend unlike the quadratic relationship depicted by data taken in multi-
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Figure 4.14: Signal observed at the revolution frequency of the ring via all eight channels
of the spectrometer for Normal Mode with a multi-bunch fill during a current ramp for a
variety of different filling methods where each method is depicted as a different shape. A
quadratic dependence can be observed.
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Figure 4.15: Signal observed at the revolution frequency of the ring via all eight channels
of the spectrometer for Low-Alpha THz Mode during a current ramp for a variety of
different non-train filling patterns where each pattern is given a different shape.
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bunch mode. The disparity is most obvious at lower currents but as the current increases

and the multi-bunch data are driven out of the square-law region, the single bunch data

and multi-bunch data begin to match. This is expected, because in single bunch mode the

diodes were subjected to too much power, as described in more detail in Section 4.3.3.

Despite the contrast between the multi-bunch and single bunch data, the order of the

detectors observing the most to the least power is still the same.

4.3.3 Comparison Between Single Bunch & Multi-Bunch Fills

When the true single bunch data was compared with the multi-bunch train data that had

been translated into single bunch, the ‘translated’ data did not completely agree with

data from true single bunch mode which is apparent in Figures 4.16 and 4.17, as the

relevant data sets did not overlap adequately. It emerged that the peak power is most

important because SBDs prefer to operate within the square-law region and are by nature

continuous wave devices, thus high peak powers of signal being given to them in only a

few picoseconds drives them into the linear region of detection. The significance of the

detector rise-time or more specifically the decay time is inherent to the diode itself. Using

the oscilloscope, it was seen that they recorded no signal between bunches when there was

a couple of empty buckets present (Section 4.1). Moreover, the 1 GHz oscilloscope was

not stretching the pulse shape. This was confirmed using the 13 GHz fast oscilloscope,

also verifying that the pulse shape was true to the diode and not affected by the cabling

either. The root for the discrepancy between multi-bunch of any method and single bunch,

relates back to the peak power. It must be reiterated that normal mode single bunch does

not suffer as greatly. That is to say normal mode single bunch and normal mode multi-

bunch are more similar to each other than low-alpha single bunch and low-alpha multi-

bunch as shown by comparing Figure 4.18 (normal mode) and Figure 4.16 (low-alpha

mode). Both of these figures display the signal observed by the SBDs for an increase

of bunch current for multi-bunch and single bunch filling patterns in the case of normal

mode or low-alpha mode, respectively. Moreover, the former only depicts multi-bunch

data when in one continuous train. The boost in signal at ∼1.5 mA can be attributed to

the instability threshold. Though the multi-bunch and single bunch data for normal mode

do not completely agree, there are strong similarities including the power levels detected
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Figure 4.16: Comparison of true Single Bunch (open circles) and Multi-Bunch Train fill
(dots, stars and squares) for all eight detectors during a current ramp in Low-Alpha THz
Mode, where only the signal from the revolution frequency is depicted.
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Figure 4.17: The signals depicted in the above figure observed by only three detectors for
a clearer view, Low-Alpha THz Mode (α =−4.5×10−6)where only the signal from the
revolution frequency is depicted.
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Figure 4.18: Comparison of true Single Bunch (open circles) and Multi-Bunch Train fill
(dots, stars, squares, crosses) for all eight detectors during a current ramp in Normal
Mode, where only the signal from the revolution frequency is depicted. For a clearer
view, the signals shown above are only from four detectors.
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and the relationship with the bunch current. It is clear to see that the true single bunch

signal observed by the 500-750 GHz detector does not agree as well with the multi-bunch

set compared to the other detectors, which is further mentioned in Section 4.9.2.

Low-alpha THz mode, which employs α =−4.5×10−6, was used in these investi-

gations primarily because the greatest discrepancies between true single bunch and ‘trans-

lated’ single bunch data was observed during low-alpha. Due to the nature of low-alpha,

at lower currents stronger signals are more achievable than normal mode and low-alpha

is more easily perceived by all detectors than normal mode.

4.4 Growth of the Beam

As a result of the three-way motion stages upon which the detector array was secured,

raster scans in the xy-plane were carried out at four fixed longitudinal positions. These

positions were decided upon by the limit switches of the longitudinal axis of the stage:

z=0 mm, z=-100 mm, z=-225 mm and z=-330 mm, where z=0 mm is the location at which

the detector array is closest to the source but still a distance of 730 mm from the silica

window and thus z=-330 mm when farthest. By executing scans in several longitudinal

positions, the growth of the beam from the beamport can be shown. Due to physical

restrictions at certain longitudinal positions the detector plate was not always able to scan

the full extent of the xy-plane and thus zero-padding was used.

The growth of the beam as seen by each detector for normal user mode and the

two varieties of low-alpha mode are displayed in Figures 4.19- 4.23. Each sub-figure that

makes up an entire figure shows the peak power observed by a detector at a particular

position of the SBD array in the xy-plane denoted in terms of millimetres. This results

in the overall beam shape that is seen by the 33-50 GHz detector in normal mode and all

SBDs in both low-alpha modes. Each row of sub-figures represents the observations of

one detector in the xy-plane at the four longitudinal positions. The first figure (Fig. 4.19)

depicts the change of the beam size for the 33-50 GHz SBD as it moves with the array fur-

ther from the beam source during normal user mode. Only the first detector (33-50 GHz)

observes signal during normal mode and hence only it is shown. The beam growth for

low-alpha THz mode is shown in Figures 4.20 and 4.21. The final two figures (Figs. 4.22
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4.4. Growth of the Beam

and 4.23) are relating to the growth of the beam for all eight channels of the SBD array

for low-alpha pulse mode.

All eight detectors observe the low-alpha mode signals at every longitudinal posi-

tion, contrary to the normal mode which is only clearly seen by the 33-50 GHz detector.

These observations are expected because low-alpha mode is intended to result in CSR

with wavelengths sensitive to the SBDs. Moreover, during normal mode the CSR pro-

duced is damped and shielded by the vacuum pipe and minimal CSR is generated in the

millimetre regime.

In the band 33-50 GHz, the beam seen is as globular of Gaussian shape, exception-

ally smooth during both THz and pulse low-alpha modes. Despite the lower operating

currents of the low-alpha modes (10 mA and 20 mA), the peak power is much larger than

during normal mode (300 mA). This is as a result of low-alpha modes being designed for

THz emission by ensuring no damping of the CSR, as against normal mode where the

CSR is shielded by the vacuum pipe. The 60-90 GHz detector also reports a globular,

Gaussian shape in both low-alpha modes, though it is smaller by 50%.

Each of the detectors appear to have their own detection patterns, this can be ex-

plained by two reasons. The first is the design of the detector and its horn antenna. The

three 33-140 GHz detectors are manufactured by Millitech Inc. and all have pyramidal

horn antennas. The first two detectors observe a Gaussian distribution during the raster

scans, while the 90-140 GHz detector displays a contrasting shape with two peaks. This

can be explained by the model of the detector, whereby the 90-140 GHz detector is sold

as a ‘new and improved’ model compared to the older model of the 33-50 GHz and 60-

90 GHz detectors. The remaining waveguide detectors (140-750 GHz) are all made by

VDI with diagonal horn antennas, except the 140-220 GHz detector which has a conical

horn. The theory that the different detector-horn combinations are affecting the results

cannot be qualitatively proved as only one type of detector and associated horn antenna

was available for each frequency band. Nevertheless, the three horn antenna shapes have

very similar detection patterns of a large lobe with small minor lobes.

The second reason and most credible cause is the interaction between the radiation

and the inside of the beamport. The beamport contains two significant apertures - a verti-

cal aperture of 11.5 mm and a horizontal aperture of 20.7 mm. In Section 3.1.4, the effect
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Figure 4.19: The signal observed during a raster scan at four various longitudinal dis-
tances from the source during normal user mode user run with 300 mA for the 33-
50 GHz detector.

of the apertures within the beamport are outlined. The difference between the 33 GHz

radiation (Fig. 3.11) and the 220 GHz radiation (Fig. 3.14) at the viewport demonstrates

how differently the two frequencies behaved in the beamport. This gives proof that each

of the detectors will observe different patterns because the radiation to which they are

sensitive will have interacted differently with the beamport. Of course, the overall beam

radiation (including mode of machine) will also have an impact combined with the detec-

tor and its horn antenna.

Internal bunch information can be gleaned from the raster scans also. The lower

frequencies represent the bunch as a whole while the higher frequencies can report on the

internal happenings of a bunch. For the detectors 220-750 GHz, it appears that patterns

of peak powers observed could be solely due to diffraction, this has been shown not to be

the case [125]. In the higher frequencies, the bursts from the micro-bunches can be seen

on the raster scans as well as the effects from the apertures in the beamport (Figs. 3.11

and 3.14).

4.5 Spectral Power Density

Not only were the raster scans, described in Section 3.2.3, insightful for the growth of

the beam and optimal positioning of the detector array, these scans have provided the
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Figure 4.20: The signal observed during a raster scan at four various longitudinal dis-
tances (z=0, -100, -225 -330) from the source during B22 low-alpha THz mode user
run with 10 mA for the 33-220 GHz detectors (33-50 GHz top, 60-90 GHz middle top,
90-140 GHz middle bottom, 140-220 GHz bottom).
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Figure 4.21: The signal observed during a raster scan at four various longitudinal dis-
tances (z=0, -100, -225 -330) from the source during B22 low-alpha THz mode user
run with 10 mA for the 220-1000 GHz detectors (220-330 GHz top, 330-500 GHz mid-
dle top, 500-750 GHz middle bottom, 100-1000 GHz bottom).
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Figure 4.22: The signal observed during a raster scan at four various longitudinal dis-
tances from the source during I06 low-alpha pulse mode user run with 20 mA for the
33-220 GHz detectors (33-50 GHz top, 60-90 GHz middle top, 90-140 GHz middle bot-
tom, 140-220 GHz bottom).
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Figure 4.23: The signal observed during a raster scan at four various longitudinal dis-
tances from the source during I06 low-alpha pulse mode user run with 20 mA for the
220-1000 GHz detectors (220-330 GHz top, 330-500 GHz middle top, 500-750 GHz mid-
dle bottom, 100-1000 GHz bottom).
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spectral power density of the beam. During different varieties of user runs carried out at

Diamond, raster scans were executed. These scans could then be used to determine the

spectral power density for each user mode. Data observed solely at the optimal location do

not give an accurate enough picture as only one section of the beam is perceived. Hence,

the spectral powers are gathered via raster scans where the whole beam is captured.

The spectral power densities are displayed in Figure 4.24 for normal mode with

300 mA, and the two varieties of low-alpha mode at Diamond, THz mode and pulse mode

at 10 mA and 20 mA, respectively. The power density is shown for each of the modes as

seen by the seven detectors (33-750 GHz) with respect to the central frequency of their

true waveguide range. Two versions of low-alpha pulse mode are depicted because during

one of the pulse mode user runs only one storage ring RF cavity (rather than two) was

functional at Diamond and thus the ring was operated at a lower cavity voltage. Due to

the lower cavity voltage of 1.7 MV, usually during low-alpha modes the combined voltage

is 3.4 MV, the bunches were not as compressed as usual (Section 2.3). This gives rise to

longer bunch lengths and a reduction in the amount of CSR produced compared to usual

low-alpha pulse mode. On the streak camera, the pulse length for low-alpha pulse mode

with one RF cavity was measured to be 4.2 ps [125], which is almost twice larger than the

usual 2.4 ps zero current bunch length. The green curve in Figure 4.24 corresponding to

the normal user mode displays a rise in power density for the seventh detector. It is known

that the beampipe from B06 through which the radiation travels to the SBD array is not

optimised for millimetre nor sub-millimetre wavelengths as presented in Section 3.1. It

was considered that the limiting 11.5 m vertical aperture could allow for radiation in

the 500-750 GHz band be passed through unhindered by the aperture in contrast to the

other frequencies and this could account for the rise in power density in this band [126].

However, this hypothesis cannot be true as it is not supported by the low-alpha mode

data. Despite this unexplained rise, it implies that the bunch distribution is not Gaussian

as expanded upon in Section 4.9.2 [126].

It is expected that all low-alpha mode cases experience a higher power density [126]

as low-alpha modes are designed to compress the bunches leading to CSR. Furthermore,

since the SBDs are sensitive to mm wavelengths, accordingly they observe more activity

at these wavelengths. As anticipated, low-alpha THz mode achieves the highest spectral
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4.6. Ratios Between Neighbouring Channels

power density, due to the severe squeezing of the bunches and the bunches having high

charge densities, thus resulting in MBI, collectively shown in Figure 4.24.

4.6 Ratios Between Neighbouring Channels

Despite the channels being treated separately and advertised with the stated frequency

bands, it is known and has been discussed within this thesis (Section 3.3.1) that true fre-

quency bandwidths are dictated by the waveguide dimensions themselves. Taking the

frequency bandwidths as the hard cut off at the T E10 mode and lower cut off of the fre-

quency of the next mode, there are overlaps between the different neighbouring detectors

(Table 3.2).

In Figure 4.25, the ratios of adjacent detectors are depicted for a 47 bunch train in

low-alpha mode (α =−4.5×10−6), whereby the sensitivities per area and effective aper-

tures of each detectors are considered. It is clear to see that second (DXP12) and third

(DET08) detectors have a steady relationship as well as the fifth (WR3.4ZBD) and sixth

(WR2.2ZBD), with the former pairing having a ratio nearest unity. DXP12 and DET08

are both supplied from Millitech Inc., nonetheless DET08 is of a newer ‘improved’ de-

sign. The remaining four combinations of DXP22 and DXP12, DET08 and WR5.1ZBD,

WR5.1ZBD and WR3.4ZBD, WR2.2ZBD and WR1.5ZBD show a growth (or decline)

at lower currents but once above approximately 30 µA, where bursting occurs, the ra-

tios level out. This incline can be attributed to the signals becoming greater than each

detector’s noise floor. The largest ratio (magnitude) is achieved by the WR5.1ZBD and

WR3.4ZBD detectors which can also be determined across all low-alpha mode current

ramps by eye, for example Figure 4.16.

4.7 Effect of the RF Voltage

As described in Section 2.3, the combined RF cavity voltage affects the bunch size; the

natural bunch length is inversely proportional to the
√

Vr f . It is known that by reducing

the size of the electron bunches, the emission of CSR can occur or the onset of MBI also

resulting in emission of CSR, hence these effects can be brought about by altering the
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momentum compaction factor, the RF voltage or both. In this section, the data obtained

for a variety of different RF voltages for normal mode (α = 1.7× 10−4) with a single

bunch is presented.

Figures 4.26 and 4.27 depict the signal observed by the detectors with a rise of

bunch current during normal mode single bunch conditions. These current ramps were

taken at four different values of the combined RF cavity voltage 2.2 MV, 2.5 MV, 3.0 MV

and 3.4 MV, each represented by a different shape dots, squares, stars and crosses, cor-

respondingly. From these figures, it can be seen that with an increase in combined RF

cavity voltages the signals observed by the SBDs increase. The reason for this growth is

because with smaller bunches, the possibility of the wavelength of radiation being com-

parable to the size of the bunch is more probable, thus allowing for increased amounts

of CSR being radiated from the viewport. Also, by decreasing the bunch size, the bunch

charge density can increase and if it goes beyond the threshold value, MBI occur leading

to bursts of CSR. It is also observed that the higher the bunch current, the less distinction

there is between the four different cavity voltages. It can be assumed that the reason for

this is because once the bunch charge threshold has been surpassed, MBI is dominant.

The signals displayed in Figures 4.26 and 4.27 are accompanied by quadratic and

linear lines in order to guide the eye. Each of the detectors especially for DXP22 (33-

500 GHz), follow somewhat of a quadratic relationship between power and current, how-

ever on approach of the higher bunch currents a more linear dependance is achieved. It

must be emphasised that these quadratic and linear relationships are not clear cut. The

reason for this can be put down to the fact that the data was taken in true single bunch

mode. In Section 4.3, the debate between single bunch and multi-bunch filling patterns

was aired and though it was concluded that a lower overall peak power was paramount, it

has to be remembered that low-alpha mode benefits greatly from multi-bunch and while

normal mode does too, not to the same extent.

4.8 Decay in Low-Alpha Mode

When the SBD array was composed of only seven detectors, collectively covering a range

of 33-750 GHz, low-alpha decay investigations were carried out. The ring was set with
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Figure 4.26: Comparison of different RF cavity voltages for SBDs 33-50 GHz, 60-
90 GHz, 140-220 GHz and 220-330 GHz under Normal Mode Single Bunch conditions
where the signal observed at the revolution frequency of the ring is displayed.
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Figure 4.27: Comparison of different RF cavity voltages for SBDs 90-140 GHz, 330-
500 GHz, 500-750 GHz and QOD under Normal Mode Single Bunch conditions where
the signal observed at the revolution frequency of the ring is displayed.
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Figure 4.28: A comparison between a current ramp using injection (squares) and current
decay using collimators (dots) for single bunch low-alpha mode (α =−1.4×10−5) where
the combined RF cavity voltage is 4 MV and the signal displayed was observed at the
revolution frequency of the ring.

a comparatively ‘large’ momentum compaction factor for low-alpha mode at Diamond

(α =−1.4×10−5) and the SBD array placed at z=-70 mm. For a selection of combined

RF cavity voltages (4 MV, 3.4 MV and 1.5 MV), a single bunch was injected into the ring

with a current on average of 100 µA and the decay observed. Naturally the lifetime of

a single bunch with tens of microamps of charge is very large and thus collimators were

used to speed up the decay. Only the vertical collimators were slowly brought in evenly

from either side and thus slowly scraped away electrons on the periphery. The horizontal

collimators at Diamond are used to remove additional injected beam or beam that has

been injected incorrectly and are kept much further away from the beam than the vertical

collimators. It is known that collimators affect the impedance of the ring and thus can

affect the spectrum of CSR (Sections 2.5 and 4.10). This experiment was to see the effect

of the collimators on the CSR spectrum in low-alpha mode. In low-alpha mode because

the bunches are short, the CSR impedance dominates [76] and therefore the effect of the

collimators is negligible.
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In order to compare the CSR observed during a current ramp against the CSR seen

during a decay with collimators, a corresponding test was carried out to observe the re-

sult of a current ramp for each RF cavity voltage. Specifically a single bunch with low

current was injected into the ring and slowly more current was added to it. During this

current ramp data were continually obtained using the seven channel SBD array. Once at

0.09 mA the ramp was ceased and the decay began. As mentioned previously the vertical

collimators were employed to quicken the decay. As with the ramp, throughout the decay

the signal observed by each of the seven channels was recorded. When the data from

the ramp (squares) were compared against those of the decay (dots), both cases produced

comparable results. This is shown by the overlapping of the curves in Figure 4.28 for

the case of 4 MV RF voltage with the SBD signal at the revolution frequency versus the

bunch current. Due to these results it can be definitively known that the use of collima-

tors to the decay a single bunch low-alpha mode with α = −1.4× 10−5 does not affect

its spectrum. As mentioned above this low-alpha has a ‘large’ momentum compaction

factor thus resulting in ‘large’ bunches and despite these bunches being ‘large’ the CSR

impedance still dominates. Henceforth, it is deduced that it is true of low-alpha THz and

pulse mode as both have significantly smaller momentum compaction factors and hence

bunches.

In Figures 4.29, 4.30 and 4.31, the live spectra are shown during each decay for

the three RF cavity voltages as detected by the SBD array. Each sub-figure represents

what is observed by a specific SBD across the available bandwidth of 33 kHz for each

value of bunch current. The most prominent signal observed by the detectors for each

different combined cavity voltage is at the revolution frequency i.e. the lock-in frequency.

On either side of the lock-in frequency are the sidebands which represent the bursting

that is occurring. It can be seen in the figures that at higher currents there is a greater

chance of the presence of sidebands as against the lower bunch currents. This is because

a charge density threshold must be surpassed to result in CSR bursts. In all cases across

all detectors, there exists the MBI threshold at approximately 50 µA.

As is always the case during a live stream of spectra, WR5.1ZBD (140-220 GHz)

and WR3.4ZBD (220-330 GHz) observe signal first and continue to experience the most

amount of activity within their detection range. On another note and to tie in with the
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following section (Section 4.9), it can be seen in all three figures that the 500-750 GHz

detector observes the least amount of signal compared to the other SBDs.

4.9 Observations with WR1.5ZBD (500-750 GHz)

The SBD array originally began as a six detector array ranging from 33-500 GHz. The

seventh detector (500-750 GHz) was purchased after preliminary results showed that there

was activity at the higher frequencies. The eighth and final detector added was the broad-

band quasi-optical detector with a stated range of 100-1000 GHz. This was incorporated

into the array when it had completed work on another experiment. Thus the SBD array

now covers a large frequency range of 33-1000 GHz.

4.9.1 Higher Detecting Threshold

In Figures 4.11, 4.12, 4.14 and 4.27, the curves representing the QOD and 500-750 GHz

detectors follow a similar trend as each other but contrary to the other detectors. With

regards the above mentioned figures, the two detectors appear to have higher noise floors.

In the case of Figure 4.27 when the detectors in question have obtained sufficient signals

to be detected, they explode with a cubic dependance between ∼35µA-45µA. This is

especially obvious for the 500-750 GHz detector, as the QOD does follow a quadratic

relationship before the ‘jump’ to cubic. Similar behaviour is expressed in Figure 4.11 also,

with the sudden change in detected signal occurring at approximately 45µA. The value of

bunch current at which this change occurs is dependent upon a variety of factors including

the combined cavity voltage where the higher the voltage the lower the bunch current is;

the type of mode the machine is in, low-alpha mode calls for a lower bunch current than

normal mode. Both a high combined RF cavity voltage and low-alpha mode result in the

bunch becoming more compressed leading to emission of CSR. VDI manufacturers both

the QOD and 500-750 GHz detector and therefore it is likely that both are made with the

same type of Schottky barrier diode. Clearly this diode requires a certain threshold of

power before detecting, notably higher than the other detectors in the array. This higher

noise floor can be reinforced by the low-alpha case in Figure 4.13, where all diodes are

detecting signal but at a higher power than Figures 4.12 and 4.14. The QOD has a much
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Figure 4.29: Using the vertical collimators for the decay of single bunch low-alpha mode
(α = −1.4× 10−5) at a combined RF cavity voltage of 4 MV, as viewed by the seven
frequency restricted SBDs.
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Figure 4.30: Using the vertical collimators for the decay of single bunch low-alpha mode
(α = −1.4× 10−5) at a combined RF cavity voltage of 3.4 MV, as viewed by the seven
frequency restricted SBDs.
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Figure 4.31: Using the vertical collimators for the decay of single bunch low-alpha mode
(α = −1.4× 10−5) at a combined RF cavity voltage of 1.5 MV, as viewed by the seven
frequency restricted SBDs.
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larger bandwidth and thus should reach the threshold sooner during a current ramp, which

is depicted in Figures 4.14 and 4.27. That is to say at lower bunch current values compared

to the 500-750 GHz SBD, the broadband QOD should surpass its detection threshold.

Moreover, it should be noted that both detectors undergo the ‘jump’ to cubic dependence

for each RF voltage at corresponding bunch current values (Fig. 4.27).

4.9.2 Anomalies in Normal User Mode

During an experiment when the part-processed data are being streamed onto a control

room computer, it is interesting to note that the 500-750 GHz detector is one of the four

which detects the most amount of signal in normal mode, however in low-alpha mode

it detects the least compared to the other SBDs [126]. This is not to be expected. The

beam is expected to have a Gaussian distribution in normal mode (and low-alpha mode).

Thus the detectors should be observing less and less the higher in frequency they are able

to detect. The reason for normal mode observations is that the 500-750 GHz detector

observes the signal coming from the tail of the bunch form-factor. Nevertheless the signal

is strongly detected insinuating that the distribution is not entirely Gaussian [126] and

perhaps that some density fluctuation is occurring. In Figure 4.24, the signal observed by

the 500-750 GHz detector in normal mode is out of step with the other detectors observing

normal mode and also with the 500-750 GHz detector for the other beam conditions.

The inconsistency of signal detected by the seventh detector in normal mode versus low-

alpha modes is discussed in the corresponding Section 4.5. Figure 4.32 illustrates the

relationship between bunch current and signal detected by the WR1.5ZBD (500-750 GHz)

detector in both normal mode and low-alpha THz mode during a current ramp. It is clear

to see that the detector observes more signal in low-alpha mode than it does normal mode

and also at lower currents in the case of low-alpha mode, nevertheless the contrast in

detection is against the other detectors during the operation modes.

4.10 Additional Benefits of the SBD Array

As mentioned in Section 3.2.4, the SBD array has been advantageous in other applica-

tions. An investigation was carried out to determine the effect of THz emission during the
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Figure 4.32: Relationship between signal at the revolution frequency of the ring observed
by the 500-750 GHz detector and the bunch current for Normal Mode (green) and Low-
Alpha Mode for THz (blue), where quadratic lines are dashed and linear dotted [126].

THz low-alpha mode user run (α =−4.5×10−6), if another beamline was operating both

of their insertion devices, the upstream and downstream undulators. The movement of in-

sertion devices is known to effect certain SR frequencies. The investigation involved the

use of the SBD array streaming on all eight channels into the control room of Diamond.

While observing the frequencies detected by the eight SBDs of the spectrometer, the up-

stream undulator scanned through its opening distances at varying speeds and the same

was done for the second undulator. The machine was operated in low-alpha THz user

conditions throughout the experiment. During the continual observation, no change in the

eight spectra could be seen live by eye. Moreover, by plotting the signal from each SBD

and the undulator opening values of the undulators it was concluded that the movement

of these undulators would not alter the frequencies or strength of signal during the THz

low-alpha mode user run. Figure 4.33 shows the movements of the first insertion device of
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4.10. Additional Benefits of the SBD Array

beamline I06, with the signal observed via two channels (33-50 GHz and 220-330 GHz)

in each case when set-up in low-alpha THz user mode (200+1 bunches and ∼10 mA).

The collimators of a storage ring are used in order the dispel additional current or the

entire beam. They can be implemented to scrape excess electrons from the peripheries of

the beam in either the horizontal or vertical plane. In a storage ring, electron bunches can

interact with the beampipe resulting in wake-fields, which can act back on the bunch itself,

thus affecting its beam dynamics. These wake-fields are due to the machine’s impedance.

Collimators are known to affect the impedance of a machine and therefore impact upon

the SR in particular CSR as the latter is amplified by the wake-field and bunch interaction

(Section 2.5). During operation, the collimators are kept away from the beam in order

to limit the effect of impedance and are hence only called upon when required. It has

been determined that only normal mode is adversely affected by the use of collimators,

contrary to low-alpha mode which is not (Section 4.8). The reason can be attributed to

when the electrons are housed in short bunches the CSR impedance dominates and thus

the effect of the machine’s impedance does not influence the spectra. While in the case

of the comparatively long bunches for normal mode and even longer for a single bunch

in normal mode, the CSR impedance is not as prevalent and thus the effects of other

impedances impact upon the beam and thus the spectra.

An experiment was carried out to show and experimentally prove that the movement

of collimators affected the THz spectrum of the SR during normal mode single bunch

operation. It was seen when the vertical collimators were brought closer to the beam, the

spectrum changed drastically and when moved apart the spectrum would be altered again.

The largest variation in the spectra occurred when the vertical collimators were moved to

and from having gaps of 3.5 mm to 4 mm. It is actually due to the impedance effect of the

collimators that current ramps rather than decays were performed. To wait for the beam

to decay is time-consuming especially when working on a user facility. A decay could

not be expedited by scraping the beam with collimators as it would not result in a realistic

outcome of what would have happened had the collimators not been present and thus not

affecting the machine’s impedance.
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Figure 4.33: The signal observed via two channels of the SBD array (33-50 GHz top,
220-330 GHz bottom) during Low-Alpha THz user mode while moving the downstream
ID (ID01) of beamline I06.
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4.11 Bursting Observations

In the previous sections of this chapter, the data portrayed and investigated was based on

that from the steady state emission. The steady state emission is the signal that occurs at

the revolution frequency of the ring and also the frequency that is ‘locked’ into with the

data acquisition unit. By looking at the steady state, the detector array could be further

characterised and more known about the ring and the nature of the CSR produced. How-

ever, with true ‘bursting’ the MBI are really occurring within the sidebands and not at the

revolution frequency. The data acquisition system has been set-up so as to have as wide a

bandwidth as possible within the limits of the electronics, that is 87391.43 Hz either side

of the 533.820 kHz revolution frequency of the ring. The instabilities observed within the

sidebands are showcased in this section, they are not fully understood and it is hoped that

soon their mystery will be a remnant of the past.

During an experiment, the data being captured could be seen in real-time in the form

of spectrograms. Each spectrogram for each of the eight detectors displayed the signal

determined at the revolution frequency (533.820 kHz) as well as that within the approxi-

mate 87 kHz of bandwidth either side. It was due to this continual data presentation that

changes observed by each detector could be observed in real-time. One such observation

is the order upon which each detector observes signal and this order is true of every ex-

periment carried out in the same mode, that is to say either normal mode or low-alpha

mode irrespective of the number of bunches. The first signals observed by the detectors

are due to the revolution frequency of the ring. In the case of normal mode, the order

of initial observation is first the 33-50 GHz detector, then the broadband 100-1000 GHz

detector, the 60-90 GHz detector and finally the seventh 500-750 GHz detector. These

four detectors ‘turn on’ very soon after one another with significantly more signal than

the rest. The remaining detectors (90-500 GHz) require more signal before they are seen

to be detecting. This can be shown for normal mode in Figure 4.34. It must be noted

that the quasi-optical detector and the 33-50 GHz band detector do swap positions at a

bunch current of approximately 77 µA. The sequence in which the detectors observe the

signal from the revolution frequency sheds light on what is happening in the storage ring.

The beam is expected to have a Gaussian distribution, which would hence result in the
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Figure 4.34: The signal observed at the revolution frequency by each of the detectors dur-
ing a normal mode multi-bunch current ramp with each detector depicted as a different
colour.

strongest signals to be found in the lower frequency ranges. The two waveguide restricted

detectors observing the most are the 33-50 GHz and the 60-90 GHz bands which is in

keeping with the Gaussian distribution. The quasi-optical detector is also observing sig-

nificant signal and though stated to have a range of 100-1000 GHz frequency bandwidth,

as discussed in Section 3.4.4, it is not a definitive range and the detector can detect both

above and below its stated range. Moreover having a larger bandwidth means that it can

accumulate more signal. The signal seen by the 500-750 GHz detector is due to the tail

of the Gaussian distribution but as substantial signal is detected, it can be concluded that

the distribution is not entirely Gaussian and this is also remarked on in Section 4.9.2. The

observations by the 500-750 GHz detector can be supported by those of the quasi-optical

detector.

Figure 4.35 depicts the signal observed at the revolution frequency (red) by each of

the eight detectors and the signal from the sidebands (blue) under the beam conditions of

normal mode multi-bunch. The blue sidebands are the collective signal from the 87.4 kHz

132



4.11. Bursting Observations

0 100 200
0

5

10
x 10

−4 33−50GHz

0 100 200
0

2

4
x 10

−4 60−90GHz

0 100 200
−5

0

5
x 10

−6 90−140GHz

0 100 200
−5

0

5
x 10

−6 140−220GHz

0 100 200
−4
−2

0
2

x 10
−6 220−330GHz

C
en

tr
al

 s
ig

na
l o

bs
er

ve
d 

by
 S

B
D

s,
 W

 [r
ed

]; 
S

id
eb

an
d 

si
gn

al
 o

bs
er

ve
d 

by
 S

B
D

s,
 W

 [b
lu

e]

0 100 200
−4
−2

0
2

x 10
−6 330−500GHz

0 100 200
0

2

4

x 10
−5 500−750GHz

Beam Current, mA
0 100 200

0

2

4

6
x 10

−3 100−1000GHz

Beam Current, mA

Figure 4.35: The signal observed at the revolution frequency by each of the detectors
during a normal mode multi-bunch current ramp depicted in red and the activity in the
sidebands under the same conditions depicted in blue against the beam current.
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Figure 4.36: The signal observed at the revolution frequency by each of the detectors
during low-alpha THz mode multi-bunch current ramps depicted in red and the activity
in the sidebands under the same conditions depicted in blue against the beam current.
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Figure 4.37: The eight spectrograms as seen by the eight detectors during a low-alpha
THz mode multi-bunch current ramp with 158 bunches with a bandwidth of approxi-
mately 87 kHz and where the subfigures are on the same colour-scale.

bandwidth either side of the 533.820 kHz revolution frequency. It is in the sidebands

that the CSR bursting is witnessed. Initially the blue sidebands appear to create an even

tunnel around the central frequency, however the sidebands begin to widen as the current

increases. This is due to a increase in the power produced from the CSR. Focusing solely

on the red curve representing the signal observed at the revolution frequency, there is

an increase across all frequency bands with respect to current. In four of the detectors

this increase is gradual with minimal change in the slope (90-500 GHz). With regards

the other four (33-50 GHz, 69-90 GHz, 500-750 GHz and 100-1000 GHz), the slope

increases more sharply. As well as an increase in slope, the sidebands which are parallel

to one another begin to spread out forming more of a cone shape. This growth of the

sidebands demonstrates that there is activity. It is known that true bursting has happened

when the sidebands step-change to more erratic behaviour.

For the low-alpha THz mode multi-bunch case all eight detectors display activity in
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combined RF cavity voltage was 2.2 MV as opposed to the usual 2.5 MV.

Figure 4.39: The spectrograms observed by each detector during a normal mode single
bunch current ramp with a bandwidth of 30 kHz. The combined RF cavity voltage was
2.2 MV as opposed to the usual 2.5 MV. 135



4.11. Bursting Observations

their sidebands. This can been seen in Figure 4.36 where the blue sidebands form a cone

around the red curve as opposed to a parallel tunnel. Low-alpha THz mode is designed

to create signal in the THz regime and thus it is expected that each of the eight detectors

observe signal outside the central curve of the revolution frequency. The 140-220 GHz

detector undergoes a change at∼5 mA, which represents the increase in sideband activity

as shown in the corresponding spectrograms of Figure 4.37. The sideband activity can

be defined as the increase in signal in the 87.4 kHz of bandwidth either side of the revo-

lution frequency. Unfortunately, data capture ceased before significant bursting could be

observed (Figs. 4.36 and 4.37). However it is seen for each detector that the sidebands are

beginning to spread just as the experiment ended, this can be deemed as proof that chaotic

bursting was almost ignited. Data capture was ended prior to 6 mA in order to protect the

synchrotron and thus could not be reinvestigated under these conditions. Nevertheless in

the case of Figure 4.38, where the conditions were normal mode single bunch, the step-

change can be observed and this is also reflected in its corresponding spectrograms shown

in Figure 4.39. This is particularly apparent for the more active 140-500 GHz bands.

In the case of low-alpha THz mode a different ‘turn on’ pattern is seen. This is to

be expected as low-alpha mode is designed to create CSR unlike normal mode. The most

stark contrast is that the 500-750 GHz detector, which had been one of the first in normal

mode, is now the last and most reluctant to observe signal in low-alpha THz mode. The

order of initial observation contrasts from normal mode and can be seen in Figures 4.40 -

4.42, where the figures depict the ‘turn on’ of the detectors in low-alpha THz mode with

three different bunch values (207, 158 and 50 bunches). The sequence is as follows with

the 140-220 GHz band detector first, then the 90-140 GHz detector, 60-90 GHz detector,

33-50 GHz detector, 220-330 GHz detector, 100-1000 GHz detector, 330-500 GHz de-

tector and finally the 500-750 GHz detector. The 220-330 GHz detector does change its

sequence, first surpassing the 33-50 GHz detector at approximately 2.7 µA and observing

similar strength signal as the 60-90 GHz detector above 1 µA. These three figures show

solely the signal observed at the revolution frequency in low-alpha THz mode current

ramps. The three figures only differ in the number of bunches used and the range of beam

currents explored. Figure 4.40 can be thought of a zoomed-in section of Figure 4.41 as

the former only reaches a beam current of just over 0.6 mA unlike the latter which almost
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Figure 4.40: The signal at the revolution frequency of the ring as observed by the eight
detectors during a low-alpha THz mode ultra low current ramp with a multi-bunch fill of
207 bunches.
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Figure 4.41: The signal at the revolution frequency of the ring as observed by the eight
detectors during low-alpha THz mode ultra low current ramp with a multi-bunch fill of
158 bunches.
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Figure 4.42: The signal at the revolution frequency of the ring as observed by the eight
detectors during low-alpha THz mode ultra low current ramp with a multi-bunch fill of
50 bunches.

reaches 6 mA. Comparing Figure 4.37 with Figure 4.43 the sideband activity at corre-

sponding beam currents is not the same, this can be attributed to the different number of

bunches depicted in each figure with Figure 4.37 taken with 158 bunches compared to the

50 bunches used for Figure 4.43, so though the overall beam current was the same, the

individual bunch current was not and it can be seen by comparing these two figures that

the higher the bunch current the more activity and bursting will occur.

Despite the different orders of ‘turn on’ detection for the different modes, the WR5.1ZBD

detector (140-220 GHz) observes the most activity. This detector is also the only one op-

erating with a conical horn antenna. When observing the data live as the experiment is

being carried, no sensitivity factors (Section 3.4) and this band is seen to be the most ac-

tive, with the second most active frequency band being 220-330 GHz across both normal

and low-alpha modes. When the sensitivity factor has been applied, the 140-220 GHz

band still remains the most active. It is key to point out that experimentally determined

sensitivity value of the WR5.1ZBD and its horn antenna combination is the highest of all

eight detectors at 2261.8 V/W (see Table 3.6) and also the sensitivity value given for just

the detector from the manual is also the highest.

As the array is made of separate detectors, it has the ability to truly observe what
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is happening at different frequencies or more specifically within frequency bands. This is

one of the novel capabilities of the detector. Of course, different filters could be employed

when using a broadband detector however multiple filters could not be applied simultane-

ously in order to obtain a series of frequency band data. By observing the activity within

each of the frequency bands, more about the bunch dynamics can be ascertained. The

higher the frequency, the smaller the length scale of the micro-bunches.

4.11.1 CSR Strength

The Vlasov-Fokker-Planck (VFP) equation can be used to describe MBI. In particular, it

expresses the interactions within a bunch; of the electrons and their emitted CSR [66].

Using a VFP solver [127] and a linearised Vlasov equation, the MBI threshold can be

determined [128]. Considering a beampipe as a pair of parallel plates with distance apart

of 2g = h, it was determined by [128] that shielded CSR only requires two dimensionless

parameters to describe the system - the CSR strength, SCSR, and shielding parameter, Π.

SCSR =
Inρ1/3

σ
4/3
z0

(4.2)

Π =
σz0
√

ρ

g3/2 (4.3)

with In =
Ibσz0

γασ2
δ ,0IA

, (4.4)

where In is the current, σz0 is the natural bunch length, γ the beam energy, Ib the average

bunch current, σδ ,0 the nominal energy spread, α the momentum compaction factor and IA

the Alfvén current, which is equal to 17045 A. Moreover, the MBI instability is normally

defined as a strong instability, Bane et al [128] show that this is the case and thus determine

the threshold for shielded CSR to be:

(SCSR)th = 0.5+0.12Π (4.5)

In Figure 4.44, the solid lines show the values of SCSR for both the low-alpha THz (blue)

and normal optics (green) modes with the cyan diamonds depicting the values of SCSR
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Figure 4.44: The CSR strength, SCSR, is shown against the bunch current, In. The two
solid lines represent the values as calculated using Equations 4.2- 4.4, while the cyan
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the threshold for low-alpha THz mode, (SCSR)th.

from real data. It is easy to note that SCSR increases more rapidly with respect to the

current for low-alpha THz mode compared to normal mode. This is unsurprising as low-

alpha THz mode is specifically designed to generate CSR and thus the CSR should be

more powerful than during normal optics as depicted in the figure. Using Equation 4.5,

the threshold was determined to be (SCSR)th = 0.5598, which corresponds to a bunch

current of 1.1202×10−4 A, as illustrated on Figure 4.44.

The shielding parameters for low-alpha THz and normal modes are Π = 0.4986

and Π = 2.8751, respectively. Bane et al [128] state that when Π . 2, the shielding has

minimal effect in stabilising the beam while when larger it is effective. These remarks

correspond with the shielding parameters determined just above as we know that dur-

ing low-alpha THz mode, the chosen optics have been implemented specifically to avoid

shielding. Moreover, in the case of normal mode, the shielding of CSR is expected and

not avoided.
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Chapter 5
Discussions

This chapter summarises the work presented throughout this thesis, proposes changes to

both the detector array and beamport as well as highlighting future experiments. Simply

put, the main question being asked is: does the spectrometer that has been designed and

developed to investigate MBI at Diamond work? The answer is that the spectrometer

does operate as intended and this is confirmed by the signal observed at the revolution

frequency of the ring.

5.1 Summary & Conclusions

In this thesis, the development and use of a single shot spectrometer for the study of MBI

by way of detecting the CSR produced by the instability has been presented. The spec-

trometer is made up of eight individual detectors, collectively encompassing a frequency

range of 33-1000 GHz. SBDs are known for their use in millimetre-wave applications and

are the selected detector here due to their high sensitivity and fast speeds. They operate at

room temperature allowing for simplicity. Seven of the SBDs have set frequency ranges

as a result of their waveguide packaging, the eighth SBD is a wide-ranging detector using

a log-periodic antenna [123] and silicon lens. Each of the SBDs and corresponding an-

tennas were individually characterised to determine their respective responsivities in the

forward direction in free space. Using this knowledge, the power of the signal observed by

the SBDs can be determined. The SBDs were combined as an array and the spectrometer

was installed at the dedicated viewport tangential to the Diamond storage ring.
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5.1. Summary & Conclusions

Familiarity with the beam and set-up was paramount. At the viewport a variety of

different commissioning studies were initiated, whereby the spectrometer was subjected

to millimetre wavelengths (CSR) generated at bending magnet B06 of Diamond. The

commissioning involved the investigation of the beam’s growth and the optimal positions

of the SBD array determined by way of raster scans in the xy-plane for various distances

from the viewport window. The conditions to produce CSR are known and thus Diamond

was configured in this way for the experiments.

Employing a fast oscilloscope, it was proven that two neighbouring bunches acted

independently of each other and also that turn-by-turn data capture was sufficient and thus

bunch-by-bunch unnecessary. By probing the square-law and linear detection regimes of

the SBDs, the optimal filling pattern for the spectrometer was confirmed to be a multi-

bunch fill. A multi-bunch fill either in one continuous train or spread throughout the ring

allowed for the overall peak power to remain below the threshold of the diodes keeping

them within their square-law detection zone.

During three different user runs, the evolution of the beam in the millimetre regime

can be seen in each case. As expected in a normal user run with 300 mA, there is minimal

CSR emission, with only the 33-50 GHz detector observing a believable beam. Moreover

the WR3.4ZBD (220-330 GHz) is encountering real signal. This is in keeping with said

detector always detecting one of the highest signal powers in normal mode (and low-

alpha). For both low-alpha THz and pulse modes, each SBD observes a true signal as

low-alpha mode results in the compression of bunches giving rise to CSR emission and

can lead to CSR emission due to MBI. As anticipated the low-alpha THz mode produced

a higher power spectral density than the other user runs because it is especially designed

to produce a higher CSR flux.

In single bunch normal mode, a selection of RF cavity voltages were explored to

show the relationship between an increasing RF voltage and decreasing bunch size thus

resulting in additional CSR emission. Naturally, during low-alpha user mode the ring is

operated with a higher RF combined cavity voltage than amid a normal user run.

Collimators are known to affect the impedance of the machine and thus can alter

the CSR emission and progression of MBI. It has been seen in the previous chapter that

this is only meaningful in the case of normal mode whereby the CSR impedance is one
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of many impedances, contrary to low alpha-mode where the bunch is shorter and the

CSR impedance dominates. In low-alpha mode the signal obtained during a current ramp

corresponded with that during a current decay using collimators.

Therefore it can be concluded that the aims of this thesis have been achieved; a

spectrometer has been developed in order to study MBI. With the characterisation of

each SBD, the spectrometer is able to determine the power of signal received for each

frequency range. The spectrometer has been characterised by the steady state emissions

from the revolution frequency of the ring and is fully functional. It has provided evidence

for what is expected in terms of CSR production at a storage ring. Not only useful for

the investigation of MBI, the spectrometer is also able to monitor the variation in spectra

during the change of certain machine parameters. The SBD array remains installed at

Diamond as a permanent diagnostic tool. Furthermore, the data it captures is now being

continually archived, several times an hour.

5.2 Further Improvements of Detector Array

The first and foremost improvement to the detector array would be to characterise the

remaining detectors experimentally using a relevant source. The sensitivity factors of

WR2.2ZBD (330-500 GHz) and WR1.5ZBD (500-75 GHz) had to be calculated using

the results from the other detectors and the values given per model on the manufacturers

data sheets. The QOD was calibrated on the test bench but its entire range was unable to

be reached.

Currently the detector array is composed of many posts, post holders and screws

as well as some specifically machined detector holder for individual detectors. This was

beneficial when creating the detector array as the positions and amount of detectors were

regularly changing. Now that the detector array has been established and characterised it

would be favourable for one piece of metal to be specifically machined in order to hold

all detectors at their required positions. This would mean that there would be less chance

for unwanted movement e.g. loosening of a screw or difficulty in re-assembling the array.

The voltage acceptance for each of the channels is determined by the multi-channel

simultaneous digitiser. An improvement to the set-up as a whole would be to introduce
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warnings to alert the user that the diodes or more specifically the channels are approaching

saturation levels. To go another step further, the voltage acceptances for channels could

be automatically changed in accordance with the signal presence. This change of range

allowance would be carried out and recorded in the data. Currently, the values at which

to set the ranges for each lattice and beam current arrangement have been determined via

trial and error and are now known. This was helped by displaying regular snapshots of

the raw bit signal as the Fourier transformed data was being streamed, where the digitiser

accommodates 215 = 32768 bits.

5.3 Further Improvements of Beampipe Set-Up

The beamport at Diamond dedicated to the investigation of micro-bunching instabilities

was originally used to guide visible light and was hence designed and constructed to al-

low for the output of visible wavelengths. When the beamport was re-purposed to work

in the mm-wavelengths, no major changes were implemented. The beamport allows for

the emission of mm-wavelengths, nevertheless it was never optimised for this. The beam-

port’s design and hence dimensions affects the beam in many ways. The effect is the size

of the apertures within the beamport which do not allow for the millimetre wavelengths

to spread out but rather restricts the spread and causes reflections. The first issue is the

presence of the slit absorbers which create an 11.5 mm vertical aperture 532 mm from

the source. Then 1142 mm from the source point there is a horizontal limit of 20.7 mm.

Furthermore, the radiation leg has been designed for x-ray radiation with a fixed vertical

dimension of 33 mm and initial horizontal size of 39 mm. It is at the first aperture where

the mm-radiation is affected and subsequently thereafter.

All beamlines at Diamond are unique, however B22, a beamline dedicated to THz

and IR spectroscopy, is even more so. Starting where the radiation generation and separa-

tion from the electron beam occurs, the dipole vessel for B22 has an alternative and most

obviously larger shape. Most significantly, there are no slit absorbers within the dipole.

After the dipole magnet the B22 beampipe expands at the required rate to allow for the

mm-wavelengths to pass through without interruption, e.g. there are no crotch absorbers.

Across the world, there are many beamlines at synchrotron light sources that spe-

145



5.4. Further Experiments

Table 5.1: Acceptance Apertures of THz Beamlines [73, 76, 129, 130]

Beamline Horizontal Aperture Vertical Aperture
mrad mrad

B06 21.6 10
B22 50 30
IRIS 60 40

MLS THz 65 43

cialise is using terahertz radiation to carry out experiments, such beamlines include those

at MLS and IRIS at BESSY-II. Both beamlines have been designed with THz in mind

and thus have much larger apertures than a typical synchrotron radiation beamline which

is key when working with mm-wavelength. The acceptance apertures are depicted in

Table 5.1 where the vertical aperture is the most significant with regards these longer

wavelengths. By increasing the acceptance aperture of the beampipe from B06, the CSR

would be less affected when approaching the SBD array. It can be seen from Table 5.1

that the aperture of B06 is significantly smaller than the dedicated beamlines.

On another note, in an ideal world, there would be nothing to hinder the movement

of the SBD array in a raster scan. Currently there are water cooling pipes for the storage

ring which results in scans closer to the beamport i.e. longitudinally, being curbed.

5.4 Further Experiments

In physics and research as a whole, there is never an end; more ideas and hypothesis spring

out of the data and one could be carrying out experiments forever. At some point though,

a thesis must be written and the work concluded, however as is the nature many further

investigations could have been carried out. Throughout this section, future experiments

are expressed.

SBDs are sensitive to the plane of polarisation and thus must be orientated correctly

to observe the desired data. The SBD array in this thesis was installed accordingly. An

interesting experiment would be to turn the array by ninety degrees and capture data. In

theory, there should be no results however, it could show activity within the beam along

an unexpected plane.
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With the interesting results obtained by the 500-750 GHz detector especially in

normal mode (Section 4.9), another higher frequency detector could be acquired, charac-

terised and added to the array. A WR1.0ZBD (750-1100 GHz) detector could be attained

to investigate if these anomalies exist at even higher frequencies or filters used to further

restrict the frequency ranges of the current detectors.

Since the SBD array has been successfully functioning, it has been used to moni-

tor the changes (or lack there of) that might arise during low-alpha user runs when the

collimators or insertion devices are being adjusted. It has been a beneficial tool for the

operation of Diamond as whole. The detector array is to remain installed at Diamond’s

B06 beamport. Hence, it will continue to be used in the commissioning of future low-

alpha lattices and watching for changes to the spectra emitted when certain parameters or

settings are altered.

5.5 Comparisons to Simulations

It is the desire of many to be able to model a light source’s true behaviour and also to

accurately simulate MBI. The data obtained with the SBD array have been used to pro-

vide more information on MBI, the beam as a whole at Diamond, the characteristics

of different beam modes and the effects of micro-bunching instabilities. As outlined in

Section 1.5, these data can be used to confirm the fidelity and accuracy of the simula-

tions. Currently several doctoral students in conjunction with Diamond are working on

improved models to predict the behaviour of MBI. They have been using the data obtained

for this thesis and by the SBD array outlined in these pages as a comparison between what

they have modelled and what is actually observed [64, 65].
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[88] V Beltran, N Salvadó, S Butı́, and G Cinque. Micro Infrared Spectroscopy Dis-

crimination Capability of Compounds in Complex Matrices of Thin Layers in Real

Sample Coatings from Artworks. Microchemical Journal, 118:115–123, 2015.

[89] M R Ryder, B Civalleri, T Bennett, S Henke, S Rudie, Gi Cinque, F Fernandez-

Alonso, and J C Tan. Identifying the Role Of Terahertz Vibrations on Metal-

Organic Frameworks: From Gate-Opening Phenomenon to Shear-Driven Struc-

tural Destabilization. Physical Review Letters, 113(21):1–6, 2014.

[90] A Greenaway, B Gonzalez-Santiago, P M Donaldson, M D Frogley, G Cinque,

J Sotelo, S Moggach, E Shiko, S Brandani, RF Howe, and P A Wright. In Situ

Synchrotron IR Microspectroscopy of CO2 Adsorption on Single Crystals of the

Functionalized MOF Sc2(BDC-NH2)3. Angewandte Chemie - International Edi-

tion, 53(49):13483–13487, 2014.

[91] U Schade, K Holldack, P Kuske, G Wüstefeld, and H W Hübers. THz Near-Field
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